
Abstract-The coherence between the stimulation signal and the
EEG has been used in the detection of evoked responses.
However, the detector ’s per formance depends on both the
signal-to-noise ratio of the responses and the number of data
segments used in the coherence estimation.  Recently, the
multiple coherence between the stimulation signal and the EEG
has been suggested as a way of improving such detection.  In this
work such methodology is fur ther  investigated using Monte
Car lo simulations, and the effectiveness of the method is
illustrated on data recorded from 12 young normal subjects
dur ing rhythmic photic stimulation.
Keywords-EEG, photic stimulation, detection of responses,
coherence, multiple coherence, Monte Car lo simulations

I. INTRODUCTION

The coherence between the stimulation signal and the EEG
has been proposed as a way of detecting evoked responses
embedded in the background EEG [1].  Thus, the detection
task is achieved by comparing the estimated coherence with a
threshold, which is obtained based on its well known
sampling distribution under the null hypothesis of zero
coherence (absence of evoked responses).  The main
advantage claimed for the technique lies on the fact that the
detector is very robust, since the threshold is independent of
both the shape of the response and the signal-to-noise ratio
(SNR).  Thus, the probability of mistakenly detecting a
response (probability of false alarm) will be constant and
equal to the significance level of the test. In addition, for the
case of periodic, deterministic stimulation, coherence may be
estimated using only the EEG signal [1], which simplifies its
estimation as well as reduces random errors due to noise in
data acquisition.  In order to evaluate the coherence-based
detectors’  performance, the sampling distribution of
coherence between one random and one periodic signal was
derived in [2] with the aim of obtaining its confidence limits
and the probability of detecting a response (PD) if such is
present.  The latter is shown in Fig. 1 for different SNR-
values (in dB) and number of segments used in coherence
estimation (M).  As it can be seen, for a given SNR, the
detection can only be improved by increasing M, which
results in a larger stretch of EEG signal to be processed.  This
may constitute a serious limitation for low SNR-values, since
a suitable number of segments could become large, leading to
a whole data length greater than the period during the which
the EEG may be considered stationary.  Furthermore, in
clinical applications of evoked responses such as in
monitoring surgeries, one is often interest in avoiding injuries
in the nervous fibbers due to surgical procedures, and
therefore in detecting responses as fast as possible.

Recently, the use of multiple coherence between the
stimulation and two EEG signals has been proposed as an
alternative to improve the detection rate without increasing
the number of segments used [3].  In the present work such
methodology is further investigated with Monte Carlo
simulations and applied to the EEG of 12 normal subjects
during photic stimulation.
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Figure 1 – Curves for the probability of detection (PD) of responses
using the coherence between the stimulation signal and the EEG as a
function of the signal-to-noise ratio (SNR)  and for different number of
windows used in the estimation (M=6, 12, 24 and 48).  SNR-values for
which PD is equal to 0.95 indicated by arrows.

II. COHERENCE BETWEEN RANDOM SIGNALS AND A
PERIODICAL ONE

A. Univariate Case - )(ˆ 2 fyκ

The coherence estimate between two finite length record,
discrete-time signals x[k] and y[k], with the first being a
periodic, deterministic signal and the latter, a random one
may be obtained using the well known approach of dividing
the signals into M segments as [3]:
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where “^”  superscript indicates estimation, and )( fYi  is the

T-length Fourier transform of the i th windowed data segment
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of y[k].  Under the hypothesis of presence of responses (H1),

the sampling distribution of )(ˆ 2 fyκ  can be obtained using the

results of [4] and some further manipulations as [2]:
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where “~”  means “ is distributed as”  and ( )λ)1(2,2 −′ MF  is the

noncentral F-distribution [5] with 2 and 2(M-1) degrees of
freedom and the non-centrality parameter λ given in brackets

as a function of the true value of )(ˆ 2 fyκ .  For the null-

hypothesis (H0) of no response, the right hand side of (2)
reduces to the (central) F distribution with 2 and 2(M-1)

degrees of freedom, since )(2 fyκ =0 for this particular case.

The probability of detecting a response (PD) can be obtained

as a function of M and )(2 fyκ  by evaluating the integral of

the probability density function of (2) from the critical value
of the central F distribution (under H0) to infinite. In Fig. 1,
PD is plotted for different values of windows (M=6, 12, 24
and 48) and signal-to-noise ratio (SNR), which is given in dB

as a function of )(2 fyκ , as [2]:
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B. Two-variate case - )(ˆ 2
12 fyyκ

The multiple coherence expression of a periodic,
deterministic signal x[k] , considering y1[k] and y2[k] has been
derived in [3] as a particular case of the general expression
given in [6] as:
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III. SIMULATION STUDIES

Based on the model of Fig. 2, critical values of

)(ˆ 2
12 fyyκ where found with simulation in [3] from the

percentiles of distribution obtained by setting H1(f)=H2(f)=0,
which leads y1[k] and y2[k] to be zero mean, uncorrelated
Gaussian signals.   This corresponds to the null hypothesis of
lack of evoked responses in both signals.  The alternative
hypothesis may be investigated according to the following
relationships [2] for the i th-window Fourier Transform of y1[k]
and y2[k], which are related to the theoretical values of

)(ˆ
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2 fyκ  and )(ˆ
2

2 fyκ  as:
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Figure 2 – Model for the EEG with an additive stimulus response. The
stimuli are represented as the pulse train x[k]⇔X(f);  v1[k]⇔H1(f)X(f) and
v2[k]⇔H2(f)X(f) are the deterministic stimulus responses; n1[k]⇔N1(f)  and

n2[k]⇔N2(f)  are  zero-mean, Gaussian signals with variance 2
1nσ  and 2

2nσ ,

representing the background EEG, independent of the stimuli.  Finally,

y1[k]⇔Y1(f) and y2[k]⇔Y2(f) are the measured EEG at two distinct regions.
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where N1i(f) and N2i(f) are, respectively, the i ih-window
Fourier Transform of n1[k] and n2[k], whose real and
imaginary parts are zero-mean, Gaussian distributed with

variance 2
1fσ  and 2

2fσ .  The detection rate with )(ˆ 2
12 fyyκ

was experimentally obtained in [3] by generating a population
of Y1i(f) and Y2i(f)-values according to (7) and counting the

cases in which )(ˆ 2
12 fyyκ was greater than its critical value.

This was done for different values of M and SNR, which are

related to )(2
1 fyκ  and )(2

2 fyκ  according to (3).  However,

in this work such values were assumed to be equal in both
signals in order to allow a comparison to the probability of

detection (PD) with )(ˆ 2 fyκ (Fig. 1).  The general case of

different values of SNR for y1[k] and y2[k] is now investigated
for M=12 and N=10³ iterations using the same methodology
as in [3], leading to the  3-D plot shown in Fig. 3.
As it can be seen, for a fixed SNR-value in y1[k], an infinite
number of PD-values may be found, depending on the SNR
in y2[k].  On the other hand, if we fix the probability of



detection, the infinite pairs of SNR in y1[k] and in y2[k] (SNR1

and SNR2) leading to the same PD may be found as the
contour maps in the xy-plane of  Fig.3.  Such information is
very important in order to obtain the minimum SNR in y2[k]
that improves the detection rate when using both y1[k] and

y2[k] (detection with )(ˆ 2
12 fyyκ ) in comparison to that one

using only one signal (detection with )(ˆ 2 fyκ ).

Figure 3 - Probability of detection with )(ˆ2
12 fyyκ  as a function of SNR-

values of y1[k] and y2[k].  Contour maps are shown in the xy-plane.

In Fig. 4, the case of PD=0.95 is taken as an example.  If only
one signal is used in the detection with coherence, a PD of
0.95 is expected for a signal-to-noise ratio of –1.2 dB with
M=12 (Fig. 1).  Setting this value of SNR for y1[k] on the
contour curve of Fig. 4, a corresponding SNR of about –10
dB is found for y2[k].  Thus, for SNR-values greater than this
one, an improvement in the detection is expected, since the
intersection between the horizontal and vertical dotted lines
would lie on a contour curve above that one for PD=0.95.  On
the other hand, for a SNR in y2[k] lower than this threshold, a
smaller detection rate is expected when using both signals.
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Figure 4 - Contour plot of the PD-values from Fig. 3 with PD=0.25, 0.35,
0.55, 0.75, and 0.95.

The particular case when the SNR is equal in both signals
corresponds to the intersection between the bisector-plane
and the 3-D curve of Fig. 3, and is shown in Fig. 5, together

with the probability of detection using )(ˆ 2 fyκ .  As it can be

noted, PD is always greater when using )(ˆ 2
12 fyyκ  in

comparison with the univariate case.
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Figure 5 - Probabiltiy of detecting a response with )(ˆ 2
12 fyyκ  for  the case

when signals y1[k] and y2[k] have the same SNR for M=12 (continuous line).

PD with )(ˆ 2 fyκ  is also shown in dotted line to allow comparison.

IV. APPLICATION TO EEG DURING PHOTIC STIMULATION

In order to compare the performance of )(ˆ 2
12 fyyκ  to that of

)(ˆ 2 fyκ , the EEG of 12 normal young subjects (age range: 9 –

17 years) was recorded at derivations O1 and O2 (reference:
ipsilateral earlobe) over a period of 24 seconds during
intermittent photic (flash) stimulation at 10 Hz. The signals
were digitised at 256 Hz, and the coherences calculated
following (1) for O1 and (4)-(6) for both derivations, using
M=12 epochs each of 2 second duration and applying a
rectangular window.  A typical result is displayed in Fig. 6.
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Figure 6 - )(ˆ 2
12 fyyκ  (dotted line, harmonics of the stimulation frequency

indicated by squares) and )(ˆ 2 fyκ  calculated for O1 from subject #1

(continuous line, harmonics of the stimulation frequency indicated by

circles). Critical values are shown in horizontal lines.



Regarding the harmonics of the stimulation frequency for this
example, it can be noted that the number of cases for which

)(ˆ 2
12 fyyκ  lie above its critical value is significantly greater

than that one for )(ˆ 2 fyκ .  This reflects in a higher detection

rate for the first estimate (75%) in comparison to the latter
(50%).  Such results are in agreement with Fig. 5.  However,
for some other subjects, the detection rate-values are not
compatible with Fig. 5, as in Fig. 7. In this case, a detection

rate of 83% is found with )(ˆ 2
12 fyyκ , while 75% of responses

were detected with )(ˆ 2 fyκ .  This case must be interpreted as

different SNR-values in the EEG derivations.
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Figure 7 - )(ˆ 2
12 fyyκ  (dotted line and harmonics of the stimulation frequency

indicated by squares) and )(ˆ 2 fyκ  calculated for O1 from subject #2

(continuous line and harmonics of the stimulation frequency indicated by

circles). Critical values are shown in horizontal lines.

In spite of the relationship involving the SNR in O1 and O2,

the performance of )(ˆ 2
12 fyyκ  was always superior to that of

)(ˆ 2 fyκ , as evident in the histogram of the difference between

the number of detections with both estimates (Fig. 8).
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Figure 8 – Difference between the number of detection with )(ˆ 2
12 fyyκ  and

)(ˆ 2 fyκ as a function of frequency.  Negative numbers correspond to

frequencies for which the detection with the latter was greater than that with
the first.  Stimulation frequency and harmonics indicated by circles.

V. CONCLUSION

In [3], a technique for detecting evoked responses was
developed based on the extension to the multivariate case of
coherence between the stimulation signal and EEG.  Thus,
instead of using the EEG collected at a unique region, it was
proposed the estimation using two EEG derivations.  This

multiple coherence ( )(ˆ 2
12 fyyκ ) is also independent of the

stimulation signal (see (4)-(6)).  However, the probability of
detecting a response (PD) was obtained in such work
assuming equal values in the signal-to-noise ratio (SNR) of
both signals.  This was done in order to allow a direct
comparison to the simple coherence as in Fig. 5, and may be
justified based on the well-known inter-hemispheric
symmetry of the visual evoked responses [7].
In the present work the general case was investigated leading
to the 3-D curve of Fig. 3, whose contour maps allow
obtaining the minimum SNR in the second signal that
improves the detectors’  performance.  For the case of
PD=0.95 and M=12 segments, such threshold is of  -10 dB,
which is much smaller than the SNR necessary for the same
PD using only one signal (-1.2 dB).  Thus, for closer SNR-

values, a higher detection rate is expected with )(ˆ 2
12 fyyκ .

The results with EEG signals confirm the better performance

of )(ˆ 2
12 fyyκ  and suggest its use in order to improve the

detection of evoked responses.
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