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FOREWORD 

This paper applies the spheroidal T-matrix approach of Dr. Roger H Hackman described 
in his paper "The Transition Matrix for Acoustic and Elastic Wave Scattering in Prolate 
Spheroidal Coordinates", [Journal of the Acoustic Society of America, 75(1), PP. 35-45] to 
describe the scattering from large aspect ratio targets. Due to the limits of double precision 
arithmetic in the computation of the spheroidal wave functions, these methods are limited to 
frequencies below kL/2 = 30. 
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I. INTRODUCTION 

Prolate spheroidal coordinates are one of eleven coordinate systems in which the scalar 
Helmholtz Equation in three dimensions is separable. Separability is the reason the scattering 
from a rigid (sound soft) prolate spheroid may be expressed as a partial wave series of spheroidal 
wave functions analogous to the partial wave series of a rigid sphere. However, the vector 
Helmholtz Equation is not separable in the prolate spheroidal coordinate system. This is the 
main reason for the lack of exact solutions for acoustic scattering from an elastic prolate 
spheroid. The lack of separability of the vector wave equation in spheroidal coordinates is also 
the reason there does not exist an expansion of the Green's Dyadic for the vector wave equation 
in terms of spheroidal functions. 

In the early 1980's, Roger Hackman '""^ at Coastal Systems Station used Betti's Identity to 
derive a T-matrix description of the scattering from large aspect ratio elastic targets based on the 
spheroidal wave fiinction, rather than the popular spherical T-matrix description. This approach 
is numerically more stable than the spherical T-matrix approach for large aspect ratio targets. 
The author had the pleasure of working with Dr. Hackman during his tenure at COASTS YSTA, 

A    Q 

and worked on the scattering from large aspect ratio targets in a waveguide ' . 
This article focuses on the use of the spheroidal T-matrix description of scattering from 

elastic targets to describe the low frequency scattering from these targets. The purpose for this 
work is to build an object oriented computer program for computing the low frequency scattering 
from large aspect ratio targets. This computer code is to be integrated into the sonar simulation 
PC Shallow Water Acoustic Tool-set (PC SWAT) to describe a low frequency imaging sonar in 
the presence of elastic returns from the target. 

In addition to the Introduction and Reference sections of this report, the outline of this 
paper includes the following sections. Section II describes the spheroidal coordinate system and 
its relationship to linear acoustics. Section III outlines the computation of the spheroidal basis 
fiinctions. Section IV describes the computation of the spheroidal T-matrix. Section V contains 
a collection of sample calculations and a comparison of the author's results with those of 
Hackman. Most of the details of the computations are contained in the appendices. Appendix A 
describes the computation of the eigenvalues and expansion coefficients for the spheroidal wave 
equation. Appendix B contains the orthogonality and completeness relationships of the 
expansion coefficients. Appendix C contains the expansion of the scalar Green's Function and 
plane wave in terms of spheroidal wave fiinctions. Appendix D describes the transformation 
between spherical and spheroidal wave fiinctions. Appendix E describes the computation of the 
radial spheroidal fianctions. Appendix F contains a tabulation of the connection components and 
its first order derivatives used in the computation of the second and third order covariant 
derivatives of the 
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scalar basis functions. Appendix G contains a tabulation of the components of the vector basis 
functions and their covariant derivatives. Appendix H contains a tabulation of the parity of the 
basis functions. Appendix I describes the computation of the surface integrals and T-matrix in 
the case of a prolate spheroid. Appendix J describes the computation of the surface integrals and 
T-matrix, in the case of a finite cylinder with hemi-spherical end caps. 
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II. SPHEROIDAL COORDINATES 

Prolate spheroidal coordinates are a generalization of the familiar spherical coordinates. 
The transformation from spheroidal to Cartesian coordinates is given by the following equations. 

^ = /V(^'-l)(l-^')cos(^) 

y = f^](^'-m-r}')sm(<p) (1) 

Here, ^ > 1 is the radial coordinate, -1 < 77 < +1 is the angular coordinate, 0 < ^ < 2;r is the 
azimuthal angle coordinate, and/is the semi-focal distance. 

Adopt a right-handed coordinate system whose coordinates y^ are given by the 
spheroidal coordinates (^,<p,T]). The metric tensor in this coordinate system is a diagonal metric 
whose diagonal members are given by the following expressions in terms of the coordinate basis 
{d^,d^,d^} of the tangent space: 

%=/(f-^')/(f-l) 
g,,=f\f-7j')/(^-n') (2) "in 

Define the ortho-normal triad {e^,e2,e^} = {^,4>,f}} by the following relations: 

^i=^i^fj 

ef=di'lh^ (3) 

The covariant derivative of a tensor of type (1,1) in terms of the coordinate basis is of the 
following form: 

v,r% =a,r% +n,r% -r%,r% (4) 
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Here, F^^^are the components of the torsion-free affme connection defined by the following 

expression in terms of the metric tensor (An affme transform changes the relationship between 
the coordinate system a program uses to draw and the coordinate system used to display). 

This connection has the property that the covariant derivative of the metric tensor vanishes. 

The stress tensor of an elastic solid is defined by the following expression in terms of the 
metric tensor and the covariant derivative of the displacement vector u. 

r„^ =A(VX)g«^+y"(V„W;,+V^wJ (6) 

Here, A, and ju are the Lame constants of an isotropic elastic solid, which are related to the 
longitudinal and shear wave speeds by the following relations, where p is the density of the 

solid. 

A = p{vl-2vj) ^^^ 

The equation of motion for an isotropic elastic solid is given by the following expression, 
where T(u)^^ is the stress tensor for the displacement vector w„. 

A generalization of Green's Theorem gives rise to Betti's Identity, which states that given 
a pair (M,V) of regular solutions of Equation 8, the following surface integral over the boundary of 
the enclosed volume (V) vanishes. 

(^ds{u*7(v)-J(u)»v} = 0 (9) 

Here, the terms 

tiu)^=^T(u)^X (10) 

are the components of the traction of the displacement u. 
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III. SPHEROIDAL FUNCTIONS 

The scalar Helmholtz Equation in spheroidal coordinates is of the following form: 

f\e-v') 
^^   "^^ -dlw+c\^'-n')w}=o (11) 

(^^-1X1-/70 

g = Det(g^,) 

2\"<P^ 

Here, c is the dimensionless product of the wavenumber k and the semi-focal distance/ This 
wave equation is separable into the product of a solution of the radial equation: 

m' 
d,ie-\)d,je^, -(X„,ic)-c'e ^-(fl^-^''"' =^ ^^^^ 

the angular equation: 

.2 

^(^-v')d,S„,HUc)-cV--^^)S^,=0 (13) 

and the azimuthal equation. The spheroidal coordinates have the rather interesting property that 
the radial and angular equations are isomorphic under the interchange of the coordinates ^ <-> ?/. 
This isomorphism implies a duality between the solutions of the radial and angular functions, 
that is, the radial fiinctions may be regarded as the analytic continuation of the angular functions 
to the domain +\<T]< +<». hi particular, the radial functions: 

rre„,(c,<^) = -^Sl]\c,^) (14) 
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are proportional to the corresponding angular functions. This transformation is an isometry of 
the metric tensor, that is, the metric tensor is invariant under this transformation. The classic 
method of solving the angular wave equation is to expand the angular functions of the first kind 
in terms of associated Legendre polynomials: 

A=0,l 

Here, the sum is over either even or odd indices, depending upon whether the difference (l-m) is 
even or odd. The series expansion given in Equation 15 is a solution of the angular wave 
equation provided the expansion coefficients satisfies the following recurrence relations: 

(2m + k + 2)(2m + k + \)c' 
«* = (2m + 2k + 3)i2m + 2k + 5) 

p^ ={m + k){m + k + \) (16) 

2 2{m + k){m + k-\-\)-2m^ -\ 
+c 

K 

i2m + 2k-l)i2m + 2k + 3) 

k{k-\)c^ 

{2m + 2k-3)(2m + 2k-\) 

The eigenvalue /l„,(c) is chosen such that the limit 

d:\cy 
lim^    (fl±ii£Z) = o (17) 

vanishes. The conventional method of solving for the eigenvalue is to solve a transcendental 
equation defined in terms of a continued fraction of the above eigenvalue and coefficients as 
described by Flammer in Reference 9. A numerically more robust method of solving for the 
eigenvalues is to transform the above recurrence relation into the problem of solving for the 
eigenvalues of an infinite dimensional tri-diagonal matrix. This method is due to Hodge   , and 
is described in References 10 through 12. This is the method adopted by the author since it is 
readily generalized to the case of complex wavenumber. The coefficients dl\c) are related to 

the eigenvectors of this infinite dimensional matrix. Reference 13 contains a simple iterative 
method for solving for the eigenvalues and eigenvectors of arbitrarily large tri-diagonal matrices. 

In the case of the radial wave equation, the fact that the radial functions are proportional 
to the analytic continuation of the angular functions can be used to calculate the radial functions 
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for radial coordinates near unity (+l<^<1.5)as described in Reference 11. The computation of 
the irregular radial functions requires the computation of the angular functions of the second, 
which is derived by taking the following limit of the series expansion in terms of associated 
Legendre polynomials of the second kind. 

5lf (c,;?) = lim,^o S C(^)e:...p(^) (18) 

The associated Legendre polynomials of the second kind exhibit a simple pole at integral 
orders less than -m. At the same time, the coefficients df(c) exhibit a simple zero, and the 
product remains finite. 

lim,.o<pa%.p=<^-:-i..,   k>+2m (19) 

This produces a representation of the angular function of the second kind that is a series 
of the associated Legendre functions of the first and second kind of the following form: 

SL]\c,v)=   I   dfic)Q:^,iJi)+    I   <(C)F:_,.,(/7) (20) 
k=-2m+S k=lm+l-S 

The coefficients <i^p(c) are defined by the limit: 

<(c) = iim^_,„::^ (21) 

A recurrence relation for these coefficients is given in Reference 11. 

A popular representation of the regular radial function in terms of spherical Bessel 
Functions is of the following form described in References 9 through 12. 

ye„,(c,^)=-L(^£^)'" X (+0""-' ^^^^dfu^ic^ (22) 

The above series expansion is absolutely convergent. The corresponding series expansion for the 
irregular radial function is obtained by replacing the regular spherical Bessel Function with the 
corresponding irregular spherical Bessel Function. However, in the case of the irregular radial 
function the series expansion is no longer absolutely convergent, and it is at best an asymptotic 
expansion. 
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The author has studied the convergence properties of about a half dozen different 
representations of the irregular radial functions based on integral representations of the following 
form: 

neJc,<^)=lciTjKi^,V)S':i(c,T]) (23) 

Flammer '^ provides a general discussion for the construction of integral representations of 
the above variety. None of these representations has satisfactory behavior at high frequencies. 
The high frequency convergence property of the irregular radial fiinctions and the angular 
fiinctions of the second kind is due to the fact that the expansion coefficients df(c) represent an 
alternating series of large tenms leading to numerical round off due to the finite precision of the 
calculations. 
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IV. SPHEROIDAL T-MATRIX 

In the case of the spherical T-matrix description, the expansion of the scalar Green's 
Function and Green's Dyadic in terms of spherical wave functions is often used in the derivation 
of the spherical T-matrix description from the scalar and vector Helmholtz Equation. The vector 
Helmholtz Equation in spheroidal coordinates is non-separable, and there exists no closed form 
solution for the corresponding Green's Dyadic in terms of spheroidal wave fimctions. To 
overcome this difficulty, Dr Hackman made use of Betti's Identity, which is a generalization of 
Green's Theorem, to generate a system of linear equations for the scattered field in terms of a 
collection of basis fiinctions of the scalar and vector Helmholtz Equation. 

The author introduces the following basis for the regular and outgoing basis fiinctions for 
the scalar Helmholtz Equation in terms of spheroidal fiinctions: 

(24) 

The fiinctions S^^,(c,r},g)) are the following basis fiinctions of the scalar spheroidal harmonics: 

_    , , e(m)   „„),        cos(w^),<T = 0 

"•"'^    ''^'    \2KK„,{C) ""'    "\sm{m(p),(j = \ 

(25) 

\\,m = 0 
e(m) = < 

Define the following basis functions of the vector Helmholtz Equation: 

y 
' \.aml =         Vx(aVAl, ,) 

V 
' l.ami 

V 
c, 

(26) 
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Here, A^,(c) is the eigenvalue of the spheroidal wave equation, and Cj. =kjf and c^ = A:^/ are 

the dimensionless wavenumber for the transverse and longitudinal degrees of freedom. The 
functions 

wLi = he^i (Cr, ^)5^„/ {Cj, 7], (p) 

are the outgoing basis functions for the scalar Helmholtz Equation for the transverse and 
longitudinal modes. The vector a is the conformal killing vector for dilatations whose 
components are as follows: 

''''•^''^'     ,,    , (28) 
(aj,a,,a,) = (/{,A,0) 

This vector satisfies the following condition: 

V,«.=g,. (29) 

The curl in three dimensions is defined as follows: 

VxF=e^£^"X'^^ (30) 

in terms of the Levi-Civita Tensor 

e"^'=  ,     ^        S^-l (31) 

and the covariant derivative. 

Define the vector spheroidal harmonics for the elastic solid as follows: 

A.n,i =-n=('7V^-^^7+^-r=r^«')^^'"/(cr'^.'P) (32) 

In the limit / —> 0 the vector spheroidal harmonics approach the vector spherical 
harmonics. They obey the following orthogonality conditions: 

10 
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(^dq}dj]A,^^,*A,^.„,,=0 

(^d(pd7iA,^^,*A,^.^.,,=0 

cl 

The vector basis functions V^^^, have the following asymptotic behavior in the limit ^ —> +00 

ami 

V2..., -^—^^he^,{Cr,^)A2,am, (34) 

Kcn,i -^ —^^he^t{CL ,^)4,^„/ 
CL 

The above asymptotic behavior of the vector basis functions coupled with Betti's Identity 
leads to the following important orthogonality condition for the vector basis functions. Let 5 be a 
smooth, closed surface, S„ be the sphere at infinity, Fbe the volume whose boundaries consists 

of the union of these two surfaces, and (w,v) be a pair of regular solutions of the vector Helmholtz 
Equation in this volume. Then Betti's Identity implies the following surface integrals over the 
closed surface 5" and the sphere at infinity are equal: 

jjdA{tiu)*v-u»t(v)}=lldA{t(u)»v-u*t{v)} (35) 

By replacing the functions u and v with the vector basis functions and using the 
asymptotic expansions of the vector basis functions and Equation 33 to evaluate the surface 
integral over the sphere at infinity, we obtain the following orthogonality condition for the vector 
basis fianctions on the closed surface S: 

11 
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s 

j|c/^WReF,„„,).F,„.„,, -ReF,,„, .r(F,,,„,,,)} = (36) 
5 

-i(A+2M) I k, (-i)'-'s:'s:s';,T=T •=3 

The above orthogonality condition is the basis for the spheroidal T-matrix approach, which uses 
the above orthogonality condition to re-express the boundary conditions of the incident, 
scattered, and interior fields into a system of linear equations based upon expansions of the 
incident, scattered and surface fields in terms of these vector basis functions. 

Consider the case of acoustic scattering fi-om a solid elastic target immersed in water. 
The boundary conditions between the exterior and interior fields are given by the following 
conditions of continuity of normal displacement, continuity of the normal traction, and vanishing 
of the tangential interior traction. 

w^ • n = M_ • « 
/^ •« = /_•« (37) 

i xn = 0 

The single vector: 

VL=-yhe„,(c,^)S,„,ic,7i,(p) (38) 
c 

is the vector basis function for the fluid, which may be regarded as the limit // -» 0 of the vector 
basis for an elastic medium. The following vector is the corresponding traction vector of this 
basis: 

nvL) = A'^niV.V„l,) = 

c 

Make the following expansions of the incident and scattered field in the fluid in terms of 
this basis: 

12 
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ml 

ILUVL (40) 
ami 

^Scatt 
ami 

Applying Betti's Identity to the total field: 

"T,„al=^lnc+^scaU=Y.''crml'^^Kml+famlKml (41) 
ami 

and the regular and irregular basis functions on the surface S of the scatterer, one arrives at the 
following linear equations between the expansion coefficients of the incident and scattered fields 
and the surface fields 

^aml = -i-^ ldA{t, • Km, -K -^(O) 
^    s (42) 
k 

fam, -+i^ J^^K .ReFL -«, •KReV^l,)} 

Using the fact that traction in the fluid is proportional to the normal vector to the surface 
and the continuity of the normal displacement, one can rewrite these equations in the following 
form: 

«.„,=-'-^p^{(/. •«)(««C)-("- •«)««'(C)} 

L. = +'V 1«^U^ • n)n . Re C, - (M. . n)n • ?(Re C)} 

Next, one may apply Betti's Identity to the regular vector basis functions of the solid and 
the surface displacement and traction of the interior fields to arrive at the following equations. 

ldA{t_*RcV,,,„,-u_.t(ReV,,J} = 0 (44) 
s 

Use the boundary conditions at the surface to replace this integral with the following: 

ldA{(t,.n)(rfRcV,,J-u_*t{ReV,,J} = 0 (45) 
s 

Now make the following expansions in terms of the scalar harmonics in the exterior and the 
vector harmonics in the interior: 

13 
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am, (46) 

"- = 2-1 PT,ami A,ami 
taml 

Substituting the above expansions into Equations 43 and 45 one arrives at the following linear 
system of equations: 

a = -{Qp-Ma) 

f = + ReQJ3-ReMa 

0 = Pa-R/3 

Q„,r.=-i-^ldA{(n.t(V:)in.A,,,)} 
^   s 

^    s 

(47) 

The indices ami have been grouped into the single index n in the above equations. The 
solution of the above systems of equations is given by the following T-matrix, which relates the 
incident and scattered fields in the fluid. 

T = -iRQQR-'P-ReM)(QR-'P-My' (48) 

The above T-matrix is Method B described in Reference 3. This is the method used to perform 
the calculations in the next section. 

14 
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V. SAMPLE CALCULATIONS 

Figures 1 and 2 depict a comparison of the results of the present author and Dr. Hackman 
for the scattering from a 4:1 solid aluminum prolate spheroid at end-on incidence (0 degrees) and 
30 degrees incidence. 

Comparison of End On Scattering from 4:1 Aluminum Spheroid 

0.20 

0.15 

0.10 

0.05 

0.00 

-•— Sammelmann 
+      Hackman 

4 6 

kL/2 

FIGURE 1. FORM FUNCTION AT END-ON INCIDENCE 
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Comparison of Scattering from 4:1 Aluminum Spheroid at 30 Degrees 

 \ I \ I I  

1.5- 

o  1.0 

0.5 

0.0- 

Sammelmann 
+       Hackman 

~\— 
5 

klJ2 

FIGURE 2. FORM FUNCTION AT 30 DEGREES INCIDENCE 

Calculations made by the present author and Dr. Hackman agree within machine 
precision in the above two cases. 

17/18 
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Figure 3 depicts a polar plot of the form fimction at kL/2=5.5, which corresponds to the 
frequency of the large flexural wave depicted in Figure 2. The directivity pattern of the flexural 
resonance at kL/2=5.5 has the characteristic shape of a quadrupole. 

Form Function at kL/2 = 5.5 

FIGURE 3. FORM FUNCTION AT KL/2 = 5.5 

19/20 
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Figure 4 depicts a polar plot of the bistatic form function at kL/2=5.5 at end-on incidence. 
The forward scattering is strongly peaked at the radiation lobes of the flexural wave. 

End On Incidence at kL/2 = 5.5 

FIGURE 4. BISTATIC FORM FUNCTION AT KL/2 = 5.5 FOR END-ON INCIDENCE 

21/22 



CSS/TR-02/18 

Figure 5 illustrates a two-dimensional rendering of the form function of a 4:1 aluminum 
spheroid as a function of frequency and aspect angle. The first three flexural resonances of the 
spheroid are clearly legible. 

360 

B 
< 
u 

L/D=4 Aluminum Prolate Spheroid 

10.00 

15.00 

40.00 

kL/2 
Aug 16 13:24 

FIGURE 5. TWO-DIMENSIONAL PLOT OF THE FORM FUNCTION AS A FUNCTION OF 
FREQUENCY VERSUS ASPECT ANGLE 

23/24 
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APPENDIX A - COMPUTATION OF EIGENVALUES AND EIGENVECTORS 

This appendix describes the computation of the eigenvalues and coefficients df of the 

spheroidal wave equation. 

The expansion coefficients df satisfy the following recurrence relation: 

«2+(A"" -k,K'+7r<'2 = 0 

„    (2m + k + 2){2m + k + l)c^ 
^' ~ {2m + 2k + 3>){lm + 2k + 5) 

P^=im + k)(m + k + l) 

2 2(m + k){m + k + l)-2m^-l 
i2m + 2k-l)i2m + 2k+3) 

k(k-\)c' 
^''     (2m + 2k-3){2m + 2k-l) 

Define the ratio 

'k ^k-2    iml 
«A-2 

These ratios obey the following forward and backward recurrence relations: 

<-2yr 
N, 

S = (l-m)mod2 
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The eigenvalue X is chosen such that the following limit vanishes: 

lim,^„A^,=0 

The equation for the eigenvalues is obtained by using the forward recurrence relation to 
compute t he value of the above ratio at k = 2 + l-m. Next, one chooses a sufficiently large 
value of k = K such that the ratio N^^2 = ^ vanishes and computes the value of the ratio of 

k = 2 + l-m from the backward recurrence relation. The eigenvalue is adjusted to make the 
difference between these two estimates of the ratio at k = 2+l-m vanish. 

Once the eigenvalue has been obtained, the values of the above ratio for A; < 2 + / - w are 
computed from the forward recurrence relation. For indices k>2 + l-m,the above ratio is 
calculated from the backward recurrence relation. The rationale for splitting the above 
calculation into a combination of forward and backward recurrence is to avoid loss of precision 
by recurring in the direction of increasing magnitude of the ratio. The expansion coefficients 

df are obtained from the recurrence relation: 

d;'=\ 

jml    _      ^k+2   ^ml 

The above prescription defines the expansion coefficients df up to an arbitrary normalization 

condition. One adopts the normalization condition of References 1 and 2 defined below: 

5';^/(0) = /^"'(0),l-meven 

'^l!/"(0) = /^"'(0),l-modd 

^,  ,,„     (2n + 2m + 2^)!     ^^; yAi-,r,-svi {l + m^-5)\ 

2'-"'(l_l^)!(l-ii^)! 

^ = (/-w)mod2 

An alternative method of computing the eigenvalues and eigenvectors of the spheroidal 
wave equations utilizes the fact that the recurrence relation for the expansion coefficients can be 
represented in the following matrix form as an eigenvalue problem: 
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Ys^i Ps.i ccg^i 0 

0 Ys^, fis^A oCs^A 
0 0 y,,, P,,,j 
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(dt\ 
jml 

= X 
jml 

jml 

The matrix can be transformed into a symmetric, tri-diagonal matrix by defining the 
following expansion coefficients: 

Do = 1, n = 0 

n„ -. l^^i^n„_, = n% -^^^, n > 0 
7s+2n V Ts+Zij+V) 

eo=dg , n-0 

These coefficients obey the recurrence relation: 

^n —\^S+2n/S+2n-i-2 

K^P, S+2n 

a(,e,+(6o-/l)e(,=0,n = 0 

«„^„.i + i.b„ - Z)e„ + a„_,b„_, = 0, n > 0 

The eigenvalues and the eigenvectors are solutions of the eigenvalue problem for the 
following symmetric tri-diagonal matrix: 

«o    b^    a,     0. 

0    a,    ^2    ^2 

.0     0    a,    b,    ^ 

f „ \ fa\ 

= X 

v^3; v«3y 
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This method of solving for the eigenvectors is numerically more robust than solving the 
transcendental equation for the eigenvalues presented previously. In addition, this method is 
readily generalized to the case the wavenumber (c) is complex. Note: the user is required to 
solve the above eigenvalue problem for even and odd parity eigenvalues separately. 

The value of the expansion coefficients d"^' for -2m + S <k<-l + 5 cdiXxhQ calculated 

from the backward recurrence relation for the ratio of adjacent coefficients. 

A^. = 
aiiY: 

'k p:-?i-N, k+2 

S = (l-m)mod2 

Alternatively one can use the following forward recurrence relation for the coefficients 

f-k 

jml 
d-k 
jml 

,k<2m + 2-S 

0,k>2m + 2-S 

Since the term r 2„_2+^ = 0 vanishes, the above recurrence relation expresses the ratio as a finite 

continued fraction. The expansion coefficients d"^ are given by the following expression: 

ai%or-2n-2.sW=dl-2.s^ri< m 

In the case k > -2m - 2 + <5, the coefficients d^l^ have a simple zero in the limit /? -> 0, 

In this case, one is interested in the coefficients J^J for k > -2m -2 + 5 defined by the relation. 

P 

One may use the following forward recurrence relation for the coefficients d"lp: 
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tml ' 

U=^ 
jml 
"k-2\p 

al,k:^2m + 2-S -k 

2 

«:;=-! ^ ,k = 2m + 2-5,d = 0 
(2w-l)(2m + l) 

c2 
-,A: = 2m + 2-^,^ = l 

(2w-3)(2/w-l) 

Here the coefficients d^^^p are given by the following expression in terms of the ratios /;: 

U1;=0 '^-2{m+n)-2+S)^-2m+S ~ ^+2(m+n)+2-S\p 

REFERENCES: 

1. Flammer, C, (1957), Spheroidal Wave Functions, Stanford University Press, Stanford CA. 

2. Hodge, D.B., (1970), Eigenvalues and Eigenfunctions of the Spheroidal Wave Equation, 
Journal of Mathematics and Physics, V. 11 pp. 2308-2312. 
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APPENDIX B - EIGENVECTOR ORTHOGONALITY RELATIONS 

This appendix contains the orthogonaUty relations satisfied by the expansion coefficients 

The expansion coefficients df satisfy the following relationships: 

y 2 (2m±^„,^.. ^ ^j- 

-1 

The above relationships represent the orthogonality and completeness of the expansion 
coefficients viewed as eigenvectors of an infinite dimensional tri-diagonal matrix. 
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APPENDIX C - GREEN'S FUNCTION EXPANSION 

This appendix contains the expansion of the scalar Green's Function and the plane wave 
in terms of spheroidal wave functions: 

G(r,r ■) = "^Pj-^;^ I"-;' 1^ = ikY.he^,{c,^^)je„,{c,L)S,.,(ri,(p)S,M\(p^ 
A7c\r-r'\ ^ 

exp[+zl • r] = exp[+/Ar cos(7)] = A7cY,{+i)'Je^i{c,^)S„„,(ri,(P)Sa„,(ri\(p') 
ami 

cos(7) = cos(t?) cos(t?') + sin(z?) sin(t?') cos(^ - ^') 
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APPENDIX D - TRANSFORMATION FROM SPHERICAL TO SPHEROIDAL 

This appendix contains the transformation between spherical and spheroidal wave 
functions. 

The transformation between spherical and spheroidal wave functions is given by the 
following transformation, where the matrix B^^,„,^,,, is a unitary matrix: 

cr'm'l' 

(J'm'r 

n ^^--^-'Ml        2      (/'+m)!    , 

'""''"'"'''      "   "" ^,i{2l + \){l-m)\ '"" 

D-l _   Dt 
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APPENDIX E - COMPUTATION OF RADIAL FUNCTIONS 

This appendix describes various representations of the radial functions. These 
representations are based on integral representations of the following form described by Flammer 
in Reference 1. 

K,ic,o=]dT]Ki^,v)s::xc,T]) 

The following Theorem and Lemma are from Reference 1: 

THEOREM: 

Let L^ and L^ be the following differential operators: 

L,=a,(f-i)a,+c^f- "" ^^-"fVb        V"!-"^ ..2 (f-1) 

2—2 
L^=d^(l-T)d^-c'rj 

m 

Let K(4,jj) be a solution of the following partial differential equation in the complex domain D: 

(L^-L^)Ki^,j]) = 0 

Let [a,b] be the contour in the complex domain D such that the following integral vanishes: 

]dJ]{(L^K(^, V))S':^ (c, 77) - K(^, mnSi:^ (c, V)) = 
a 

ii-ii'){{d^K(^,f]))si:]{c,v)-m,n)^s^:jic,T])}l=o 

Then the following contour integral is a solution of the radial equation in the complex domain D: 

a 
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LEMMA: 

Suppose: 

y/i^, Tj, (p) = Ki^, V) exp[+//«^] 

is a solution of the Helmholtz Wave Equation. 

Then the function K{^,r]) is a solution of the partial differential equation: 

{L^-L^)m,Jl) = 0 

Some of the examples of kernels satisfying the above partial differential equation listed in 
Reference 1 are listed below: 

^nJScW-m^)) 

J„ (cV(^'-l)(l-77') sin(cir)) exp[±/c^;7 cos(or)] 

j„{c{^±n)){e-'^r\^-ri'r\c{^±ri)r 

The classic expansion ''^ of the radial functions in terms of spherical Bessel Functions follows: 
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<5 = (/-w)mod2 

^     (2« + d)! 

The expansion for the regular function je^, is absolutely convergent, whereas the 

expansion for the irregular function ne^, is an asymptotic expansion unsuitable for radial 

coordinates near unity. 

The expansions of the radial functions in terms of the analytic continuation of the angular 
functions are given by the following expressions: 

1 

(i)_ {lm + 2d + \){l + m + 5)\ ^{2m + 2n + 5)\ j 

2'-c-^<m!(^^^)!(^i^)! 
_              ml 

"" "^  >..,.n,.s.,.,„^,(l-m-S    l + m + S^,'^,     (2n + S)\    "'"*' 
2      '        2 

2'-'"(2m)!(^)!(^)!<„      (2m + 2«)'    . 

"" (2«-1)W!(/ + /M)!C'"-'       t^    (2«)!      '" 

'""' ~      {2m-\){lm-2,)m\{l + m + \)\c"-^    ^"   (2« + <5)! 

2'-'"(2m)!(^-:^)!(——-)! J:,„,      .2«a + 2« + ^)'    , 
v:;:'=-    ..      ....   ^.   ..,    ^,.. „,,    I^    .      .t.^"<..> odd(l-m) 

The above representation of the irregular radial function ne^, in terms of associated 

Legendre polynomials is useful for calculating the radial function for arguments in the range 
+1 < ^ < 1.5. In the above expressions, one uses the analytic continuation of the associated 
Legendre polynomial to the complex plane: 
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pr{z)={z'-\r\^rp,{2) 
az 

Qr(z)=(z'-\r'\-^rQ,iz) 
dz 

The following expansion of the regular radial function in terms of spherical Bessel 
Functions is sometimes useful for arguments near unity: 

je„, =-7ii^Z(+0**"-'<C*(0)y„..(cV?^) (evenl-m) 
ml \   /    * 

K, = ,.(■!,,,  yi   ,E(+0"'"-VrP'l,(0)7.,,(cV^) (oddl-m) 

There is an error in Reference 1 in the case l-m is odd in the above expansion. 

The radial functions have the following expansions in terms of the product of spherical 
Bessel Functions: 

^=cosh(///2) 

Even l-m 

r,w = {■^i)'-'"2"'{n + 2m)\f     , {-n\{n + 2m + \\{m + \l2\     r(m + 3/2) 
((•^'c"'m\n\       h  " k\ r(m + 3/2 + 2A:) 

x^F^{-n + k,n + k + 2m + \,k + \l2;m + k + \,m + 2k + 'il2:+\) 

_ (+1)'-'"(2m +1)2""'(n + 2m)!^     , (-n\(n + 2m + \\(m + l/2), T(m + n-k + l/2) 
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Odd 1-m 

he„, =^(^^ -l)'"'^I(2« + 2A» + 3)//::L,(ce^'"^)7..„.,(ce-'"^)i):' 

^w ^ {+it'"-\2m + ?>)2"'{2m + n + 2)\^^„,   (-«),(m + 3/2),(« + 2m + 3),     r(m+3/2) 

x^F^{-n + k,k^'il2,n + 2m + k + y,m + k + 2,m + 2k + 5l2:+\) 

The Pochammer and generalized Hypergeometric fiinction are defined below: 

k-\ 

(x), = T{x + k) I T{x) = Y{{x + n) 

REFERENCES: 

1. Flammer, C, (1957), Spheroidal Wave Functions, Stanford University Press, Stanford CA. 

2. Hodge, D.B., (1970), Eigenvalues and Eigenfiinctions of the Spheroidal Wave Equation, 
Journal of Mathematics and Physics, V. 11 pp. 2308-2312 
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»' 

APPENDIX F - CONNECTION IN SPHEROIDAL COORDINATES 

This appendix contains a tabulation of the non-zero terms of the linear connection, its 
derivatives, and the function P^^ = ^a^%^^oa^% i^ prolate spheroidal coordinates. These 
functions are used to compute the second and third order covariant derivatives of the scalar basis 
functions used in the construction of the vector basis and the stress tensor: 

Tl = ^(1-^') 
f^ /-;:2     iv;:2     «2 (f-lXf-;/^) 

(1-77^X^^-77^) 

ri 

n =n -I    ^ 
"^    ^''    (f-77') 

'^^     (f-lXf-^^) 

«"'     "*•     0-77') 

p«> _ r«' — I    ^ 

77(l-77^Xf-l) rL=+- 
(f-^0 

;) r^ (1-77^)       ,     2f 2f 
^^^^^      (f-lXf-77^)^    (f-1)   (f-77^)^ 

V    ^^        /e2      „2x2 (f-^^r 
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2^77 
'r in    ^i'- ni        /e2_   2s2 

a. 

^^  ""        (l-;;^)(f-;;^)\l-;;^)    (f-77^)^ 

"»?    W /e2_„2N2 

axL=a.n =-^^'"^^^ ^   pf     ^   ^v        /e2    t\2 r-ir 

a,r^=a,r^.=o 

3,r;=a,r;=o 

a„r! =a„n =-^^'^^ ^ I?    W '7    W /j_„2s2 

^^n _,       (f-l)       n,    V    ,     2;;^    > 

^'-ni    "r in        /e2_„2-v2 

2^77 
^7^?^ ~^n^4n ~'^/^2_   2N2 
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TTi j-{l--3?7 +-772 TT^ 

, ^   _3f(lzi)_ 
'''      (f-l)^(f-;7^) 

P'/ =+ k  
'''     (f-lXf-;?^) 

. __    3^77(1-/7^) 
7^^ /'e2      i\2/e2      -,2 (f-D^Cf-;?^) 

"^^      (f-1X^^-77^) 

pf _ pf _._  

pi — pi — 2  

^ 
2 

p^     ^pf     ^___  

p'?   _ p;/   _j £^!Z  

p^  =- ^ 
2 

^OT /I      ^2\/e2      „2 (l-77^)(f-;7') 

,,  _       3^/7(^^-1) 
P'' =- 

^OT /I      *,2\2/e2      „2 (1-77^)^(^-77^) 
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W'/ /I      _,2\/-e2      „2 (l-77^)(f-;7^) 

,,  _.      377^(f-l) 
PI = + W7 /I      «,2\2/C2       _2 (1-/7^)^(^^-7^) 

, ^_£(iz^ 

^  ^;7(f-l) 

^   ;7^(f-i) 

P^   =P^    =—      ^ 
>P^9 Wf /'e2      i-v2 (f-ir 

pf =P^ =— 

pn   -pi £5  

1 pj?     = P"?     = _ 
<5W       W/ /I      ~,2\2 

p<P    —p<P    —_ 

(i-Tjr 

p-p ^p<p =.|?z(£zl) 

p<p ^p<p =+M^i^ 
ni'P      n(f4        /e2 _^2\ 

P** = p** = _ZL_I£_Z_2 
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Vf" (f -1)^ 

pv  . _ p<p   . ^V 

(1- -v'xr- -1) 

p<P 1 

(1- -v'f 

pi> 
•PVf 

= -1 

F-7/F-8 



CSS/TR-02/18 

APPENDIX G 

VECTOR BASIS FUNCTIONS 

Approved for public release; distribution is unlimited 

G-l/G-2 



CSS/TR-02/18 

APPENDIX G - VECTOR BASIS FUNCTIONS 

This appendix contains the components of the vector basis functions and their covariant 
derivatives for an elastic medium in spheroidal coordinates. One may use the index n to signify 
the group of indices ami. Here, i^l and y/^ are the scalar basis functions for the transverse and 
longitudinal modes. The vector basis functions are defined by the following relationships. 

g = Det{g^,) = f\f-Tjy 

kr-fliV'), =k'roy„+2vy„+a''v,wy„ 

First, one tabulates the components of the second and thu-d order covariant derivatives of 
the scalar basis functions. These functions are used to construct the vector basis and its covariant 
derivative. Since the Riemann Curvature Tensor vanishes, the covariant derivatives commute in 
a coordinate basis. Thus, the higher order covariant derivatives of the scalar basis functions are 
symmetric tensors. The radial, angular, and azimuthal wave equations have been used to 
eliminate second and higher order derivatives with respect to a given variable: 
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2^77(1-;?^) 2 1 (1-;;^) 
(f-l)(f-;7^)^f-;7^)   (f-1)   (f-l)(f-77^)^ 

^f-1)'(f-;/-)-^^^^'^^^^'^"'^^^^^^ 

^     f-^„2 ,      4     ,^    „2g2T .     6/«^ 3(1-;?^)      r^    „2g2 ,     rn"    .,,_ 

(f-1)^    (f-1)^    'Mf-1)^ (f-i)(f-/7^)^       (f-ir 

G-4 



CSS/TR-02/18 

^     2^77(^^-1)           2^1 (^'-^)       la y, 

 j^U + 6-cY --^^ jf }a,^ 
(1-770 (1-r) 

V ,^   2 4        ,, 2    2i 6/W^ 3(^^-1)        ,, 2    2 W^       1 

d-;?') (1-^') (1-^')'    (l-77')(f-l) (l-??') 

V,V,V,y. = -H ^^^ -^f^^1^- ^^ [^,3,y. - ;73,a^^] - {m' + 2)3^^^ 

^(f-1)   (f-;/^)   (f-l)(f-770^ 
v,v,v,^=_^[^^+^^__LL^i_^]a^a^^ 

^ n 1     '%  2 e2       2   2 2/w w       T 
2  ,^;Ti—iTt3^-2c^ -^V+7i2—:7-;7-:2T]t^ (f-lX^^-;;^^ ' (f-1)   (1-/7^ 

.2   .!i?   ^2.2[3-4f+77^]a,^ 
(f-l)(f-;70^ 

1     .,     9 ..9       m 
2 

[A-c^f+-^]a,t/ 
(f-i)^ (f-i) 

+(^^-i)(^^-;;3)2[3^^ -3^' ^^''^' -3f+2f ]a,^ 

^ fo2    o.2^2    „2e2       2w^     ,     w^ 
2^.^2   .2.{3A-2cY-cT-7r-bv+7if^H^ 

2V.2     ,,2[3-4;7'+f]a# 

(l-;7')(f-/7') (!-??')    (f-1) 

(l-/70(f-;70 
,2^2 1 r-, 2,2 W^ 

[3f-3f+f/7^-3;7'+277'P# 

(1-77^)      (1-77^ 

1 

(l-;70(^ -^70 
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-r il + iJl + 15 ]3 w 

1 r1        ^ 2     2 ^^+2^-. 4 ^   -, 
-[X + 2-c'?]'-- j-]d^y/+- 2T'7V*'^ 

,1(1-'?'),,    ,.« ,    w'   i„,,   Sf"-' „. 

2|5(lz^^X£-l) 2,;'(l-,;')(f-l) ,   (H->;')(f-l) 

w(^^-i),,   2 2    »»^  1     ^m^ 
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The component expression for the above vectors in terms of the scalar basis functions are 
as follows: 

c 

CL 
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The components of the covariant derivatives of the vector basis functions are as follows: 

)>/^V,(Kj),=-^V,VX-^j^^^ 

yV^v^cFj), =.^v,vx^^j#^ 
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^rV^v,(F„^),=c^ |f^v^: -^c^rv^y. +3v,vx+gizii v,v,v,^:+|i5^v,v,vx 

^. >A:V,(F„^), = 3V,v,^: H-glzil v,v,vx +|izjl v,v,vx 

^r>A:v,(F„^),=c\n^y. +3v,v,^:+|£zii v,v,v,v^:+|i5^v,v,v,^: 
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v,(F„^),=^v,vx 
CL 

v,()^;),=^v,vx 
^i 

V (F^) =—V V M/-^ ' pV n ft} ^ r]^ (pT n 
CL 
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APPENDIX H - PARITY OF BASIS FUNCTIONS 

This appendix tabulates the parity of the various functions and their derivatives with 
respect to the transformation 7] -^-rj, and the dependence of the functions on the first order 
derivative with respect to the azimuthal angle. These symmetries are important for determining 
the non-zero matrix elements obtained from the surface integrals for a symmetric target such as a 
prolate spheroid or finite cylinder. 

Table H-1 contains the polar and azimuthal parity of the vector harmonics. Table H-2 
contains the parity of the components of the vector basis functions, and Table H-3 contains the 
parity of the stress tensor formed fi-om the covariant derivative of the vector basis functions. The 
interpretation of the polar parity column is as follows: +1 signifies the function transforms as 
F(-T]) = +(-l)'"'"F(/7), -1 signifies the function transforms as Fi-r/) = -(-1)'""F(;;), and 0 
signifies the function is zero. The interpretation of the azimuthal parity column is as follows: Y 
signifies the function is proportional to an odd number of derivatives of the fiinction with respect 
to the azimuthal order, and N signifies it is proportional to an even number of derivatives. 

The significance of the azimuthal parity is that it denotes the coupling of different parities 
in the azimuthal integration. The significance of the polar parity term is that it dictates the values 
of order / for which the integrals over the coordinate -1 < 77 < +1 are non-zero. 

TABLE H-1. PARITY OF VECTOR HARMONICS 

VECTOR HARMONIC COMPONENT POLAR PARITY AZIMUTHAL PARITY 
First Vector 
1 ^ 0 0 

1 n +1 Y 
1 (p -1 N 
Second Vector 
2 ^ 0 0 

2 v -1 N 
2 (p +1 Y 
Third Vector 
3 ^ +1 N 

3 ri 0 0 
3 (p 0 0 
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TABLE H-2. PARITY OF VECTOR BASIS FUNCTIONS 

VECTOR BASIS FUNCTION COMPONENT POLAR PARITY AZIMUTHAL PARITY 
First Vector 
1 ^ -1 Y 

1 V +1 Y 

1 (p -1 N 

Second Vector 
2 ^ +1 N 

2 ri -1 N 

2 9 +1 Y 

Third Vector 
3 ^ +1 N 

3 V -1 N 

3 (p + Y 

TABLE H-3. PARITY OF STRESS TENSOR FORMED FROM VECTOR BASIS FUNCTIONS 

VECTOR BASIS 
FUNCTION 

COMPONENT OF STRESS 
TENSOR 

POLAR 
PARITY 

AZIMUTHAL 
PARITY 

First Basis Function 

(^.^) -1 Y 

i^,miri4) +1 Y 

{^,(P){(P,^) -1 N 

(iJ>V) -1 Y 

(T],(p)(<p,TJ) +1 N 

((p,(p) -1 Y 

Second Basis Function 
2 i^,4) +1 N 

2 i^,mri4) -1 N 

2 {^,(P){(P,^) +1 Y 

2 W,V) +1 N 

2 (J],(P)((P,TJ) -1 Y 

2 i(p,<p) +1 N 

Third Basis Function 
3 (^,^) +1 N 

3 (^,^)(/7.^) -1 N 

3 (^,(p)(g),^) +1 Y 

3 iv>m +1 N 

3 (j],(p)(<P,rj) -1 Y 

3 ((P,<P) +1 N 
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APPENDIX I - COMPUTATION OF T-MATRIX FOR PROLATE SPHEROID 

This appendix describes the method for performing the surface integrals necessary to 
compute the spheroidal T-matrix for a prolate spheroid. Since the spheroid is both symmetric 
under the transformation 7] -^-7j and ^ -> ^+a, the T-matrix is diagonal in parity a and 
azimuthal order m. In addition, only terms for which the difference (/-/') is even have non-zero 
elements for the T-matrix. These synmietries allow us to reduce the two-dimensional surface 
integrals to a one-dimensional integral over the variable 0 >;; > 1. Due to the above symmetries, 
the T-matrix is of the following form: 

Define the following basis functions by replacing the trigonometric functions in the basis 
functions by the exponential functions exp[±/m^], respectively. 

S\„, exp[±m^] = -jJ=(S\^, ± iS\j 
yle(m) 

VZ., cxp[±img>] = -X=iVZ, ± iVZ,) 

yl£(m) 

K:^, cxp[±im(p] = -jL=(VZ,±iV:j 

C, exp[±imcp] = -jl=^(t(VZ,)±it(V:j) 
^|£(m) 

C oxp[±im(p] = -jL=it(VZ,)±it(V:„,)) 
^}£{m) 

The functions S^ ,A^, F**', and f, are the scalar harmonic, vector harmonic, vector basis 
function, and traction vector in the external fluid, respectively. The functions A^, V\ and f are 
the vector harmonics, vector basis fianctions, and traction vectors in the interior, respectively. 
Depending upon whether a given function F^^, contains an even or odd number of derivatives 
with respect to the angle (p the fiinction will be proportional to either "1" or +/. 
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Define the following notation: 

~   f+1, even azimuthal parity 
±m/-  m/|^.^ ^^^ azimuthal parity 

Define the following functions based on their azimuthal parity: 

(yi„\=(yi,\i±i 

\*^ml ftp ~ \"±ml )<p 
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itl,\ = 

(4, 
it 
it 
itl 
it 

itl,\ 

±m, 

it±n. 

The computation of the T-matrix requires the evaluation of the following surface integrals 
over the surface of the target: 

Q.,r.=-i-J^idMrft(V:)(rfA,,)} 

K..=-i-^jdA{irfV:)S\.} 
^   s 

K,'n-=\dA{ti^tVJ*A,„?, 
s 

In the above integrals one adopts the convention that the left hand term in the integral has +m 
and the right hand term has -m for the azimuthal angle dependence of the integrand. The above 
integrals are diagonal in m, and they can be replaced by the following one-dimensional integrals: 

h^=fylif-Tj')/i^'-\) 

\=f4i^'-ri')li\-v') 

h^=f4i^'-\)i\-l') 

A =h h n.-h-h n--^^ 
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+1 

e-,,,, =-2;r/-^ IdnASCY^r)^ 

M'",,=-2m-^)dvA„(VL)^iSlr) 

P\,, = 27rjdvA„(RcV:j^iS":„,) 

+1 

-1 

Using the polar parity and the azimuthal parity properties of the integrands, the non-zero 
components of the above integrals in the case /-/' is even are given by the following integrals: 
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^     0 

^     0 

PV=M^^A„(ReFi,)^(5:,) 

PV=M^^A„(ReFi,)^(5:,,) 

+1 

+1 

i?"'3,3,,=4/|^;7A„(ReF„^)^(^L0^ 

^'"2/,3r=4/jj^A„(Reri,)^a^,)^ 

^\2r=4/j^^A„[+(Ref„^,)^(^^,), + (ReFi,)^(i^,)^] 
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The non-zero components of the integrals in the case /-/'is odd are given by the following 
integrals: 

R-^,,,=+4mjd7]A„[HRetl,)^(Al,)^ -i^^rj^(Al,\] 

i?",,,,, =-4;r/J^77AJ+(Refi,)^(i,)^ -(Re?'w)^(^:,.)^] 

+1 

0 

In the case (/-/') is even, the components of the /? and P matrices are real. In the case (/-/ 0 is odd 
the i? and P matrices are imaginary. The /? and P matrices can be transformed into real matrices 
by making the following similarity transformation on the vector indices of the R, P. and Q 
matrices: 

S„, = -i5:'5\^5l-51 + 5161 

S-^„,=S^„.=+i5l'5l+5l'5',+5l'5l 

T',r 

Q7,rr ~2^Q^,r'r^ r',r' 
T" 

In the case (/-/') is even, the components of the Q. R, and P matrices are left invariant by this 
transformation, whereas in the case (/-/") is odd they are transformed to the following real 
matrices: 
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P\r=+^^jdVA„C^eVl,)^(S:,) 

+1 

R\2r =+4^ HA„[+(ReF:),(i^,), -(Re?:),(iL.),] 

+1 

+1 

i?V=-^4^W„[+(Ree),(i),-(ReFi,),(^:,)^] 

^"'i/,3r=+4^J^^A„(Re/:,).a^,,). 

To convert the above integrals into matrices one adopts the following convention for the 
index of the pair tl of vector and order indices in the case m=0, where negative indices are 
ignored: 

n(T = \,l) = 3(l-m)-2 

n(T = 2,l) = 3(l-m)-l 

nit = 3,1) = 2(1-m) 

In the case TW ?i 0, the following index notation for the pair tl of vector and order indices is 
adopted: 

n(T = \,l) = 3(l-m) + 2 

n(T = 2,l) = 3(l-m) + l 

n{T = 3J) = 3{l-m) 

Here one uses the C-style index notation, where the first element in a vector starts at the index 0. 
The above index convention is used to project out the zero components of the vector basis 
functions in the case l=m=0. For example, the square R-matrix has dimension (3(/^^^ - w) + l) 

in the case m-0, and (3(/^„ -m) + 3) otherwise, where /^^ is the maximum value for the order /. 

The T-matrix is defined by the following equation in terms of the above matrices: 

T = -{RQQR-'P-RQM){QR-'P-My' 
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APPENDIX J - COMPUTATION OF T-MATRIX FOR FINITE CYLINDER 

This appendix describes the computation of the spheroidal T-matrix for a finite cyUnder 
with hemi-spherical end caps. 

First, the author begins with a discussion of the geometry of the surface of the cylinder. 
Let L denote the length of the cylinder and D its diameter, where the aspect ratio x = iLID) is 
greater than unity. The semi-focal distance of the spheroidal coordinate system is defined by the 
following equation in terms of the length and aspect ratio of the cylinder: 

/ = (2:/2)ML1 
X 

Define the quantity 4^/ =L-D as the length of the cylindrical portion of the target 

excluding the end caps. 

In the case -I^^ / 2 < z < +L^, / 2, the normal to the surface is given by the following equation: 

1-^^ ^''-'^r^^Y^ 

The spheroidal coordinates of the point on the surface in the ^ = 0 plane are given by the 
following equations: 
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p = p// = Z)///2 

z = zl f 

= rlf = 4~p'+z' 

l + r^+V(l + r^)^-4f^ 

n=~zi^ 

To describe the surface of the target at its end caps one uses the polar angle 
-;r / 2 < t? < +;r / 2 to parameterize the surface at its end caps. The coordinates of a point on the 
end caps in the ^ = 0 plane are given by the following relationships: 

p = (Z)/2/)sin(^) 

z = zlf = +((£> / 2/) cos(e?) + 4,, / 2) 

r  =p +z 

Tj = z/^ 

The normal to the surface at its end caps in the (p = 0 plane is given by the following equations: 
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x = /V(f-l)(l-/7') 

n^ = sin(z?) 

n = cos(z?) 

|l-7^ „. "^ = «,9^x+n^d^z = /[+^ JTrfr sin(??) + r) cos(t?)] 

«,=0 

n, =[+^Vr^sin(??)+77V?^cos(z?)]/V^' -77' 

The component n= of the normal has even parity under the transformation ;/ -> -77, 

whereas the component «^ has odd parity, hi the case of the normal for the end caps, the angle 

z? becomes t? -^ z?+;r under the transformation rj ^-Tj. 

Since the finite cylinder is both symmetric under the transformation rj-^-rj and 
^ -> ^+or, the T-matrix is diagonal in parity O" and azimuthal order m. Li addition, only terms 
for which the difference (/-/') is even have non-zero elements for the T-matrix. These 
symmetries allow us to reduce the two-dimensional surface integrals to a one-dimensional 
integral over the variable 0 >;; > 1. Due to the above symmetries, the T-matrix is of the 
following form: 

^aml,a'm'r ~ ^a ^m -'/,/' 

Define the following basis functions by replacing the trigonometric functions in the basis 
functions by the exponential functions exp[±/w9)], respectively: 
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<,, exp[±/m^] = -74=r (AL ± i<J 

4^, exp[±im<p] = -y===(Al, ± iAU 

yjeim) 

C cxp[±im^] = ^l=(t(y:,)± /V(C)) 

tL,cxp[±im(p] = -^it{V:j±it(V:j) 

The functions S"' ,A^ ,V^ ,2Xidf, are the scalar harmonic, vector harmonic, vector 
basis function, and traction vector in the external fluid, respectively. The functions 
A\V\andt^ are the vector harmonics, vector basis functions, and traction vectors in the 
interior, respectively. Depending upon whether a given function F+„, contains an even or odd 
number of derivatives with respect to the angle ^, the function will be proportional to either "1" 
or +/. 

Define the following notation: 

~   f+1, even azimuthal parity 
±m/ -   '"i^+i^ odd azimuthal parity 

Define the following functions based on their azimuthal parity: 

(i),=(4w),/±' 
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Mm/);? ~V±ml)n 

The computation of the T-matrix requires the evaluation of the following surface integrals 
over the surface of the target: 
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a,rv =-'-4 jdA{(n.t(V„"')(n*A,,,)} 
^   s 

M„,„.=-i-^ldi{(rfV:)S\,} 
I s 

s 

s 

In the above integrals one adopts the convention that the left hand term in the integral has +m 
and the right hand term has -m for the azimuthal angle dependence of the integrand. The above 
integrals are diagonal in m, and they can be replaced by the following one-dimensional integrals: 

\=f4{^'-Tl')l{\-7l') 

M-,, =-27Cij^yvKW:j^n^ HVL\n,]iS^_„r) 

P\,, = 2;r j^;7A„[(ReF;„,)^n^ +(ReF;„,),n^](5l,) 
-1 

+1 

/?V. =2;r J^;7A„(ReC)»(0 
-1 

Using the polar parity and the azimuthal parity properties of the integrands, the non-zero 
components of the above integrals in the case /-/' is even are given by the following integrals: 
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^       0 

^      0 

^     0 

PV=4^j^^^i+(Re^w)|«|+(Re'^i/)^«-7]('^rr) 

P\,, =4;r Jj;7AJ+(ReFi,)^«^ +(ReFi,),«,](5:,) 

i?\„,=4;rJj;7A„[+(Ref:),A,), + (ReF:,)^(i),] 

n,,2r=4/j^^A„[+(ReFi,),(i),+(Refi,)^(^^,,),] 

+1 

i?\3,,=4;rJj;7A„(ReC)^(i^,,)| 

+1 

^^/.sr = 4;r Jj;7A„(ReC)|(4™/.)| 

i?V,=4;rjj;7A„[+(ReFi,),(i,),+(Re?i,),(i)^] 
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The non-zero components of the integrals in the case /-/'is odd are given by the following 
integrals: 

^      0 

+1 

P'"„,=+4;r/jJ;7A„[+(ReFi,)^-n^+(ReFj;,)^«^](5:,) 

+1 

n/,i/'=-4^'P^AJ+(ReC)^(i);^-(Re?'w)^(i)^] 

^'"3/,>/'=-4^'l^^^[+(ReFi,)^A.)^-(Re/i,)^(i,)^] 

+1 

0 

In the case (/-/ *) is even, the components of the R and P matrices are real, hi the case (/-/ 0 is odd 
the i? and P matrices are imaginary. The i? and P matrices can be transformed into real matrices 
by making the following similarity transformation on the vector indices of the R, P. and Q 
matrices: 

t ,T 

Prlr=Y.S,,.P:,,r 
T" 
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In the case (/-/') is even, the components of the Q, R, and P matrices are left invariant by this 
transformation, whereas in the case (/-/') is odd they are transformed to the following matrices: 

^     0 

+1 

PV =+4;rp77A„[+(ReFj;,)^«^ H^<,)nn,]{S:,) 

+1 

R\^r=^^\dlK{+{^^tl,),CAlr)f, -i^^tl,),CAlr%] 

^'"3/,„.=+44^^^«WRe^i/)'7(^i/'),-(ReC),(i),] 

0 

To convert the above integrals into matrices one adopts the following convention for the 
index of the pair tl of vector and order indices in the case w=0, where negative indices are 
ignored: 

„(T = l,/) = 3(/-/w)-2 

„(T = 2,/) = 3(/-w)-l 
n{T = 7>,l) = Xl-m) 

In the case m^O, one adopts the following index notation for the pair tl of vector and order 
indices. 

„(r = l,/) = 3(/-/w) + 2 
n{T = 2,l) = 3(l-m) + l 
n{T = 3,l) = 3(l-m) 

Here one uses the C-style index notation, where the first element in a vector starts at the index 0. 
The above index convention is used to project out the zero components of the vector basis 
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functions in the case l=m=0. For example, the square R-matrix has dimension (3(1^^^ -m) + l) 
in the case m=0, and (3(/„ax - w) + 3) otherwise, where /^^^ is the maximum value for the order /. 

The T-matrix is defined by the following equation in terms of the above matrices. 

T = -(Re QR'^P- Re M){QR-'P- M)'' 
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