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ABSTRACT 
 
 
 

Spectral Imagery provides multi-dimensional data, which are difficult to display 

in standard three-color image formats.  Tyo, et al. (2001) propose an invariant display 

strategy to address this problem.  This approach is to mimic the dynamics of human 

perception.  The dimensionality of the data are reduced by using a Principal Component 

(PC) transformation, and then displayed by making used of a Hue, Saturation, and Value 

(HSV) display transform.  

This study addresses the PC transformation strategy, looks for a global 

eigenvector via 3D visualization of HSV color space information, and examines the 

suggested algorithm to provide the most intuitive display.  The user interface created in 

this thesis is capable of computing the necessary implementation of the proposed 

strategy, viewing selected Region of Interest (ROI) in HSV color space model in 3D, and 

viewing the 2D resultant image.  A demonstration application uses Java language 

including Java2D, Xj3D Player, Document Object Model (DOM) Application Program 

Interfaces (API), and Extensible 3D Language (X3D).  The Java2D API enables the user 

to load imagery, process data, and render results in a two-dimensional (2D) view.  Xj3D 

and DOM APIs are introduced to visualize Tyo’s invariant display strategy in three-

dimensional (3D) views and then to save results as X3D scenes.  These techniques appear 

to be inherently valuable and can serve as the basis for further research.  

Through this thesis, 3D visualization of the proposed algorithm successfully 

showed PC transformed data does form a conical shape in HSV color space.  Also, a 

comparison of PC transformed data with HSV color space revealed the hue angle needed 

to be adjusted.  The application of this adjustment to multiple scenes produced consistent 

results.  However, this hue adjustment left other scene elements in non-ergonomic colors 

and brought up the issue of further enhancement of the algorithm. 
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I. INTRODUCTION 

A. OVERVIEW 

Hyperspectral Image (HSI) data-collection technology emerged in 1987 in 

combination with the development of sensor technology.  The defining characteristic of 

HSI is a tremendous increase in the number of frequency bands in which the instrument 

can collect data.  Upon the collection of such data, difficulties arose when analysts tried 

to map these available bands to Red, Green, and Blue (RGB) to view the image data and 

to extract the available information.  To overcome this difficulty, a number of varied 

mapping strategies were introduced.  One analysis strategy was developed by Tyo, et al. 

(2001).  It uses Principal Component Analysis (PCA) to rotate the data into a coordinate 

space, which can be used to display the data. 

This thesis demonstrates how to visualize the conical shape of data mapped via 

PC to verify the HSI mapping strategy, and also identifies a global statistics by applying 

this strategy to other image data.   

B. MOTIVATION  

1. Merit of Hyperspectral Image (HSI) in Defense Application 

Hyperspectral data have potential applicability for many different defense-related 

problems and tasks.  For any given task, the critical factors that determine the usefulness 

of the spectral data include the phenomena that can be observed, the sensor parameters 

that determine how well the scene characteristics can be sampled and defined and, 

finally, the amount of relevant information that can be extracted from the remotely sensed 

data.   

To help establish requirements for new systems, or to determine the applicability 

of existing systems, studies have identified the relevant factors and information elements 

for an Advanced Land Remote Sensing System (ALRSS), as a possible follow-on to the 

Landsat series of multispectral satellites (Anderson et al., 1994).  Such studies identified 

defense applications and organized them into the eleven major categories shown in Table 

1.1.  Since information needs vary and depend on particular circumstances, it is difficult 
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to make a single prioritized list of applications out of those presented in this thesis. 

(Anderson et al., 1994) 

 
Table 1.1. Defense Application of Hyperspectral Sensors. (Anderson. et al., 1994) 
 

 
 

2. Previous Work and Problem Statement 

Even though HSI has many useful applications, difficulties occur when analysts 

try to map diverse data into RGB color space due to the increased available spectral 
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bands in HSI (Dierson, 2000).  The most common way to map HSI data into RGB color 

space is to represent the Principal Components data as RGB components.  The outcome 

of this image-rendering process is often rendered in false color.  This concept goes back 

to early Landsat studies, and the development of the standard Tasseled Cap Transform 

(Richard, 1993).  Unfortunately, the appearance of imagery causes difficulty when 

observers try to identify objects in the imagery, as illustrated in Figure 1.1. 

 
Figure 1.1. The Left is the true color image of Lake Tahoe acquired from Airborne 
Visible/Infrared Imaging Spectrometer (AVIRIS).  The selected wavelengths are 
647.65nm for red, 549.2nm for green, and 431.71nm for blue RGB components.  In 
contrast, the right side of the image appears in false color.  The selected bands for RGB 
components are PC1, PC2, and PC3 respectively. 
 

As seen, the PC data is mapped into RGB color bands on the right side of Figure 

1.1.  This image shows the snow area in yellow, and the blue downtown area in red.  

Other objects, such as a lake, a road, and a golf course do not appear in intuitive natural 

colors, either.  This false-color appearance makes unsophisticated analysis difficult 

without a priori knowledge of HSI artifacts.  

To overcome this difficulty, a new mapping strategy was introduced (Tyo, et al., 

2001).  They recognized the fact that the first three eigenvectors of remotely sensed 

signal data sets are the most important in describing any scene.  By using this fact, a 

Principal Component (PC)-based mapping strategy was introduced.  According to the PC 

color-mapping strategy, a combination of the first three principal component bands will 

appropriately depict most of the information in a scene.  It provides an easy way to 

perform a first-order supervised classification of hyperspectral imagery.  It was further 
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shown that the first eigenvector would generally be related to the mean solar radiance, 

but the second, third and subsequent eigenvectors depend on the specific contents of the 

image.  This thesis implements the approach defined by Tyo in a manner, which provides 

a consistent and intuitive display. 

3. What is the Visualization Problem? 

The main visualization problem occurs at the time when this strategy transforms 

calculated Hue, Saturation, and Value (HSV) data to RGB data.  HSV color space is 

created from brightness value, the Red/Green (R/G) channel and the Blue/Yellow (B/Y) 

channel.  Amazingly, it has been found that the three Principal Components (PCs) match 

the brightness value, R/G value, and B/Y value, respectively (Krauskopf, 1982).  A 

human brain senses three channels, creates HSV color space, and transforms it to RGB 

internally to perceive.  This algorithm calculates three PC datasets from the scene 

statistics, produces HSV, and transforms into RGB according to conversion.  The 

calculation of PCs has been rigorously examined in previous work, and conversion from 

HSV to RGB is a well-established algorithm.  The main visualization problem is that the 

HSV product has not been applied to the actual RGB image.  Thus, this thesis will apply 

the HSV product based upon the proposed strategy, and verify what possible additional 

arrangements are required.    

C. OBJECTIVES 

This thesis addresses the following topics: 

• What are the overall procedures for Remote Sensing?  How does the 
imagery data flow from collection point to the final analysis point?  What 
kinds of image processing are available? 

• What are hyperspectral image and the image data formats used in Remote 
Sensing?  

• What is the display strategy proposed by Dr. Scott Tyo?  What is the 
Principal Component Transform (PCT)?  What role does PCT play in the 
suggested strategy?  What is the Eigenvector and what is it for? 

• What is the relationship between the HSV color model and the principal 
component transformation? 

• How can these techniques be rendered and analyzed in 3D for better 
comprehension and analysis?  
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• How can XML, X3D and Java tools be applied for visualizing this 
problem? 

 
D. ORGANIZATION OF THESIS 

Chapter II describes related work and the physics of Remote Sensing (RS).  

Chapter III covers the related graphics and visualized issues.  Chapter IV provides the 

detailed problem statement in this thesis.  Chapter V examines how the scene is generated 

and rendered.  Chapter VI explains how the visualized Principal Component (PC) data is 

applied to verify and improve Tyo’s algorithm.  Furthermore, it provides what it means 

and applies the result to the other image data.  Chapter VII summarizes conclusions and 

presents recommendations for possible future work.  
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Figure 1.2. Organization of Thesis. 
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II. BACKGROUND AND RELATED WORK:  REMOTE SENSING  

A. OVERVIEW 

What exactly is remote sensing?  For the purpose of this study, the following 

definition is used:  

Remote sensing is the science of acquiring information about the Earth's 
surface without actually being in contact with it.  This is done by sensing 
and recording reflected or emitted energy and processing, analyzing, and 
applying that information. (Natural Resources Canada) 

In much of remote sensing, the process involves an interaction between incident 

radiation and the targets of interest.  This is exemplified by the use of imaging systems 

where the following seven elements are involved.  Note, that remote sensing also 

involves the sensing of emitted energy and the use of non-imaging sensors.  Figure 2.1 

illustrates the major steps in the remote sensing process: (A) energy source, (B) radiation, 

(C) target illumination, (D) sensor/platform, (E) data transmission, (F) data analysis, and 

(G) applications for image interpretation and analysis. 

Referring to Figure 2.1, the energy source or illumination (A) is the first 

requirement for remote sensing to have an energy source, which illuminates or provides 

electromagnetic energy to the target of interest.  Radiation interacts with the atmosphere 

(B) as the energy travels from its source to the target, and it will come into contact with 

and interact with the atmosphere through which it passes.  This interaction also takes 

place a second time as the energy travels from the target to the sensor.  Interaction with 

the target (C), once the energy makes its way to the target through the atmosphere, 

interacts with the target depending on the properties of both the target and the radiation.  

The recording of energy by the sensor (D) occurs after the energy has been scattered by, 

or emitted from the target, and a sensor (remote - not in contact with the target) collects 

and records the electromagnetic radiation.  The transmission, reception, and processing 

(E) occurs when the energy recorded by the sensor has to be transmitted, often in 

electronic form, to a receiving and processing station where the data are processed into an 

image (hardcopy and/or digital data).  Interpretation and Analysis (F) occurs when the 
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processed image is interpreted, visually and/or digitally or electronically, to extract 

information about the target, which was illuminated.  Application (G), the final element 

of the remote sensing process, is achieved when the information is applied, the user has 

been able to extract it from the imagery about the target in order to better understand it, 

reveals some new information, or assists in solving a particular problem.  These seven 

elements comprise the remote sensing process from beginning to end.   

 

 
Figure 2.1. Remote Sensing Process. 
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B. IMAGE ACQUISITION 

Many different systems have been developed over the last fifty years, each of 

which are designed to acquire an image directly in digital form or to acquire an analog 

image and later digitize it.  In either case, the final product is the same.  A typical system 

is based upon a moving sensor or lens that aims the instrument’s field of view over a 

portion of the earth’s surface (Sanchez, 1999).  The sensors on the instrument generate an 

electrical signal that varies in intensity according to the brightness of the object in view.  

These sensors are often designed to image a separate region of the electromagnetic 

spectrum.  This is frequently accomplished through filters.  Each separate electrical 

current is then scaled into discrete units with a predefined range.  A numeric range of 0 to 

8 is often used to represent pixels in 256 shades of gray.  For example, the Thematic 

Mapper (TM) instrument uses a range of 0 to 255. 

C. DIGITAL NUMBER (DN) 

The digital form of image data has exceptional advantages versus its analogue 

form of image data.  These advantages range from the perspective of data transmission to 

image acquisition, to the ground data recipient and to data manipulation for analysis.  The 

sensor performs the conversion from analogue to digital data.  In this digitizing process, 

the output from an electronic sensor is converted into a set of numerical values.  These 

numerical values are known as Digital Numbers (DN) and represent a current radiance 

intensity level in a sensor such as Charge Coupled Device (CCD) (Sanchez, 1999).  

Figure 2.2 shows example values that can be represented using different numbers of 

binary digits.  In this thesis, the 16 bit signed integers used range from –32768 to 32767.    
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Figure 2.2. The Example of Digital Number (DN) from Multispectral Imagery 
Reference Guide. (From:  Belokon, 1997) 
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1995).  Depending on which sensors were used when the data was collected, the number 

of bands of data in this study varies from 210 to 300.  

 

 
Figure 2.3. Hyperspectral Image (HSI) Data Processing. (From:  Vane and Goetz, 
1988) 
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data into memory.  This is a good format when the imagery data only consists of a small 

number of bands and all three bands need to be mapped to RGB bands, particularly for 

very large images.  This format is the native format for the Airborne Visible Infrared 

Imaging System (AVIRIS) sensor. 

 

 
Figure 2.4 Band Interleaved by Pixel (BIP) Format. (From: Lyon, 1999) 
 

2. Band Sequential (BSQ) Format 
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unit of data organization, the BSQ format is also easy to implement.  Figure 2.5 shows 

how a scene originally sensed in three different radiation ranges is stored in three 

corresponding bands, and how the band data is digitized and saved in BSQ format.  

 

 
Figure 2.5. Band Sequential (BSQ) Format. (From:  Sanchez, 1999) 
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Processing and image analysis routines are easier to code when the data is in BSQ 

format, especially in those cases in which certain bands are selected from a large data set.  

In the computer processing of this data, visualized algorithms often need to select three of 

these seven bands in order to map them to the three basic screen color attributes.  BIP 

offers computation advantages for spectral analysis. 

3. Band Interleaved by Line (BIL) Format 

In the Band Interleaved by Line (BIL) format, the image scan line constitutes the 

organizing base.  When the data is stored in line-major order, the image lines are the lines 

appearing consecutively in the data.  This format is frequently the “native” format for 

push broom imaging spectrometers, such as Hyperspectral Digital Image Collection 

Experiment (HYDICE).  Figure 2.6 shows a scene originally sensed in three different 

radiation ranges and stored in three corresponding bands as well as how the band data is 

digitized and saved in BIL format (Sanchez, 1999).  

 

 
Figure 2.6 Band Interleaved by Line (BIL) Format. 
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range of values and fixed precision (Fortner, 1996).  The numbers are coded in a very 

effective way that is not ‘human readable’.   

The binary numbers except for “byte” representation take more than two bytes to 

represent the binary number.  Also, number representation larger than a byte places bytes 

in one of two standardized orders: IEEE standard and Intel standard.  Byte ordering is 

significant when the Digital Number (DN), introduced in Section C, uses integer or 

higher precision numbers.  IEEE standard bytes are ordered from Most Significant bit 

First (MSF) to Least Significant bit First (LSF).  On the other hand, the “Intel” standard 

is bytes that are ordered from LSF to MSF.  The imagery can be received in either 

standard.  This thesis uses the IEEE standard, when necessary that input data are 

corrected for byte order.  The technique for this will be explained in Chapter V. 

G. DIGITAL IMAGE PROCESSING 

1. Overview of Information Extraction 

Image restoration and enhancement utilize computational processes to provide 

corrected and improved images for study by human interpreters.  The computer makes no 

inherent decisions in these procedures.  However, processes that identify and extract 

information do utilize the computer’s decision-making capability in order to identify and 

extract specific pieces of information.  A human operator must instruct the computer on 

the parameter of interest, and must evaluate the significance of the extracted information 

as crucial steps in the visualization process. 

Image-processing methods may be grouped into three functional categories.  

These are defined below, together with lists of typical processing routines (Sabin, 1999). 

• Image restoration compensates for data errors, noise, and geometric 
distortions introduced during the scanning, recording, and playback 
operation: restoring periodic line dropouts, restoring periodic line striping, 
filtering of random noise, correcting for atmospheric scattering and 
correcting geometric distortions. 

• Image enhancement alters the visual impact that the image has on the 
interpreter in a fashion that improves the information content: contrast 
enhancement, intensity, hue, saturation transformation, density slicing, 
edge enhancement, making digital mosaics and producing synthetic stereo 
images. 
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• Information extraction utilizes the decision-making capability of the 
computer to recognize and classify pixels on the basis of their digital 
signatures: producing principal-component (PC) images, producing ratio 
images, multispectral classification and producing change-detection 
images. 

2. Principal Component Transform (PCT) Overview 

The principal components transformation maps image data into a new, 

uncorrelated coordinated system or vector space (Swain, 1978).  Independent of the class 

structure of the data, the Principal Components Transformation (PCT) process makes use 

of a global mean and global covariance.  Moreover, in doing so, this data remapping 

produces a space in which the data has the most variance along its first axis, the next 

largest variance along a second mutually orthogonal axis, and so on.  The later principal 

components are expected, in general, to show less variance.  These principal components 

might thus be considered to contribute little to separability on occasion and may be safely 

ignored, thereby reducing the overall dimensionality of the classification space, and thus 

improving classification speed.   

The following equations from 2.1 to 2.5 show the related mathematical definition 

of PC transformation.  The PC transformation determines a linear transformation of a 

sample of points in N-dimensional space.  The mean position of the pixels in N-

dimensional space is defined by the expected value of the pixel x, according to Equation 

2.1, where x  is the mean pixel value and jx  is the individual pixel value of total number 

of N.   

1

1
Mean

N

j
j

x x
N =

= = ∑      (2.1) 

While the mean vector is useful to define the average or expected position of the 

pixels in hyperspectral space, it is also of value to have a mean available by which their 

scatter or spread is described.  This is the role of the covariance matrix, which is defined 

as Equation 2.2. 
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The covariance matrix is one of the most important concepts in the hyperspectral 

data.  If there is a correlation between the responses in a pair of spectral bands, the 

corresponding off-diagonal element in the covariance matrix will be large by comparison 

to the diagonal terms.  This behavior is also described in terms of the correlation matrix R 

whose elements are related to those of the covariance matrix by  
N N N

j j j j
j=1 j=1 j=1

1/2 1 /22 2
N N N N

2 2
j j j j

j=1 j=1 j=1 j=1

N x y x y
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   − −   
         

∑ ∑ ∑

∑ ∑ ∑ ∑
 (2.3) 

 

It should be noted that the correlation coefficient and covariance are related by the 

standard deviation: 

x y

covariancecorrelation coefficient = σ σ     (2.4) 

where the standard deviation and variation are given by 

x yStandard deviation in X and Y dimension= ,  = Varianceσ σ , and  (2.5) 
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3. Why Principal Component Transformation (PCT)? 

Principal Components Transformation (PCT) is used to produce uncorrelated 

output bands, to segregate noise components, and to reduce the dimensionality of data 

sets.  Since hyperspectral data bands are often highly correlated, the PCT is used to 

produce uncorrelated output bands.  Essentially, this is done by finding a new set of 

orthogonal axes that have their origin at the data mean and are rotated so that the data 

variance is maximized. 
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Figure 2.7. Comparison between Covariance and Eigenvector of AVIRIS data.  Notice 
that the variance is scattered all over the band range in the original data and the variance 
information was concentrated into the first three Eigenvector after PC transformation. 
 

The hyperspectral or vector character of most remote sensing image data renders 

it amenable to spectral transformations that generate new sets of image components or 

bands.  These components then represent an alternative description of the data in which 

the new components of a pixel vector are related to its old brightness values in the 

original set of spectral bands via a linear operation.  The transformed image may make 
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evident features not discernable in the original data, or alternatively it might be possible 

to preserve the essential information content of the image, for a given application, with a 

reduced number of the transformed dimensions.  The last point has significance for 

displaying the data in the three dimensions available on a color monitor or in color 

hardcopy, as well as for the transmission and storage of data (Richards, 1993).   

PC bands are linear combinations of the original spectral bands and are typically 

uncorrelated.  One can calculate the same number of output PC bands as input spectral 

bands.  The first PC band contains the largest percentage of data variance, the second PC 

band contains the second largest data variance, and so on.  The last PC bands appear 

noisy because they contain very little variance, mostly due to noise in the original 

spectral data.  

4. Role of Eigenvectors in Image Data 

Eigenvectors are the component-weighting coefficients (Richards, 1993).  They 

provide the transform (rotation) into the new data space.  The first component is 

tantamount to a total brightness image, whereas the alternate components highlight 

changes.  It is the second, third and fourth components that are most striking in relation to 

the fine features of interest.  These effects are easily verified by substituting typical 

spectral reflectance characteristics into the equations that generate the component.  Each 

component is a linear combination of the original eight bands of data, where the 

respective weighting coefficients are the components of the corresponding eigenvector of 

the covariance matrix.     

H. COLOR SPACE 

HSV color space is often used for picking colors from a color wheel or palette, 

because HSV corresponds better to how people experience color than does the RGB color 

space (Jackson, 1997).  As hue varies from 0 to 1, the corresponding colors vary from 

red, through yellow, green, cyan, blue, and magenta, back to red.  As saturation varies 

from 0 to 1, the corresponding colors vary from unsaturated (shade of gray) to fully 

saturated (no white component).  As value, or brightness, varies from 0 to 1, the 

corresponding colors become increasingly brighter.  Figure 2.8 shows the HSV color 
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space.  This HSV representation is later used for visually comparing Principal 

Component (PC) eigenvector mappings in 3D space.  

 
Figure 2.8. Hue, Saturation and Value (HSV) color space. (From:  Image Processing 
Toolbox User’s Guide, 1997) 
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III. BACKGROUND AND RELATED WORK: VISUALIZATION  

A. INTRODUCTION  

This chapter presents related work for 2D and 3D visualization.  The language 

used to build the application was Java and the reason for selecting it will be explained in 

the first section.  The second section describes the necessary Java2D Application 

Program Interface (API), and next section describes the 3D related works including 

XML, X3D and Xj3D. 

B. CHOICE OF LANGUAGE 

The Java language is used because it provides several advantages over other 

languages in terms of platform independency, distributability, multithreadability and 

security (Liang, 2002).  In addition to theses renowned capabilities, the built-in Java2D 

API provides excellent capability to access and manipulate an image pixel directly and 

easily (Lyon, 1999).  The Java2D API uses the concept of a digital image representation 

concept for remote sensing, as introduced in the previous chapter.  For 3D visualization, 

Java was chosen as well, since Java, in combination with VRML/X3D, is very powerful. 

(Brutzman, 1998) 

The Java2D API is utilized to view the initial image data and processed image.  

X3D graphics are used to inspect the conical shape of the transformed data space.  The 

next two sections discuss what these concepts are and demonstrate how they are 

implemented.   

C. 2D VISUALIZATION 

This section describes how Java2D is used to view binary image data.  Each set of 

bytes for selected bands in this binary data represents the intensity of the red, green, and 

blue bands.  The original binary data are all 16 bit short integers in the MS-DOS 

standard, which differs from the IEEE standard.  All these binary data are in the BSQ 

format as mentioned in the previous chapter.  This section addresses how initial binary 

data were converted to the IEEE standard, which is used in Java, and how they are 

packed into the appropriate format to be rendered for display.   
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1. Java2D API Overview 

The Java2D API is a set of classes that can be used to create high-quality 2D 

graphics.  It includes features such as geometric transformation, antialiasing, alpha 

compositing, image processing and bidirectional text layout, among many others.  The 

Java2D is part of the core classes of the Java 2 platform.  In other words, it is widely 

available with Java without requiring supplementary distributions 

(www.java.sun.com/java2d).  The Java2D API introduces new classes in the following 

packages: java.awt and java.awt.image.     

2. Displaying Images  

a. Image Representation Overview  

An image is a two-dimensional (2D) array of colors.  Each element in the 

array is called a, “picture element” or a pixel (Knudsen, 1999).  In general, there are two 

different approaches to generating image data.  One approach is to treat the image as a 

drawing surface and use the methods of Graphics2D to render new objects superimposed 

onto the image.  The other approach is to twiddle the bits of the image data.  This can be 

useful in specific cases such as loading and saving images in single files, or 

mathematically analyzing image data to determine essential properties.  The latter 

approach has been adopted for this thesis.  

Images can be represented in several different ways: RGB data where red, 

green, and blue values for each pixel are stored as the elements of byte arrays; an RGB 

image where each pixel is represented by an integer that contains red, green, and blue 

values; or a 16-level grayscale image with 8 pixels stored in each element of an integer 

array.  In this thesis, images of interest are represented by integer arrays that contain red, 

green and blue values.   

The Java2D model for storing an image minimizes the storage required. 

(Rodrigues, 2001)  A pixel is stored within a 32-bit integer (int) java primitive data type.  

The int consists of 4 packed bytes.  These bytes represent the alpha, Red, Green and Blue 

(RGB) planes, as shown in Figure 3.1.  The tightly packed storage technique available for 

32-bit pixels is also shown in Figure 3.1.   
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Figure 3.1. Pixel representation of image in Standard Red, Green and Blue (SRGB) 
format in Java. (From:  Rodridgues, 2001) 
 

b. java.awt.image.BufferedImage 

Prior to Java2D, the use of an image producer and consumer model was 

the only method that allowed the manipulation of image data.  The Java2D API, 

introduced in the Java 2 platform, includes an extension of Image, 

java.awt.image.BufferedImage, which allows direct access to the image’s data.  Since 

BufferedImage is a subclass of Image, a BufferedImage can work with any of 

Graphics2D’s methods that accept an image.  A BufferedImage provides improved 

control over the actual data comprising the image.   

 

 
Figure 3.2. BufferedImage Class. (From:  Knudsen, 1999). 
 

3. Manipulating Image Data  

A BufferedImage consists of two pieces: a Raster and a ColorModel.  The Raster 

contains the actual image data.  It is an array of pixel values.  The ColorModel’s job is to 

interpret the image data as colors.  This ColorModel can translate the data values that 

come from the Raster into color objects.  An RGB color model, for example, can interpret 
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three data values as red, green and blue.  The Raster itself is made up of two pieces: a 

DataBuffer and a SampleModel.  The DataBuffer is a wrapper for the raw data arrays, 

which are byte, short or int arrays.  The SampleModel knows how to extract the data 

values for a particular pixel from the DataBuffer.  As utilizing assistance to the 

programmer, the Raster class has many static methods that create preconfigured Rasters, 

including their DataBuffers and SampleModels.  Figure 3.3 shows code snippets where 

the data buffer is directly applied to the BufferedImage class.     

Figure 3.3 illustrates the style of coding used in this thesis.  The integer array 

named int[] data was used to represent each pixel in RGB color.  Each pixel, 

data[i], consists of 32 bits.  Each integer contains the RGB color information.  The 

first 8 bits from the right-most bit contain the blue color intensity information, which can 

be between 0 and 255.  The next 8 bits from the end of the blue color information 

represent the green color information.  Similarly, the red values were placed at the next 8 

bits after the green information.   

The BufferedImage class is somewhat complex as there are many different ways 

to represent the colors of pixels.  However, using both a predefined color space type in 

the BufferedImage constructor, and the setRGB() method inherited from the 

java.awt.Image class, reduces the amount of coding relating to the BufferedImage class.  

This is a satisfactory approach.   
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Figure 3.3. BufferedImage data buffer operations, as used in Viewer.java and produced 
for this thesis. 
 
D. 3D VISUALIZATION 

1. Process Overview 

The 3D visualization goal is to view the conical HSV data space for the selected 

region of interest in the most intuitive possible manner, in order to assess the 

effectiveness of PCT mappings.  The data parameters in 3D space are color attributes in 

the X3D Color node and the point attribute is in the X3D Coordinate nodes.  Once a X3D 

scene with default point and color attribute values is loaded into memory, the processed 

public void createBufferImage(int[][] redM, int[][] greenM, int[][] blueM) 
  { 
      //Normalize the matrix.  Remove the SIGN As well 
      redMatrix   = cu.normilze(redM); 
      greenMatrix = cu.normilze(greenM); 
      blueMatrix  = cu.normilze(blueM); 
 
      int red,green, blue;      //variables for RGB 
 
      //Create buffer storage 
      int[] data = new int[width*height]; 
      int arrayCounter =0;        //Buffer index 
 
      //First scan through each row in outer loop. height=512 
      for (int y = 0; y < height; y++) 
      { 
       //First scan through each column in inner loop.width=614 
        for (int x = 0; x < width; x++) 
        { 
          //Conver to 0-255 RGB color schem 
          red   = (int) (redMatrix[y][x] ); 
          green = (int) (greenMatrix[y][x]); 
          blue  = (int) (blueMatrix[y][x] ); 
          data[arrayCounter++] = ((red) <<16)| ((green&0xff)<<8)| (blue&0xff) ; 
        } 
      } 
      image = new BufferedImage(width, height, BufferedImage.TYPE_INT_RGB); 
      image.setRGB(0,0,width, height,data,0,width); 
 
      //Let show it 
      setVisible(true); 
  } 
 
  public void paint(Graphics g) 
  { 
      g.drawImage(image,0,0,this); 
  } 
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data in the Java application is computed and then appended into the loaded X3D scene 

graph.  This X3D scene is validated as syntactically correct by the X3D compact DTD.  

Once the composite data tree is formed, the x3dToVRML97 stylesheet is applied to 

transform X3D into VRML97 syntax.  This VRML scene is loaded by a Xj3D or VRML 

capable browser for 3D viewing. 

2. Extensible Markup Language (XML) 

The explosion of the World Wide Web during the 1990’s can be directly 

attributed to the creation and implementation of the Hypertext Markup Language 

(HTML).  The Hypertext Markup Language is a subset of a more extensive language 

called the Standard Generalized Markup Language (SGML).  HTML has enjoyed 

overwhelming success due to its simplicity.  The Hypertext Markup Language’s 

simplicity lies in its use of markup tags (character elements bracketed by ‘<’ and ‘>’) that 

are predefined by a standardized Document Type Definition (DTD).  Essentially, HTML 

elements identify how web browsers display information, text and pictures.   

While HTML’s standardized DTD enables simplicity, it does not readily allow for 

the insertion of metadata (data describing data) within a web page.  This lack of 

extensibility leads to unstructured data within HTML web pages.  Consequently, it is 

often difficult to access and manipulate data written in HTML.  Originally, this inability 

to incorporate metadata into information was solved somewhat by the predecessor 

Standard Generalized Markup Language (SGML).  SGML permits users to define their 

own tagsets via a Document Type Definition (DTD).  Users are thereby able to insert 

metadata through the creation of their own element types.  However, SGML’s element 

type advantages are still overshadowed by it cumbersome specifications (Khare, 1999).  

In an effort to combine the simplicity of HTML and the information exchange advantage 

of SGML, the World Wide Web Consortium (W3C) designed a new language called 

Extensible Markup Language (XML).  XML is used to define other languages and 

custom data formats in a Web-compatible manner. 
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Figure 3.4. XML view for the DefaultHSVScatterPlot scene from X3D-Edit. 
 

=head= 

=metacontent:"DefaultHSVScatIerPlotx3d"name=Tt[ename7' 

<meta content^"Kang Kim" name-'author/' 

<meta content="20 Oct 2002" name="re¥isetl"/> 

=r[ieta 

contenfc'A scatter plot with the points colored using colors from a Color node" name-'descnption"/= 

<meta 

content^"X3D-Edit,http:/fiWi¥.web3D.orgiTaskGroupsMd/translation/README.X3D-Edilhtmrname-"generator/> 

=/head' 

=Scene'=i--Positive direction of X axis in X3D space is the base 

axis CounterClockWlse(CCVy)rotationlncreasesangle Clock 

Wl3e(CW) decreases angle. --"Viewpoint 

descrlptlon="Front¥lew points" jump="false" posltlon="5100 500"/> 

'Viewpoint descnption="Top view point' jump="false" 

orientation-"-! 0 0157" position-"0 250 0"/= 

'Viewpoint descrlptlon-'45 degree(CCVy) angle view" iump:"false'' 

orlentatlon-"0101" posltlon-"200 20 200"/> 

'Viewpoint descnption:"45 degree(CVfl angle view" jump="fal3e" 

onentation-"010 3 5" position-"-200 30 -200"J' 

'Viewpoint descnption-'Bottom view" lump-'false" 

orlentatlon-"10 01.56" posltlon="0 -220-20"/' 

'Navlgationlnfot;pe="EXi\MINE"/> 

'Group' 

'Shape' 

'PolntSet' 

<Coordlnate DEF-"orlglnalPolnts" polnt^"-3131.22 533.94 -197.67"/' 

'Color coloi="1 0 0"/' 

'/PointSet' 

'/Shape' 

'Transform scale="30 30 30"' 

'Inline url="PCCoordlnate.wrl"/' 

'fTransform' 

'/Group' 

'/Scene' 

<im> 
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Figure 3.5. Color and Coordinate node definition excerpted from x3d-compact.dtd 
used in this thesis. 
 

3. Document Type Definition (DTD) 

A Document Type Definition (DTD) collects a list of tags that defines specific 

elements and attributes.  DTDs also describe the relationships and format between 

elements and attributes (Harold, 2000).  DTDs ensure the validity of an XML document 

by requiring the data in the XML document to adhere to the prescribed format and 

structure.  DTDs are enablers of interoperability because they can serve as the 

information exchange standard for unrelated organizations using XML applications.  In 

this study, tx3d-compact.dtd was used to provide X3D scene validation.  Figure 3.5 

shows one portion of x3d-compact.dtd DTD content.   

4. XML Schema 

The XML Schema provides alternative to DTDs introduced in the previous 

section for validating XML documents.  Like DTD’s, schemas must be used with 

validating parsers.  Schemas are expected to replace DTD’s as the primary means of 

describing the document structure (Deitel, 2002).  Unlike DTDs, the schema does not use 

the SGML-inspired grammar.  Instead, the schema uses a carefully defined XML syntax.  

<!ELEMENT Color (IS?) > 
<!ATTLIST Color 
 color       %MFColor; #IMPLIED 
 containerField NMTOKEN "color" 
 class       CDATA       #IMPLIED 
 DEF         ID        #IMPLIED 
 USE         IDREF     #IMPLIED> 
 
. 
. 
. 
. 
. 
. 
. 
<!ELEMENT Coordinate (IS?) > 
<!ATTLIST Coordinate  
 point        %MFVec3f; #IMPLIED 
 containerField NMTOKEN "coordinate" 
 class       CDATA       #IMPLIED 
 DEF          ID        #IMPLIED 
 USE          IDREF     #IMPLIED> 
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Since schemas are themselves XML documents, they can be manipulated, i.e., elements 

added, elements removed, etc., as in any other XML document.   

5. Virtual Reality Modeling Language (VRML) 

The Virtual Reality Modeling Language (VRML) is used to define interoperable 

content for three-dimensional (3D) virtual worlds.  One key feature of VRML is that it is 

an ISO standard designed to be used over the World Wide Web in a browser 

environment.  The various examples explored in this thesis are encoded in X3D, which is 

the third-generation successor to VRML.  X3D includes both XML and VRML-style data 

encodings. 

The fundamental design structure in VRML is a scene graph.  A 3D scene graph 

is composed in VRML by grouping and encoding content via nodes.  These nodes are 

then used to display objects such as primitive shapes (such as Box), elevation grids or 

complex indexed face sets.  The nodes also specify groupings of sub-nodes and can 

indicate appearance, interaction and movement of events throughout the scene graph.   

 

 
Figure 3.6. VRML example indicating Principal Component (PC) space axes. 

.ial-[ 

fff^mK'" 
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Figure 3.7. HSV color space model by X3D-Edit. 
 

6. Extensible 3D (X3D) Graphics Language 

The next-generation VRML specification is known as Extensible 3D Graphics 

(X3D) (Brutzman).  X3D is more than an update to VRML97.  It is a redesign of the 

encoding and underlying code structure by employing XML. The new X3D standard 

constructs a DTD target that allows users to develop well-formed and validated scene 

graphs.  Using XML provides X3D with a robust structure and extensibility.  Extensible 

3D retrieves the same fundamental structure as the VRML97 standard and is a superset of 

functionality that is fully backward compatible.   

Using an X3D software development kit and the X3D-Edit authoring tool, 

developers can produce validated scene graphs with error-free editing (Extensible 3D 

Task Group, 2000).  The X3D-Edit utilizes IBM’s Xeena XML editor that has been 

configured to facilitate straightforward development of scene graphs that conform to the 

X3D DTD.  The X3D-Edit tool converts X3D documents to VRML97 via a XSL 
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stylesheet and then automatically launches a browser for convenient viewing.  Figure 3.8 

shows a screen capture of the X3D-Edit. (Extensible 3D Task Group, 2000) 

 

 
Figure 3.8. X3D-Edit Authoring Tool Example.  This is the basis to generate the 
default XML scene and check its validity.  
 

X3D provides the critical link between XML documents and the virtual worlds of 

this thesis.  Although VRML97 is the basis for many of the models developed, X3D 

provides the structure and flexibility to transform XML documents into valid scene 

graphs.     

nX3D-Edit scene graph editor (xSd-compact.pi'anie.Kml) 

File Edit [nsert Selection Grammar Tools Help 

HllHtelN,-; 

jsjxl 

^ a BAP   !s % ." p-f'- ^ * = $ § i rEii tiiff 
'^'praScTT'RpefimeHl 

GeoSpatiall.l H-Anim2.0 

Immsrsiv) pfOfilS    Interchange profile 

Full profile ..Allowed Nodee 

J Anch... 
I Appearance 

|AudiaClip 

m Backgrou... 

"pBillboa... 

UF] BooleanSequenc. 

I Box 

1CDATA 

§^ Collision 

H, Colorlnterpola... 

■j GuliifNiid" 

'D:/JavaProjectsi1mage!(j3Dfdata«3D_FilesiDefaultHSVScatterPlotWithlnline.>:3d(mod) E^D"  i 

? |§| =?mlversion="1.0"encoding="UTF-8"?= 

^ =1DOCTYPE X3D SYSTEM "fll8:///c:ftWiv.web3D.orgn'9skOroupsMd/tr9nsl9tionMd-comp9ct.dtd"' 

? '^iis X3D 

Omete: n9me:fllen9me, content:Def9ultHSVSc9tterPlot.i(3d 

Omets: name: suthor, content Kane Kim 

Ometa: name: revised, content: 20 Oct 2002 

O meta: name: description, content A scatter plot with the points colored using colors from a Color node. 

O meta: name, generator, content X3D-Edit http://wiw.web3D.orgn'askOroupsMdAranslation/README.X3D-Edithtml 

^ Viewpoint description: Frant view points, position: 5100 500, jump: false 

<i Viewpoint description: Top view point, position: 0 250 0, orientation: -10 01.57, jump: false 

<i viewpoint description: 45 deoree(CCn) angle view, position: 200 20 200, orientation 0101, jump false 

^ Viewpoint descripton: 45 degree(Cvy) angle view, positon: -200 30 -200, onentaton: 010 3.5, jump: false 

<l Viewpoint description: Bottom view, position: 0 -220 -20, orientation: 10 01.56, jump: false 

" N9vig9tionlnfo. tfpe. EXAMINE 

? P Graup 

? S Shape 

9 ;!; PointSet 

;j! Coordinate DEF orlginalPomts, point-318122 588 94-197 67 

HColorNode: color: 1 0 0 

9 TI* Transform: scale: 00 00 00 

"J^'* Inline, uri. PCCoordinate.wrl 

°p7JavaProject3/lmageXj3D/dataK3D_Flles/DeraultHSVScatterPlor^lthlnllne.x3d: Save Successful, 
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7. Xj3D 

In this thesis, the Xj3D Player provides one way to view the X3D graphic scene 

after the scene is manipulated by the Java application.  Xj3D is the open-source rendering 

API and toolkit developed by Yumetech and others (Xj3D Task Group, 2002).  Xj3D is a 

project of the Web 3D Consortium that creates a toolkit for VRML97 and X3D content 

written completely in Java.  This toolkit may be used to the import VRML content into a 

custom application, or to create a fully-fledged browser.  The initial impetus for this 

project was to create a file loader for the Java3D API and started with a grant of code 

from Sun Microsystems to W3C.  Over time, the project has grown in requirements and 

now encompasses many other features as well.  For example, it is being used as one of 

the main testing grounds to verify the work on the new X3D specification.  It currently 

uses Java3D as the scene-rendering engine (Xj3D Task Group, 2002).   

.

 
Figure 3.9. Simulation result viewing with Xj3D. 
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E. SUMMARY 

This chapter details the high-level concepts of the many technologies explored 

and exploited to provide a contextual understanding of the remainder of the thesis.  If 

more information is required for a more in-depth understanding, the reader is referred to 

the List of References as well as those mentioned above. 
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IV. PROBLEM DEFINITION AND ANALYTIC APPROACH 

A. INTRODUCTION 

This chapter provides the insight into the subject of this thesis.  The first section 

introduces the mapping strategies currently available.  The second section describes the 

Principal Components (PC) mapping strategy in depth, as related to Tyo’s invariant- 

display strategy.  The last section presents new techniques to improve this proposed 

strategy, such as viewing the conical data space of Principal Component (PC) space in 

3D, developing a global statistic and viewing the resultant 2D image of RGB 

transformation from PC data.   

B. MAPPING STRATEGIES OVERVIEW 

The two most common approaches to mapping HSI data into pseudocolor involve 

mapping band data or principal components data at each pixel into an RGB triple.  In the 

former strategy, a user selects three HSI bands in the hopes of capturing either large-scale 

image variations or particular spectral features.  An example of such a mapping is 

presenting a long-, mid-, and short wavelength visible bands as an RGB image.  This 

approximates what a human observer might see if actually looking at the scene.  An 

example of this mapping strategy is shown in Figure 4.1.B.  This class of mapping 

strategy can be very powerful, as highly specialized colormaps can be designed that are 

tailored to particular applications, such as locating a specific spectral feature throughout a 

scene.  However, there are some drawbacks associated with this strategy.  First, any 

spectral feature that does not overlap with chosen bands will not be represented.  Second, 

there is no a priori way to predict the color representation of specific objects in the final 

images, or to precisely interpret them. 

A second strategy attempts to solve some of those drawbacks.  It involves taking a 

Principal Components transformation (PCT) and mapping the resulting PC images into 

an RGB triple.  Examples of such images are presented in Figure 4.1.   
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Figure 4.1. Three common three-color mapping strategies from Night Vision Imaging 
System (NVIS) data.  A. Natural color image.  This is an approximation of what a human 
observer would see in the image maps bands at 630nm, 550nm, and 450nm into R, G, and 
B.  B. Typical false color in Infrared.  The second image presents bands at 600nm, 
1000nm, and 2000nm.  C. Mapping PC images into RGB Triples. 1st PC mapped into red, 
2nd PC into green, and 3rd into blue.   
 

The PC images are formed by diagonalizing the covariance matrix of the data, and 

projecting the HSI scene onto the resulting (orthogonal) eigenvectors.  The eigenvectors 

are linear combinations of variables, which include the spectral features that contribute 



  37 

most to the scene variance.  They represent statistically uncorrelated channels and are 

ordered in decreasing amounts of scene variance.  The derived variables provide sample 

information from across the scene, and reduce the chances that an important spectral 

feature, from a variance standpoint, will be missed in the final representation.  The 

problem with the mapping in Figure 4.1 is that they map orthogonal data (PC images) 

into non-orthogonal display channels (RGB intensities).  The result is an image that is 

often difficult to interpret.  

Recently, a PC-based strategy was presented that sought to eliminate the problems 

associated with the above mapping.  That strategy exploits the similarities between HSI 

data and human color vision.  The orthogonal PC channels are mapped into orthogonal 

display channels in an ergonomic manner.  The end goal is to derive an invariant 

mapping strategy for HSI data that consistently and intuitively represents important scene 

constituents in the final scene.  Advanced processing methods can simultaneously be 

applied to the HSI data, enabling overlay of identification information.   

C. PRINCIPAL COMPONENT (PC) MAPPING STRATEGY REVIEW 

1. Overview 

The close dependency between effective interpretation of HSI data and human 

color vision is well known (Dierson, 2000).  A PC analysis of the human photoreceptor 

spectral response produces three statically orthogonal channels.  One channel is roughly 

achromatic, one channel demonstrates a difference between long- and mid- wavelength 

spectral content (red-green), and a third channel is trimodal, and nominally represents the 

difference between short- and mid wavelength information (blue-yellow).  These three 

orthogonal dimensions can be used to define orthogonal directions in a 3-dimensional, 

conical data space.  The three HSV coordinates--hue (angle within the R-G/B-Y plane), 

saturation (radius in the R-G/B-Y plane divided by total intensity), and value (total 

intensity)--define a location within the HSV cone and are commonly used for 

constructing pseudocolor images. 

Analysis of HSI data yields a first PC that is usually related to the average scene 

illumination.  That channel typically has slow spectral variation, except in atmospheric 

absorption bands, and closely resembles the solar distribution convolved with the 
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atmospheric transmission.  When an image is dominated by a particular material, that 

spectral signature might also contribute significantly to the scene variance and may show 

up in the first PC as well.  The first PC image contains a basic panchromatic intensity 

image and has much of the high spatial-frequency variations.  The higher PCs also have 

lower-spatial frequency information that is typically associated with regions of like 

spectral content.  The close analogy between the HSI and color vision analyses leads to 

the proposed mapping information often associated with geography.  Successively higher 

PCs tend to have a more rapid spectral strategy. Equation Section 4 
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where P1, P2, and P3 are the 1st, 2nd, and 3rd PC values, φ  and ρ  are angle within the R-

G/B-Y plane and radius in the R-G/B-Y plane divided by total intensity, and H, S, and V 

are the hue, saturation, and value.  The basic properties of this transformation are 

discussed (Tyo et al., 2001). 

2. Analysis 

The strategy outlined above has several advantages and disadvantages that are 

worth mentioning.  First, the mapping capitalizes on similarities between the PC channels 

in HSI and color vision to create an ergonomic strategy that preserves orthogonality 

relationships in the final mapping.  The spatial frequency structure of the PC images in 

HSI nicely matches the spatial sensitivity of the corresponding color channels.  This 

match points towards a possible compression strategy, namely a hybrid spatial/spectral 

compression scheme, that uses information about the spatial frequency structure of higher 

PC channels to reduce noisy and/or less important data from a scene.  This is the strategy 

utilized by human vision.  High spatial frequency information that is presented in the (R-

G) and (B-Y) channels is not readily perceived, and helps to minimize the visual 

bandwidth necessary to process color scene. 
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D. INVARIANT DISPLAY STRATEGY 

The long-term goal of this project is the development of an invariant display 

strategy that can be broadly applied to HSI data.  The direct implementation of Equation 

4.1 is not an invariant strategy, since the PCs are calculated from in scene statistics.  

Furthermore, implementation of Equation 4.1 does not guarantee that materials are going 

to be presented in hues that are intuitive to the observer.  Below are two aspects of this 

strategy that can then be considered for further improvement. 

1. Conical Data Shape 

The transformation in Equation 4.1 projects the high-dimensional HSI data into a 

3D conical space.  That space is tightly bunched about the P1 axis, since the variance 

associated with first PC is often in excess of 90% of the total scene variance.  The effect 

of this transformation on HSI data is shown in the next chapter.     

2. Post-Rotation of RGB Data  

Sometimes it may be desired to use in-scene statistics to compute the eigenvectors 

for transformation.  These eigenvectors give the best ordering of the in-scene variance, 

and highlight the most important features of the particular image.  However, use of in-

scene statistics can lead to colormaps that are not always intuitive.  A method for 

overcoming this difficulty is proposed in this section. 

When the spectral data includes bands in the visible, a 3-color composite image 

can be constructed that closely mimics what a human observer would see.  In Figure 4.1, 

an important scene constituent is the grass.  The color transformation can be rotated to 

ensure that the materials that closely resemble grass are presented with a particular hue, 

i.e., the color green.  The mapping was computed using such a post-rotation.  The second 

and third eigenvectors were still obtained using in-scene data.  If a strategy is developed 

to arrive at global eigenvectors, then Equation 4.1 can be appropriately modified to 

ensure that important materials are presented in a visual standard form for improved 

recognizability.   

E. SUMMARY 

In this chapter, the fundamental thesis problem was restated and analyzed to 

identify the necessary tasks for using 3D visualization techniques to improve PCT 
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mappings of particular interest: comparing conical data shape in PC space with HSV 

color space and post-rotating RGB transformation.  In the following chapters, previous 

work is extended to examine the conical nature of HSI data in the PC-based 3D space.   
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V. VISUALIZATION IMPLEMENTATION  

A. INTRODUCTION 

The previous chapter demonstrated that two aspects for this study need to be 

investigated: the 3D view of Principal Component (PC) data from selected Regions Of 

Interest (ROI) and the resulting image presented in RGB.  This chapter focuses on how 

the 3D view of the HSV mapping is generated through the creation of a Java application 

and X3D scene, in order to achieve the first objective.  The next visualization section 

presents what data and graphics parameters need to be manipulated.  The following 

section describes the overall application architecture.  The final section describes how the 

X3D scene is generated.   

B. VISUALIZATION CONSIDERATIONS 

This section explains what data parameters are used to visualize, what graphical 

parameters are available in X3D, and how to map data parameters to graphics parameters.  

Figure 5.1 shows the entire process to generate graphics parameter from image data 

parameters.  

  



  42 

 
Figure 5.1. Data process flow for converting and mapping HSI data. 
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1. Data Parameters  

There are two data parameters needed to project the reduced dimensionality of 

Principal Component (PC) results into a 3D display space:  the location of each point in 

PC space, and the color of points according to the material classification to which the 

ROI belongs.  Referring to Figure 5.1, Hyperspectral Imagery (HSI) data for Regions of 

Interest (ROI) parameters are converted to PC space by application of an eigenvector 

rotation.  An initial HSI image has three dimensions for width of image, height of image 

and the number of available bands.  For instance, Lake Tahoe HSI data have the 

dimensions 614 by 512 by 224.  This 3D array is transformed via Principal Components 

(PC), yielding a new 3D array of the same size, keeping only the first three bands in the 

new color space result in a reduced dimensionality, here, by example, 614 by 512 by 3 

(See Richards for calculation detail).  The rotation is defined by the In-Scene statistics 

eigenvectors.  Conceptually, the ROI data are transformed through the same matrix 

rotation, as indicated in parallel in Figure 5.1.  In practice, the ROI could be extracted 

from the transformed Image data at a later stage.  ROI are defined for this work 

interactively by using Environment for Visualizing Image (ENVI) software from 

Research System Inc. as shown in Figure 5.2.  Once the ROI is defined, the data subset 

can also be transformed into the three dimensions defined by the first three PCs.       
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Figure 5.2. Region of Interest (ROI) for vegetation in green polygon, water in blue, 
and soil in red in Lake Tahoe scene with true color bands.  The total number of selected 
points is 11059.   
 

2. Mapping Converted Data to X3D 

In X3D, the Coordinate and Color nodes contain point and color data for a 

PointSet.  Each attribute, respectively, contains the x y z location and R G B triple.  Thus, 

data parameters can be directly mapped to graphics parameters.  Figure 5.3 shows these 

two attributes as used in the default X3D file of this thesis.  The PC1, PC2, PC3 axes 

provide the location in PC space (Tyo et al., 2001) and material classification is mapped 

to the color attribute in the Color node in X3D.  For instance, assume the first point of 

ROI is vegetation and its PC coordinates turn out to be –3181.22, 588.94, and –194.67 as 

shown in Figure 5.3. as indicated by the arrows.  The color of this point is mapped to the 
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green color as (0, 1, 0) for RGB triple, since this point is classified as vegetation.  This 

entire PC data cloud is shown in 3D using the HSV color space.       

 

 
Figure 5.3. The content of DefultHsvScatterPlot.x3d used in this thesis. 
 
C. APPLICATION DESIGN  

This section presents what design concepts have been applied in building the 

application, and describes the overall application structure of each software package.  

Figure 5.1 shows the Universal Modeling Language (UML) diagram for each package.   
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Figure 5.4. Universal Modeling Language (UML) diagram of the entire Java 
application by each package.  UML is generated by TogetherSoft software. 
 

1. Software Design Patterns Overview  

Design patterns describe standard ways to correctly perform common 

programming tasks.  Many different software design pattern concepts exist: Creational 

pattern, Behavior pattern, Structural pattern, and System pattern (Stelting, 2002).  Among 

these concepts, a creational pattern has been applied to develop this application, since it 

supports one of the most common tasks in Object-Oriented (OO) programming and an 

application of this complexity requires many objects to be instantiated over time.  For 

instance, each package of this application consists of several classes.  The result of the 

computation of each package is shared among the others.  

2. Application Structure  

This section provides a brief overview of the developed application in this thesis 

by each package.  The application consists of six packages.  Each package provides a 

different functionality as follows: loading image data, computing data, displaying 

resultant image, and viewing 3D Principal Component (PC) data space.  
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The application first loads the binary image data into memory.  Once data is 

loaded, it is processed and calculated.  Then, the application generates two types of 

datasets corresponding to the 3D projection of HSV mapped eigenvectors for the ROI, 

and also, the 2D resultant image.   

a. GUI Package 

Referring to Figure 5.4, this package is the topmost main package to 

control the rest of packages.  This package provides the dialog boxes shown in  Figure 

5.5 that select the image to load.  The image data itself is binary data with a 16-bit Signed 

Integer type in Band Sequential (BSQ) format as mentioned in Chapter II.  This data does 

not have any precalculated metadata information of information, such as image width, 

image height, number bands, byte order or data type.  The Header file in ASCII text 

format provides such information.  It contains all the necessary information as shown in 

Figure 5.6.  This header file information also can be shared with ENVI utilized above for 

defining ROI.  Figure 5.7 shows the information of a Header file loaded into memory as 

well.  

 

 
 
Figure 5.5. Entering Graphical User Interface (GUI) for GUI package. 

,»imlxJ 
File   Computation   VUlndovj 
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Figure 5.6. The content of the Header file, Lake Tahoe.hdr.  It contains all the relevant 
information to be used for image loading.   
 
 

description = { 
  AVIRIS - Tahoe [Wed Sep 18 05:53:12 2002]} 
samples = 614 
lines   = 512 
bands   = 224 
header offset = 0 
file type = ENVI Standard 
data type = 2 
interleave = bsq 
sensor type = Unknown 
byte order = 0 
default bands = {28,18,8} 
wavelength = { 
  383.149994,  392.839996,  402.540009,  412.250000,  421.980011,  431.709991, 
  441.459991,  451.220001,  460.989990,  470.760010,  480.549988,  490.339996, 
  500.140015,  509.950012,  519.760010,  529.580017,  539.400024,  549.229980, 
  559.070007,  568.900024,  578.739990,  588.580017,  598.429993,  608.270020, 
  618.109985,  627.960022,  637.799988,  647.650024,  657.489990,  667.330017, 
  677.169983,  687.000000,  664.299988,  673.869995,  683.440002,  693.020020, 
  702.590027,  712.169983,  721.750000,  731.340027,  740.919983,  750.510010, 
  760.090027,  769.679993,  779.270020,  788.869995,  798.460022,  808.049988, 
  817.650024,  827.250000,  836.849976,  846.450012,  856.049988,  865.650024, 
  875.250000,  884.849976,  894.460022,  904.059998,  913.669983,  923.270020, 
  932.880005,  942.489990,  952.090027,  961.700012,  971.309998,  980.919983, 
  990.530029, 1000.130005, 1009.739990, 1019.349976, 1028.959961, 1038.569946, 
 1048.180054, 1057.790039, 1067.390015, 1077.000000, 1086.609985, 1096.209961, 
 1105.819946, 1115.430054, 1125.030029, 1134.630005, 1144.239990, 1153.839966, 
 1163.439941, 1173.040039, 1182.640015, 1192.239990, 1201.839966, 1211.430054, 
 1221.030029, 1230.619995, 1240.219971, 1249.810059, 1259.400024, 1268.989990, 
 1252.359985, 1262.319946, 1272.280029, 1282.250000, 1292.209961, 1302.170044, 
 1312.130005, 1322.099976, 1332.060059, 1342.020020, 1351.979980, 1361.939941, 
 1371.900024, 1381.859985, 1391.819946, 1401.780029, 1411.739990, 1421.699951, 
 1431.660034, 1441.619995, 1451.579956, 1461.540039, 1471.500000, 1481.449951, 
 1491.410034, 1501.369995, 1511.329956, 1521.280029, 1531.239990, 1541.199951, 
 1551.150024, 1561.109985, 1571.060059, 1581.020020, 1590.969971, 1600.930054, 
 1610.880005, 1620.839966, 1630.790039, 1640.739990, 1650.699951, 1660.650024, 
 1670.599976, 1680.560059, 1690.510010, 1700.459961, 1710.410034, 1720.359985, 
 1730.310059, 1740.270020, 1750.219971, 1760.170044, 1770.119995, 1780.069946, 
 1790.020020, 1799.969971, 1809.920044, 1819.859985, 1829.810059, 1839.760010, 
 1849.709961, 1859.660034, 1869.599976, 1879.550049, 1879.900024, 1889.949951, 
 1900.000000, 1910.050049, 1920.089966, 1930.140015, 1940.180054, 1950.209961, 
 1960.250000, 1970.280029, 1980.310059, 1990.339966, 2000.359985, 2010.380005, 
 2020.400024, 2030.420044, 2040.430054, 2050.449951, 2060.449951, 2070.459961, 
 2080.469971, 2090.469971, 2100.469971, 2110.459961, 2120.459961, 2130.449951, 
 2140.429932, 2150.419922, 2160.399902, 2170.379883, 2180.360107, 2190.340088, 
 2200.310059, 2210.280029, 2220.250000, 2230.219971, 2240.179932, 2250.139893, 
 2260.100098, 2270.050049, 2280.000000, 2289.949951, 2299.899902, 2309.850098, 
 2319.790039, 2329.729980, 2339.659912, 2349.600098, 2359.530029, 2369.459961, 
 2379.389893, 2389.310059, 2399.229980, 2409.149902, 2419.070068, 2428.979980, 
 2438.889893, 2448.800049, 2458.709961, 2468.610107, 2478.510010, 2488.409912, 
 2498.310059, 2508.199951} 
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b. io package 

The io package is used to load image data according to the Header file 

information.  In Figure 5.7, the left hand side of the window presents the Header file 

information and then right hand side of the window allows the users to choose from the 

bands available.  The user can choose up to three bands to map into Red, Green and Blue 

colors.  The listed numbers are the wavelengths for each band number.   

 

 
Figure 5.7. Available band list view selection. 
 

The image file data type is usually a 16 bit Signed Integer.  The data 

ranges between –32768 and 32767.  They can be in either IEEE or Intel standard.  For 

some files used in Java application, byte swapping was necessary to convert from the 

Intel standard to the IEEE standard.  Figure 5.8 shows the detail byte swapping operation.  

In this figure, two bytes are read from disk.  The second byte of bigEndian is shifted into 
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8 bit left and the first byte is 8 bit right.  Bit Or operation is applied after that.  This 

swapping maintains the signed bit at the initial first byte as well. 

 

 
Figure 5.8. Byte swapping in ImageReader.java. 
 

c. ComputationGroup package 

This package provides all the required computation capabilities shown in 

Figure 5.1.  A key operation is the matrix multiplication between Eigenvector and Region 

of Interest (ROI) data to produce the data to project, which is the PC data of ROI in 

Figure 5.1.  This is the matrix multiplication between (m by n) of Eigenvector and (x by 

y) of either entire image data or ROI image matrix.  This package uses the Java Matrix 

Package (JAMA) Application Program Interface (API), a open source for matrix 

operation (JAMA, 2001).  For detail mathematics, refer to (Richard, 1995). 

Of note is the data format and type when the resulting data are written 

back to disk.  The data format is converted to Band Interleaved by Pixel (BIP).  The data 

type is converted to Double,  32 bit floating point as the java primitive data type.  The 

double type is used since it can be converted to string type.  String data type are useful, 

since these data types can be inserted into the Document Object Model (DOM) tree.  The 

detail conversion process is explained in the next section. 

 

bigEndian = inDataStream.readShort(); 
         swapped = (int)   ( bigEndian<<8 ) | ( (bigEndian>>8) & 
0xff); 
         swapped = (swapped & 0x0000ffff); 
 redMatrix[y][x] = swapped; 
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Figure 5.9. Snap shot of Matrix Calculator, the topmost class, in computationGroup 
package. 
 

d. DomGroup Package 

This is a key package for the 3D scene generation.  It converts a base 

scene X3D file, DefaultHSVScatterPlot.x3d, into a DOM tree and inserts the manipulated 

data into this tree.  This tree is then transformed into Virtual Reality Modeling Language 

(VRML) by the X3dToVrml97.xsl stylesheet.  The original X3D and transformed VRML 

versions are each written back to disk.  Either VRML-capable browsers or X3D-capable 

browsers can be invoked to load this X3D/VRML scene from disk.      

e. Xj3DviewersGroup Package 

This package provides one way to view the VRML scene created by the 

above DomGroup package.  It contains a Xj3D Player,  an open source to view a 3D 

scene.  The Xj3D is mentioned in Chapter III.  In addition to the Xj3D viewer, this 

package provides the other way to view 3D scene through a VRML capable Internet 

Explore (IE) with a Cortona plugin (Parallelgraphics, 2002).  This alternative way was 

provided, since the Xj3D Player was not complete at the time the author developed this 

application (Xj3D, 2002).   
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f. HistogramGroup Package 

This package is capable of viewing a 2D resultant image and writing it 

back to disk.  It was named in the initial development phase to reflect the idea in the 

author’s mind to provide the capability of viewing the histogram of image statistics with 

a 2D resultant image view as in Figure 5.10.  The histogram plot was supposed to provide 

interactive stretching capability for Saturation and Value.  However, this capability is 

currently mechanically performed and will be developed for future improvement later.  

The BufferedImage class is used with bit packing to Standard Red Green, Blue (SRGB), 

introduced in Chapter III.  Figure 5.10 shows the result of Tyo’s algorithm applied to the 

Lake Tahoe scene with 0 degree RGB rotation. 

 

 
Figure 5.10. 2D image of 2D resultant image of Lake Tahoe after Tyo’s algorithm was 
applied.  The hue was not rotated at this scene.  
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D. 3D IMPLEMENTATION. 

This section describes in detail how an X3D scene is generated.  The first step for 

generating an X3D scene is to load an X3D file to memory in the Document Object 

Model (DOM) by using Java API for XML Parsing (JAXP).  Then, the loaded DOM tree 

is modified using standard interfaces provided by JAXP.  Once complete, the modified 

DOM tree is saved as an X3D file and then converted to VRML97 encoding.  Next, the 

VRML97 scene is viewed by a Xj3D or VRML-capable browser.  Figure 5.11 shows the 

entire procedure.  
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Figure 5.11. 3D scene generation process from Java to VRML through X3D.    
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1. Loading the Base Scene, DefaultHsvScatterPlot.x3d into Memory 

DefaultHsvScatterPlot.x3d is a X3D file in XML format and was introduced in 

Chapter III.  XML documents, when parsed, are represented as a hierarchical tree 

structure in memory as mentioned in Chapter III.  This tree structure contains the 

document’s elements, attributes and content.  A programmer can add data, remove data, 

and query for data, since XML was designed to be dynamic.  W3C provides a standard 

recommendation for building a tree structure in memory for XML documents called the 

Document Object Model (DOM).  Each element and attribute in a XML document is 

represented by a node in the DOM tree and can be modified by manipulating the nodes in 

a DOM tree.   

The DOM tree is created by Java API for XML Parsing (JAXP) provided by Sun 

Microsystems.  JAXP uses the DocumentBuilderFactory class to create a 

DocumentBuilder object.  The Class DocumentBuilder in Figure 5.12 provides a standard 

interface to an XML parser.  The DocumentBuilderFactory produces an appropriate 

DocumentBuilder object for a currently configured XML parser.  The builder object in 

Figure 5.12 provides an interface for loading and parsing an XML document.  The 

method parse() is used to load and parse the XML document stored in the datafile, 

DefaultHsvScatterPlot.x3d, in Figure 5.3.   

 

Figure 5.12. Code Snippet from VRMLMaker.java.  These lines load an X3D file in 
XML format and put it in a Document Object Model (DOM) tree.  
 

Upon the successful loading of the X3D file, a getDocumentElement method is 

called to obtain the Document’s root node.  The root is downcast to Element and the 

String filename = “DefaultHsvScatterPlot.x3d”; 
File datafile   = new File(filename); 
DocumentBuilder builder = factory.newDocumentBuilder(); 
document = builder.parse(datafile); 
 
/************************************************************************ 
* Build Document before manipulating point/color attribute in each node  
************************************************************************/ 
  Node root = document.getDocumentElement(); 
  Element x3dNode = (Element) root; 
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scene graph tree is traversed to find the Coordinate and Color node as shown in Figure 

5.13 for further attribute value manipulation.    

2. Modifying Point and Color Attribute Values 

After downcasting the Node root to Element, methods specific to class Element 

can be called on the object using the x3dNode.  The method, getElementsByTagName 

(“Coordinate”) returns the list of all the Coordinate elements in the XML document.  

Each element is stored as an item in a NodeList.  The first item added is stored at index 0.  

This index is used to access an individual item in the NodeList.  Then, the StringBuffer 

pointValue is instantiated to append vegetation location values for x, y, and z values in 

the point attribute.  Note that the current 2D array matrix has N by 3 dimension, where N 

is the number of all the vegetation points.  After all the point values are appended into the 

StringBuffer, the pointValue is converted into a String to set the attribute of coordinate 

Element.  The exact same mechanism is applied in the Color Element, except that the 

RGB values, according to the classification of the material, which is vegetation in this 

case, are set as attribute values.  For instance, vegetation color Element attribute values 

are set as (0,1,0) for RGB to represent green, soil color is (1,0,0) as red, and water is 

(0,0,1) as blue. 
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Figure 5.13. Modification of point and color attribute values in VRMLMaker.java. 
 

3. Transforming DOM to VRML97 Encoding 

The Extensible Stylesheet Language (XSL) is used to format XML documents 

and consists of two parts: the XSL Transformation (XSLT) language and XSL formatting 

objects.  XSLT is used to transform the X3D document into a VRML97 encoding.  In this 

thesis, X3DtoVrml97.xsl was used as the conversion XSLT stylesheet.  An XSLT 

document is an XML document with a root element stylesheet.  The namespace for an 

XSLT document is http://www.w3.org/1999/XSL/Transform.  The XSLT document 

shown in Figure 5.13 transforms DefaultHsvScatterPlot.x3d (Figure 5.3) into a VRML97 

document (Figure 5.14). 

 

 //======================================================= 
 //Modify the "POINT" attribute value for "COORDINATE" node 
 //======================================================= 
  NodeList coordinateNode = x3dNode.getElementsByTagName("Coordinate"); 
  Element coordinate = (Element) coordinateNode.item(0); 
  StringBuffer pointValue = new StringBuffer(); 
             
   for (int i = 0; i < hsvGenerator.vegetation.length; i++) 
   { 
      for (int j = 0; j < hsvGenerator.vegetation[0].length; j++) 
      { 

  pointValue = pointValue.append((int)hsvGenerator.vegetation[i][j]+" "); 
      } 
    } 
  String point = (String) pointValue.toString(); 
  coordinate.setAttribute("point",point); 
  //==================================================== 
  //Modify "COLOR" attribute value for the "COLORNODE" 
  //=================================================== 
  NodeList colorNode = x3dNode.getElementsByTagName("ColorNode"); 
  Element color = (Element) colorNode.item(0); 
   
  StringBuffer colorValue = new StringBuffer(); 
  for (int i = 0; i < hsvGenerator.vegetationColor.length; i++) 
  { 
      for (int j = 0; j < hsvGenerator.vegetationColor[0].length; j++) 
      { 
         colorValue = colorValue.append(hsvGenerator.vegetationColor[i][j]+" "); 
      } 
  }  String colorString = (String) colorValue.toString(); 
  color.setAttribute("color", colorString); 
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Figure 5.13. Code snippet of X3dToVrml97.xsl used in this thesis. 

 

<!-- ****** root:  start of file ****** --> 
<xsl:template match="/"> 
  <!-- VRML 97 header --> 
  <xsl:text>#VRML V2.0 utf8&#10;# X3D-to-VRML-97 XSL translation autogenerated 
by X3dToVrml97.xsl&#10;# 
http://www.web3D.org/TaskGroups/x3d/translation/X3dToVrml97.xsl&#10;&#10;</xsl:
text> 
  <!-- VRML 200x headers --> 
  <xsl:apply-templates select="X3D"/> 
  <xsl:apply-templates select="X3D/head/component"/> 
  <xsl:if test="X3D/head"> 
    <xsl:text>&#10;</xsl:text> 
    <xsl:apply-templates select="X3D/head"/> 
  </xsl:if> 
  <xsl:if test="X3D/Header"> 
    <xsl:call-template name="output-error"> 
      <xsl:with-param name="errorString"> 
        <xsl:text>'Header' tag illegal, use 'head' instead</xsl:text> 
      </xsl:with-param> 
      <xsl:with-param name="node"> 
        <xsl:text>X3D/Header</xsl:text> 
      </xsl:with-param> 
    </xsl:call-template> 
  </xsl:if> 
<!-----etc ----à 
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Figure 5.14. Conversion result of DefaultHsvScatterPlot.wrl. 

#VRML V2.0 utf8 
# X3D-to-VRML-97 XSL translation autogenerated by X3dToVrml97.xsl 
# http://www.web3D.org/TaskGroups/x3d/translation/X3dToVrml97.xsl 
 
# [X3D] VRML V3.0 utf8 
 
# [head] 
# [meta] filename: Default.x3d 
# [meta] author: Kang Kim 
# [meta] revised: 20 Oct 2002 
# [meta] description: A scatter plot with the points colored using colors from a Color 
node. 
# [meta] generator: X3D-Edit, 
http://www.web3D.org/TaskGroups/x3d/translation/README.X3D-Edit.html 
# [Scene] 
 
# Positive direction of X axis in X3D space is the base axis. Counter Clock Wise(CCW) 
rotation increases angle. Clock Wise(CW) decreases angle. 
Viewpoint { 
  description "Front view points" 
  jump FALSE 
  position 5 4 80 
} 
Viewpoint { 
  description "Top view point" 
  jump FALSE 
  orientation -1 0 0 1.57  
  position 30 80 30 
} 
 
NavigationInfo { 
  type [ "EXAMINE" ] 
} 
Group { 
  children [ 
      Shape { 
        geometry PointSet { 
          coord DEF originalPoints Coordinate { 
            point [ -3181.22  588.94 -197.67 ] 
          } 
          color Color { 
            color [ 1  0  0 ] 
          } 
        } 
      } 
      Transform { 
        scale 20 20 20 
        children [ 
            Inline { 
              url [ "PC_CoordinateAxes.wrl" ] 
            } 
        ] 
      } 
  ] 
} 
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To process XSLT documents, an XSLT processor is required.  The open source 

Apache Foundation has created the Xalan XSLT processor for Java. (Apache XML 

Project, 2002)  Xalan-Java is an XSLT processor for transforming XML documents into 

other XML document types.  It implements the W3C recommendations for XSL 

Transformations (XSLT) and the XML Path Language (XPath).  An open-source product, 

use of this toll is available free on all programming platforms. 

4. Viewing a Model in an X3D/VRML Capable-Browser  

This section shows how a VRML scene was loaded into a Xj3D Browser.  A 

standard loader as defined by Sun's utility interface com.sun.j3d.loaders.Loader, 

(Xj3D Task Group, 2002), and was used as a loading method.  Implementing a loader 

means that the code is required to obey a set of flags, and also to do most of the work 

within the loader, rather than by application code.  

When loading external files, the simpler memory-based 

MemCacheLoadManager is used for processing external files since the environment in 

which the loader is used may be unknown.  The loader implementation automatically 

determines the file type to be loaded.  It handles VRML97, X3D and VRML3.0 for users.   

Constructing a new loader requires creating an instance of the class 

org.web3d.j3d.loaders.VRMLLoader.  There are two standard constructors 

available: the default no-argument constructor and one that takes an int argument, which 

are the load flags.  The example below used int Xj3DBrowser.java to create a loader that 

builds a fully compliant VRML scene graph: 

 

 

 

 

 

import java.io.IOException; 
import com.sun.j3d.loaders.Loader; 
import com.sun.j3d.loaders.Scene; 
import org.web3d.vrml.j3d.VRMLLoader; 
.... 
  Loader ldr = new VRMLLoader(Loader.LOAD_ALL); 
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Once a loader is constructed, the next step is to load one or more files.  This is 

done through the usual assortment of load() methods.  Construct a URL or file path 

and pass it to the load method.  In return, the code renders a Scene.   

To access the loaded Java3D scene, the getSceneGroup() method is then 

called.  The resulting BranchGroup can then be placed in an application's scene graph. 

 

 
Figure 5.15. Scatterplots of generated 1st,  2nd,  3rd PC of soil, water, vegetation in PC 
data space.  A. Cone Projected onto the P2 - P3 Plane. B. P2 – P1 Plane.  C. P3 - P1 Plane.  
The numerical value presented here represent absolute projections of the HSI data at each 
pixel onto the eigenvectors of the covariance matrix of the data with no scaling or 
translation. (From: Tyo et. al) 

  try 
  { 
    Scene vrml_scene = ldr.load 

("d:/JavaProjects/ImageXj3D/SoilVegetationWater.wrl"); 
  } 
  catch(Exception e) 
  { 
    //Exception handling 
  }  

Jl'      l.lv.ll-llDjl'lllkUll'LID'llllA'.lH 

QN.~I:^MIU 



  62 

E. SUMMARY 

This chapter introduced the overall application structure.  The great detail of the 

3D construction and viewing methods used in this thesis were presented.  The final 3D 

scene constructed in Figure 5.15 will be analyzed in the follow chapter. 
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VI. DATA ANALYSIS  

A. INTRODUCTION  

This chapter analyzes the resulting 3D conical data shape that represents the 

dataset to HSV mapping.  The implementation result helps to verify the suggested 

strategy by developing In-Scene Global Statistics and applying a post-rotation of RGB 

encoded PC transforms.  The case study method is used in this chapter, showing different 

images acquired from different sensors including the Hyperspectral Digital Imagery 

Collection Experiment (HYDICE), the Airborne Visible/Infrared Imaging System 

(AVIRIS), the Night Vision Imaging System (NVIS) and the Hyperspectral Mapping 

system (HyMap).   

B. 3D VISUALIZATION ANALYSIS FOR HSV CONICAL 
REPRESENTATION OF PRINCIPAL COMPONENT (PC) DATA 

The conical shape of PC data is used to represent ROI Hue, Saturation, and Value 

(HSV) color space.  Figure 6.1 shows the hexagonal HSV color space and ROI data.  ROI 

data also was projected as red, green, and blue scattered points.  These points were 

computed by PC Transformation of the Lake Tahoe scene Eigenvector on soil, water, and 

vegetation points on the same scene.  Visually comparing the green axes in the Hue plane 

with the mapped green points revealed that there exists about a 30 degree difference 

between the green color vertex in HSV space and the location of vegetation points 

calculated from Tyo’s algorithm.  In other words, the vertex of green color in the HSV 

color space is located at a Hue angle of 120 degree.  The location of green points from 

Tyo’s algorithm appears to be at 150 degrees.  Thus, a -30-degree rotation in Hue plane is 

required for a more intuitive mapping of the eigenvector data space.  This additional 

rotation requirement is applied to the RGB transformation in the following section.  
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Figure 6.1. ROI projection in HSV color space.  A. Top view, B. View tilted 45 degree 
to left.  C. Front view, D. View tilted 45 degree to right, E. Bottom view. 
 
C. DEVELOPING GLOBAL STATISTICS (EIGENVECTORS) 

The first section identified the required additional Hue angle rotation.  Before 

applying this rotation angle on the RGB transformation, it is necessary to explain how In-

scene statistics are used and how they are developed.   

In this thesis, the Lake Tahoe scene is used to produce the In-Scene statistics.  

Lake Tahoe was selected since it has relatively simple scene constituents such as 

vegetation and water.  Figure 6.2 shows Hue rotated images, natural color image, typical 
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false color in the Infrared image, natural color images and the true color image of the 

Lake Tahoe scene.  The following sections explain the differences between each 

eigenvector. 

 

 
Figure 6.2. Overview of Lake Tahoe scene manipulation.  Clock wise from the top left, 
the image shows Post-Rotation of RGB Transformation between 0 to –180 degree, False 
Color in Infrared, and Natural color. 
 

1. Scene Statistics and Eigenvector 

The Eigenvector derived from this AVIRIS scene was defined to be the ‘global’ 

eigenvector to be applied to successive data sets.  The invariant display strategy pursued 

here depends on the structural similarity of the first few eigenvectors.  The first three 

AVIRI5 -  Lake Tahoe 
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Eigenvectors of each scene tend to behave similarly since they correspond to the 

statistical correlation between the bands, not that of individual scene signals.  Figure 6.3 

illustrates this behavior.  Figure 6.3.A. shows the first three eigenvectors of the Lake 

Tahoe scene and Figure 6.3.B. shows the eigenvector for Davis Monthan Air Force base.  

As shown in Figure 6.3, these two scenes consist of different scene constituents.  The 

Lake Tahoe scene is dominated by water and vegetation, while Davis Monthan Air Force 

base is sand and part grass.  Note that the overall sign of the eigenvector is not important 

– the second eigenvectors in Figure 6.3A and Figure 6.3B are otherwise similar in shape.  

In previous work, the average of sixteen different scenes was taken to compute a 

Global Eigenvector.  On the contrary, in this thesis, only the Eigenvector of the Lake 

Tahoe scene is taken and this Eigenvector was mapped to other scenes acquired from 

different sensors instead, as mentioned in the Introduction.  This thesis takes a different 

approach by applying these global statistics to the different sensor’s scenes.  The next 

section shows the results of applying these global statistics to other image data and of the 

post-rotation of RGB transformation.      

2. Mapping Eigenvectors 

Direct application of the Lake Tahoe eigenvector to other scenes is not always 

feasible.  Mapping a chosen global statistic to individual scene eigenvectors is typically 

required, since the number of bands are different for different sensors.  For instance, the 

HYDICE collects 224 bands and AVIRIS collects 210 bands.  In this thesis, the closest 

value of the global statistics for the target scene Eigenvector is mapped into the 

respective band.   
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Figure 6.3. A: First three Eigenvectors plotted for the Lake Tahoe Scene.  B. First three 
Eigenvectors plotted for the Davis Monthan Scene. 
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Figure 6.4. A. Lake Tahoe, B. Davis Monthan Air Force base. 

 

D. CASE STUDY FOR POST ROTATION OF RGB TRANSFORMATION  

This section presents the result of post rotation of RGB Transform, to verify the 

30-degree Hue angle rotation acquired from the second section.  Prior to RGB rotation, 

the global eigenvector acquired from the Lake Tahoe scene is mapped into other scenes 

according to the previous section.  HSV data is computed based upon this PC data 

through Tyo’s algorithm.   

As mentioned in the introduction of this chapter, different types of images are 

used to test a global statistics and post-rotation of RGB transform.  These are images 

acquired by NVIS, AVIRIS, HYDICE and HyMap sensors.  Each sensor collects the 

different number of band information and different band ranges as well.   

1. Davis-Monthan Air Force Base (HYDICE Data, 210 Bands) 

Figure 6.5 shows the –30-degree rotation of RGB Transformation.  Grass at the 

golf course appeared green as in real life.  Unfortunately, the desert soil appears blue. 
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Figure 6.5. Davis-Monthan Air Force Base:  A. Natural color, B. –30-degree rotation 
of RGB Transformation via HSV colorspace operations. 
 

2. Jasper Ridge, California (1999, Hyperspectral Mapping (HyMap) 
Data, 60 Bands, Courtesy of Analytic Imaging and Geophysics (AIG) 
and HyVista Corporation) 

For the HyMap scene, the vegetation again appears as green, the soil as light blue.  

The roads are red.   

  
Figure 6.6. Jasper Ridge, California.  A. Natural color image, B. –30 degree rotation of 
RGB Transformation of 1999 HyMap data of Jasper Ridge, California. 
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3. Camp Pendleton (HYDICE Data, 210 Bands) 

For the HYDICE scene, the vegetation is again green emphasized by the two 

ellipses.  The dry hillsides are blue.  The damp sand shows a variety of colors. 

 

 
Figure 6.7. Camp Pendleton, California.  A. Natural color image, B. –30-degree 
rotation of RGB Transformation.  
 

4. Moffett Field, California (AVIRIS Data, 224 Bands) 

The relatively urban scene shows a new range of colors, with green again defining 

vegetation. 
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Figure 6.8. Moffett Field, California.  A.: Natural color image, B. –30-degree rotation 
of RGB transformation. 
 

5. Cuprite, Nevada (AVIRIS Data, 224 Bands) 

The classic Cuprite scene has no vegetation.  The different minerals are not 

qualitatively distinguished in this view.  Such scenes may need an alternate transform. 

 

 
 
Figure 6.9. Cuprite, Nevada from the ENVI tutorial data set.  A. Natural color image.  
B. –30-degree rotation of RGB Transformation. 
 
E. DISCUSSION 

In this section, one factor to provide for better observation of post rotation of 

RGB transform and non-compliant results of Tyo’s algorithm are discussed.   

1. Saturation and Value Contrast Stretch 

The one factor being considered to provide for better observation is the HSV data 

contrast stretch.  The hue variation is not reflected in the updated change if distribution of 
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saturation and value is too broad.  Figure 6.10 shows an example from Night Vision 

Imaging System (NVIS).  The top of the trees in Figure 6.10 appear white in panel A and 

do not reflect the change of hue by rotation of the RGB transform in panel B. 

To reflect the hue rotation changes, saturation was adjusted in HSV space before 

RGB conversion was done as shown in Figure 6.11.  Panel A in Figure 6.11 shows the 

saturation distribution before modification by contrast stretch.  The saturation image 

appears very dark, indicating that the saturation distribution is too low.  To enhance this 

saturation behavior, the distribution ranges are stretched by setting the minimum at 0.00 

and the maximum at 0.232 as shown in Figure 6.11 panel B.  The results of adjusting for 

a fuller saturation are shown in figure 6.12.  Figure 6.12 and Figure 6.13 show the range 

of colors derived by varying the rotation angle from +180 to –180.  

 
Figure 6.10. The desaturated examples without contrast stretch adjustment.  A. Rotated 
60 degrees after RGB transformation.  B. Rotated –30 degrees after RGB transformation.  
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Figure 6.11. The enhancement of saturation through contrast stretch of histogram.  A. 
Stretching Saturation value from 0.00 to 1.183.  B. Stretching Saturation value from 0.00 
to 0.23  
 

Table 6.1 provides a summary of the minimum and maximum of saturation and 

the value for each data used in the previous section.  
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Table 6.1. Summary of Saturation and Value Ranges. 
 

Image Location Saturation Value
Min Max Min Max

Davis Monthan AF Base 0.067 0.39 31514.32 75922.12
Jasper Ridge, CA 0.078 0.257 1751.628 9345.87
Camp Pendelton 0.001 0.132 9748.2 60654.4
Moffett Field, CA 0.006 0.115 6769.4 39571.66
Cuprite, Nevada 0.125 0.162 1360.474 2322.716
 

 
2. Non Compliant Result to the Strategy  

Two observations are made in this section.  One is that the green color post 

rotation of RGB transform left the other regions in non-intuitive color.  The second is that 

even a single material such as vegetation showed as different colors.   

First, note the soil color in Figure 6.5 panel B.  The soil between the golf course 

and the housing area all turned into blue.  This is worth noticing, since the same effect 

appears in the remaining scene data sets, as well.  The reason for this effect can be 

inferred from the first section, since the soil data was projected close to the blue vertex of 

the HSV color space. 

Secondly, the reader might ask why the top of the tree and grass appears in a 

different color, even though they have the same chlorophyll material in Figure 6.12 and 

Figure 6.13.  For instance, the tree and grass in panel B of Figure 6.13 appear purple and 

green respectively.  This difference in color clearly indicates that different hue values 

exist between the grass and the top of the trees.  This difference in spectra is shown in 

Figure 6.14.  Several possibilities as to why they appear in a different color can be 

considered.  Among them, the author considers one possibility that the distance between 

the grass and soil is different from that between the top of the trees and the soil.  In other 

words, the soil material must affect the color of the grass, since grass does not completely 

cover the soil.  Soil material radiance should be reflected in the color of the grass.  

Another possibility could be one that the grass might not be healthy as the tree.  In 

addition, chlorophyll in grass could be producing different radiation values from those 

the tree is producing.  However, these possibilities could be further investigated in future 

works.       
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Figure 6.12. Post rotation of RGB transformation of NVIS image data to positive 
direction in Hue plane.  A. 0 degrees. B. 30 degrees.  C. 60 degrees.  D. 90 degrees.  E. 
120 degrees.  F. 150 degrees.  G. 180 degrees.    
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The figure below illustrates the Hue rotation effect from –30 degrees toward -180 

degrees. 

 
Figure 6.13. Post rotation to negative direction in Hue plane.  A. –30 degrees.  B. –60 
degrees.  C. –90 degrees.  D. –120 degrees.  E. –150 degrees.  F. –180 degrees. 
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Figure 6.14. The spectral plot of the above NVIS data.   
 

The above non-compliant results suggest the necessity to enhance the current 

application of Tyo’s mapping algorithm.  The current algorithm utilizes linear mapping 

when converting PC data to HSV.  Thus, using non-linear mapping can be considered to 

eliminate the non-compliant behavior of the color of trees as shown throughout this 

section.  In particular, non-linear stretches and rotation in hue are appropriate to study. 

F. SUMMARY 

The first section of this chapter showed the conical shape of PC data space in 3D.  

This projection of PC data identified required additional Hue rotation for the 

classification of vegetation.  This angle had been applied to RGB transformed data to 

verify the effect.  The effect of Hue rotation was nicely reflected.  However, the non-

compliant result of other colors brought up the issue of further enhancement of Toy’s 

algorithm.  Possible future work is implied, such as improving the mapping strategy from 

linear to a higher order.      
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VII. CONCLUSIONS 

A. SUMMARY 

Analysis of spectral component transform showed that the first three components 

could be considered in a new coordinate space defined in part by a conversion to Hue, 

Saturation and Value.  This coordinates space can be thought of as a conical coordinate 

system, with the first Principal Component (PC), or intensity always along the z-axis.  

The color information (Hue and Saturation) are displayed as angle, and radius 

respectively.  Here Hue and Saturation are taken from the second PC and third PC.  

Subsequently, the image data from this presentation was displayed in an RGB format 

from the HSV encoded principal component bands between one and three.  A rotation in 

Hue was applied to cause the vegetation to appear green in the new color space.  As a 

result, other scene elements reflected unnatural appearances.  Coding was created in Java 

and X3D in XML form to accomplish these goals.  A single matrix transformation-

conversion to PC space-was used based on a single scene.  The application of this 

transform to multiple scenes produced relatively consistent results.  The initial goal of 

creating a high information density, ergonomic display of spectral imagery was partly 

met. 

B. RECOMMENDATION FOR FUTURE WORK 

Future work is needed to complete the design of a global eigenvector, which 

produces the transformation, and perhaps a non-linear hue mapping to facilitate more 

natural displays.  Developing a non-linear hue mapping can be accomplished by utilizing 

a dynamic 3D scene instead of a current static 3D scene.  X3D provides such options and 

needs to be developed further to enhance a proposed display strategy for Hyperspectral 

Images. 
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APPENDIX A.  ACRONYMS 

ALRSS Advanced Land Remote Sensing System 
API  Application Program Interface 
AVIRIS Airborne Visible/Infrared Imaging Spectrometer  
AWT  Abstract Window Toolkit 
 
BIL  Band Interleaved by Line 
BIP  Band Interleaved by Pixel 
BSQ  Band Sequential 
 
CCD  Charge Coupled Device 
 
DN  Digital Number 
DOM  Document Object Model 
DTD  Document Type Definition 
 
ENVI  Environment for Visualizing Images 
 
HSI  Hyperspectral Imagery 
HSV  Hue Saturation Value 
HYDICE Hyperspectral Digital Imagery Collection Experiment 
 
JAMA  Java Matrix Package 
JAXP  Java API for XML Parsing 
 
LSF  Least Significant bit First 
 
MSF  Most Significant bit First 
MSS   MultiSpectral Spectrometer   
 
NVIS  Night Vision Imaging System 
 
PCT  Principal Component Transform 
 
ROI  Region of Interest 
 
TM  Thematic Mapper 
 
VRML  Virtual Reality Modeling Language 
 
W3C  World Wide Web Consortium 
 
X3D  Extensible 3D Graphics 
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XML  Extensible Markup Language 
XSLT  Extensible Stylesheet Language for Transformations 
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APPENDIX B.  CONTENT OF CD ROM  

1. DefaultHSVScatterPlot.x3d  

This is the base X3D scene file.  It should be placed where the Java application is 

invoked.    

2. Data Flow chart.pdf. 

This pdf file describes complete Remote Sensing process from end to end with 

data parameters. 

3. Source code for Java application. 

This Zip file contains the entire Java source code created for this thesis. 
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