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Abstract-The problem of estimating the average Conduction 
Velocity (CV) in the muscle fibers is considered. The velocity is 
estimated from an array of noisy deterministic and unknown 
Motor Unit Action Potentials (MUAP) acquired by an array of K 
co-linear electrodes. In this array a vector of (K-1) independent 
time delays (TD) are to be estimated. For a given length of the 
array, the number K has to be determined in order to improve 
the estimation of the velocity. In this communication we show 
the influence of the value of K in the CV estimation in presence 
of noise and changes in the MUAP shape along the array. 
Keywords -  Conduction Velocity, array of sensors, change in 
shape, Time Delay estimation  

 
I. INTRODUCTION 

 
The problem of time delay (TD) estimation is of interest in 
many applications such as in Radar, Sonar and in biomedical 
instrumentation. Many authors tackled the problem of passive 
TD estimation between two spatially separated sensors in the 
presence of independent white Gaussian noise. The optimal 
method to estimate the TD is the Generalized Cross-
Correlation method (GCC), but this requires a priori 
knowledge about signal and noise. In the biomedical 
applications, more precisely in Surface ElectroMyoGraphy 
(SEMG) cross-correlation method has been applied to 
estimate the TD and then the Conduction Velocity (CV) in 
the muscle fibers [1]: this method could give highly accurate 
estimations provided that the observed signals in the array are 
coherent, i.e. neither scaled in time nor different in shape, but 
only delayed with an amount of  between each other. At 
low Signal to Noise Ratio (SNR) or in case of non ideal 
acquisition (e.g. the array is not strictly parallel to the muscle) 
this condition is not satisfied, leading to high estimation 
errors. In case of unknown signal, better TD estimates can be 
obtained if the signal is estimated before the correlation 
process. On the other hand, when multiple realizations K of a 
signal embedded in independent white noise sequences are 
available, synchronous averaging of these realizations 
decreases the standard deviation of the residual noise by an 

order of K . Consequently, we look forward to enhance the 
TD estimation by applying synchronous averaging. Indeed, 
TD estimation by beamforming [2], which is itself a special 
case of the Maximum Likelihood Estimator (MLE) of TD, 
uses the synchronous averaging to estimate the TD between 
successive signals whose value is assumed to be unique in a 
linear array. If the TDs between successive signals are not 
equal, the synchronous averaging requires all the (K-1) 
independent TD estimates between the couples of signals in 
the array ; the problem is to estimate all these delays. 
Therefore, if the signal is unknown and the TDs are not equal, 

the performances of the TD estimators are decreased. By 
surveying the works done in the SEMG domain and 
especially the estimation of Conduction Velocity (CV) in the 
muscle fibers, one can conclude that array signal processing 
methods can be used to improve the CV estimates. The CV in 
the muscle fibers is an important parameter of the myoelectric 
signal which describes muscle fatigue manifestation during 
voluntary or elicited contractions. It may assess the 
contraction level of the muscle, the age, etc.. A review of this 
signal processing application, measurement techniques and 
clinical applications of the CV are discussed in [3]. In the 
literature, many studies [1] have been carried out using two 
electrodes to acquire the necessary signals for the CV 
estimation. However, the CV estimation using an array of 
EMG signals was tackled by Schneider et al. [4], where the 
estimation is carried out by the inclination of the line joining 
the maximums of the MUAPs. Schneider showed that there is 
a remarkable CV variability between different sites along the 
muscle fibers of a single Motor Unit (MU), that is, the 
interelectrode TD varies spatially. This fact is also proved 
from theoretical model of SEMG signals [5], therefore, an 
estimation of a spatial average of the CV contains all these 
variations. The estimated CV between two successive 
electrodes v̂  can be found as lv ˆ/ˆ =  where l is the spatial 
distance between the electrodes in meters and ˆ  the estimated 
TD between the two successive signals in seconds. The TD 
estimate ˆ  is a random variable (r.v.) with an expected value 
of . It is obvious that uncertainty on v̂  is a decreasing 
function of the of  value. Hence, it is better to estimate a 
velocity from large TDs rather than small ones. The question 
is, why use multiple electrodes with small interelectrode 
distances while two extreme electrodes on the muscle unit 
gives a lower variance? There are two reasons for this : 
firstly, the constant shape hypothesis is more pertinent 
between near signals, consequently better TD estimation 
using correlation ; secondly, (it’s the aim of the present work) 
it can be shown that the average CV estimation along the 
whole muscle unit, can be improved by using intermediate 
CV estimates under some linear constraints on the TDs. We 
will show in simulation, the influence of K and changes in the 
MUAP shape onto this improvement.  
 

II. ESTIMATION OF MULTIPLE TDs ALONG THE ARRAY 

 
Several models of the recording of the propagating MUAPS 
along the muscle fiber has been proposed [6]. We will use the 
following: 
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where )(nxk is the signal recorded by the electrode number k. 

In order to simplify we can assume that 01 =d . The )(nwk ’s 

are mutually uncorrelated, with zero mean and the same 

variance 2 . This model is proposed assuming that the CV is 
a deterministic variable that varies spatially (i.e. along the 
muscle unit): therefore, the TDs between consecutive couples 
of electrodes will vary along the array.  
As shown in [6], the Maximum Likelihood Estimation of the 

kd ‘s is given by: 
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Defining jiij dd −= , the solution of (2) is equivalent to 
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where fcorr( ) stands for the cross-correlation function and 
defining vectors as : 

T
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Thus the optimal result is given by performing an exhaustive 
search over the id ’s, a (K-1) dimensional maximization, with 

substituting the ij by ij dd − in (3). Indeed the method is 

optimal but time consuming when high resolution is needed.  
An alternative approach uses a suboptimal result given by a 
post correlation processing: maximizing each term of (3) with 
respect to all shift operations, we obtain the correlation 
estimates ij

~ ,we call coarse estimates. Note that the TDs are 

estimated continuously by fitting a parabola on the apex of 
the cross-correlation [1]. Then exploiting the K(K-1)/2 linear 
relations between the ij as constraints (Chasles relations), 

leads to fine estimates. The advantage of this approach is the 
rapidity and high resolution result with respect to the optimal 
approach. This suboptimal approach can be presented as 
following.  
First let us define the K(K-1)/2 linear relations between the 

ij . These linear independent relations (Chasles relations) 

will supply additional information and can be exploited to 
improve the ~ estimate. These relations can be written as: 
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In matrix form this can be written as: 
0C =  

where C is the matrix of constraints with elements (-1,0,1) 
and size of (K-1)(K-1)/2xK(K-1)/2 and has a full rank. This 
matrix of constraints is involved in the final estimation step 
consisting in minimizing an error vector e in the set of linear 
equations that relates the vector to be estimated to the 
continuous coarse TD already estimated ~ together with the 
constraints: 
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where 0 is a (K-1)(K-2)/2x1 zero vector, I is a K(K-1)/2xK(K-
1)/2 identity matrix, ~ is the K(K-1)/2x1 vector of coarse 
interelectrode TD estimates. The vector e contains K(K-1)/2 
error elements with ijijije −= ~ .  

The least square estimator of the TDs ˆ from (4) and defining 
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with R, the covariance matrix of 
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. Using some particular 

assumption one gets the final result: 

[ ]~C)CC(CIˆ TT 1−−=     (6) 

with I=  and the variance of the error e. Note that due 

to the form of (6) the value of is not needed. 

Since ˆ is given by a suboptimal approach, the variance of 
the ijˆ cannot reach the Cramer-Rao Lower Bound (CRLB) 

given by [6],  for any value of K: 

’s’s
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where ’s is the first derivative of the signal with respect to 
time. One could notice that this theoretical bound doesn’t 
depend on the number of sensors (K) meaning that increasing 
K doesn’t lead to a performance improvement. In fact, the 
estimator variance will tend toward the CRLB as K tends to 
infinity meaning that the accuracy of the proposed estimator 
will be a function of K. 
This improvement of the TDs estimation is crucial since the 
CV and TDs are linked by the inverse function. As we will 
see in the following, the calculation of the CV using the set of 
TDs can be achieved in various way. 
 

 
III. VELOCITY ESTIMATION  

 
The velocity can be estimated from the well known relation 

dlv /=  where l is the distance between two consecutive 
electrodes and d is the TD between these electrodes expressed 
in number of samples. An analytic form of the pdf of the 
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velocity estimator can be obtained provided that the TD pdf is 
known. The choice of Gaussian pdf is a good one and can be 
satisfied, since the TD estimators are obtained from cross-
correlations and this is a MLE. Moreover, the noise processes 
are considered to be Gaussian. The relation between the delay 
pdf p ˆ  and the velocity pdf 

V
p �  is given by : 
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v

p
v
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where  slf= , sf  being the sampling frequency in Hertz 

and l is the distance in meters. Taking a Gaussian pdf for the 
fine TD estimators ˆ , with mean ˆ  (this is equal to the 

exact TD for a non-biased delay estimator) and variance 2
ˆ , 

then the velocity pdf is given by : 
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One should note that from a theoretical point of view the 

mathematical expectation of V̂  using (7) as pdf doesn’t exist. 
Using truncation in numerical calculation avoid this problem. 
For a given velocity (i.e. a given constant ratio of l ˆ/ with 

arbitrary l and ˆ values) the variance of the velocity 

estimator will be high when l and ˆ are small, because 

noting the expression of )(ˆ vp
V

, we can see that the 

mathematical expectation of V̂ explicitly depends on l and 

ˆ and not only on the ratio l ˆ/ . This remark is illustrated 

by giving mean (
V̂

) and variance ( 2

V̂
) of V̂ for different 

values of on l and ˆ with a constant ratio of the two 

variables, as in Tab.1. 
  

TABLE I 
MEAN AND VARIANCE OF CV  

ˆ  l 
V̂

 2

V̂
 

5 0.01 4.16 18.3 
10 0.02 4.04 16.5 
15 0.03 4.01 16.2 
 
From the precedent theoretical analysis we conclude that the 
smaller the distance between electrodes (smaller TD), the 
higher will be the velocity estimator variance. This leads us to 
estimate TDs from widely spaced electrodes, but here again 
we are limited from the muscle unit length and spatial 
velocity resolution points of view. Another reason to take an 
array of signals with small interelectrode distance, is to get 
shape resemblance between signals in the array and 
consequently better TD estimation using correlation. 
Keeping in mind that we have a vector of TD estimates 
obtained from different couple of electrodes in the electrode 
array, it is expected that an average estimate of the velocity 
from all the independent TDs will decrease the velocity 
variance. The average velocity is the harmonic average Hv , 

since we have equal electrode spacing and probably varying 
velocity. This is calculated as : 
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When the total length of the sensors array is given equal to L, 
and adapted to the length of the muscle fibers, the distance 
between successive sensors is )/( 1−= KLl . So, (9) 

becomes: 
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The average CV can be also estimated by taking the TD ( Lˆ ) 

(between the two most separated signals (using the most 
separated sensors) only: 
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But as mentioned above there are some disadvantages when 
used with real signals because of the signal shape variation 
between larger spaced electrodes. From a theoretical point of 
view and taking the CRLB as variance for the estimated ij

ˆ , 

the variance of the sum KK )(ˆˆˆ 12312 −+++ K  (appearing in 

(9)) is increasing as K becomes larger, leading to a loss of 
accuracy in the CV estimation. This fact seems to be in 
contradiction with the assumption that the accuracy of CV 
estimation will be higher as the number of sensors increases. 
We will see in the following that since practically the 
variance of ij

ˆ  is not the CRLB one, this conclusion is not 

valid.  
 

IV. SIMULATIONS AND RESULTS 

 
In the following simulations, we will show that on the 
contrary to the ideal approach (TDs variance equalizes the 
CRLB) the performance of CV estimation (9) is improved 
when taking large value of K. We also show the influence on 
the estimates (9) and (10) of a change in shape of the MUAP 
along the fiber when K increases. In both cases the duration 
of the simulated signal is about 40 samples (corresponding to 
a 20ms duration MUAP sampled at a 2000Hz sampling rate) 
and the constant CV equal 1 m/sec. The criteria used in order 
to characterize the accuracy is the Mean Square Error (MSE) 

defined as 22 biasmse v += ˆ  since it has been shown that 

uncertainty in the TDs estimation adds bias in the CV 
estimation.  
A. Influence of K value on the CV estimation 
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Fig. 1: MSE of CV estimation (9) and (10) for K=3,5,10,20 (circle) and K=2 

(only two sensors)(stars) 
 
 
In this simulation the SNR is about 18dB and the number of 
trials to calculate the mse is equal to 500. The result of this 
simulation is given in Fig.1 where the mse, characterizing (9) 
and (10), defined above is a function of ),,,( 201053=K . 

 
B. Influence of change in shape on the CV estimation  
 
The aim of this simulation is to show the advantage in using 
more than two sensors when the signal is subject to change in 
shape along the muscle fiber. In Fig.2, signals used in this 
simulation (no noise) are shown for K=3, intermediate shape 
are easily deduced when K is higher than 3.  
In Fig.3, mse for (9) and (10) are calculated adding a change 
in shape. Since signal are not noisy, mse criteria reveals only 
the bias.   
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 

Fig. 2: three simulated signals when K=3 

 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 
Fig. 3: MSE of CV estimation for K=3,5,10,20,30 (circle) and K=2 (only two 

sensors)(stars) 
 

 V. DISCUSSION 
 

In this communication, in order to calculate the Conduction 
Velocity in the muscle fiber, Time Delays are estimated from 
an array of K sensors. After giving a theoretical study of the 
CV estimation performances, we have shown in simulations 
the obvious advantage in using more than 2 sensors (K>2) but 
due to the physical limitation (sensors size) and the  limited 
gain (Fig.1and Fig.3) for K>15, a bound for the increasing of 
K can be proposed. When focusing on the bias reduction in 
Fig.3, the improvement is not very important probably due to  
the signal type used for the simulation. 
 

VI.REFERENCES 
 
[1] G. Sollie, H. J. Hermens, K. L. Boon, W. Wallinga De 
Jonge, G. Zilvold, “The measurement of the conduction 
velocity of muscle fiber with surface EMG according to the 
cross-correlation method”, Electromyogr. clin. Neurophysiol., 
Vol. 25, pp. 193-204, 1985 
[2] B. G. Ferguson, “Improved Time--Delay Estimates of 
Underwater Acoustic signals Using Beamforming and 
prefiltering Techniques”, IEEE. J. Oceanic Eng., Vol. 14,No. 
3, pp. 238-244, 1989 
[3] L. Arandt-Nielson and Machiel Zwarts, “Measurement of 
muscle fiber conduction velocity in humans: Techniques and 
Application”, Journal of clinical Neurophysiology, Vol. 6, 
No. 3, pp. 179-190, 1989 
[4] J. Schneider, G. Rau, J. Silny, “Noninvasive EMG 
technique for investigating excitation propagation in single 
motor units”, Electromyogr. clin. Neurophysiol., Vol. 29, pp. 
278-280, 1989 
[5] R. Merletti, L. Lo Conte, E. Avignone and P. 
Guglielminotti, “Modeling of Surface Myoelectric Signals 
Part I: Model Implementation”, IEEE Trans. on BME, Vol. 
46, No. 7, pp. 810-820, 1999 
[6] W. Muhammad, “Estimation de retards, de facteurs 
d’échelle et de variations de forme de signaux vectoriels : 
application aux signaux biomédicaux”, PhD. Thesis, 
Université de Nice-Sophia Antipolis, France 

2 4 6 8 10 12 14 16 18 20
4

5

6

7

8

9

10

11

12
x 10

-4

 K

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

samples

0 5 10 15 20 25 30
0.009

0.0095

0.01

0.0105

0.011

0.0115

0.012

0.0125

 K


	Main Menu
	-------------------------
	Welcome Letter
	Chairman Address
	Keynote Lecture
	Plenary Talks
	Mini Symposia
	Workshops
	Theme Index
	1.Cardiovascular Systems and Engineering 
	1.1.Cardiac Electrophysiology and Mechanics 
	1.1.1 Cardiac Cellular Electrophysiology
	1.1.2 Cardiac Electrophysiology 
	1.1.3 Electrical Interactions Between Purkinje and Ventricular Cells 
	1.1.4 Arrhythmogenesis and Spiral Waves 

	1.2. Cardiac and Vascular Biomechanics 
	1.2.1 Blood Flow and Material Interactions 
	1.2.2.Cardiac Mechanics 
	1.2.3 Vascular Flow 
	1.2.4 Cardiac Mechanics/Cardiovascular Systems 
	1.2.5 Hemodynamics and Vascular Mechanics 
	1.2.6 Hemodynamic Modeling and Measurement Techniques 
	1.2.7 Modeling of Cerebrovascular Dynamics 
	1.2.8 Cerebrovascular Dynamics 

	1.3 Cardiac Activation 
	1.3.1 Optical Potential Mapping in the Heart 
	1.3.2 Mapping and Arrhythmias  
	1.3.3 Propagation of Electrical Activity in Cardiac Tissue 
	1.3.4 Forward-Inverse Problems in ECG and MCG 
	1.3.5 Electrocardiology 
	1.3.6 Electrophysiology and Ablation 

	1.4 Pulmonary System Analysis and Critical Care Medicine 
	1.4.1 Cardiopulmonary Modeling 
	1.4.2 Pulmonary and Cardiovascular Clinical Systems 
	1.4.3 Mechanical Circulatory Support 
	1.4.4 Cardiopulmonary Bypass/Extracorporeal Circulation 

	1.5 Modeling and Control of Cardiovascular and Pulmonary Systems 
	1.5.1 Heart Rate Variability I: Modeling and Clinical Aspects 
	1.5.2 Heart Rate Variability II: Nonlinear processing 
	1.5.3 Neural Control of the Cardiovascular System II 
	1.5.4 Heart Rate Variability 
	1.5.5 Neural Control of the Cardiovascular System I 


	2. Neural Systems and Engineering 
	2.1 Neural Imaging and Sensing  
	2.1.1 Brain Imaging 
	2.1.2 EEG/MEG processing

	2.2 Neural Computation: Artificial and Biological 
	2.2.1 Neural Computational Modeling Closely Based on Anatomy and Physiology 
	2.2.2 Neural Computation 

	2.3 Neural Interfacing 
	2.3.1 Neural Recording 
	2.3.2 Cultured neurons: activity patterns, adhesion & survival 
	2.3.3 Neuro-technology 

	2.4 Neural Systems: Analysis and Control 
	2.4.1 Neural Mechanisms of Visual Selection 
	2.4.2 Models of Dynamic Neural Systems 
	2.4.3 Sensory Motor Mapping 
	2.4.4 Sensory Motor Control Systems 

	2.5 Neuro-electromagnetism 
	2.5.1 Magnetic Stimulation 
	2.5.2 Neural Signals Source Localization 

	2.6 Clinical Neural Engineering 
	2.6.1 Detection and mechanisms of epileptic activity 
	2.6.2 Diagnostic Tools 

	2.7 Neuro-electrophysiology 
	2.7.1 Neural Source Mapping 
	2.7.2 Neuro-Electrophysiology 
	2.7.3 Brain Mapping 


	3. Neuromuscular Systems and Rehabilitation Engineering 
	3.1 EMG 
	3.1.1 EMG modeling 
	3.1.2 Estimation of Muscle Fiber Conduction velocity 
	3.1.3 Clinical Applications of EMG 
	3.1.4 Analysis and Interpretation of EMG 

	3. 2 Posture and Gait 
	3.2.1 Posture and Gait

	3.3.Central Control of Movement 
	3.3.1 Central Control of movement 

	3.4 Peripheral Neuromuscular Mechanisms 
	3.4.1 Peripheral Neuromuscular Mechanisms II
	3.4.2 Peripheral Neuromuscular Mechanisms I 

	3.5 Functional Electrical Stimulation 
	3.5.1 Functional Electrical Stimulation 

	3.6 Assistive Devices, Implants, and Prosthetics 
	3.6.1 Assistive Devices, Implants and Prosthetics  

	3.7 Sensory Rehabilitation 
	3.7.1 Sensory Systems and Rehabilitation:Hearing & Speech 
	3.7.2 Sensory Systems and Rehabilitation  

	3.8 Orthopedic Biomechanics 
	3.8.1 Orthopedic Biomechanics 


	4. Biomedical Signal and System Analysis 
	4.1 Nonlinear Dynamical Analysis of Biosignals: Fractal and Chaos 
	4.1.1 Nonlinear Dynamical Analysis of Biosignals I 
	4.1.2 Nonlinear Dynamical Analysis of Biosignals II 

	4.2 Intelligent Analysis of Biosignals 
	4.2.1 Neural Networks and Adaptive Systems in Biosignal Analysis 
	4.2.2 Fuzzy and Knowledge-Based Systems in Biosignal Analysis 
	4.2.3 Intelligent Systems in Speech Analysis 
	4.2.4 Knowledge-Based and Neural Network Approaches to Biosignal Analysis 
	4.2.5 Neural Network Approaches to Biosignal Analysis 
	4.2.6 Hybrid Systems in Biosignal Analysis 
	4.2.7 Intelligent Systems in ECG Analysis 
	4.2.8 Intelligent Systems in EEG Analysis 

	4.3 Analysis of Nonstationary Biosignals 
	4.3.1 Analysis of Nonstationary Biosignals:EEG Applications II 
	4.3.2 Analysis of Nonstationary Biosignals:EEG Applications I
	4.3.3 Analysis of Nonstationary Biosignals:ECG-EMG Applications I 
	4.3.4 Analysis of Nonstationary Biosignals:Acoustics Applications I 
	4.3.5 Analysis of Nonstationary Biosignals:ECG-EMG Applications II 
	4.3.6 Analysis of Nonstationary Biosignals:Acoustics Applications II 

	4.4 Statistical Analysis of Biosignals 
	4.4.1 Statistical Parameter Estimation and Information Measures of Biosignals 
	4.4.2 Detection and Classification Algorithms of Biosignals I 
	4.4.3 Special Session: Component Analysis in Biosignals 
	4.4.4 Detection and Classification Algorithms of Biosignals II 

	4.5 Mathematical Modeling of Biosignals and Biosystems 
	4.5.1 Physiological Models 
	4.5.2 Evoked Potential Signal Analysis 
	4.5.3 Auditory System Modelling 
	4.5.4 Cardiovascular Signal Analysis 

	4.6 Other Methods for Biosignal Analysis 
	4.6.1 Other Methods for Biosignal Analysis 


	5. Medical and Cellular Imaging and Systems 
	5.1 Nuclear Medicine and Imaging 
	5.1.1 Image Reconstruction and Processing 
	5.1.2 Magnetic Resonance Imaging 
	5.1.3 Imaging Systems and Applications 

	5.2 Image Compression, Fusion, and Registration 
	5.2.1 Imaging Compression 
	5.2.2 Image Filtering and Enhancement 
	5.2.3 Imaging Registration 

	5.3 Image Guided Surgery 
	5.3.1 Image-Guided Surgery 

	5.4 Image Segmentation/Quantitative Analysis 
	5.4.1 Image Analysis and Processing I 
	5.4.2 Image Segmentation 
	5.4.3 Image Analysis and Processing II 

	5.5 Infrared Imaging 
	5.5.1 Clinical Applications of IR Imaging I 
	5.5.2 Clinical Applications of IR Imaging II 
	5.5.3 IR Imaging Techniques 


	6. Molecular, Cellular and Tissue Engineering 
	6.1 Molecular and Genomic Engineering 
	6.1.1 Genomic Engineering: 1 
	6.1.2 Genomic Engineering II 

	6.2 Cell Engineering and Mechanics 
	6.2.1 Cell Engineering

	6.3 Tissue Engineering 
	6.3.1 Tissue Engineering 

	6.4. Biomaterials 
	6.4.1 Biomaterials 


	7. Biomedical Sensors and Instrumentation 
	7.1 Biomedical Sensors 
	7.1.1 Optical Biomedical Sensors 
	7.1.2 Algorithms for Biomedical Sensors 
	7.1.3 Electro-physiological Sensors 
	7.1.4 General Biomedical Sensors 
	7.1.5 Advances in Biomedical Sensors 

	7.2 Biomedical Actuators 
	7.2.1 Biomedical Actuators 

	7.3 Biomedical Instrumentation 
	7.3.1 Biomedical Instrumentation 
	7.3.2 Non-Invasive Medical Instrumentation I 
	7.3.3 Non-Invasive Medical Instrumentation II 

	7.4 Data Acquisition and Measurement 
	7.4.1 Physiological Data Acquisition 
	7.4.2 Physiological Data Acquisition Using Imaging Technology 
	7.4.3 ECG & Cardiovascular Data Acquisition 
	7.4.4 Bioimpedance 

	7.5 Nano Technology 
	7.5.1 Nanotechnology 

	7.6 Robotics and Mechatronics 
	7.6.1 Robotics and Mechatronics 


	8. Biomedical Information Engineering 
	8.1 Telemedicine and Telehealth System 
	8.1.1 Telemedicine Systems and Telecardiology 
	8.1.2 Mobile Health Systems 
	8.1.3 Medical Data Compression and Authentication 
	8.1.4 Telehealth and Homecare 
	8.1.5 Telehealth and WAP-based Systems 
	8.1.6 Telemedicine and Telehealth 

	8.2 Information Systems 
	8.2.1 Information Systems I
	8.2.2 Information Systems II 

	8.3 Virtual and Augmented Reality 
	8.3.1 Virtual and Augmented Reality I 
	8.3.2 Virtual and Augmented Reality II 

	8.4 Knowledge Based Systems 
	8.4.1 Knowledge Based Systems I 
	8.4.2 Knowledge Based Systems II 


	9. Health Care Technology and Biomedical Education 
	9.1 Emerging Technologies for Health Care Delivery 
	9.1.1 Emerging Technologies for Health Care Delivery 

	9.2 Clinical Engineering 
	9.2.1 Technology in Clinical Engineering 

	9.3 Critical Care and Intelligent Monitoring Systems 
	9.3.1 Critical Care and Intelligent Monitoring Systems 

	9.4 Ethics, Standardization and Safety 
	9.4.1 Ethics, Standardization and Safety 

	9.5 Internet Learning and Distance Learning 
	9.5.1 Technology in Biomedical Engineering Education and Training 
	9.5.2 Computer Tools Developed by Integrating Research and Education 


	10. Symposia and Plenaries 
	10.1 Opening Ceremonies 
	10.1.1 Keynote Lecture 

	10.2 Plenary Lectures 
	10.2.1 Molecular Imaging with Optical, Magnetic Resonance, and 
	10.2.2 Microbioengineering: Microbe Capture and Detection 
	10.2.3 Advanced distributed learning, Broadband Internet, and Medical Education 
	10.2.4 Cardiac and Arterial Contribution to Blood Pressure 
	10.2.5 Hepatic Tissue Engineering 
	10.2.6 High Throughput Challenges in Molecular Cell Biology: The CELL MAP

	10.3 Minisymposia 
	10.3.1 Modeling as a Tool in Neuromuscular and Rehabilitation 
	10.3.2 Nanotechnology in Biomedicine 
	10.3.3 Functional Imaging 
	10.3.4 Neural Network Dynamics 
	10.3.5 Bioinformatics 
	10.3.6 Promises and Pitfalls of Biosignal Analysis: Seizure Prediction and Management 



	Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	Ö
	P
	Q
	R
	S
	T
	U
	Ü
	V
	W
	X
	Y
	Z

	Keyword Index
	-
	¦ 
	1
	2
	3
	4
	9
	A
	B
	C
	D
	E
	F
	G
	H
	I
	i
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Committees
	Sponsors
	CD-Rom Help
	-------------------------
	Return
	Previous Page
	Next Page
	Previous View
	Next View
	Print
	-------------------------
	Query
	Query Results
	-------------------------
	Exit CD-Rom


