NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

DESIGN RECOVERY AND IMPLEMENTATION OF THE
AYK-14 VHSIC PROCESSOR MODULE ADAPTER WITH
FIELD PROGRAMMABLE GATE ARRAY TECHNOLOGY

by
Bryan J. Fetter
December 2002
Thesis Advisor: Russell W. Duren
Second Reader: Hersch Loomis

Approved for public release; distribution isunlimited.

THISPAGE INTENTIONALLY LEFT BLANK

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

1. AGENCY USE ONLY (Leaveblank) | 2. REPORT DATE

December 2002

3. REPORT TYPE AND DATES COVERED

Master’'s Thesis

4. TITLE AND SUBTITLE:
Design Recoverey and Implementation of the AYK-14 VHSIC Processor Module
Adapter with Field Programmable Gate Array Technology

6. AUTHOR(S) Fetter, Bryan James

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSORING/MONITORING

N/A AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution isunlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

The rapid pace of change in the electronics industry and the significant reduction in military budgets over the past
decade has forced many military aircraft to extend their service lifetimes. This has led to aircraft with outdated avionics
systems being required to accomplish new and more complex missions. This thesis examines the process of reengineering an
outdated avionics system to economically upgrade its capabilities through the FPGA implementation of a binary compatible
replacement. The system targeted is the AN/AYK-14(V) Navy Standard Airborne Computer, specifically the XN-8 chassis
used as the mission computer onboard the F/A-18 C/D aircraft. This thesisis also intended to provide a resource document on
the AYK-14 for a study being conducted by the Naval Air Systems Command (NAVAIR) Advanced Weapons Laboratory
(AWL). The design of the Input / Output module of the VHSIC Processor Module was recovered through research of
documentation and hardware testing. The recovered design was modeled using VHDL, synthesized and implemented using
computer-aided (CAD) design tools. This thesis shows that replacement of legacy systems through use of FPGA technology is
aviable option, however, expansion of the design is recommended to create atruly binary compatible replacement.

14. SUBJECT TERMS
Obsolescence, Legacy, FPGA, VHDL,VHSIC, Xilinx, SDRAM, AYK-14, Mil-Std-1553, State
Machine, AVNET, Bus Controller, Data Bus, Software Interrupts, Reengineering, Design Recovery

15. NUMBER OF
PAGES
218

16. PRICE CODE

17. SECURITY 18. SECURITY 19. SECURITY 20.LIMITATION
CLASSIFICATION OF CLASSIFICATION OF THIS CLASSIFICATION OF OF ABSTRACT
REPORT PAGE ABSTRACT

Unclassified Unclassified Unclassified UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANS| Std. 239-18

THISPAGE INTENTIONALLY LEFT BLANK

Approved for public release; distribution isunlimited.

DESIGN RECOVERY AND IMPLEMENTATION OF THE AYK-14 VHSIC
PROCESSOR MODULE ADAPTER WITH FIELD PROGRAMMABLE GATE
ARRAY TECHNOLOGY

Bryan J. Fetter
Lieutenant, United States Navy
B.S. Aerospace Engineering, United States Naval Academy, 1993

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN AERONAUTICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
DECEMBER 2002

Author: Bryan J. Fetter

Approved by: Russell W. Duren
Thesis Advisor

Hersch Loomis
Second Reader

Max Platzer
Chairman, Department of Aeronautics and Astronautics

THISPAGE INTENTIONALLY LEFT BLANK

ABSTRACT

The rapid pace of change in the electronics industry and the significant reduction
in military budgets over the past decade has forced many military aircraft to extend their
service lifetimes. This has led to aircraft with outdated avionics systems being required to
accomplish new and more complex missions. This thesis examines the process of
reengineering an outdated avionics system to economically upgrade its capabilities
through the FPGA implementation of a binary compatible replacement. The system
targeted isthe AN/AYK-14(V) Navy Standard Airborne Computer, specifically the XN-8
chassis used as the mission computer onboard the F/A-18 C/D aircraft. Thisthesisis also
intended to provide a resource document on the AYK-14 for a study being conducted by
the Naval Air Systems Command (NAVAIR) Advanced Weapons Laboratory (AWL).
The design of the Input / Output module of the VHSIC Processor Module was recovered
through research of documentation and hardware testing. The recovered design was
modeled using VHDL, synthesized and implemented using computer-aided design
(CAD) tools. This thesis shows that replacement of legacy systems through use of FPGA
technology is a viable option, however, expansion of the design is recommended to create
atruly binary compatible replacement.

THISPAGE INTENTIONALLY LEFT BLANK

Vi

TABLE OF CONTENTS

INTRODUCTION. ...ttt s s s s ssae s ensae e snnseesnnaeesnneeens 1
A. THE LEGACY AVIONICSISSUE ..ot 1
B. POTENTIAL SOLUTIONSTO THE LEGACY PROBLEM 2
C. REENGINEERING ... 3
D. PURPOSE OF STUDY ...ooiiiiii ettt s 4
. DESIGN RECOVERY ..ottt sttt 7
A. OVERVIEW OF REENGINEERING PROCESS..........ccocvviieeiriee e 7
B. OVERVIEW OF THE AYK-14. ..ot e 8
1 History of the AYK-14 ...t 8

2. Processor SUDSYSEEM.......cccuviieiecie e sieeesee e ste e sre e se e e aeeee e sneeneeas 8

3. MemMOry SUDSYSEEM ..o 9

4. Input / OQULPUL SUDSYSLEM ..o 9

5. POWEN SUDSYSIEIM ...ttt st 9

6. ChassiS SUDSYSIEM ..o e 9

C. AYK-14 CONFIGURATION ON THE F-18C/Dcccoevieviieiiecieeiee s 10
D. VPM PROGCESSORooiiiiiiiiniesie sttt sttt se et nnens 12
E. ADAPTER .. e ae 14
F. EXTERNAL BUS OPERATION ...occiiiiiiieieresie e 16
1. Standalone Mode MBUS Operation..........cccceveeeereenieniieseesieseeseeseeseens 16

2. Standalone XBUS OPerationccccceeeereeieesieeniesieeseesie e sseeseesessseeens 20

G. EVENT SYSTEM ..ottt 24
1. Polled EVENt SYStEM......ccciceeecece et 25

a. 1% State ESTATE = 0. ssesssssssssanes 26

b. 2" State: ESTATE = 10.......cvvvrerieeesisssssssssssssssssssssssssssssens 27

C. 39State] ESTATE = 1L 29

2. DITECE EVENTS ..ottt 30

H. INPUT / OUTPUT MODULE OPERATION ...ocoiiiiiiece e, 30
1. 1/0 Channel SOftWAc.coiiiiiririnieieee e 30

2.1/0 Channel Control MemMOrYccocereeierieniereeie e 31

3. 1/0 Channel Chain Programs..........ccceeeieeieseenesseseese e e e see e 32

4.1/0 Channel Software INterrUPLS.......ccoveereeiinesee e 33

5. 1/0 Channel EVENTS........cociiiiiieeeeeere e 34

6. 1/0O Channel BasiC OPeration.........cccceveeieneeneerie e 35
DISCRETE AND SERIAL MODULEccoooiiiiiieereeeee e 37

1. DSM Personalitiesand MOdES..........ccooeriiiienieieneenee e 37
2.9Mart 1/0O OPEration........ccceveeceeieereeie e eee e see e ee e e 38

J. COMPUTER CONTROL UNIT oot 39
1. DESIGN IMPLEMENTATION ..ottt sttt s 41
A. FORWARD ENGINEERING PROCESS.........ccooceiiieeiee e 41
1. Field Programmable Gat@ ArTaycccceeererereneneseeeeee e 41

Vil

2. VHSIC Hardware Design Language (VHDL)....ccccvvvevvceveececeeee, 42

3. FPGA DeSIgN TOOIS.....cceiiieiiiieiieeie ettt 43

4. Finite State Machin@ DESIQNccvccviieiiesece e 45

5. Modular Approach to Overall DeSIgN........ccccoveererienienenee e 47

B. TARGET FOR DESIGN IMPLMENTATIONoooiiiririreeee e 47

C. COMPONENT DESIGN DESCRIPTIONc.coctiiiirieinieeeeese e 49

1. SDRAM CONEIOIEN ..o 50

2. MeMOrY ATDITIAEON ..ot 53

3. MBUS CONEIOIEN ... 55

v/ =18 Y 0] 14 o] 1 1= SRR 58

5. Event BUS CONTIOIEr ..o s 60

6. TOp Level Design INterface........ccovveeieeieneee e 61

[V, CONCLUSIONS ... oottt bbbttt e sbesbesaesbenneas 63
APPENDIX A: DOCUMENTATION LIST FOR THE AYK-14.....cooiieeierere e 65
APPENDIX B: DIRECT AND POLLED EVENTS ..ot 67
APPENDIX C: [/O INSTRUCTIONS ...ttt sttt st s eneenees 69
APPENDI X D: XBUS COMMAND WORDS........ccoi ittt 73
APPENDIX E: VHDL SOURCE CODEcoiiieeesese e 101
LIST OF REFERENCES..... .ottt sttt s 199
INITIAL DISTRIBUTION LIST .ottt s 201

viii

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure7.
Figure 8.
Figure 9.

Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.

LIST OF FIGURES

ENQINEENiNG PrOCESSESccviiiicieeie ettt sttt sne s 7
AYK-14 SUDSYSIEMS......ooiieiieie et 10
AYK-14 ChassiS 8 — CP2360cccereruerierierieriereseeieseesie e sie e sseseeeenens 11
Six 1553 Data Bus Channels on F/A-18 C/Dcccocevenieneenene e 12
VA Y =1 0T QDI = o 13
Address GENEIAtiONoceeiiiiieiiesiee et se e e 15
Absolute Address ASSIGNMENTc.ccveieiie e 16
MBUS INtErface SIgNalS......ccooeeiieiieiesieee e 18
MBUS Standalone OPErations...........cccueveerieeeeseerieeieeseesseseeseesseseesseessesseens 19
XBUS INErface SIQNalS.......ccoviriiiiirieiee e 21
XBUS Command Word FOrMEL...........cccererireninenineneeeesee s 22
XBUS TimiNg DIagramsS.......cccoieeierienienie e s sse s seas 23
Software EXECULION INEEITUPLSoceereeeeseesieeeeseesie e e e e sae e e 25
Event Monitor BUS DEfINITIONccooiiiiiiiiisiee e 27
Event BUS RESPONSE MALIIX.....cuvieerieeieeiesieeieseestee e see e sae e s e sse e e sneennens 28
Event MOonitor State SEQUENCE.cceeiireerieie et 29
DSM CONLrol MEMOIYcveeieeeeeieesiecieseeste e see e eeesseesaeessesseesseesesseesseensens 32
Input / Output Channel EVENLS..........ccocveiiriinierieeeeseeie e 35
Discrete and Serial Module INtErfaces.........ooovverireneninere e 37
Hardware DeSIgN FIOWcoc.oiiiiiiiie et 44
Finite State Machine Structure [After Ref. 9]......covevvieiieeeeceeeee 45
VIRTEX-E Development Board Functional Layoutccccceevereeneeniennnne 48
Adapter Design COMPONENES.........cccueieereeiereesieesieseesreeseeseesseesseeeesseessesneenns 50
SDRAM Functional BIOCK Diagram..........ccceeeeieneenenieeseene e sieesee e 51
SDRAM Controller INtEIfaCe..........covviireririeee e 53
Memory Arbitrator State Diagram.........ccceeeieereeie e 55
MBUS Controller State Diagram (Master)cccocvevereeneeieseeseee s 56
MBUS Controller State Diagram (SIaVe)c.coceverereeneeieneeseeesee e 57
XBUS Controller State Diagram (PrOCESSON)ccvvevuereereereesieesreeseeseesseenes 59
XBUS Controller State Diagram (DSM)cc.ceveeeeneeienieneee e 60
Event Controller State Diagram...........ccceeereeiesieeseese e e see s esee e seeneens 61

THISPAGE INTENTIONALLY LEFT BLANK

Table 1.
Table 2.
Table 3.
Table 4.

LIST OF TABLES

Solutions to Replacing Legacy Processors [From Ref. 3]ccccoevvevvvveieennnns 3
[/O Channel INLEITUPESeeieiieieee e e e 33
[/O EVENt DESCIIPLIONS.veeieeeeecieeite et ee et eae e sre e snee s 36
XBUS Commands — VPM 10 DSMcccociiiiiiiienieeeee e 39

Xi

THISPAGE INTENTIONALLY LEFT BLANK

Xii

ACKNOWLEDGMENTS

| would like to thank Professor Russ Duren for providing me with the opportunity,
means, and guidance to complete this thesis. His instruction and mentoring has extended
well beyond thisthesisand | am truly grateful for his friendship and support. | would aso
like to thank Professor Hersch Loomis for his instruction during the design process and
for his support. | would like to also thank Mr. Rex Coombs, PMA-209, for his time and
exceptional level of support. The use of his lab, the supply of numerous documents, and

the loan of an AYK-14 and CCU were essential factorsin completing this thesis.

| am also extremely grateful to the U.S. Naval Test Pilot School for providing me
with the opportunity and means to complete this thesis. | would specifically like to thank
CDR Rich Brasel for alowing the completion of my thesis to be my primary duty. |
would like to thank CDR Paul Sohl for his guidance and support during this difficult
career trangition. In addition, | would like to thank CDR C.J. Junge for his friendship,

support, and inspiration.

My extreme thanks also goes to CDR Mike ‘Croc’ Croskrey for being my
teammate on the AYK-14 recovery. | am indebted to you for your support on this thesis
and on my transition from the Navy. It is a privilege to have been your classmate and

your friend.

And finally my thanks goes to my wife and best friend, Michelle. | can never
thank you enough for your unwavering support. | could never have completed this thesis
without you by my side. To reach the stars, you must stand on the shoulders of giants.

Thank you for being my giant!

Xiii

THISPAGE INTENTIONALLY LEFT BLANK

Xiv

l. INTRODUCTION

A. THE LEGACY AVIONICSISSUE

The 1990's was a decade that ushered in many dramatic changes in the world.
These changes had a profound effect on the U.S. government and the armed forces in
particular. The two events that had the greatest effect on the military were the fall of
communism and the technological revolution in the electronicsindustry.

The end of the Cold War |eft the military without a formidable adversary. This, in
turn, led to budgetary changes that affected al branches of the military. More
specifically, the funding for the acquisition of new military aircraft was greatly reduced.
This occurred in parallel with a similar reduction in the budgets for modernization of
existing, or ‘legacy’1, aircraft. In order to deal with the shrinking budget, the operational
lifetimes of many of these legacy aircraft were extended beyond their original service
lifetimes. This has led to the average age of a U.S. Military aircraft being 20 years and
continuing to increase.[Ref. 2:p. 1]

This increase in average age has reduced the effectiveness and readiness of the
armed forces as a whole. According to the ‘Committee on Aging Avionics in Military
Aircraft’, the U.S. Air Force reported a 10 percent decrease in readiness during the
1990's. The committee attributed this decline to the increasing age of the aircraft,
“particularly the aging avionics systems on which they depend.” [Ref. 2:p. 1] The
shrinking budgets for upgrades to these avionics mean that the decline in readiness will

most likely continue unless lower cost solutions can be found.

The technological revolution that has occurred during the 1980's and 1990's has
brought with it great advances in electronics and computing. However, the economic
impetus behind these advances has increasingly come from the commercial sector. As
Reference 2 states “whereas the military once provided a large and profitable market for
the electronics industry, the military electronics market today constitutes less than 1

percent of the commercial market.” This means that the needs and requirements of the

1 The definition of legacy for this thesis will be as defined in [Ref. 1:p. 1] as any system that has been
“designed, developed, and fielded.”

1

military have had diminishing influence on the products that industry designs and

produces.

The previously discussed budget shortfalls along with the reduction of influence
in the commercial electronics sector have caused military avionics systems in general to
fall further behind current technology. As these legacy avionics systems get older, the
costs for modernization along with the costs to support the current systems continue to
increase. Therefore, the need is clear for away to modernize these aging systems that will

lower these costs in the future.

B. POTENTIAL SOLUTIONSTO THE LEGACY PROBLEM

The solution to a problem as complex as the legacy avionics issue is not clear.
The overall solution will lie in changes to design methods and acquisition policies that
will continue to look for the benefits promised by COTS integration. Most importantly,
the solution must also address the additional unforeseen problems that this integration has

brought with it in amore far-reaching way.

This solution to the legacy avionics problem as a whole is too complex to be
covered in one thesis. This thesis therefore will narrow the subject to address the area of
microprocessors and their associated communication interfaces. This area can be
considered of central importance to the problem as a whole. This is because
microprocessors are so central to the performance of any avionics systems that any
increase in performance of the processor will in turn almost guarantee an increase in

performance of the entire system.

In his master’'s thesis, CDR Mike Croskrey [Ref. 1], investigates the possible
solutions for the legacy avionics problem as they apply to microprocessors. He suggests
severa solutions to the problem and compares and contrasts the benefits and drawbacks
of each. These solutions and their advantages are summarized in Table 1.

Proposed Solution Advantages

Upgrade to a COTS hinary compatible e Maintains old code and allows incremental
microprocessor, when available. updates using the new processor

e Assuresfunctionality of existing code

Maintain old processor or capability of e Maintains old code and allows incremental
executing the old code with hardware updates using the new processor

1) Keep old processor board and add aCOTS | Assuresfunctionality of existing code
processor board e ASICsarefast and have low power

2) Develop adual instruction set processor requirements

3) Port the old processor to an ASIC e FPGA relatively easy to modify if

4) Port old processor to an FPGA problems found

Maintain the capability of executing the old * Assuresfunctionality of existing code
code using a software emulator

Port the old code to a new processor family * May increase throughput

Trangdlate the code to Higher Order Language |+ Improves ability to maintain
(HOL) knowledgeable workforce
* Object oriented code facilitates reuse

Tranglate the code to COTS assembly language | © Facilitates use of a more current processor

Tablel. Solutionsto Replacing Legacy Processors [From Ref. 3]

The solution that this thesis will focus on is the design and implementation of new
hardware that is binary compatible with the existing processor and therefore able to
execute the existing code. This hardware solution will also be binary compatible with all
external interfaces since these components will not be redesigned as part of thisthesis.

C. REENGINEERING

Forward engineering is the process of creating a new system and can be roughly
broken down into three stages or processes. These stages include requirement
specification, design, and implementation. The process of designing a system to replace
an existing legacy system requires additional design steps in order to recover the design
that is to be replaced. These additional steps can be grouped into a process called reverse
engineering. Reverse engineering is the process of analyzing a subject that serves to

identify its components and their interrelationship as well as produce a representation of

3

the system at a higher level of abstraction. Its primary purpose is to “increase the overall
comprehensibility of the system for maintenance and future development.” [Ref. 6, p16]

Reverse engineering can include the same steps defined in forward engineering
but in reverse order. It adso includes an additional step, or sub area, termed design
recovery. Design recovery is a process in which domain knowledge, external information,
and deduction are combined with observation to identify higher-level abstractions than
those obtained directly. It isbasically the process that combines all available resourcesto
reproduce the information that allows a complete understanding of what the system does
and how it doesit. [Ref. 6]

In order to design and implement a new system that will replace an existing
system, both the reverse and forward engineering processes must occur. This overall
process, of both reverse and forward engineering, is termed reengineering. It can be
defined as “the examination and alteration of a subject system to reconstitute it in a new
form and the subsequent implementation of the new form.” [Ref. 6, p15]

The concept of rapid prototyping is a process that provides the means to produce
prototypes of a design early in the design process. These prototypes allow the testing of
key aspects of the design continuously throughout the design stage so the effects of early
design decisions can be determined before other design decisions are made. The benefit
of these prototypes increases as the complexity of the overall design increases.

In reengineering, rapid prototyping has an additional benefit that can both speed
the design process and validate the design. This additional benefit is the ability to test the
prototype using the environment and tools available to test the original design. Thisis
especially important in complex designs or designs that lack detailed documentation.

D. PURPOSE OF STUDY

The purpose of this study is to investigate the process of reengineering a legacy
avionics system, particularly the memory and communication interfaces of an embedded
microprocessor system. It will include the implementation of the recovered design using
Field Programmable Gate Array (FPGA) technology. It targets the AN/AY K-14(V) Navy

4

Standard Airborne Computer; specifically the XN-8 chassis used onboard the F-18 C/D
aircraft. This computer was chosen not only because it is representative of the legacy
avionics challenge aready addressed, but also because the AYK-14 is the focus of an
analysis of alternatives being conducted by the Naval Air Systems Command (NAVAIR)
Advanced Weapons Laboratory (AWL).

The secondary purpose of the design recovery will be to serve as a reference for

designers and programmers who are continuing work on the AN/AYK-14.

THISPAGE INTENTIONALLY LEFT BLANK

[I. DESIGN RECOVERY

A. OVERVIEW OF REENGINEERING PROCESS

Chapter | defined the terms that describe the process and the steps involved in

engineering processes, which areillustrated in Figure 1.

Requirements Design Implementation

—— —— —p—Forward Engineeringpr— — =—Forward Engineering»:::’_;-y
//___ e
— —_— -
/ p— —
-
/ -
Reengineering AYK-14 Reengineering Plan
~ ~— -
—_—
\ — —
—_— - —_
—_— —_
—
< —— —— ——aReverse Engineering—— -— —— -—wReverse Enginv—« —_—— —
Design Recovery
——— — —
Figure 1. Engineering Processes

The AY K-14 Reengineering Plan, adapted from Reference 6 and shown in Figure
1, helps to depict the steps that were followed in this thesis. The key point that is
illustrated is that the AY K-14 reverse engineering phase only investigated to the level of
the design. The requirements were not analyzed directly for numerous reasons. First, the
primary goal of this project was to design a replacement for the AYK-14 processor that
was binary compatible with the rest of the system, therefore there was little room for
changes to the overall design that would better meet the requirements. Another reason
was simply that the time and resources available to continue the design recovery to the
requirements level were not available. It should be pointed out that the requirements were
researched at a high level as part of the design recovery to aid in the understanding of the

design and implementation.

B. OVERVIEW OF THE AYK-14

An understanding of the mission and history of an avionics system is essential to
the recovery of its design. This section will give a brief introduction to the AYK-14 to
help define components and their roles. However, it is recommended that the reader refer
to References 1 and 7 for a more detailed analysis and background on the system. The
documentation supporting the AYK-14 was produced at varied times in the computer’s
lifecycle and therefore only considers equipment available at the time it was authored.
This section is also intended to illustrate all of the major components of the system, even
if they are outdated, in order to provide a reference when referring to the documentation.
All of the documentation used in the design recovery islisted in Appendix A.

1. History of the AYK-14

Development of the AYK-14 began in 1976 by Control Data Corporation. It was
designated the Navy Standard Airborne Computer in 1986. Since then, the AYK-14 has
been used on seven types of Navy and Marine Corps aircraft including the AV-8B, F-
14D, and F/A-18C/D. It consists of a family of modules that fit into a plug-compatible
backplane. These modules can be broken down into four groups by function and they
include processor, 1/O, memory, and power. As the AYK-14's requirements have
changed and technology has improved, the modules in each subsystem have evolved to
increase overall capability. Therefore, there are numerous versions of the AYK-14 based
on platform requirements and modul es present.

2. Processor Subsystem

The processor in the AYK-14 has evolved through three generations of upgrades.
The first generation is the central processor unit (CPU), which consists of three double-
sided modules: general processor module (GPM), processor support module (PSM), and
extended arithmetic unit (EAU). The second generation is the single card processor
(SCP) that combines the three modules of the CPU into one module. The third generation
processor is the very high-speed integrated circuit (VHSIC) processor module (VPM). An
attribute of the VPM that is important to highlight is that it is the first processor to have
onboard memory (1 M-word). The VPM is the processor that will be targeted for design
recovery in thisthesis.

There are two additional processors that are used solely for 1/0O functions. The
first generation is the 1/0 processor (I0P), superceded by the extended 1/0O processor
(EIOP).

3. Memory Subsystem

The memory subsystem consists of memory control modules and memory
modules. The memory control modules provide access of the memory modules to the
processor over the memory bus (MBUS or CPUBUS). There are three control modules:
memory control module with memory (MCMM), memory subsystem module (MSSM),
and the memory control module (MCM). There are four memory modules with four
different forms of memory: DRAM memory module (DMM), programmable memory
module, using EEPROM, (PMM), semiconductor memory module, using SRAM,
(SMM), and core memory module (CMM).

4. Input / Output Subsystem

The 1/O subsystem consists of a combination of 1/O modules dependant upon the
communication requirements. There are eight types of 1/0O modules that can be further
classified as smart or standard. A smart I/O module has the ability to perform additional
processing normally performed by the processor or 1/0 processor. This capability will be
defined in greater detail in section H. The I/0O modules interface with external equipment
via buses or discretes. The I/O modules communicate with the processor via the 1/0 bus
(10BUS or XBUS). An AYK-14 can contain up to 16 1/0O modules, with a maximum of
five smart modules, depending on the Chassis used. The 1/O modules and their
classifications are listed in Figure 2.

5. Power Subsystem

The power subsystem is a single module that provides regulated power to all other
systems. There are four types of module dependant upon the power requirements of the
system. They are the power converter module PCM -1, PCM-2, PCM-3, and PCM-60.

6. Chassis Subsystem

The chassis subsystem is the housing used to contain al of the modules. There are

nine standard chassis types to meet the size and connection requirements of the different

AYK-14 roles. The chassis contains a backplane into which each module is plugged to

provide communication.

MBUS (CPUBUS)

‘ XBUS (IOBUS)
Processor Memory 110
Subsystem Subsystem Subsystem
Processors Memory Control Modules Memory Modules / Bus format
* VPM ¢« MCMM Smart modules
e -25A ¢ MSSM
« -25B « MCM e DSM
e SCP e MIL-STD-1553A/B
e CPU (3 Cards) Memory Modules / Type of * NDM-B
*« GPM Memory e NTDS
*« PSM e NDM-C
« EAU e DMM * NTDS
¢ Dynamic RAM
1/0 Processors ¢ PMM Standard Modules
¢ EEPROM
*« EIOP ¢ SMM e SIM-A
* |OP e Static RAM e MIL-STD-1553A
¢« CMM e SIM-B
¢ Core Memory e MIL-STD-1553B
* NIM-A
e NTDS
* NIM-B
* NTDS
+ NIM_C1
* NTDS
Power Subsystem e NIM-S
e NTDS
. PCM-1 . PIM
* PCM-2 « MIL-A-85232
Chassis Subsystem * PCM-3 * RIM
. Type 1 * PCM-60 + EIA-STD-RS-232-C
. Type 2 ¢ SMIOM
. Type 3 * UNIVAC 1832
* Type 4 .« PPSM
. Type 5 + DIOM
. Type 6 « DIM
. Type 7
. Type 8
. Type L
. FTAS
Figure 2. AYK-14 Subsystems

C. AYK-14 CONFIGURATION ON THE F-18C/D

The current AYK-14 configuration that is used on the F-18C/D is the CP-2360. It
contains two VPMs (one 25B - Master, one 25A - Slave), six DSMs, one DIM, and one
PCM-1 as shown in Figure 3. This is the configuration that was targeted for this thesis.

10

More specificaly, the VPM processor as used in this configuration was the target of the

reengineering process.

PCM-1
Power Supply

VPM-25A
Slave Processor

VPM-25B
Master Processor

DSM
1/0 Module

DSM
1/0 Module
DSM
1/0 Module
DSM
/0 Module
DSM
1/0 Module

DSM
1/0 Module

DIM
1/0 Module

Figure 3. AYK-14 Chassis 8 — CP2360

The avionics system uses two CP2360’ s as Mission Computers, designated MC1
and MC2. MCL1 processes all navigation and monitoring tasks and MC2 processes all
sensor and weapons control tasks. The Mission Computers communicate with the other
systems over six 1553 data-bus channels, as illustrated in Figure 4.Earlier F/A-18 aircraft
use a chassis with only five 1553 data-bus channels.

11

F/A-18C/D 6 CHANNEL

WS Sa0N COMPUTER MO 1
o KAVIGATION COMPUTER
- NAVGATION WATH 5y 5
L] ENGINE SLBROUTNES S —_—
§ 2] MINITOR BELIGHT CHANNEL &
CHANNEL 2 2| AVIOHICS BT i Lo Sy
e
CHANTEL 1 AVOATON BATA RECORDING
= BASE
ATAR [
5 ISPLAYS o
SEIF TEST BT
TEST MG TAU- psrLay oy
ALA-6T MENTATEON, FORMAT |
SUFPORT, AND MANAGER
MOHITORNG
SUPFORT
ARMAMENT HAMGATION
- BATA ; COMTRILES
gt g e I = SR
T x| ar A A EFS
L1 akEA L] 1] e | SRS CHANKEL 4
COMPUTER
|FIRAMS)
[TCoRTROL | WERTIAL MU
b=t CONVERTER =~ [—{HAVIGATION
[E5C] SET
kel e Y
| comir |] AR /
[FLnT | AT st JAMMER
| :%?!Dén B
h = KLE-4T Oy
—— | ar
| cowno || ool @ e ||
COMPUTER e [
¥ 1 oFRs -
TOICAN
— A | k EE" s
FLR
M CHANNEL §
axjam|ar | [axfav]sx
b HARMSELE MSSON COMPUTER NO. 2
WEAFON DELIVERY COMPUTER
Ali=T0- AR AR-TO-GROLND
DIGPLAY FOMMT TaciaL P——
\ MAKLIER CONTROLSS
L B
SELF TEST TERT METAL-
W MENTATON,
* MATH SUPPORT, AND | aY)
SIBROUTIEE M TORMD
NOTE DATABASE
[wazez wop
[194549 AaD UP AFTER AFC 244
Figure 4. Six 1553 Data Bus Channels on F/A-18 C/D

D. VPM PROCESSOR

The VPM is a 16-bit Complex Instruction Set Computer (CISC) type processor
with over 1 Million words of on-board memory. It is a 2-sided module that is organized
into 3 major sections. These sections are the Instruction Execution Processor (IEP),
Cachée/lngtruction Fetch (C/IF), and Adapter and are shown in Figure 5. The VPMs
primary interfaces include the Input / Output Bus (XBUS or 10BUS), the memory bus

12

(MBUS), and the Event and Event Monitor busses (EBUS and EMON) along with
multiple discretes. The A-side contains the 24 memory chips, the Adapter array, the
MBUS and XBUS data and control signal buffers, and the external discrete receivers.
The B-side contains four arrays, including the IEP and C/IF, 34 memory chips, and Event

drivers and receivers.

TRACE MICROMEMORY MICROMEMORY IEP FILE
FILE RAM EEPROM 8K x 16
8K X 64 256K x 8
8K x 23 i L ELMR FILE
1’> v v y 8K x 16
CACHE/ INSTRUCTION
INSTRUCTION EXECUTION ER%EEEOG
FETCH PROCESSOR
CACHE .
MEMORY |, 2 Chips P . 2 Chips “‘*ETONBUSWODU
32K x 16 Control Address / ALU/ ﬁVENTMON”ORBUS
Data Path Microsequencer A EBUS(00:07)
EVENT BUS
B SIDE * * <j D>

I |
FUNCTION — ADDRESS

A SIDE INTERFACE INTERFACE

ON BOARD MEMORY BOOTSTRAP

1024K x 16 MEMORY
ADAPTER

Error Correction Code 32K x 8

1024K x 8
* T A
MBUS(00:23) ADDRESS (04:20)

XBUS(00:23) DATA (00:23)
MBUS

Figure5. VPM Block Diagram

The IEP section is comprised of the microsequencer chip, the arithmetic chip, and
the micromemory. It is implemented using a microprogrammed processor that executes
microcode programs. Microcode programs control elementary parts of the processor and
define the software instruction set used for the AYK computer. Every software command
executable by the VPM is interpreted in the IEP by a series of microcommands. These
commands, or microcode, are stored in EEPROM and downloaded to SRAM at start-up.

The microcode stored in these memories is called firmware. Some other functions of

13

firmware include running BITs, servicing Events, and I/O operations. The IEP design
was recovered and implemented by CDR M. Croskrey in his master’s thesis and his
design serves as the instruction processor for the design developed here. For additional

details concerning the |EP design recovery, refer to Reference 1.

The C/IF section is comprised of the cache control and address chip, the cache
memory, the data path chip, and the trace file. It provides the on-chip cache for the IEP
and manages requests for memory to the adapter. The use of an on chip cache has been
shown to significantly increase throughput and overall performance of most processors,
however, the design recovery and implementation of this section is left to future students
continuing work on this project due to time constraints.

E. ADAPTER

The primary function of the adapter is to control the onboard memory interface
and the XBUS and MBUS interfaces. It handles al requests for memory from either the
data path array, other VPMs via the MBUS, or 1/0 modules via the XBUS. It interfaces
with the event system and contains two sets of page registers used for 1/0 memory

references.

The VPM is capable of operating in two memory modes dependant upon the other
modules present. These modes are standalone and non-standalone. In standalone mode,
the VPM performs the role of Memory Controller and arbitrates memory requests and M
and X bus usage. In non-standalone mode, a memory controller, such as the MCMM, is
required to manage the memory. Both VPMs in the CP-2360 operate in the standalone

mode.

The VPM is a 16-bit processor and the IEP and C/IF use 16 bits addresses for
memory. The VPM has a memory reach of 8 million locations, which requires 23 bits for
addressing. In order to reach this amount of memory, the VPM uses memory paging. The
VPM uses banks of 64 16-bit wide Page Registers. The upper 6 bits of the 16-bit
Software Address points to one of the 64 page registers. The contents of this register are
used to create the complete 23-bit address, with 3 bits being used for memory protection.
This 23-bit address is considered the absolute memory address and can address any
location in the VPM memory range. The absolute address generation is depicted in Figure

14

6 for clarity. The control address array contains four sets of 64 page address registers
used for generating the absolute address for on-board memory references.

Page Register Set Software Address (16 bits)
Page Registor 1 151413121110]/9 8 7 6 5 4 3 2 10
‘ -«—— Page Register Number Address Within Page
Page Register 63

l

Page Register Contents (16 Bits)

15/14 /13|12 /111098 76543210

L Page Address
Read Protect

Write Protect

Execute Protect

\ y
221212019181716151413121110 98 76543210

Absolute Address (23 Bits)

Figure 6. Address Generation

The VPM on board memory (OBM) consists of 1024K locations of 24 bit words.
Each word contains 16 bits of data and 8 bits of error correction code. The memory is
broken down into 256K of SRAM and 768K of EEPROM. The bootstrap memory
consists of 32K addresses of 8-hit data organized as 16K of 16-bit word storage on a
EEPROM. The lower 8K isloaded with bootloader programs for use on start-up or after a
reset. The memory address range of the OBM is dependant upon the VPM’s location and
role within the Chassis. The memory map of the entire address range is shown in Figure
7.

15

0 64K M

2M

3M

aM

5M

MEM MOD or VPM-B

Master VPM

SLAVE VPM #1

SLAVE VPM #2

SLAVE VPM #3

000000
O0OFFFF

EEPROM 100000
1BFFFF

EEPROM 200000
2BFFFF

EEPROM 300000
3BFFFF

EEPROM 400000
4BFFFF

RAM 1C0000 | RAM 2C0000 | RAM 3C0000 | RAM 4C0000
1FFFFF 2FFFFF 3FFFFF AFFFFF
PAGES 0-3F 400-6FF 800 - AFF C00 - EFF 1000 - 12FF
700-7FF BOO - BFF FOO - FFF 1300 - 13FF
Figure7. Absolute Address Assignment
F. EXTERNAL BUSOPERATION

The MBUS and XBUS (or IOBUS) are independent, 24-bit bi-directional busses
that provide communication between the modules of the AYK-14. The MBUS is used to
provide memory access to every VPM’s OBM and with memory modules. The XBUS is
used for communications with 1/0O modules and for inter-processor communications
(IPC).

The process of alowing modules to gain control of bus and transfer data on that
bus is called bus arbitration. In standalone memory mode, the adapter of the Master VPM
acts as the arbitrator for both busses. There are five primary control signals that are used
for bus arbitration and control for each bus. These signals are DESIRE and GRANT for
arbitration, and REQUEST, ACKNOWLEDGE, and RESUME for control.

Bus operations are initiated by the user and consist of two parallel word transfers.
The first word is a 24-hit control word and is transferred from the VPM or smart 1/O
module to address a particular module and provide control information. The second word
is a 16-bit data word that transfers data or status as input or output as determined by the
function word.

1. Standalone Mode MBUS Operation

The VPM standalone mode of operation uses the memory control logic of the
VPM that eliminates the need for a separate memory control module. Each VPM has
access to the OBM of any other VPM, as well as memory modules if used. The MBUS
functions as a 23-hit physical (post-paged) address memory bus, with the OBM address

16

alocation as shown in Figure 7. Each VPM performs its own paging and all 1/0 memory
references use page set 0 on the master VPM. There is no interprocessor communication
of page register or page state changes. Therefore, the paging and protection contained in
each VPM is applicable only to that VPM. A single memory bus is used to prevent the

interleaving of off-board memory references.

In standalone mode, the MBUS arbitration logic supports two externa
desire/grant signal pairs plus the processor’s own desire/grant pair for a total of three
users. Additional users can be added by daisy chaining the desire/grant signals. The
version of the AYK-14 used in this thesis only has two MBUS users so the details of
daisy chaining will not be covered here.

A user requests use of the bus by activating its DESIRE signal (active low). The
desire signals of both external users are resynchronized before being used in the
arbitration logic. The internal desire signal is captured in a flip-flop before it enters the
arbitration logic. The synchronous desire signals are fed into the prioritization logic to
determine which user is granted control of the bus. The algorithm makes use of alast user
register that keeps track of which user was granted control of the bus last. The result is a
rotating priority scheme based on which user had the bus last. The module that last used
the bus drops to the lowest priority and the one following it gets the highest priority.

The arbitration algorithm outputs the next-user, which is fed into a latch that
opens during the last half of the clock cycle. When enabled, the latch captures the next-
user, which causes the appropriate GRANT signal to be enabled. The asynchronous and
synchronous (post flip-flop) desire signals must both be active as a condition for
activating a grant signal. Thisis to ensure that the grant is not activated before the desire

signals are synchronized.

In addition to the five hand-shaking control signals, the VPM utilizes 10
additional signals for MBUS error detection and control. The signals are listed in Figure
8 and they include four parity bits, four control signals, a busy signal and an error signal.
The first two control signals, MSB_WRITE and LSB_WRITE, indicate the type of
memory operation, read or write. The other two control signals exist for future capability.
The busy signal, M_BUSY, is used to indicate when the VPM is driving data on the bus.

17

The parity bits are used for error detection, with three used for the 24 address lines, for
both the address and the data words, and one for the four command signals. The error
control signal is used to indicate when a parity error is detected. The additional control
signals are needed because all of the 24 bits are used for the address in the command

word when operating in the standal one mode.

/ M_Bus Parity Bits \
| SB PARITY (for Bits 0-7) sl

«@——MSB_PARITY (for Bits 8-15) =——jp»]
<§—ADRS PARITY (for Bits 16-23) =]

- CMD_PARITY (for Command signal s) |

M_BUS:00-23

<@——M_REQUEST | ——pp

——M_ACKNOWLEDGE L= / M_Bus Arbitration Bits \
S BUSY | =—
<——M_RESUME_L =i e\ GRANT IN L

VPM M_DESIRE_IN_L:00-01
M _BUSY | =— M_GRANT_OUT:00-01
<@¢—BUS_ERROR_L =—> T M_DESIRE_OUT_L _7

/ M_Bus Control Bits \

<«@————MSB_ WRITE L

«————L_SB_WRITE_L
<————32 BIT DATA

<—————|PL_WRITE

\

Figure 8. MBUS Interface Signals

After receiving control of the MBUS via a Grant signal, communication on the
MBUS s initiated by the VPM activating a Request signal along with the 23-bit absolute
memory address. The VPM also drives the four parity bits and the four additional control
signals. The VPM who's OBM is in the range of the address checks the parity of the
address and the command signals. If there is an error, it activates the Error signal and
stops responding to the memory request. If the parity check is successful, the responding
VPM activates the Acknowledge signal and clocks-in the address. The initiating VPM

activates its MBUSY signal to indicate that it is ready to either read or write data on the
18

MBUS. It will aso deactivate the desire signa to the arbitration logic to alow the next
user to be determined.

Output Operation

4—— 125nsMin *;

(DESIRE) __|<7 20nsMin ~4— 45nsMAX ________________

GRANT
—» ——— 0nsMin
(REQUEST) 20nsmin — - OnsMin —p» |<—
CONTROL DATA
(ACKNOWLEDGE
/S_BUSY) OnsMin - |-t— OnsMin —p» I<7
OnsMin —» |l-—
(M_BUSY_
OnsMin —p» -—
(RESUME)
onsMin —p» —

Input Operation

(DESIRE) | |
GRANT | |

(REQUEST) |

onsmin —pi — o .
(ACKNOWLEDGE nsmin = —p! -—

/SBUSY) |

onsmin —» | -—

(MBUSY)

— -4— Onsmin
(RESUME) |

onsmin —m -

Figure 9. MBUS Standal one Operations

19

If the control signals indicated a read command, the initiating VPM will
deactivate the Request signal and the responding VPM will drive the requested data on
the MBUS aong with the corresponding parity bits. When this data is valid, the
responding VPM activates the Resume signal to indicate that the data is valid. The
initiating VPM will clock-in the data and deactivate its MBUSY signal to indicate that
the data has been read. The responding VPM will then stop driving the MBUS and

deactivate the Resume signal to terminate the operation.

If the control signals indicated a write command, the initiating VPM will drive the
requested data on the MBUS aong with the corresponding parity bits and then deactivate
the Reguest signal. When the responding VPM sees the deactivation of the Request
signal, it clocks-in the data and activates the Resume signal. In response to the Resume
signal, the initiating VPM removes data from the MBUS and stops driving the four
control signals and the MBUSY signal. The input and output operations are illustrated in
Figure 9.

2. Standalone XBUS Operation

The XBUS is the primary communication path between the processor and the 1/0
subsystems. All 1/O control, instructions, and data transfer operations utilize this bus. For
‘smart’ I/0O modules, the XBUS provides a means for direct access to OBM. The XBUS
also provides an asynchronous channel for interprocessor communications. The XBUS

interface signals areillustrated in Figure 10.

In standalone mode, the XBUS arbitration logic supports six external desire/grant
signa pairs plus the processor’'s own internal desire signals for a total of seven users.
Additional users can be supported through daisy chaining of desire and grant signals. The
Adapter on the master VPM monitors the external desire signals along with its own
internal desire signal. The adapter arbitration logic determines the next user through a
rotating equal priority process implemented in the same fashion as the MBUS arbitration
previously discussed.

20

<@——X_GRANT_IN

/" UsedwhenSaveVPM "\
< X_BUS.00-15

<@——0 X_GRANT_IN

< X_BUS:16-23 X_DESIRE_OUT _L =——jp»
\ J
VPM

<@——X_REQUEST L—pp /" M_BusArbitrationBits "\
-f—X_ ACKNOWLEDGE_L ==jp

<———X_RESUME_L =i

X_GRANT_OUT:00-05

X_DESIRE_IN:00-05
<§——IPC_MODE_L ——pp \ /

Figure 10. XBUS Interface Signals

The first step in XBUS communication is the Desire signal. Any module
requesting use of the bus will activate its desire signal and wait for a response from the
adapter. Once the adapter has determined the next user through the arbitration logic, it
activates the Grant signal to that module. The owner of the bus then activates the Request
signal while simultaneously driving the 24-bit control word onto the bus. The upper 8 bits
of the control word, or XBUS Command Field, contain control information regarding the
type of operation requested and the intended recipient. The lower 16-bits contain either a
control word, an address, or data depending on the type of operation requested. Figure 11
illustrates the breakdown of the Command word and summarizes the meanings of the
fields.

21

XBUS 24-Bit Command Word
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
CTRL / ADDR/DATA s o|m| CH #/CMD
Channel Number or
Control or Address Out Additional Command
or
DataOut or In Memory Operation
Output Operation
L Status Operation
Status Bit :
S: =1 Operation is a Status (input) or Function (output) operation
=0 Operation is a Data transaction
Output Bit :
O: =1 Transferring data FROM the initiating module TO the responding
module (OUTPUT)
=0 Transferring data TO the initiating module FROM the responding
module (INPUT)
Memory Bit :
M: =1 Operation is amemory type (memory read/write or memory
status/function)
CH#/ CMD Bits are additional Command information
=0 Operation isan 1/O operation
CH#/ CMD Bits are a Channel Number
H# Definition
00- OF 1/0 Module Channel Numbers
10- 16 Processor Channel Numbers
17 Broadcast to all Modules
1C Broadcast to al IPC Modules
1D Broadcast to all Smart I/0O Modules
1E Adapter Channel Number
1F Broadcast to al 1/0 Modules
Figure 11. XBUS Command Word Format

After the module that was addressed decodes the control word, it activates the
Acknowledge signal in response. If the operation commanded is an output, the module
that issued the control word drives 16 bits of data onto the bus. The receiving module
clocks-in the data and activates the Resume signal to indicate receipt. If the operation is
an input, the commanded module activates the Resume signal, to indicate that it is now
driving the bus, followed by driving the 16 bits of data onto the bus. The data will remain
active for the duration of the Resume signal. Upon deactivation of the Resume signal, the
arbitration logic will update the priority list and begin the process again. For 1/0 module
broadcast operations, the Master VPM aways generates the bus Acknowledge and
Resume signals regardless of initiating module. For processor module broadcast

22

operations, the initiating module generates the bus Acknowledge and Resume signals.
These steps areillustrated in Figure 12 for both input and output operations.

Qutput Operation

(DESIRE) | Onsmin — - |«
GRANT > e onsmin |
(REQUEST) 20nsmin —» I: +; 0nsmin 45 nsmax — ;4—

—i E¢ 0nsmin

%: :* 50 ns max;
(ACKNOWLEDGE) |

(RESUME)

onsmin — -

nput Operation

(DESIRE) | — |e Onsmin
GRANT | |
(REQUEST) | »_|<— Onsmin
4100nsmax>§
_ CONTROL DATA
(ACKNOWLEDGE) |

(RESUME)

—» |«— 20 ns max

Figure 12. XBUS Timing Diagrams

When the XBUS is used for interprocessor communications, only bits 16-23 of
the 24-hit bus are used for command and control along with the control and hand shaking
signals. These 8 hits are referred to as the IPC BUS. Interprocessor communications
consist of input and output transactions between VPMs and can be either from one VPM
to another or broadcast to al VPMs in the system. The additional control signal used is

23

the IPC MODE signal and is connected to al VPMs. When activated, it causes all other
VPMsto interpret Bits 16-23 as an |PC command.

G. EVENT SYSTEM

The event system is the mechanism by which the IEP is notified of conditions on
the VPM, in other modules, or on other chassis that require servicing. It is controlled by
the microsequencer array, part of the IEP, which monitors all sources for ‘active’ events.
An active event is a condition or state that requires some type of action from the
processor. Each event has a routine in firmware associated with it that can be called by

the microsequencer to service the event.

The IEP, via firmware, checks for active events during idle loops when software
is stopped or before each instruction is executed when software is running. The firmware
interrogates for and handles all active events before it executes another software
instruction. If more than one event is active, the microsequencer prioritizes the events
based on a configuration dependant priority scheme. The event system provides a means
of monitoring indicators, warnings, software chain execution, and external data transfers.
There are two paralel subsystems in the event system; the polled event system and the

direct event system.

The VPM also has an interrupt system similar to other processors in addition to
the event system. Normal software execution is stopped for the handling of these
interrupts. All of these software interrupts?, not automatically trapped by microcode, are
signaled via activation of associated events. The interrupts to the VPM can come from
any module in the Chassis and are divided into three classes based upon their source.
Class | interrupts deal with hardware failures or functions. Class Il interrupts indicate
software failures or functions. And Class Il interrupts are for 1/O failures or functions.
The interrupts can be locked out by class, via software commands, by setting bits 12 — 14
in status register 1. All interrupts and the events associated with them are listed in Figure
13.

2 The AYK-14 documentation refers to all three classes of processor interrupts as * software interupts
because they can interrupt normal execution of the software for handling.

24

Class

Interrupt

Event
Class

Event
Discrete

Hardware

Software

110

Power Fault

Memory Timeout
Memory Parity
Hardware Fault Warning
I/O Failure

Thermal Overload
Hardware Fault

CP Instruction Fault
I/O Instruction Fault
Floating Point
Under/Overflow
Executive Return
Executive Mode Fault
Memory Protect Fault
RTC Overflow
Monitor Clock Overflow
System Reset
Processor Interrupt O
Processor Interrupt 1
Fixed Point Overflow
Module Overtemp
External Interrupt 2
External Interrupt 3

[/O Channel Abnormal
Interrupt (ERI)

External Interrupt (ElI)
Output Chain Interrupt
(OCI)

Input Chain Interrupt (1CI)

g1 o+ o101 o1 O

GwWaour ' OO0 oo O !

~

01
1
2
3

2/3
6

rON'" NODNPEFE O

0/4
1/5

2/6
3/7

Figure 13.

1. Polled Event System

Software Execution Interrupts

25

the event system in response to commands on the EMON bus.

Polled events are events that occur on other modules that require servicing by the
VPM processor. They deal primarily with software chain execution or external data
transfers. They are referred to as polled events because the event monitoring system uses
a polling sequence to determine which events are active. The event polling system
consists of two 8-bit busses, the event monitor bus (EMON) and the event bus (EBUS).
The EMON bus is driven by the VPM hardware and used to pass commands to manage

the polling sequence. The EBUS is an open collector bus that is driven by the modules of

Polled events are organized by four attributes including priority, class, group, and
discrete. Every event is assigned to one of three priority levels, and one of eight classes.
An important note is that the event attribute of class is separate from the interrupt
attribute of class. Asan example, all class Il interrupts shown in Figure 13 are listed in
the event class seven. The binary form of the class, group, and discrete information of an
event is used to form an event vector. This vector is used to point to the starting address

in microcode of the event handling routine and is shown in Figure 14.

There are eight different classes of events, with four dedicated to 1/0 events and
four to non-1/0O events. The 1/O events are further broken down into groups or channel
pairs. Since there are only eight EBUS lines, the I/O modules must be grouped into the
channel pairs to provide the ability for up to 16 1/0 modules to activate events. Thisis
explained in more detail when the polling sequence is covered. Within each class of
events, there are eight discrete events for non-1/0 events, and four for I/O events. All of
the events are listed by class and discrete in Appendix B (See Microcode Reference
Manual —p 4-17).

The event monitor continually gueries the modules in the event system for events
that have become active. It does this by cycling through a series states during which it
determines which events are active, and which active event has the highest priority.
These states are sent to the modules via the EMON bus and the modules responses are
returned via the EBUS. The polling sequence is required because the modules on the
EBUS do not each have discrete signals to indicate the presence of an event. The EMON
busis shown in Figure 14 along with alisting of the bits meanings.

a. 1% State: ESTATE =01

The first state in the polling sequence is ESTATE = 0L1. In this state, the
event monitor is requesting any active events from any module capable of initiating a
polled event. When any module detects this state on the EMON bus and has an active
event, that module will drive the EBUS line corresponding to the class of event that is
active. If there are no active events, the event monitor remains in this state. If an event is
detected on the EBUS, the event monitor will determine the highest priority class of
event that is active and drive the ECLASS lines with that class value. If that class is an

26

I/O class (Class = 1,2,4,7), the event monitor will then transition to ESTATE = 10. If itis
anon-1/0 class (Class = 0,3,5,6) the event monitor will proceed to ESTATE = 11.

EMON BUS
BIT Definitions

00 01 02 03 04 05 06 O7

—» EGROUP: 000, Chan. Priority 0,1
001, Chan. Priority 2.3

111, Chan. Priority E,F

- ECLASS:001, 010, 100, 111 - 1/O Classes
(1,2,4,7)
000, 011, 101, 110 - Non-1/O Classes
(0, 3,5, 6)

—» ESTATE: 00 Not Used

01 Request Event Class

10 Request Event Group (1/0 Only)
11 Request Event Discrete

Event Vector
(Starting address of Event Handling routine in Micromemory)

00 01 02 03 04 05 06 O7 08 09 10 11 12 13 14 15

1]11
=0001 .
Channel Number:
(If entered from_ 0000 - 1111
suspend mechanism)
=0111 Discrete: 000 - 111
Class: 000 - 111
Figure 14. Event Monitor Bus Definition

b. 2" State: ESTATE = 10

If the highest priority event class with an active event is an /O class, then
the event monitor will enter ESTATE 10. Along with the ESTATE bits, the monitor now

27

drives the ECLASS bits with the highest priority class with an active event. In this state,
the event monitor is requesting all modules with active events in the class output on the
ECLASS lines to respond on the EBUS lines. There are two 1/O modules, or pairs,
assigned to each discrete line. The event monitor will determine the highest priority
channel pair based on the EBUS response and drive the EGROUP lines of the EMON bus
with that value. The priority scheme used is a function of the wiring of the interconnect
assembly for the assigned slot in the chassis. The event monitor will then transition to
ESTATE 11.

EBUS Event Class Response EBUS Event Group Response

0001020304050607 0001020304050607

\—> Class 0 Response \—F Chan. Priority 0,1
Class 1 Response Chan. Priority 2,3
Class 2 Response Chan. Priority 4,5

Class 3 Response Chan. Priority 6,7
Class 4 Response Chan. Priority 8,9
—® Class5 Response —® Chan. Priority A,B
—® Class 6 Response —® Chan. Priority C,D
—® Class 7 Response —® Chan. Priority E,F
EBUS I/O Event Discrete Response EBUS Non-1/0O Event Discrete Response
0001020304050607 0001020304050607

\—> Odd Chan. Discrete 0 \—> Discrete 0
Odd Chan. Discrete 1 Discrete 1
Odd Chan. Discrete 2 Discrete 2

Odd Chan. Discrete 3 Discrete 3
Even Chan. Discrete 0 Discrete 4
—® Even Chan. Discrete 1 — Discrete 5
—® Even Chan. Discrete 2 —®» Discrete 6
—®™ Even Chan. Discrete 3 —® Discrete 7

(All Signals shown are Asserted Active LOW)

Figure 15. Event Bus Response Matrix

28

c. 39State: ESTATE =11

If the highest priority event class with an active event is a non-1/0O class,
then the event monitor will enter ESTATE 11 directly from ESTATE 01. Along with the
ESTATE bits, the monitor now drives the ECLASS bits with the highest priority class
that has an active event. For an 1/O class, the monitor will drive the highest priority
channel pair, based on the determination from ESTATE 10, onto the EGROUP lines. For
a non-1/0 class, the monitor will drive the EGROUP lines to a known value

corresponding to the class.

Non-1/0
No Event Event Non-1/O Event No Event
Active Sequence I/O Class Event Sequence Sequence Active
ESTATE 01 11 01 10 11 01 11 01

A

b

Eos Hwé ,

—» Sample for Discrete
———» Sample for Group

15
Clock 9 Clock — - Samplefor Class
Cycles Cycles

Figure 16. Event Monitor State Sequence

In this state, the module or module pair with the highest priority should
now be the only one responding on the EBUS. For a non-1/O class, the responding
module will drive the EBUS lines corresponding to the discrete events that it has active.
For 1/0 modules, the EVEN module of the selected channel pair will respond on the
lower four lines of the EBUS, and the ODD module will respond on the upper four lines.

Thisrestricts the I/O modules to only four eventsin each class.

The Class, Group, and Discrete values that are obtained are then used by
the event monitor to generate the event vector, shown in Figure 14, for microcode
handling of the highest priority event. After creating the event vector, the event monitor

transitions back to ESTATE 01 and begins the sequence again. The EBUS responses to
29

each ESTATE is shown in Figure 15 and the timing for the polling process is shown in
Figure 16 for additional clarity.

2. Direct Events

Direct events are generated in the control address, data path, and adapter arrays
and sent to the microsequencer array. There are also direct events that come from off the
module as well as some generated internally in the microsequencer array. There are 63
events that can be stored for handling in the direct event register. Direct events provide a
means of notifying the event monitor of an immediate request for service from the
firmware. It is more direct than the polled events but the events are still subject to priority

logic and can be masked as well.

Direct events from the direct event register and the events generated in the polling
sequence are filtered through a class mask. This mask is controlled via firmware and
provides a means to stop specific classes of events from being seen by the priority logic.
The priority logic compares al unmasked events and determines the highest priority

event, which isthen serviced by the firmware.

H. INPUT / OUTPUT MODULE OPERATION

The 1/O modules provide the communication link between the VPM processors
and other equipment in the system. The VPM communicates with the I/O modules via
the XBUS and Event bus. The 1/0O modules communicate with other equipment via
discrete signals and buses, specifically the MIL-STD-1553 data bus for the configuration
recovered. The 1/0 modules are categorized as smart or standard based upon the amount
of on-board processing they are capable of executing.

1.1/0 Channel Software

There are three types of commands that are used to control the 1/O modules
operation. The first two types are ‘user’ commands that are used in operational programs
and are considered software commands. Some of the capabilities provided are the ability
to initiate and halt 1/0O channel operation, enable and disable I/O channel interrupts, load

and store control memory words, and read /O channel status.

30

The first type of command controls the initiation of al 1/0O channel operation.
This command is the Input / Output Command Request (IOCR), Op Code 7400. This
processor instruction, when encountered in the software during normal program
execution, causes the processor to execute the instructions at a specific location in main
memory called the command cell. The location of the command cell is 0060 and 0061 if
the executing VPM is operating as the master, and 0062 and 0063 if it is operating as the
dave. The IOCR is used in the main source code to start or stop 1/0O channel programs,

monitor or modify channel operations, and modify Control Memory locations.

The second type of command is the set of processor executable commands that
are used in the source code to control 1/O operations. These commands can be broken
down into three classes, including Command Instructions, Chain Instructions, and
Command/Chain Instructions, and are listed in Appendix C. The Op Codes for these
commands fall in the range EO-FF and are illegal unless executed following an IOCR
command. These commands can be executed by the VPM or by a Smart I/O modules.

These are the commands that are used in the programming of 1/0 channel functions.

The third type of command is the set of command words that can be sent as the
control word of an XBUS operation. These commands are generated by the adapter and
are used to either pass processor executed commands to the I/O module for additional
action or to command 1/0 module action in response to an active event. These commands
can be either broadcast or addressed to an individual module and can be either two word
(command word and data word) or one word (command word only, data word is ignored)
commands. All of these adapter generated commands are listed in Appendix D (Table A-
2 and A-3 from design guide for 1/0 modules).

2.1/0 Channel Control Memory

Each 1/0 channel has associated with it a 16-bit by 16-word control memory. This
memory is located on the VPM for standard 1/0O modules, but is located on the 1/0
module for Smart 1/0O modules. The format and definition of each word in a control
memory is dependant upon the module, however, most modules contain the same basic
words. The control memory contains parameters that are used in the operation of the

associated 1/0O module, such as pointers to programs, word counts, and status words. As
31

an example, the Control Memory for the DSM s listed in Figure 17 with a brief
explanation of each word’ s function.

Location Control Word Description
0 Spare
1 Spare
2 Spare
3 Bit Jump Word (BIW) Used with bit jump Chain Instruction
4 Spare
5 Buffer Address Pointer (BAP) Address of the next memory location in the data buffer
6 Chain Address Pointer ~ (CAP) Address of the next Chain Instruction to be executed
7 Address Table Pointer (ATP) Used to calculate BAP as part of data transfer command
8 Command Word 1/ Status Word 1 Contains word used in 1553 protocol (depending on mode)
9 Command Word 2/ Status Word 2 Contains word used in 1553 protocol (depending on mode)
A Message Control Word 1 (MCW1) Personality dependant mode and control information
B Message Control Word2 (MCW?2) Control information common to all personalities
C Discrete Control Word ~ (DCW) Control info which selects mode of operation for discretes
D Discrete Input/Output Word (DIOW) | Used for masking of discretes
E Interrupt Clear Word (Icw) Used in association with the Discrete Interrupt
F Chain Table Pointer (CTP) Used to support Tabular Output Operations
Figure 17. DSM Control Memory

3. 1/0 Channel Chain Programs

All 1/0 channel operation is initiated through the execution of the IOCR
instruction by the processor. This instruction causes the processor to process the
instruction in the command cell (memory locations 0060-61 or 0062-63). The instruction
in the command cell will be an instruction that initiates activity on one of the 1/0
channels. There are two forms of 1/0 channel activity; I/O information transfer and 1/0O

program execution or Chaining.

A chain program is a set of instruction, located in main memory, which perform
an operation on an 1/0 channel. The program is made up only of chain instructions that
are listed in Appendix C. The program normally transfers parameters between main
memory and the I/O channel Control Memory, and initiates transfer of blocks or buffers
of data or control words on the channel interface lines. Multiple 1/0 channels can have
I/O chains active concurrently, with the event system providing regulation.

32

An important concept to emphasize is the difference in how chain programs are
executed in standard and smart I/O modules. Standard I/O modules do not have the
capability to execute software instructions (the first 2 types of commands previously
discussed). Their chain programs are executed through the VPM processor executing the
software commands in the chain program and sending corresponding commands (the
third type of command previously discussed) over the XBUS to command the 1/0
module. The VPM time shares the execution of chain commands between the operational

program and among the I/O modules with active chaining.

Smart 1/O modules are capable of executing directly all of the software
instructions that can be used in chain programs (i.e. all commands from Appendix C.)
This means that once an /O operation isinitiated via an IOCR command, the VPM will
continue processing the operational program and the smart 1/0 module will execute the
chain program. It is able to do this by accessing the chain instruction directly from
memory using the XBUS.

4. 1/0O Channel Software Interrupts

Class 111 software level interrupts are associated with 1/0O modul e operation. These
interrupts can be enabled or locked out on an individual channel or as a group. They are
handled via an interrupt handling routine that the processor is vectored to upon interrupt

recognition. These interrupts are listed in Table 2.

Class Priority Interrupt Definition
11 1 ERI Error Interrupt
11 2 Ell External Interrupt
Il 3 OCl Output Chain Interrupt
11 4 ICl Input Chain Interrupt

Table2. 1/O Channel Interrupts

ERI interrupts are generated upon detection of an error condition. Ell interrupts
are generated when the I/0O module receives a channel interrupt word. The interrupt word
is stored in atable in main memory prior to generation of the interrupt. The address in the

table is 80 plus the channel number (80-8F). OCI and ICI interrupts are generated when

33

the chain program on the associated channel encounters and executes the Interrupt
Processor (IPR) instruction.
5.1/0 Channedl Events

There are four classes of events that can be set by I/O modules to signal active
events to the VPM. These events are used to communicate the progress of data transfer
operations and chain programs, and to signal software interrupts. All of the I/O events are

listed by class and discrete in Figure 18 and a description of eachisgivenin Table 3.

The event system provides a means for the processor to efficiently manage the
numerous operations occurring on the 1/0O channels. It allows the processor to start an
operation on an /O channel and then to continue executing the executive code while the
I/O channel performs its tasks. The events allow the 1/O cannels to notify the processor
when it has completed a task and either needs more information or is ready for another

task. It isameans of providing paralel operation of all the I/O channels.

For example, when an 1/0O chain program is in progress on a channel, that channel
will raise the Input or Output Chain Request Event. While this event is active, the
processor will continue to execute instructions in the corresponding chain program. When
the VPM executes an instruction that indicates a chain program is complete, the firmware
will notify the 1/0 module via an XBUS command. The 1/0O module will then deactivate

the chain event.

| / O Class Events

Event BusDiscrete
Event Name Even Channel Odd Channel
Class
Name Name Name Name Name | Name | Name | Name
1 Indexed Remote Output Input
(001) Data Terminal Data Data RTC | ODR1 | IDR1
Transfer | Command | Requestl | Request 1
5 Data Unique Externd Output Input
(010) | Transfer Channel Interrupt Data Data UCR | EIR2 | ODR2 | IDR2
Request Request 2 | Request 2 | Request 2
4 e Output Input Externd
(100) Chain Map Chain Chain Interrupt | MAP | OCR | ICR | EIR4
Request Request Request 4
1/10 Output Input
(111) Iﬁt';’fu' || channe ﬁgza‘t Chan | Chan | ERI | EIl | oCl | ICI
P Abnormal P Interrupt Interrupt
Figure 18. Input / Output Channel Events

In Figure 18 it should be noted that the Even and Odd channels have the same

events, however, the Acronyms for the events are listed for the Odd channel to provide a

reference. Also, the repeated discrete events (i.e. ODR1, ODR?2) provide for a hierarchy

of event priorities.

6. /0O Channel Basic Operation

The operation of either standard or Smart 1/0 modules involve communication on

the Event bus, XBUS, and possibly the MBUS. Multiple I/0O channels can be operating

chain programs or data transfers at the same time with the event system and priority logic

providing deconfliction and minimizing the amount of time that the processor spends

waiting for aresponse from the 1/0 module.

35

/O Module Event Descriptions

Class 1: Indexed Data Transfer

Remote Causes the Processor to request an Index Status Word from the I/0O Module viathe
Terminal RTC | XBUS. The statusword is used with the Address Table Pointer (CM-7) to generate
Command anew output Buffer Address Pointer (CM-5)
Outout Data Causes the Processor to send a data word to the I/O module as determined by the
b ODR1 | BAP. Thisisthe highest priority ODR and is used to give priority to time-critical |/
Request 1
O modules.
Inout Data Causes the Processor to request a data word from the 1/0 module and placeit in
Rp et 1 IDR1 | main memory at the location pointed to by the BAP. Thisisthe highest priority
€ IDR and is used to give priority to time-critical 1/0 modules.
Class 2: Data Transfer
Unique Causes the Processor to request a unique function word from the I/O module.
Channel UCR | Depending upon the function code returned, the processor will perform agiven
Request function. Thisisused if 1/0 module needs additional capability.
External Causes the Processor to request an interrupt word from the 1/O module. This event
Interrupt EIR2 | isimplemented in conjunction with the Class 7 Ell event to provide the instruction
Request 2 that is processed in the interrupt. This event is ahigher priority event than EIR4.
Output Data ODR? Causes the Processor to send a data word to the I/O module as determined by the
Regquest 2 BAP. Thisisthelower priority ODR.
Input Data IDR2 Causes the Processor to request a dataword from the 1/0O module and placeit in
Request 2 main memory at the location pointed to by the BAP. Thisisthe lower priority IDR.
Class 4. 1/0O Chain
Causes the Processor to request a status word 0 from the 1/0 module. The status
Map MAP | word provides the modules channel number and type code. Thisinformation is
used to construct aMAP table of al I/O modulesin the system.
Output Chain OCR This event requests the processor to execute the next output chain instruction
Request located at the address pointed to by the output chain address pointer .
Input Chain ICR This event requests the processor to execute the next input chain instruction
Request located at the address pointed to by the input chain address pointer.
External Causes the Processor to request an interrupt word from the 1/O module. This event
Interrupt EIR4 | isimplemented in conjunction with the Class 7 Ell event to provide the instruction
Request 4 that is processed in the interrupt. This event is the lower priority EIR
Class 7: Class |1 Interrupts
1/0 Channel Causes the Processor to generate aclass |11, priority 1 software interrupt. Used as
ERI . -
Abnormal an error reporting mechanism by the 1/0 module.
External Causes the Processor to generate aclass 111, priority 2 software interrupt. Used in
Interrunt Ell | conjunction with the EIR event. Thisisthe lowest priority class of event so that the
P higher class EIR can load the memory with the interrupt information first.
. Causes the Processor to generate aclass 111, priority 3 software interrupt. Used to
Output Chain . . L . .
Interrunt OCI | notify processor when a certain point is reached in a chain program. For example,
P if the 1/0 module is ready to begin data transfer.
. Causes the Processor to generate aclass 111, priority 4 software interrupt. Used to
Input Chain : . o . .
Interrupt IClI | notify processor when a certain point is reached in a chain program. For example,

if the I/O moduleis ready to begin data transfer.

Table3. 1/O Event Descriptions

36

DISCRETE AND SERIAL MODULE

The Discrete and Serial Module (DSM) is a Smart Input / Output module that
provides the AYK-14 with two interfaces to external equipment. One interface is a serial
multiplex input/output interface in accordance with MIL-STD-1553A/B. The other is a
16-bit input/output/discrete interface. The DSM is considered a ‘Smart’ I/O module
because it has the capability to execute chain instructions, to read and write directly to
memory, and to control the 1553 interface. All of the DSM’s interfaces are illustrated in
Figure 19.

XBUS

EMON

EBUS

\
Discrete and Serial

Module
(DSM)
1553 BUS B
Figure 19. Discrete and Serial Module Interfaces

1. DSM Personalities and M odes

The DSM can be configured to operate in different configurations in order to
provide flexibility and adaptability to the AYK-14. These configurations allow the 1553
portion of the DSM to perform like earlier I/O modules, specificaly the SIM-A and SIM-
B. The DSM can be configured with three personalities that include the SIM-A, SIM-B,
and Alternate SIM-B. The SIM-A personality provides the capability to operate using the
1553A protocol. The SIM-B personality provides both the 1553A and 1553B protocol.
Finally, the aternate SIM-B adds additional restrictions concerning chaining operation in
addition to the 1553A/B capability. In every personality, the 1553 interface of the DSM

37

can operate in one of three modes, which include Self-test, Remote Terminal/Bus
Monitor, and Bus Controller. These modes define the role of the DSM within the 1553
bus architecture.

2. Smart 1/O Operation

The two features of the DSM that distinguish it from other I/O modules and make
it a‘Smart’ module are first, the ability to read and write directly to memory, and second,
the ability to execute 1/0 instructions. This capability provides a good deal of autonomy
to the DSM and greatly reduces the number of instructions that the VPM is required to
execute during any 1/O operation. The DSM has the ability to execute most of the I/O

command and chain instructions in the VPM’ s instruction set.

The initiation of operations on the DSM still requires the VPM to execute an
IOCR instruction. Once initiated, the DSM requests the command or chain instructions
directly from memory via an XBUS operation using its on-board Control Memory. The
on-board control memory is an important distinction between standard and smart /O
modules. The presence of the information contained in the Control Memory on-board is
essential for the DSM to request and execute it’'s own instructions. For example, in order
for the DSM to request a chain program instruction, it must have the Chain Address
Pointer (CAP), which indicates the address of the next chain instruction.

The DSM requests instructions from memory using a 16 bit local address formed
using information in the Control Memory. The adapter on the Master VPM then performs
an address conversion, using page set 0, to obtain the absolute address. If the address is
not located on the master VPM’s OBM, an MBUS operation can be used to transfer the
requested data to the master VPM and back to the requesting DSM. The DSM, therefore,
has the capability to reach any memory addressable by the VPM.

The DSM aso has the same capability as standard 1/0O modules of executing
instructions sent as part of the command word over the XBUS. These commands are sent
when the VPM executes an 1/0 command instruction. They can be broadcast to all 1/0
modules or addressed directly to an individual module and are used primarily to set or
clear 1/0 events. All of the XBUS commands that apply to the DSM are listed in Table 4.

38

OPCODE FUNCTION CODE

16] 17| 18] 19] 20 21] 22

®
3

w
=
o
[EEY
[N
[EnY
N
(I
w
=
N
[EnY
U1
N
[°Y)

Broadcast

Set Boot Enable
CLR Boot Enable
Bit Restart
Master CLR
Set EIE
CLREIE
Set Class |11 Enable
Clear Class |11 Enable
Set Map Event

Nonbroadcast
Set XCMD Notice
Set CXMC Notice
CLR Map Event
Set EIE
Clear EIE
Set Class |11 Enable
Clear Class || Enable
CLR Class 2 DISC 0/4
CLR Class 2 DISC 1/5
CLR Class 2 DISC 2/6
CLR Class 2 DISC 3/7
CLR Class 4 DISC 0/4
CLR Class 4 DISC 1/5
CLR Class 4 DISC 2/6
CLR Class 4 DISC 3/7
CLR Class 7 DISC 0/4
CLR Class 7 DISC 1/5
CLR Class 7 DISC 2/6
CLR Class 7 DISC 3/7

R X|X|X|X|X|o|o|o]o
N R G]
N A R G == =] DN
ol|o|o|o|o|o|+|o|o
Rlo|o|o|o|o| X[X|X] >
olo|o|o|o|o|X|X|X]un
rlo|o|o|o|o|X|X|X]o
S [=]E=] =] [=] (=] Baq P-4 Baq BN
XX XX XX XX >} | o0
XX XXX X XXX ©
XXX XXX XXX
XX XX XX XX <
XX XXX X XX <
Xl |o] XXX
Xl | |o|o|o| X|X]|X
Xl |o|r|o|o|X|X]|X
S
N R R
ol|o|o|o|o|o|olo|o
I) I G) G e G
S
N R
XIX|X|X|X|X|o|o|o
I) I G) G e G

o Tl U 0 S Y Il Y e [il P Bl B Bl Y B B
P T TS R T Y [e) e e e) el e e) Il B
= I L G L) L e e e e Ll el e el el) e B
o|o|o|o|o|o|o|o|o|o|o|o|o|o|o|olo|olX
Y Y 5 N T T 5 T T T 2 [(=) [=] (=] [=] [[e) P-<
S T T R R G G G o G G =) (=) k= E=l Y B B
= I U G L) L L e e G L (=) K= =1 [=R Y K= P
S I e G L G G e) e =) [=) =l =1) =) B
>4 Bad P24 Bad P24 B P24 Bad P24 Bad P24 Bad P24 Do P24 Dad P-4 Paq o<
D24 Bad P4 Bad P B P Bt P Bl B et P B P B B B P
>4 Bad P4 Bad P4 Bad Pod Bad P24 Bad P4 Bad P24 Bad P4 Bad P Baq oS
5294 Bad P4 Bad P24 Bad P24 Bad P24 Bad P24 Bad P24 B P24 Dad P Baq o<
Rlrlr|r|r |||~ |o|o|o|o X XXX~ | XX
= Y) [E=1 k=] (=] [=1 P2 T2 [T T o T T (o)) D24
Rl |o|olr|r|o|olr | |olo|r|r|ololo|oX
Rlolr|o|r|olr|olr|olr|o|r|olr|olo|o|X
N TR TS P TR P T P T PR T T T PN T TS T T o)
>4 D P24 Dad P24 Bad P4 Bad Pod B P4 Bad B4 Bad P4 D4 P B 1
o|o|o|olo|o|o|o|o|o|o|olo|olo|olo|o|o
o|o|o|olo|o|o|o|o|o|o|o|o|olo|o|o|o|o
TU|T|0|T|0|T|0|T0|0|T|0|T|O|T|0|T|T|T|TO
TU|T|0|T|0|T|TV|T|T|T0|T|T|0|T|T|T|T|T|TO
TU|T|T0|T|0|T|T0|T|T|T0|T|T|TV|T|T|T|T|T|TO
TU|7T|0|0|0|T0|T|T|U|TU|0|0|0|T|T|T|T0|TO|O

Table 4. XBUS Commands—-VPM to DSM

J. COMPUTER CONTROL UNIT

The Computer Control Unit (CCU) is a laboratory support unit that interfaces
with the AYK-14 via a maintenance support channel. It provides the ability to load
programs, display memory contents, set breakpoints and run software. The current
version of the support unit is an emulator of the origina that can run on a PC using DOS.
The emulator (CCU/E) provides the same basic functional capabilities as the original
CCuU.

The CCU provides an extremely useful interface for troubleshooting hardware
and software, or for gaining a better understanding of the AYK-14's internal operations.
The software can be executed one instruction at a time (single-step) or run to a predefined

location. The contents of memory, including registers, control memory, and OBM, can be

39

displayed using appropriate commands. The contents of memory can be changed via
CCU commands as well in order to insert instructions to test hardware or debug software.
Because the CCU is connected to the AYK-14 through the Maintenance Support
Channel, all 1/0 channels are available for use in testing. The channels can be connected

to external hardware or connected to each other for testing.

40

I11. DESIGN IMPLEMENTATION

Once the design has been sufficiently recovered to provide a detailed
understanding of the operation, the next step in the reengineering process is to begin the
forward engineering of the new design. The difficulty in beginning the forward
engineering process is deciding when the design has been adequately recovered. For a
design as complex as the AYK-14, the design recovery could continue to reveal new
aspects of the design almost indefinitely. However, once the design is thoroughly
understood, the forward engineering process will actually provide more insight into the
design than continuing with the design recovery. This is due to many factors including,
first, that during the forward design process you continually become aware of what you
do not know, which leads to more design recovery. And second, failures in the testing
and validation of the new design will reveal and highlight misunderstanding of the

recovered design.

This chapter will discuss the forward design process of the VPM adapter,
specifically, the implementation process for the recovered design.
A. FORWARD ENGINEERING PROCESS

1. Field Programmable Gate Array

The first step in the forward engineering process is to determine how the new
design is to be implemented. The target selected for this design was a Field
Programmable Gate Array. This target was chosen due to the advantages of designing
with FPGAs, specifically, the reduced time to develop and field products, the ability to
maintain an open architecture, and the ability to design an entire system on a chip. (Ref. 1
p.29)

The ability to design a system on a chip is a key advantage to using an FPGA for
this thesis. This is an advantage for two reasons. First, this thesis is the continuation of
CDR Mike Croskrey’s thesis (Ref. 1) in which he designed the processor module of the
VPM using an FPGA. The ability to design another module, the Adapter, and combine
the two designs into a larger system that can be re-implemented is a key advantage.
Second, because there will be additional designs that will need to be combined with this

41

design to finally reach the goal of reengineering the AYK-14, the FPGA provides the

means to continue to expand the system.

Another important advantage to using an FPGA is the ability to rapidly prototype
the new design. This is an advantage for reengineering because it provides the means to
incorporate aspects of the design that were not recovered until the testing phase. This is
essential in reengineering because there inevitably are aspects of the design that can not
recovered from even the most detailed documentation.

2. VHSIC Hardwar e Design Language (VHDL)

In generating designs to be implemented onto FPGASs, there are multiple methods
of describing the design dependant upon the software tools used for the design flow.
These methods can be divided into graphical, code, or a combination of both. The
graphical methods, such as schematic capture, provide a drag and drop approach which
allows vendor specific components to be connected to form a design. The behavior of
some of these components can be modified, and new components created, to allow

addition design flexibility.

The advantage of the graphical method is the visual layout that it provides
because it helps the user to visualize the ‘hardware’ being designed. Some of the
disadvantages to this method are the limitations on components based on the contents of
the vendor’'s libraries, the inability to troubleshoot problems past the component or
‘black-box’ level, and lack of portability due to use of proprietary components. The lack
of portability is the most important problem with the graphical methods because one of

the goals of the reengineering process is an open architecture.

The code or programming method of describing a design has advantages and
disadvantages as well. The advantages include the ability to design from the most
primitive level and to modify the design at all levels of complexity. Another advantage is
the portability of design due to the standardization of the design languages. The primary
disadvantages of the programming approach are the difficulty visualizing the design due
to the abstract nature of the code and the requirement to understand how the code is
trandated into a hardware implementation. An example of the difficulty of using software
to describe hardware is the sequential operation of most software (i.e. C++) programs

42

versus the concurrent operation of hardware. For this thesis, the programming approach
to hardware design was chosen for the advantages of portability, open architecture, and
the ability to modify the design at all levels of complexity.

The VHSIC (Very High Speed Integrated Circuit) Hardware Design Language
was used as the language to describe the design for implementation. VHDL is a hardware
description language that was developed by the Department of Defense and given to the
|EEE for standardization. It was designed to provide a language for describing hardware
with a wide range of descriptive capability that would be independent of technology or
design methodol ogy.

3. FPGA Design Tools

The implementation of a design from a set of specifications through to hardware
operation follows a specific set of steps, or design flow. When the target of the design is
an FPGA, these steps are modified to include processes required to translate the design to
a form than can be loaded onto the targeted chip. Figure 20 (Ref. 8, p33) illustrates the
generic design flow in contrast to the FPGA specific design flow. The steps highlighted
in grey in Figure 20 require the use of software tools to be performed. In addition to
performing the necessary FPGA specific functions such as Map, Place, and Route, the
tools provide additional editing and simulating functions that provide assistance in

maintaining proper format and debugging code.

The reliance of the design process on software tools can cause difficulty and
inefficiency in the FPGA Design process. The first cause of difficulty can originate from
the functions that the software tools use to interpret the design and trandate it into aform
that can be simulated and implemented. These steps are complex and can generate errors
that are often difficult to correct without a thorough understanding of the processes that
are taking place. Another cause of difficulty can be the abstract level of designing with a
hardware description language. Because the software tool creates the design from the
language description, it can be difficult to visualize the ‘hardware’ implementation of the
design. This, again, can cause difficulty in correcting errors in the design performance
based on simulation.

Generic Hardware
Design Flow

Get Specifications

Define Inputs and Outputs

Create Truth Tables

Derive Boolean Equations

Create Gate Level Design

Simulate Gate Level Design

Build Digital Circuit

Figure 20.

Debug Digital Circuit ' 8

FPGA Specific
Design Flow

Get Specifications

Define Inputsand Outputs

Design Entry:
via Schematic / State Machine/ VHDL

Functional Simulation of the Design

Map, Place, and Routeto an FPGA

Timing Simulation of mapped Design

Download to FPGA on Design Board
using User Constraint File

Debug the Design using L ogic Analyser '

Hardware Design Flow

In the process of implementing the design for this thesis, four FPGA Design
software tools were used. They included Xilinx Foundation, Xilinx ISE, ALDEC Active-

HDL, and Synplicity Synplify Pro. Multiple tools were utilized during the design process

to explore the advantages of each and to determine the most efficient method of getting

from design to implementation. The majority of this thesis was created and implemented

using Foundation primarily due to the author’s familiarity with the tool.

4. Finite State Machine Design

The design of complex hardware using powerful tools such as VHDL requires a
methodology that allows extreme flexibility to meet varied requirements while providing
an efficient and repeatable technique. The methodology that is generally regarded as the
best way of meeting these goals is the Finite State Machine approach. In the finite state
machine approach, the behavior of the design is divided into discrete states. In each state,
the previous state and the input signals determine the next state. The values of all output
signals are determined by the current state and the input signals. The state machine
transitions from the current state to the next state based upon a synchronous signal or
clock. There are many different approaches to designing state machines using VHDL.
The method outlined in Reference 9 was used as the model for this thesis. Because of the
complexity of the recovered design and the modular approach to reengineering it, the use
of avery structured method to design the state machines was essential in order to create a

design that was clear, readable, and easy to modify.

Finite State M achine

Next State Current State
Conditioning Logic Vector Register
(Process 1) (Process 2)
Output
Conditioning Logic |
(Process 3)
Figure 21. Finite State Machine Structure [After Ref. 9]

45

In this method, the state machine is divided into three blocks as shown in Figure
21. The Next State and Output Conditioning Logic blocks are combinatorial. This means
that the outputs of these blocks change asynchronously based on the current state and
changes in the inputs. The Current State register, in contrast, retains current state
information and propagates next state information synchronously. This division of logic
provides a ssmple structure to use in creating the state machine.

The first step in this method is to define the inputs and outputs. It is essential in
this step to include all signals that can have any effect on or are affected by the
component being designed. Thisis a step that is often repeated during the design process
as the states and state transitions become more clearly defined.

The second step isto determine all of the possible states and state transitions. This
is done through the creation of a state diagram. The state diagram is a tool used to
illustrate the states and the state transitions in a logic format. It is an effective tool for
visualizing the operation of a design, especially when using an abstract method of design
description such as VHDL. Some of the software tools even have state machine editors
that help create code from a diagram and vice-versa. Examples of state diagrams for each

of the components designed are listed in Figures 26-30.

The third step is creating the three blocks of the state machine based upon the
input, outputs, states, and state transitions. Each of these blocks is created as an
individual process in VHDL. The first block is the Next State block (Process 1). This
block is combinatorial and is dependant upon the current state, inputs, and outputs. The
purpose of this process is to determine the next state that the state machine will transition
into on the next clock cycle. The second block is the Current State register (Process 2).
The purpose of this process is to advance the state machine to the next state, as
determined by the Next State process, synchronously and also to handle system resets.
The third block is the Output Conditioning block (Process 3). This block is also
combinatorial and is dependant upon the current state and the inputs. The purpose of this

block isto determine the outputs of the state machine.

46

5. Modular Approach to Overall Design

A modular approach was taken in the reengineering of the adapter because of the
advantages of the combination of the State Machine method of hardware design along
with the capability of VHDL to combine smaller components into a larger design. This
approach allowed the design to be broken down into smaller, smpler designs based upon
functionality. It aso allowed the reusability of components and code to help make the
design more understandable and easier to modify, much like the advantages to an object

oriented approach in software design.

This modular approach also takes advantage of the rapid prototyping benefit of
using FPGAs. This is done by adding functionality to the design simply through the
addition of new components. The new design can quickly be tested at both the simulation
level and actual hardware implementation level. The advantage here is that the design
does not need to be completely defined early in the design process and that testing can
continually be done to provide feedback and changes to the design. Thisis critical in the
reengineering process since the goa is a design that has the same functionality as the
replaced design, and therefore must be tested versus the original design’s performance.
As an example, in the adapter design, the memory interface was designed and tested as
the first component. As additional components were created, they were tested
individually and then in combination with the memory interface. This method allowed
efficient and reliable detection of design errors.

B. TARGET FOR DESIGN IMPLMENTATION

The goal of the FPGA design processisto implement the design and load it onto a
development board for testing and design validation. The three primary factors that were
used in choosing a platform to economically implement this design were FPGA size,
number of input / output ports, and memory capabilities. The development board chosen
for this thesis was the Xilinx Virtex-E FPGA Development Kit from AVNET Design
Services. The functional layout of the development kit is illustrated in Figure 22 (Ref.
10).

The FPGA used on this development kit is the Xilinx Virtex-E XCV 1000E-
6FG1156. The first reason this FPGA was selected is due to the author’ s experience and

a7

familiarity with Xilinx FPGAs and Xilinx design software products. As previously
mentioned, a thorough understanding with the software toolsis critical to efficient FPGA
design. A second reason for selection of this FPGA was the size of the chip in terms of
number of logic gates as well as the number of off chip ports and chip speed. The Virtex-
E XCV1000 has over 1,000,000 logic gates and 512 assignable off-chip ports, and is
capable of operating at speeds as high as 200 MHz. The number of logic gates and the
maximum operating frequency meet or exceed the capabilities of the targeted FPGA used
in CDR Croskrey’s design (Ref. 1, p34-36.) The XCV 1000 is therefore considered to
have the additional capability available to expand the design to include the adapter
control and interface. The number of available off chip ports (512) far exceed the number
of required adapter Input / Output lines (152) which provides additional ports for the
output of critical internal data and control signals for testing and troubleshooting.

Vidao Vidao Fndio udio
Hertnented Ram-Tar Enrodsr DA PR Buffer
e
Confip CELD

Ger. EEProm
Config Flash [—olkters SDRAM | FLASH
G4 Bit Pus

Puzh-Buttons

FER [0 CORML (PLI il NEM CORH. (P
Vittes-F
PATR (P12) XOVI000E PAIR (L)

-
CPOAC CULTL M TEE ho i Powes Y, AV E LAV

A b PLT PO

| Fi.] Lommeclor- 3 JVdC (0] |

Figure 22. VIRTEX-E Development Board Functional Layout

The Virtex-E development board is configured with a 64-bit wide data bus for use
of both on-board Flash and SDRAM memory. Common data and address buses are used
to connect the FPGA with both Flash and SDRAM as well as I/O memory connectors.
The SDRAM has a capacity of 64 Mbytes and the Flash has a capacity of 32 Mbytes.
This memory configuration has both advantages and disadvantages for the

implementation of this design. The first advantage is that the size of the memory is
48

sufficient to cover the entire OBM of the targeted design in either Flash or SDRAM. The
second advantage is that the memory 1/0 connectors provide the means to either expand
the memory capability or monitor memory activity. A disadvantage to the memory
configuration is the use of SDRAM with no associated SDRAM controller. In order to
use the SDRAM, a controller had to be designed and implemented to interface with the
overall project design. The SDRAM also has latencies associated with reads and writes
for non-sequential memory accesses. These disadvantages can be overcome with the
addition of a cache memory component to make more efficient use of the existing
memory configuration. However, the cache design is left to future students continuing on
the implementation of the AYK-14.

C. COMPONENT DESIGN DESCRIPTION

The functions of the adapter were broken down into components, based upon
function, in order to simplify the state machine design process and to enable reuse of
code rather than duplication of effort. The components that make up the design are
illustrated in Figure 23. The VHDL code for each component discussed is listed in
Appendix E.

49

Event Bus Controller
evt_fsm.vhd
evt_pckg.vhd

!

Pr ocessor
(IEP)

I

Address Selector
add_select.vhd

==
(e

SDRAM
Controller
SD_ctrl.vhd

i

<—m SDRAM

Memory Arbitrator
mem_ar bitrator.vhd

XBUS Controller
|—
grant_logic.vhd

i

MBUS Controller
mbus_controller.vhd
grant_logic.vhd

xbus _controller.vhd

|

Y

MBUS

<

%

D Existing D Components developed
Components by thisresearch
Figure 23. Adapter Design Components

1. SDRAM Controller

The memory available on the Virtex-E development board consists of Flash and
SDRAM as outlined previously. The SDRAM was targeted to be used as the on board

memory for the adapter design. A brief summary of the operation of this type of memory

is presented in order to clarify the requirements of an SDRAM controller.

Synchronous Dynamic Random Access Memory (SDRAM) is a form of memory
that is termed dynamic because it requires recharging or refreshing of its memory
contents periodically, and termed synchronous because all signals are registered on the

positive edge of the input clock signal. The components that make up the memory units

50

%

in an SDRAM consist of capacitors and transistors and the capacitors require recharging
because they lose their charge when they are accessed or due to leakage over time. The
development board uses four Micron 256 Mb Chips MT48LC16M 16A2, each of whichis
internally configured as four 67,108,864-bit banks organized as 8,192 rows by 512
columns by 16 bits (Ref. 11). Based on this configuration each memory location,
consisting of 16 bits, is defined by a bank, row, and column. Read and write accesses are
burst oriented which alows sequential memory locations to be accessed in lengths of 1,
2, 4, or 8 locations. The interna SDRAM control logic maintains a loadable mode
register that sets certain mode operation constraints. A functional block diagram of a
single 256Mb SDRAM is illustrated in Figure 24. It should be noted that there are only
13 address lines because they are used for addressing either the column or the row

depending upon the control signals present.

Figure 24. SDRAM Functional Block Diagram

51

The complexity of SDRAM operation requires a memory controller to be used in
order to meet all the maintenance requirements of the chip including precharging before a
memory access, periodic refreshing of all memory locations, and providing the control
signals to read or write to memory. This allows memory accesses to be treated as
independent of the memory source when creating the other components that require
access to memory. This method also provides the capability to expand the design in the

future to include a cache to increase system performance.

Due to the complexity required in the design of an SDRAM controller and the
time constraints of the design process, the design for the SDRAM controller was adapted
from existing designs. The design that was ultimately selected was the XSA SDRAM
controller from the XESS Corporation. The original design for this controller was written
in VHDL and targeted to a different development board. It was modified and tested to
operate with the SDRAM configuration on the Virtex-E development board. The
controller interfaceisillustrated in Figure 25.

52

Oiscillator

SURAN

ROl

saraminll_state

Hast Side

Figure 25. SDRAM Controller Interface

2. Memory Arbitrator

The Memory Arbitrator is the component that provides the interface between each
memory user and the SDRAM controller. The three possible users of memory are the
Processor, the XBUS, and the Memory Bus. The Arbitrator monitors requests for
memory from the three users and grants use based on a rotating priority scheme. The
scheme is based on the rotating scheme as described in MBUS arbitration. The rotation
scheme insures that each component is allowed memory use at least one out of every
three memory accesses. The priority is based upon the current user, the last user, and the
users requesting access. The default priority is the Processor, the XBUS, and then the
MBUS based upon the expected frequency of use.

The design is based on the three-process State Machine method previously

discussed. The priority in each state is accomplished using if-then statements. Because

53

these statements are executed sequentialy, levels of priority can be assigned through the
order of the statements. Using this method, each state had a different order of priority of
the two remaining states. The state diagram is shown in Figure 26. The following

description of State Diagram symbology appliesto al state diagrams shown in this thesis.

The names used in the state diagram are intended to reflect the names of the states
and signals used in the VHDL code. The words attached to each arrow indicate the
signals that are required to be true in order for the state transition to occur. If asignal is
asserted low, the signal name will have a‘ L’ appended to it. If the condition to be met
for transition is that a signal is NOT asserted, the signal name will be enclosed in
parentheses. The boxes next to certain states contain the signals that are driven while in
that state. The ampersand symbol (&) is used to indicate a logical AND of conditions to

be met for signal transition.

M_DONE & X_REQ & (P_REQ)

M_DONE & M_REQ

M_DONE & (M_REQ) &
(X_REQ)
O3y d

(M_DONE)

Figure 26. Memory Arbitrator State Diagram

3. MBUS Controller

The MBUS controller is the component that controls the Memory Bus interface
between the processor, external users, and on board memory. Its primary function is to
operate the bus control signals required by the MBUS protocol. This protocol includes all
required control signal, timing requirements, parity generation, and error detection. It
requests use of the on board memory for reads or writes by external bus users. It also
operates as the MBUS arbitrator by determining the priority user and granting usage of
the bus.

55

Slave Operations

A

Signal Driven
M_Bus
MSB_PARITY
LSB_PARITY
M_ADRS_PARITY:1
CMD_PARITY
MSB_WRITE_L
LSB_WRITE_L
THREE_TWO_DATA
IPL_ WRITE
(M_ACK_L)
Signals Driven
M_REQUEST L
Signals Driven Signals Driven
ACK_WRITE_M M_BSY_OUT L M_BSY_OUT L ACK_READ_M
MBUS (MBUS)
(M_REQ_OUT)
(MSB_PARITY)
(LSB_PARITY) =
(M_ADRS_PARITY:1) I
(CMD_PARITY) R
(%]
|l_
\ | y
Signals Driven Signals Driven
Data Clk_Out_M (M_REQ L) P_DATA_RD Data Clk_In_M
£
I;U
o
I'_ ‘
Signals Driven Signals Driven
(MBUS) P_Mem_Done
RSM_WRITE M (WRT_LSB_L) M_BUSY L) RSM_READ M
(WRT_MSB_L) (M. -
(M_BSY_OUT_L)

Figure 27.

MBUS Controller State Diagram (Master)

56

(M_ACK_L)

Master Operations

\Xu\? ‘ Zz
Q?L\ =z A Q
<& | "67
Soe/ @ 32
/\%s(%]éu@o 3 /\é'\“v\L
oL | LR
& S e u. A
SQ /db e z
SOOI T) \
él’_g @ > |
% T=Z m .
AN Hly 4
N g &
m© a
Tl |
B =
SanalsDri Q g Signals Driven
gasDriven | | pEFQ WRITE_S| & REQ_READ_S Mem_Addr
Mem_Addr Q_ — @ Q| - Mem_RD_Req
=}
o
@
<
Y
ERROR_
External
Signals Driven
Signals Driven BUSERR L Signal Driven
AddClkin_Write S S BUSY_L S BUSY_OUT L AddClkin_Read_S
= z
ps)
cd é
C o
P 3
A v
4 Signals Driven
Signals Driven MBUS ACK READ S
ACK_WRITE_S Mem_Data WR MSB_PAR_OUT_L - -
Mem WR_Req LSB_PAR OUT_L
2
2
WRITE_DATA_S <
“ii
.
o<
23 y
\ Signals Driven
- - M_RESUME_L RSM_READ_S
RSM_WRITE_S s bitven
(Mem_WR_Req) 2
G
]
55 v oo
Y Signals Driven
] i MBUS <=Z READ_DONE_S
Signals Driven (M_RESUME_L)
WRITE_DONE_S (M_RESUME_L) - -

Figure 28. MBUS Controller State Diagram (Slave)

The design is based on the three process state machine previously discussed.
There are four basic types of operation that can occur on the MBUS. The first two are

either aread or awrite by the processor and the second two are either aread or write by
57

an external user. The state diagram for the controller is illustrated in Figures 27 and 28.
The diagram was split into two figures for clarity of state flow with the Idle state serving
as a common State between the Figures. Figure 27 illustrates the states for bus usage by

the processor and Figure 28 illustrates bus usage by an external user.

The MBUS Controller design has two components included to provide MBUS
usage arbitration and parity generation. The component Grant Logic performs the bus
arbitration in a rotating priority scheme. It is a three process state machine with priority
logic similar to the Memory Arbitrator. The function of arbitration was accomplished
using a component in order to facilitate design reuse. The component OddParityGen is an
odd parity generator used to generate parity for transmission or for comparison with
received parity to provided error detection.

4. XBUS Controller

The XBUS controller is the component that controls the XBUS interface between
the processor, external users, and on board memory. Its primary function is to operate the
bus control signals required by the XBUS protocol. It requests the use of on board
memory for reads and writes by external users. It also operates as the XBUS arbitrator by

determining the priority user and granting usage of the bus.

The design is based on the three process state machine previously discussed. The
XBUS operation was divided into three basic types of operation, output, input, and
broadcast. The users were also divided into two groups, the processor and the externa
users. The state diagram for the controller isillustrated in Figures 29 and 30. The diagram
was split into two figures for clarity of state flow with the Idle state serving as a common
State between the Figures. Figure 29 illustrates the states for bus usage by the processor

and Figure 30 illustrates bus usage by an external user.

The XBUS controller has a component included to provide bus user arbitration.
The component X_GRANT_LOGIC performs the arbitration in a rotating priority
scheme similar to the Memory Arbitrator component. This component ensures each users

has control of the bus at least once every seven uses (there are seven users of the XBUS).

58

DSM Operation

Ny

T

IDLE
A
. - =
m x0 o
) 74 @~ 30
>7 D o 2
z's L Joy =
=1 o) s P
235 x! TR S2%
SoF < ST
BOR A B0
© i L
2w Proc_Bdcst 20
Ol_ — oI_
-z _Z
N ~|
P =rC
o S
Y \ J
) Signals Driven SignalsDriven
Reg_Proc_Write X_BUS(CMD) X_BUS (CMD Word) Req_Proc_Read
X_REQ_L X_REQ_L
(X_RES_L) e e
> >
0 0
~ ~
"~ "~
Y Y
Signals Driven SignalsDriven
H (X_REQ_L) (X_REQ_L)
Ack_Proc_Write X BUS(Data) (X _BUS) Ack_Proc_Read
X
Ry
m
o
-
L v
Write_Wait Read_Wait
X
k)
m
lm
i Y
Signals Driven SignalsDriven
(X_BUS(Data)) P_Data_Out

Rsm_Proc Write

Figure 29.

Rsm_Proc Read

XBUS Controller State Diagram (Processor)

59

(X_RES_L)

Processor Operation

NNy

—{ IDLE
A|>< ﬁ‘ AI><
X = = X g
mm w g W m
§ R0 QI B g R0
e X o f‘gx
= z &
23 DSM_BDCST 28
25 - G 5
3¢ 3¢
vy ® v F
REQ_DSM_WRITE REQ_DSM_READ
Mem_Done &
(X_DESIRE_L) v v
Addr_Clkin_DSM _ Signals Signals Addr_Clkin_DSM _
Write Driven Driven Read
X_ACK_L X_ACK_L
I Mem_ADDR =z
i) Mem_RD_Req g
T 's
=k S
v yo
Data_ClkOut_DSM_
ACK_DSM_WRITE Read
Signals Driven
Y (X_ACK_L) Signals Driven y
Data_Clkin_DSM_ X_RES L X_BUS
Write Mem_ADDR (X_ACK_L) ACK_DSM_READ
Mem_Data WR X_RES L
Mem_WR_Req

Figure 30.

5. Event Bus Controller

XBUS Controller State Diagram (DSM)

(X_DESIRE_L)

The Event Bus Controller is the component that determines the highest active

event using the event polling sequence on the Event and Event Monitor busses. It also

generates the Event vector to notify the processor of the highest active event. The design

was based on the three process state machine. It requires a timer in order to meet the

Event bus protocol. The timer logic is based upon the operating frequency of the intended

design. If the design is targeted to a faster clock frequency, only one constant needs to be

60

updated in the design to alow the component to continue to meet the timing constraints.
The state diagram for the Event Bus Controller isillustrated in Figure 31.

(E_BUS)

E_BUS=0or 3or 50r 6
& Clk_Count

Discrete Req

Figure 31. Event Controller State Diagram

6. Top Level Design Interface

The Top Level Design Interface is simply the component that combines all of the
previous components into a single entity. It connects all of the components, including the
Processor, via internal signals as shown in Figure 23. It aso connects al of the

appropriate signals to input or output ports.

61

THISPAGE INTENTIONALLY LEFT BLANK

62

IV.CONCLUSIONS

There were three primary goals that this thesis set out to achieve. The first was the
reengineering of the adapter module on the VPM of the AYK-14. This goal was a
milestone toward the larger goal of validating the theory that a binary compatable
processor, designed using FPGA technology, would be a viable solution to deal with the
growing legacy avionics problem in the Department of Defense. In terms of this second
godl, this thesis attempted to continue the process of reengineering the processor begun
with CDR Croskrey’s work in his Master’s thesis. The third goa of this thesis was to
create a reference that summarized the operation of the AYK-14 emphasizing VPM to

[/O module communication.

In terms of thisfirst goal, this thesis succeeded in the reengineering process to the
level of simulating a design whose performance matched the operation of the VPM
adapter based upon design documentation. It should be stressed that this performance
comparison is based on performance descriptions and diagrams from the design
documentation. This is stressed because an important lesson learned was the need for

actual hardware for use in testing early in the design recovery process.

The reason for this requirement for hardware is the difficulty in recovering a
design from documentation alone. There was a large amount of documentation available
for the AYK-14. However, due to the AYK-14's complexity, age, and numerous
upgrades over its lifecycle, the documentation did not cover every aspect of the design to
the level required for a complete design recovery. An AYK-14 was available with a
CCU testing unit during the early stages of the design recovery but due to the complexity
of the CCU interface, it did not provide useful information until the design was more
clearly understood. The testing that was needed to aid in the design and validate the

simulated design was a sampling of all bus operation using alogic analyzer.

In terms of the second goal, this thesis demonstrated that a complex design could

be recovered and reengineered using the tools available to design FPGAs.

63

The third goal of this thesis was accomplished as a byproduct of the design
recovery process. The difficulty in creating a summary of the AY K-14 operation without
full and detailed testing is that the summary is only as valid as the documentation it was
taken from. However, because of the numerous and varied sources of information, this
document will at least serve as a starting point for a more detailed study. It will also
clarify concepts regarding the I/O system that are difficult to understand without a
detailed understanding of AY K-14 operation.

APPENDIX A: DOCUMENTATION LIST FOR THE AYK-14

Helvremee IMscwmeent Lithe Frepared Hy Ihate
i VISIC Processor Module Fguipment Specification. Standard Control Data Februany 1990
AarBeng Compater AN AYR-14 (V) o i aliong wilh SC™ 1
3 Cemtrid Dhata
Diesdgn Cmusdc Tor AN AYK- 14 (V] InpulOsstpur Modades . i July 1985
- L grpem mieen -
1 % ||':.||: Processor Module {VPM) Inerlsce Design Specification 1_-.ﬂ|r|ll (] wiach 1993
(1% i P
4 YHRIC Procisr Modile { VPN 16 Deserete and Senal Modads Comton] Dl Oictober 19856
(NS I.".v_en':-.': Diesign Spec I-I\'-Jlll"ll‘li.“:l L orpormtion e
q .
. Dhscrete snd Sened Module (D5) Equipiment SpeaDicalion :::_1;‘::::?:" A 19HE
b Conslisg D pn Dt loe ANAY K- 148 |V) Conlguraios Lirmiwy Lt Wl 1OES
= = - §arpematim
7 ARSAYE-14 (V) Preplanned Produc Improvement Siory Ciomirol Dta [lsi 1984
| Prescatalion Slidis) i P o
E AMAYE-14 (V) Progeamimeds Referencs Manual, Volsme 1, Gencal Cospiiling Deveiis Al 1395
Reélenenoe Dalianslioa linlgsnal cnal !
] AMSAYE-14 0V Progeammess Relfermos Manual, Vilanig Compuling Dhveiis Aoril 1995
InpatChutpul © hannel Infonsation Imerniationgl iR
L1} AMAYE-14 (V) Programmens Refevence Manigl, Vobames 3 Compiiling Deveees Aqill 1995
Instnection Exeeution Timing Infomatios Inteenationg thi by .
11 AMSAYE-14 (%) Simedard Aishome Compuier Set Tesi Requiremenis | Computing Devices Wovembser
Documeni For YHSIC Progessyr Module with Appeadis 4 B C D1 |migrnationa | 3
12 ARSAY K=14d [V | havy Bmandard Airborne Uompseer | echrecsl Compuiing Deveces
Linksasin
Desgriplion InlgEnahcna
I3 VHSIC Prog i S oaciBcaiion Tyos B Clois Compuling Dhveiis Aol 1992
veram Equipment §pecificatic P aain I mcmations i]
i i i LAVl
! YW Mherocods Languaps Boloreics Manual Lompuiing Deveees July 152
- |miEsnia onel
(K3 i N g . Cospiiling Deveiis lunad Release
Schematic Dugram VIFLISE B-Side Iationsd Diciober 1993
16 Software Design Speaficaiion for the Extended Memory Rench eneral [yrnamics R—
CENR | Fiemmang L padale om the YVHSIC Processor Modulg (VIS0 Informualion Sy alisis pnt
17 It e Dimign Spedi eatos CPLUHEPVEIOPSCPYPA 16 Ciimgal eymamines
gmpuler Cont : Mgl 19K
Compulor Corgrod Ulsss (OO |||I'|'\-|||HI||'\-|| Ayl pms
1% . N Ueneval [ryramics Initial Release
r r ¥ RIS 5 i TS 5
Schemanc Daagram VHSM Frocessor Moduse VPR P —— -
14 Progranmineis Referense Cand Ml Dhsinved | Divegl s Jamaaiy |1
0 Absolute Sourge-{Nyes Listing e N1 FGRED FrA-18 Mission AW -AD China Seplinmlien
Lompuier Upersniosal I'lizht Mrogrm Loke LA [SEH
=l FIA-TBL Mo Compater AYK-14 Instnictsos Usege :i.':::.:u‘ - June 15K
o AMSAYE-14 (VIOCL Emulator VAN aeed PO User Mlanpal NAWC-AD Patuwent | o 100s
Faver, B[N .
&

Ihscreps Semal Moduile (D5,) Treresg, U ourse

Woval Aviation Depol,
NMotolk, WA

Linksoswn

65

THISPAGE INTENTIONALLY LEFT BLANK

66

APPENDI X B:

DIRECT AND POLLED EVENTS

Event Class

Discrete

Event Description

Event Class O

Discrete O
Discrete 1
Discrete 2
Discrete 3
Discrete 4
Discrete 5
Discrete 6
Discrete 7

Event Class 1

Discrete O
Discrete 1
Discrete 2
Discrete 3
Discrete 4
Discrete 5
Discrete 6
Discrete 7

Event Class 2

Discrete O
Discrete 1
Discrete 2
Discrete 3
Discrete 4
Discrete 5
Discrete 6
Discrete 7

Event Class 3

Discrete O
Discrete 1
Discrete 2
Discrete 3
Discrete 4
Discrete 5
Discrete 6
Discrete 7

Internal power down/power fail
External power down

Internal PCM thermal/thermal fault
External PCM thermal

MBUS timeout

XBUS timeout

Embedded power fail

Even channel RTCMD
Even channel ODR
Even channel IDR

Odd channel RTCMD
Odd channel ODR
Odd channel IDR

Even channel UCR/restart
Even channel EIR

Even channel ODR

Even channel IDR

Odd channel UCR

Odd channel EIR

Odd channel ODR

Odd channel IDR

Microevent 1/stop

Watchdog timer

File multiple bit error

PA event/SIOP & ERI

CCU event

PB event/SYNC & IOCR & ElI
External interrupt event 2
External Stop/step/run

67

Event Class
Discrete

Event Description

Event Class 4
Discrete O
Discrete 1
Discrete 2
Discrete 3
Discrete 4
Discrete 5
Discrete 6
Discrete 7

Event Class 5
Discrete O
Discrete 1
Discrete 2
Discrete 3
Discrete 4
Discrete 5
Discrete 6
Discrete 7

Event Class 6
Discrete O
Discrete 1
Discrete 2
Discrete 3
Discrete 4
Discrete 5
Discrete 6
Discrete 7

Event Class 7
Discrete O
Discrete 1
Discrete 2
Discrete 3
Discrete 4
Discrete 5
Discrete 6
Discrete 7

Even channel MAP
Even channel OCR
Even channel ICR
Even channel EIR
Odd channel MAP
Odd channel OCR
Odd channel ICR
Odd channel EIR

Recoverable error

Operand memory error

Instruction memory error or MCM parity fault
Hardware fault warning

External interrupt event 3

Microevent O

Hardware fault (BIT error)

Module overtemp event

Memory protect fault
RTC lower overflow
Monitor clock overflow
System reset

Initial program load
External event 0/1P1 O
External event 1API 1

Even channel ERI or microevent 2
Even channel Ell

Even channel OCI

Even channel ICI

Odd channel ERI

Odd channel Ell

Odd channel OCI

Odd channel ICI

68

APPENDIX C: I/O INSTRUCTIONS

COMMAND CHAIN INSTRUCTIONS

Mnemonic Hex Instruction

ACR EOCO0O CHANNEL CONTROL Master clear al channels
ACR4 E004 CHANNEL CONTROL Enable externa 4 interrupts, all channels
CCRO/4
ACR5 EOCO05 CHANNEL CONTROL Disable externd interrupts, all channels
CCRO,5
ACRG6 EO06 CHANNEL CONTROL Enableclass |l interrupts, priorities 2,3,4
CCRO,6
ACR6 EO a6 CHANNEL CONTROL Enableclass |11 interrupts, priorities 2,3,4
CCRa,6 for channels with priority less than channel a
ACR7 EOQCO07 CHANNEL CONTROL Disableclass Il interrupts, priorities 2,3,4
CCRO,7
ACR7 EO a7 CHANNEL CONTROL Disableclass Il interrupts, priorities 2,3,4
CCRa,7 for channels with priority less than channel a
CCR3a,12 EOaC CHANNEL CONTROL Enable channel aexternal interrupts
CCRa,13 EOaD CHANNEL CONTROL Disable channel aexterna interrupts
CCRa,14 EOaE CHANNEL CONTROL Enable channel a,class |1, priorities 2,3,4
CCRa,15 EOaF CHANNEL CONTROL Disable channel &, class I1I; priorities 2,3,4
CCRa,8 EOa8 CHANNEL CONTROL Master clear channel a

69

COMMAND INSTRUCTIONS

Mnemonic Hex Instruction
ICKay E6a2 INITIATE INPUT CHAIN Y ->Channe
a Chain Pointer; initiate input chain
OCKay E6 a6 INITIATE OUTPUT CHAIN Y->Channel
a Chain Pointer; initiate output chain
TOCKay,m E6aF INITIATEOUTPUT CHAINY is
chain table pointer; initiate tabular output chain
RIMay,m EB am READ CONTROL MEMORY Channel
a(CMm)->Y
SICRam F8am SET AND CLEAR DISCRETES Set
or clear channel a discrete function
SIOPm,y FC-m START SLAVE m:0->EIOP/slave
VPM/dave SCP SR1:12,Y ->EIOP/dave VPM/
dave SCPPif m=0or 1
SSTay,m FBam STORE STATUS Channel a status
bits per m->Y
WIMay,m E7am WRITE CONTROL MEMORY (Y)->
Channel aCMm
XIMay,m FEam EXCHANGE CONTROL MEMORY Channel

a(CMm)->Y;(Y +1)->Channel aCMm
rf m=2 or 6. If m#20r6,1/0O instruction fault.

70

COMMAND CHAIN INSTRUCTIONS

Mnemonic Hex Instruction
BJm,y FD-m BIT JUMPY->CAPif(CM3):m=1
CSIRm F8Om SERIAL INTERFACE CONTROL Set
or clear discrete function
CSSTy,m FB-m STORE STATUS Status bits per m->Y
HCR ECO0O0 HALT CHAIN Halt chaining, aeven
IMa,y,m E2am INITIATE MESSAGE Y->CMm;
initiate message activity
I0ay E3a0 10 FUNCTION a(Y<Y+1)->BCW,BAP;
initiate transfer
IPR EC10 INTERRUPT PROCESSOR Generate
chain interrupt, aodd
LCM m,y E70m LOAD CONTROL MEMORY (Y)->CMm
LCMKm,y E60m LOAD CONTROL MEMORY Y->CMm
SCMm,y EBOm STORE CONTROL MEMORY (CMm)->Y
SFy EF10 SET FLAG 1->y:15,14, aodd
SFSCm FAOm SEARCH FOR SYNC Perform
function(s) assigned to m-bits
SIMCay F2a0 SERIAL JUMP ON MET CONDITION Y->CAP
XCMm,y FE-m EXCHANGE CONTROL MEMORY (CMm)->Y;;
(Y+1)->CMm
ZFy EF0O0 ZERO FLAG 0->Y:15,14, aeven

71

THISPAGE INTENTIONALY LEFT BLANK

72

APPENDI X D: XBUS COMMAND WORDS

The first section of Appendix D describes the processor to 1/0O channel interaction on the
XBUS (1/0 Bus) for various /O software instructions. Each software instruction is listed
along with the associated XBUS activity directed to the 1/O channel.

Notes:

1. For 1/0 channels, bits 17-23 of the IOBUS are defined only during the CONTROL
portion of the cycle. Bit 16 is as shown in the table during the CONTROL time, and is
driven to alogic 0 by the 1/0 module during the DATA portion of the IOBUS cycle

2. For 1/0 channels, IOBUS bit 18 isalways alogic 0. It must be decoded.

3. For 1/0 channels, IOBUS bit 19 is a logic O for all non-"BROADCAST"
operations.

4, On the IOBUS, complement polarity is used so that alogical 1 isrepresented by a
ground potential.

5. The values shown in this table are logic true values.

6. An"X" inthe value for XC or XO implies that those bits are indeterminate and the
1/0 hardware shall not decode them.

7. The hardware bit-numbering scheme is used in this table (bit 0 = MSB).

8. The comment "Accept data word (XO)" simply implies that the 1/0 channel must
respond with X-Acknowledge and X-Resume signals. The datais not necessarily used.

0. The vaue (yyyy) refers to the contents of the memory location whose address is
yyyy.

10. The"Priority Number" is:
1. The priority number of the chain program being executed in the case of a
chain command, or
2. The priority number of the channel whose logical number is"a" in the case of
acommand cell.

11. A "command cell" refers to the locations accessed by the IOCR instruction (60,
61, 62, and 63 hex).

12. For 1/0 channels, IOBUS bits 19-23 will be logical 1's for broadcast operations
and these must be decoded before responding. It is not sufficient to ssmply decode bit 19
to determine if a broadcast operation is occurring. No X-Acknowledge or X-Resume
signals shall be generated by the 1/0 for broadcast operations.

73

13. Bit 0 (MSB) of all software instructions sent to the 1/0 module, which are
executed from an input chain program, will be forced to a logic 0 value." For example:
The FBxX (Store Status) instruction would be received by the 1/0 module as 7Bxx if the
instruction was executed out of an input chain program.

74

*paJouby
3q Aew X jo 2| pue 00 S3tg 310N

.Amun_xw
3 3t) doig-diis (9(qeud) 313 ay3 Jeafd

*paJoublt
ag Aew 9x J0 Z| pue 00 SHg :ILON:

: *(sistxd
u_m_v an_u-a__& ~¢_9~=m.m_umgu“mm

*paJouby
aq Aew 9x jo Z| pue g0 S3t@ :3JION

*(3ISLx0 8sayy 31)

449 ybnoayy (g uotyeso| Auowow
(043u02) g9 jo abewt auempaey jauueyd
0/1 3y} J4ead J0U 0Q -aJempJey |auueyod
0/1 9y} JO Jea|d J3jsew ¢ WI0JUdd

SNOILIY JHYMOYYH

SONVWWOI 0/1 3UVML40S — ALIAILOV

v

v

v

,xxxx
uteyd Indut wous 31 G X 09

uieyd ndino

J0 [[37 pueuwod wods Jt G X 03

(1.4

i

4 = £2-0¢ 118

uteyos 3ndino

40 |32 puewwod wouj Jt b X 03

——) -

f

"

AXXX
uteyd Induy wouay St p X 09

6L 19
8l
L e
91 19

0X

X

4 = €2-0Z 18

uieys ndino

JO {199 puewwod woaj 4L 0 X 03

—_— - -~

XXXX
uteyd> Indut wouay J1 O X 09

6L g
8l 18
L g
91 8§

0X

X

4 = €2-02 14

ALIATLDV Sngol

]

i

6L 14

8t g
Lt 18
9l Md

SNE0T TINNVHD 0/1 04 HOSSId0Ud

v

G0 427

6003 S YoV
y‘0 439

003 b YoV
0‘0 429

0003 0 ¥V
3009 X3 IINOWINW

ONVIWWOD JYYML40S

75

, *pasoubiL

8q Aew JX jo Z| pue g0 s}
“SIUBAD SsP

ut Juds ag 03 191 ‘190 ‘113
mog|e pinoys dopy-difs Lised 111
sse(d, ay3 Buiigeua 4o Bugrzas :3LON
*doyy~dirs ASeH 111 SS1D. 3Y3} 39S
.onv pJom elep aamuu<

* paJoub

3q Aew JX JO Z| pue Q0 SItE :ILON

“(sIsLxd
3 jt) dogy-di|y (aiqeud) 313 ay3 Jea()
*(0X) paom ejep 1dasoy

. *padoubt

aq Aew 9X Jo g{ pue 0o S3td :3IION

s(sistxe
1t 1) doyy-dijs (91qeua) 313 ayy 3as
*(0X) paom eiep 3daddy

SNOT LIV JHYMOUVH

XXXX

uteyd Indul wosy Jt 3 X 09
uireys indino

40 133 puetiwod woJs JI 3 X 03

Il

oX

)4

Jaquny K3L401ad = £2-02 14

—e—O
i

XXXX

uteyd ndut wouy 4t @ X 09
uteyd indino

4o |92 puewwod wouy St @ X 03

= 6l 118
8L 14
Ll 18
91 8

0X

i

Jaquny A3iaotad = £2-02 118

"

—_—e—no
1

XXXX

uteyd ndug woay St 3 X 09
uteys indino

J40 | 199 pueumod wods it 9 X 03

= 6l 18
8t 18
AL
91 18

0X

)¢

Jaquny Ajtaotad = £2-02 114

]

H

L]

0
0
L
l

ALIATLIV sneol

61 18
8l 118
JARESY:
9L 8

VY 3e03 pL‘e 439
v aeo3 £1e 439
v Je03 212 439

3009 XaM I INOWINW

QONVWWOD J4VML40S

(°3u03) SANVWWOD 0/1 FUYMLH0S — ALIAILOV SAEOI TINNVHD 0/1 0L HOSS3II0Ud
(°3u0J) SONVWWOI 0/1 JYYML40S ~ ALIAILOV SNAOI TINNVHO O/I 0L $0SS3J0ud

76

wg93 os|e 23S SJION

“JUIAS YI0 Y3 39S
*(0X) pdom eqep jdeday v

wp93 osje 33 :JION

*JUIAD YI1 dY1 33S
*(0X) paom eiep 3deday vy

*padoubt aq Aew Jx Jo 2| pue Qp SItg

*18s

st dojy-di|s ay3 [LIUN SJUIAD SE

uL juas Buyaq wouay wayy Juandud

pLnoys pue ‘juasauad aue Aoy}

3 ‘sjuand 191 ‘190 ‘113 By

doap pinoys doj-dils ysew 111
sse(d. Y3 Butqqesip Jo Butaed|s :3JL0N

-dos-di(§ JAS®W 111 SSB|D. 943 Jea|)
“(0x) paom ejep 3dasay v

SNOILIY JuVMOUYH

ARAR = ox

9 x 93 = JX

JaqunN Ajtaotad = £2-02 114
= 6l 118
8L 19
TAR XY
91 38

0
0
l
L

KRRK = ox

¢ x93 = JX

JoqunN Ajtuotad = €2-02 14
= 6L 39
8L 8
Lt 18
9l 18

———0
i

XXXX
ureyd ndut wouas Jt 4 X 09
ureyo indino

J40 | {90 pueuod wouj JL 4 X 03 = IX
Joaqunn Ajtaotad = €2-02 114

= 6l 18
8l 14
L g
9l 18

14

0
0
i
l

ALIALLOV Sngol

vV

(°3u0D) SONVWWOD 0/1 JYVMLIJ0S — ALIAILOV SNEOI T3NNVHO O/1 OL zcmwwwczm

RKAK
9e93

RRRK
FAS'E]

4e03

3000 X3H

(1
puetwod

wo.4)
K*e %0

(1190
pueuwo

wouj)
A'e ¥91

SL‘e Y1)

JINOWINW

ONVWWOD 3HYM140S

77

99S) U dwl

oM snels Ayl

wo jey3 3dadxa .
Je{nagided ayy paom snyels

= IX
pauluialadp aue wx g4 = I
13Y3 pue SpJoM JaqunN A3taotad = €2-02 118
UOLILULIOP BYL :ILON . 0 =6l 318 (1190
0 =9l 29 pueuod
° ullthy 0 =Ll 9 RRAKR EOLu:
WOM SNIRIS Y3 uandy v L =9l 18 v ureg4 w'k‘e 1SS
eyd Je|natjaed XXXX = OX
- Rq pautuiaiap wx g4 = IX
I} 933JISLP IYL :ILON JaquinN Ajtuaotdd = £2-07 119
0 =6l 38 (1189
“ulth, Aq 0= 8L 18 pueuwod
DSLP 8y} 4e3]I JO 13 1 =Ll 14 wou4)
(0x) puom ejep 3daday -y L=91L 38 'V wegy w'e ¥o1s
(1199
pueunod
KRAR wou4)
WY K11A1700 SnEOI ON °V ureg3 w'he Wiy
K31aL30e sngol ou 3513
(KRAK) = ox
wx [3=09X
JoqunN Ajtaotad = £2-02 34
0 =60 38
0 =81 14 (1192
I = L1 8 pueuOd
‘wQ93 9PO) XIH 404 SIIOU 39S L =91 e KRAR wou)
-(0X) pJom eiep 3daddy ‘v oy} 4 ybnouyr g =w JT v . ure(3 w'ke Yim
SNOT LIV JUVMAUVH ALIALLOV SN0l 3009 X3IH JINOWINW

ONVWWOD JdYMLd0S

("1v0)) SANVWWOI 0/1 JUVMLI0S — ALIATLIV SNEOI TINNVHO 0/1 OL ¥0SSII0Ud

78

"WeZ3 ST uOL}IR JJeMpJRY dWeS Iy}
ButatB sny3y ‘aX 40 [0 319

Gutaouby pajusweidut aq Aew
uo13ana3suL styr -urebe pasied st
420 Jo ¥II ‘99| dwod S| JIjsueal
usyM -ejep Jajsued] o} pasn

SL Juana ¥ao 4o yar AiieotdAL

+J10N

*yndqno Jo4
400 pue 3ndui J4o4 ¥ar Buisn ‘plary e,
ay1 Aq pat31oads se aajsued) djeiiug

491 doap ‘xegg

‘430 doup ‘xegy =

X I
X 3

“(0X) puaom ejep 3dadsoy vy

*awty swes ay3 e uo BuroB st ndino
ou 4t Auo “*9-t fua9Iu02 OU JO Je
8-W) 40 Sjuajuod ayy yi Aguo yndul
31PLLUL O3 Pasn aq UBD PURIAIOD
SLy3 snyL " (dvg) SWI Aq patjioads
ssaJppe Adowsw utew 9yl JO SIUIIUOD
Y3l yitm papeo| aq [[IA 9-WD

"QPEI ST UOLIP BJEMpURY WS
9y3 Butatb sny3 ‘ox jo [0 3tq
Butaouby pajuswaidwt aq Aew
uotjonagsul styy -uiebe pasies si
420 40 Y¥I1 ‘919{dwod Si JIjsued)
U3yM -elep J4dsuPJ} 0} Pasn

S1 JU3AD YO 40 YOI Af(eatdAy

<110N

“3ndino a0y
Hao pue jndur 404 yar Gutsn ‘piary e,
Y3y Aq patjLoads se uajsuedy dreryiug

“¥91 douap ‘xezg =

430 douap ‘xez3

i

KX It
KX J1

*(0X) paom ejep jdasay g

SNOT LDV JHYMAHVH

XXXX = QX
uteyd jndut wosy JL xegg = Jx
uteys yndino woay Jt Xeg3 = Jx
Jaquny Ajtuotad = €2-0Z g

0 =6t 3189

0 =8l 18

L= Ll 18

L =9t 14

XXXX = OX

uteyd andug woas Jt xeg9 = Jx
uleys ndino wous St xegl = Jx

Jaquny Kjtaotdd = £2-02 118

0
0
l
1

ALIATLIV sngol

6L 19
8L 39
IARRA L
9l 18

(uteyo

RRRR wody)

v oeEld K‘e 01
LYYV ("3u02)

| wez3 w'k‘e Y1
3000 XaH I INOWINW

ONYWWOD JHYMLI0S

(-3u0J) SANVWWOD O/1 IUVMLI0S - ALIATLOV SNEOI T3INNVHD 0/1 OL HOSSIIOUd

79

asn |e1dads 404 poAaISIU

St 8-W 1'Y3 pue 443 ybnouys

9-W) 1uoddns jou s3op 4O1 9y} eyy
‘JaABMOY ‘paudqueawad 3G ISnw 31
‘ubysap

(auueyd aeqnoiyded ay3y Jo spasu ayjy
Kq paviumalap sue AKAA jo abesn
adempdaey ayy pue ,u, jo sanjea
Joy3o ‘|esauab up - |auueyd ayy
404 SdY) Y3 aJe 9-{I pue zZ-W)

-(ze93 99s) UIAI YII 39S ‘7
- (9293 38S) JUIAD IO 335 ‘9
“(0X) ejep

*sureys ndino

pue andut yjoq Juswaidwt 3eyy
stauueyd y3tm puewwod styy Buisn
udYM PIsSLIJIXI aq ISHW 3aed ‘sayy
*9-W) JO 53Uaju0d patepdn Byl yiim
papeo] St g-WJ ‘uieyd indino ue
woJdj pajnIIxa sy puewwod sLyj pue
00xx = ® j1 ‘Alaejiwis -Z-Wo Jo
S3uajuod pajepdn 8yl yjiM papeol st
9-W) ‘uteyd ndul ue woay paInIIXe
SL pueuwod mm:u_v:m 00Xx # e 31

“omty awes

94y} je uo BuroB si suoijoungsejep
40 3ndino ou ji Apuo ‘-9t fuaasuod
OuU JO Jue g-WI JO SIUIIU0OI Ay}

3t Kluo ndul ao0j pasn 3q Aew pgxx
© pue jndino ajei}tut 03 pasn

9q jouued QXX = © snyy ‘- (dve)
S-W) Aq paLjtoads ssaappe Asowdw
utew 9y} JO SIUIIUOD Y1 YItM
papeol siL g-W) ‘00%x ¥ e J1

SNOTLOV JUVMOYVH

<310N

=w 31
=W
1dasay

v

*K31A139® SNEoI ou 353

) *KRRR = ox
{ueyds indut wody St wxgg9 = IX
uteyd ndino woaj J1 wx9j = IxX

Jaquny A1tuolad = €2-02 116
= 61 314
8l 14
L e

9 119
uay: ‘4 ybnoayy g 4o ‘9 ‘z = w JI

i

—— O
H

ALIAILDV Sneol

v

(°3u0)) SANVWWOD O/1 IYYMLH0S — ALIAILIV SNBOT TTINNVHI 0/1 OL ¥0SSII0Ud

(uteyo

KRRR woJj)
wyo3 Kw o
(*3u0))

R‘e 01

3009 XIH JINOWINA

ONVWWOD 3Y¥VML40S

80

g dais o} ob 353

*auop pue

XXXX = OX

(u3Ad sL ®) xej9 = 9x
aaqunN A3L101ad = £2-02 18

0 =61l 14d

0 =81 39

L =11 ne

491 douq : 1 =9 18
“(0X) paom eyep 3dasay v uayy ‘uteyod nduy I1 ‘v 0093 HOH
W K3tAaL300 Sngol on wog3 K‘w Was

*A31AL39% SngoL ou 35|

* (AKAK) = ox
uteys Indut woay jt uxjg =
uieyd ndino wouy ji wx(3 = I9X

Jaquny AyLaotad = £2-02 g

0 =6l 149
0 =8l 14
L =11 189 . (ureys
)93 3po) XaH 40J SuoLIIe duEMpJRY 3AS { =9 18 KKAK wodj)
*(0X) eiep dadoy v . uayy ‘g ybnoayy g = w i v wo/3 K'w un
. 'uQ/3 pue we/3
J0j SJNII0 UOLIIP JUBMPUBRY Bwes Y3
1°Y} 0s pasoubt aq Kew 9x jo [0 1lg
(400 ‘€-v d|qeL 99s) suajsuedy
ejep ndino yiLm pajetososse .
SNOT LIV JHVMOUVH ALIATLIV Sngol 3000 X3IH . JINOW3INW

ONVWWOD J¥VMLH0S

("3u0)) SONVWAOD O/1 JYYMLIOS — ALIAILOV SNEOI TINNVHI 0/1 O1 HOSS3II0Hd

81

“JUSAD [0 djedaudl
"(0X) paom eiep 3dadoy

"judAe)1 djeJaudn
*(0X) paom viep 3dasay

*¥20 doug
*(0x) puaom erep 3dadoy

SNOI LIV JHYMOYVH :

N

VN

v

f3aLzoy

A11a30v

XXXX
(ppo st e) xe)3

ox
X

43qunN A3La0Lad = €2-02 314

i

-_———e o
[}

6l ta
8l 349
i1 39
9t 389

*g doys o3 ob BS[3

*auop pue

XXXX = 0X

(ppo st ®) xe)g = IX

Jaquny A3tsotad = g£2-02 1td

]

DO
L]

6L 1td
8L g
L e
9t 14

usy3 ‘uieys nduy J1

XXXX
(uane st e) xes3

]

0x
X

Jaquny A3Laoldd = £2-02 19

[}

"

ALIALLOV Sn€ol

6L 14
8L 119
il 14
91 18

Snac1 oN

Snao1 oN

(*3U0)) SANVWWOD O/1 JHVMLIOS — ALIATLOV SNEOI TINNVHD 0/1 OL HOSS320Md

RRAR

o4 K 4s
(uteys

FYYYN wo.)

. 0043 K Jz
(ureyo

woJ4)

0153 Ud1

(- 3u02)

U3H

3000 X3aH JINOWIANW

ONVWHOD 3HYMLH0S

82

"ubissp [auueyd 0/1 Jeindgjded
94yl Jo Spaau ayl Aq pauiuuaiap
aue pauwmojaad ag 03 suoL3dungy ayf :JION

“uly Aq patjioods se uoijouny ayl umojdad
“(oX) p4om ejep 3dodoy

‘ubLsop

(auueyd g/1 Je|natided ayy jo

spaau ay3 Aq pauluaap ade g 7 e
J0j Pa3Isel 3q 03 uoLILpuod Jyiy :IION

(“utw LE21BOL = ASW 3!

dunl © op t{im auemMijos ayl) -.e,. Aq
patjLoads wol}Lpuod |auueyd 0/ Y3 uo
Guipuadop 125 J0 paaeald aq o3 Si gSH Yy
*uogjeatdioads Jusudinby waisAsqgns
ndyno/andul - 0012LLYL UL pauljep

Moy ay3 ut (IX) pJoM snjels uaniay

“ule (E2L6OL = 8SW YILM
‘uogjeatjeaads juawdinby woysAsqns
nding/andul - QOtZLEpL Ut pauijep

Jeumoy ay3 ut (IX) pJoy snieys uuniay

SNOTLIV JHVMOUVH

XXX = OX
uteyd indul wouy Ji wxpy =
uieyd ndano wosd JL wxpd = Ix

saqunn AyLaotad = £2-02 114
. 61 18
81 14
Lt 114

U

I

-—_0 o
4]

v

paom snjels

uLeyd induy wodj ji gezt
uteyd yndino wouy L gezd = OX
Joqunn Ajtaorad = £2-0¢ 39

= 6L 14
8L 4
Ll 19
9[4

IX

L]

i

oo Q
]

. paoM snieis
uteys ndul wouj $t 802L
uteyd 3ndino wous Jt goZ4 = IX

Jaquny Aytaotad = £2-0Z 1189
61 1td
8L 14
Ll 1g
91 119

IX

—oQO
u

)

ALTATLIV snaol

91 114

Y

v

(*3u0)) SANVWWOD 0/1 JWYMLJ0S — ALIAILOV SNE0I T3INNVHI O/1 0L ¥0SSII0Yd

(ureya

uodj)

wop4 w 9s4S
oz®

(uteyd

ARRK wou)
oezd K‘e aurs
(uteyd

KRAR wo.a4)
0024 - K*'0 JWeS
3002 X3IH JTNOWINY

ONVWWOD 34YML-H0S

83

“(L y3im payo A 1edtbo) ‘A) uorieso|
Aiowaw Jo SJUdU02 3y} St (xAKAK)
‘w93 9po) XaH 404 I0U 03

Jajay -ubisap [auueyd ueqnorjuaed
9y} jo spasu ayy uo juapuadap

SL pJom eiep SLy3} jo asn ayL

*(0X) paom eyep

“(g-v alqel

99S) JUIA3 Jud Y} 40 PUOM sniels
Y3 3q ISNW PpUOM SNIPES BUO ey}
1daoxa ubLsap auueys aeynaiiaed
9yl 4o spadu ay3 Aq pautuaaiap

aJe ,w, uo 3asuapuadap uLayy pue
SPAOM SNIEIS By} JO SUOLILULIap YL

"W, AqQ paisioads se paom snieis ayy

“uBysop
(duueyd Jaeindijaed ayy jo spaau ayj
Aq pautuualap se Si 93a4aSLp Y|

paijLoads se 331a40S|p Y3 4ea|d
*(0X) paom ejep

SNOILOV JYVMOYVH

<J10N

1dasoy

*310N

uanyay

310N

--E—- hﬁ
J0 319§
1dasoy

v

Y

*K31aL300 Sngol ou 35|
.Aﬁzhﬁzw = 1X

uteyd ndul wouaj i WX99

ugeyd yndino wouy Ji Wxod

n
[*]
>

Jaquny A3taotad = £2-02 39

\,

upeyd nduy

0
0
|
1

L]

6L 38
8L 19
Lt 119
91 18

uay} ‘4 ybnouyy g = w JI

A3taLzay

puop sniels
wouy Ji wxgl
uteyos Indino wouy ji wxgd

]

IX

X

Jaqumy A3tsolad = £2-02 34

—_0 00

XXXX
uteyd ndut wouy L wxgl
uteys 3ndyno wods i wxgd

61 18
8L 8
Ll g
9L 8

1)

]

]

X

Jaquny A3Laotad = £2-02 38

ALIATLOV Snaol

0
0

il

6L 18
8L 18

Lt 38
9L 18

v

)

v

v

(“3u0J) SONVWWOD 0/1 FUVMLI0S ~ ALIAILIV SNEOI TINNVHO O/1 OL HOSS3J04d

KKK
wo34

AKAR
woad

RRRR
wogd

wogd

3002 X3H

(uteys
wodj)
K'w Wox

(uteys

wod4)
R*w rg

(uteyo
Eo;..:
w'k 15S9

(uteyo

wo.4)
w yIsd

JINOWINW

ANVWHOD JUYMLA0S

The second section of Appendix D describes XBUS interaction between the processor
and I/0O module in response to a particular raised event. All events and their associated
XBUS activity are presented

Notes:

1. For 1/0 channels, bits 17-23 of the IOBUS are defined only during the CONTROL
portion of the cycle. Bit 16 is as shown in the table during the CONTROL time, and is
driven to alogic 0 by the 1/0 module during the DATA portion of the IOBUS cycle

2. For 1/0 channels, IOBUS bit 18 isaways alogic 0. It must be decoded.

3. For 1/0 channels, IOBUS bit 19 is a logic O for all non-"BROADCAST"
operations.

4, On the IOBUS, complement polarity is used so that alogical 1 isrepresented by a
ground potential.

5. The values shown in this table are logic true values.

6. An"X" inthe value for XC or XO implies that those bits are indeterminate and the
1/0 hardware shall not decode them.

7. The hardware bit numbering scheme is used in this table (bit 0 = MSB).

8. The comment "Accept data word (XO)" simply implies that the 1/0 channel must
respond with X-Acknowledge and X-Resume signals. The datais not necessarily used.

9 For 1/0 channels, XBUS hits 20-23 contain the priority number of the channel.

10. A “K” represents the priority number of the channel that generated the event.
“K*E” represents the priority number obtained by forcing the LSB of K to a zero.

11. Unless otherwise stated, all XBUS activity occurs for the channel whose event is
being serviced.

12. “BCW*” isbits 04-15 of CM-0 or CM-4

13. “CM-n" is Control Memory word n.

85

00 48| pue (0X) pJom ejep 3deday

‘awLy Sy} e padea|d

SL 31 1243 OS QWD LY Y3tm A snodueyfnwys

pasied aq pinhoys 3L ‘paom ejep 3satj

943 404 pasied aq o3 Burob si yao Ji

0S Y00 ue 03 3suodsad up Juas aq

LM spaom eiep Butuiewas ayL -puaom
elep 3sdij a9yl Si (0X) psom eiep Siyr :JION

"40o Jed[d pue (0x) paom eiep 3dadoy

) *JUIAD
WD 1Y 4ed|d pue (IX) p4oM sNIeIS XOpul UJNIIY

NOI1DYV JHYMOHVH TINNVHD

(p4oM e1eQg) 9-W) JO SIUIIUO)
[x43

X
X
t =11 Hg
0 =91 14
i K31A110v Sngol

*G-HJ Aq paLjtaads ssaappe
Atowaw Utew §0 SJUaU0I YItM g-HI peol

*(dv8) S-W) jo sjuajued o3 | ppy

*G-W) Aq patjidads
‘ssouppe Adowsw utew JO SIUIUOY = QX
Lx43 = X
L =Ll 38
0 =91 ¥4
! , A3LALI2Y SNEOT

*q da3s o3 ob IS[8
fauop Uy} ‘Q = ssauppeqns 4o g = Y/1 31

"pJoM snieis
Xopul 4o Gl-11 SILq S} Ssauppeqng pue
pdop snels xapui Jo 0| 3tq St ¥/L pue
(diV) [-WD JO JU3IUCD By} SL dlV 3uaym
{(ssauppeqns/y/L + dLy) ssauappe Adowaw
ULBW JO SIUSIUOD BY3 YILM (dvE) S-WD peo

pJOM snjels xapul = IX

0%43 = 09X

0=11 N4

1 =91 14

v V' KyiaL3ay sngot

JHVMAYT 4

SISNOASIY INIAT ~ ALIAILIV SNEOI T3INNVHD O/1 OL ¥0SSII0Ud

“J

v

4ao G/1 Loo

awd 1y v/0 100

JWUN AS1a SSv1d
INJA3

86

Je) paoM BYRQ = IX
(X43 = X
"os|e ‘¥al 03 9suodsas SI [x43 :IION 0= [l 34
0 =9 34
Je) pJIOM eleg UUANIAY e (3e¥ duuey)) A1taL3oV spgor ‘e

Gayl ‘ooxx = IX 31 "1

paoM |0J3u0) [duuey) snbrup = IX

px43 = X

0=11 Na

“¥IN Je3L) ; L =91 34

pue (1X) pJoM (ou3juo) [Buuey) anbiun uanjay v K11atrov snaol

;I- J0jediput 119 38§
"G—HJ O SIUIU0D 03 | PPV

*(dve) S-HW2 Aq patjiaads ssaappe sy
e Asowow uiew ut (IX) pdoM eIeQ 3403S

paom eyeq = 1X

%43 = X

0=11 144

0 =9l 19

‘HO1 Jes{d pue (IX) p4oM ejeq uanjay v K311AL30Y Sngol

*G-WJ UL patjidads ssasppe
Alowaw utew jo S3UITU0I YILM g-W9 peol

*(dve) S-WO JO sjuajuod 01 | ppy

NOTLIV JHYMOHVH TINNVHI JUYMIHI L

(*3u0)) SISNOASIY LNIAI - ALIATLIV SNEOI TINNVHO 0/1 OL ¥OSSII0Hd

‘8

4n v/0 oOlLO

— L/e L00

ya1 9/¢ L00

(-1u09)
yao S/1 100

FWVN ASI0 SSYT1)
IN3AT

87

*N puaom ejeq
= ssaJppe Bursn Aiowsw urew peay

I

A paom eieq = IX

X431 = 2X

YOI 0% 8suodsad 9y3 OS|e S{ Zx43 :3LON . 0 =1Ll na
0 =9l 14

A pJdop ejeg uanjay e (1 tauuey)) K11AL39v Sngol

UST ‘poxx

‘e

= IX J1

-29 days o3 ob asj

*auog

‘619 days 03 ob 353

xXXXx = OX

vx43 = JX

0 = xMd8 usym L =Ll 18

YOI 03 asuodsad Y3 os(e St yx43 :ILON B L =9l 38
I(¥ auueys) A3LaLiay sngol

-ejep 3dadoy -4 Usq3 ‘0 = xM09 31

"X [3uuey)
403 (xMOH) 0-W) IuauPUdaQ

L+ X paom
ejeQ = SSaJppe 3y} e KJowaw
ULBW UL ¥ PUOM ©IeQ BJ03S

‘A paop
elRQ = SSaJdppe ay} e Asowaw
ulew Ui Je) pJoM eleq 34031S

X pJopm ejeq = IX

1x43 = 2X

“HG1 01 Jsuodsad ay3 os|e SU (X437 :ILON 0=1l 18
0 =091 14

(% (duueyd) A3LALIOY SNEOI

A paOpM eIeg UUNIIY °Q

6

°J

‘q

NOILJV JHVMOUVH TINNVHO EL L E

("3u0)) SIASNOASIY INIAI — ALIAILOV SNHOI TINNVHI 0/1 OL HOSSII0Hd

¢

an

FHVN

(-1u02)
v/0 oLo

ASIA SSVT1D
INIAT

88

‘413 03 asuodsau Y} os|? sL Gx43

*310N

*Je) PAOM BIEP UUNYIY

"0 = (¥MI8) p-HI udym
#43/400 03 asuodsas ay3 os|e St 6Xd43

*310N

‘ejep 1daoay

"443/7400 03 asuodsau 9y} os|e s1 9xJ3

<410N

“eiep 1daooy

"443/400 03 asuodsaa ayy os|e st 9x43

<310N

‘ejep jdaoay

NOILIV JHYMOUVH TINNVHD

Je) paom eleg = X
Gx43 = 9x
0=1(1 118
0 =91 118
‘e (FeX [3uuey)) A3iAL30y spgor ‘e

uayy ‘gLxx = g

X 51
‘gq doys oa,om HE]

‘auog -

=

"yzq da9ys 03 ob ‘35(3
“auop pue fxxxx = QX
6X43 = X
1= L1 318
L =91 1td
f11at39v sngol
‘6 USY3 ‘0 = (xM8) ¥-WI 3T 6

it

(X "Yy2) J0s (xM78)
QISU J0 SJUd3jU00 m-—a Juswaalag *}

it

‘doys snotaaad Jo syinsay = gx
9x43 = IX
L =Ll 39
0 =90 19
"9 (X L3uuey)) A3iatjov sngol -9

L+ N paopm ejeq
= SS3JUppe YiLm Auowaw uiew peay °p

it

*days snotaaad Jo synsay = ox
9x43 = IX
L= L1 319
0 =91 114
"9 (32X {uueyg) A3LAt1ay spgor o

FHYMAYT

(*3u0J) SISNOISIY INIAI - ALIAILOV SNEOI TINNVHD 0/1 OL HOSSIIOUd

yon

AWYN

(-3u00)
/0 oo

ASIAQ SSV1)
IN3AT

89

"pPJOM |04}U0)
Lauueyy snbtun jo [-p siiq
Aq patjtoads uoiieaol WJ peay

uayy ‘giuwx = Ix

e

3

-gg days 03 ob ‘@S]

*auoQ

(X "yo) 8-Wl
03Ul eleRp 3y} peo| pue N pJdoM
ejeQ = sSaJppe e Asowew ulew

peas ‘(dvd) S = pJop |o43ua)
(auuey) anbiun jo (-p sILq JI

M PJOM ©3Rq YILtM (X "Y) J0j)
-pJop |043u0) 3uuey) anbtun jo
L-¥ s3iq Aq parjidads W) peol

A paom eIRq = IX

£X43 = X

‘401 03 asuodsaa a3y} os(e S| (X4 :ILON 0=1(l 18
0 =91 ¥4

(X [auueyd) A3LAL1dvV Sngol

"% pJOoM ejeq uaniay. ‘e

uayl ‘plux = Ix

]

—

31

va days o3 ob ‘*asy

*auog 9
(% Joquny Ayruotad J0j |-
"ON "Yy) 1€31B0T + 0800) = ssauppe
Kdowaw urew e Je) pUoM eleq 3403 °§
NOILIV JHYMAHVH TINNVHI EL L E

(°3u03) SISNOJSIY INIAI ~ ALIALILOV SNEOI IINNVHO O/1 0L HOSSII0Hd

yon

INVN

(*3u09)
v/0 ol0

ASIO SSV1D
IN3A3

0

“HGI 03 asuodsaJ 3y} os(e St (X4 :JLON

(IX) pJomM Ssouppy uanjay ‘e

*M01 03 asuodsad dy3 os|e St [X43 310N

(1X) pJaoM elRQ UIMAY °q

“¥QI 03 dsuodsad Iy} os|e St [X43 :FION

(IX) pJOM SS3UppY udniay “®

“H00 03 asuodsaua ayy os{e St 9X43 :JION
“ejep jdeday - q

NOI LIV JYVYMOHVH TINNVHD

n

pAOM SS2UpPY = IX
{x43 = 2%

0= 1Ll 14

0= 91 34
A31aL39y sndol

1

usyl ‘pgxx =1
“19 dois o3 of *
- auog

*PAOM SSBUPPY = SSaJppe
3o AUoWSwW Ulew UL PAOM BlR(3U03S

L]

pJaop e3eq = IX
L¥43 = 2X
0=11 14d
0=91 ¥4
A31AL30v sngol

]

piom ssauppy = IX
(%43 = X
0=1(1 ng
0 =91 189

A3taLioy sngot

uayy ‘gyxx = |

‘e

3
3

X
EH]

)

‘e

X 31

‘9g days o3 of ‘353

*guog

*do3s snotaaad wouy eieg = QX
9x43 = JX

1 =11 14

0 =91 18

A31a130v Sneol

"2

q

JUVIMAN L

(73u03) SISNOISIY INIAT — ALIATLIV SNSOI TINNVHI O/1 0L HOSSID0Hd

Hon

FHYN

("1u02)
v/0 olo

ASIT SSYTD
IN3A3

91

‘401 03 asuodsau 9y} os|e st /x43 310N

(IX) pJUOM JUBWBJIUL UINIBY

‘HOI 03 3suodsaa Iy} OS|e SL (X437 IILON

(1X) paoM SSauppy uaniay

4o 03 ssuodsau 3yl OS|e SL 9X43 :ILION

“ejep 3dasay

NOILOV JHVMOUVH TINNVHD

(°3U02) SISNOJSIY INIAI - ALIAILIV Sng

"gjeuiuulaput ade s3pnsay

*68 do3s 03 ob ‘as[3

cauoq

*pJoM ssauppy =
Ssadppe Asowal ulew ui 3| Nsad ayy
8403s pue dais snotAsud 9y} uiouy

lep ay3 03 pJom JuwaLOU] ppy

*paOM SSauppy
= §$saJppe 3¢ Auowaw ulew peay

paop JuswWBUAUT = IX

(x43 = X

0 =1L N8

0 =91 18§

q A11A130v sneol

i

paoM SS3UPPY = IX
1x43 = 92X
0=11 18
0 =91 38
‘e A31A139Y SnBOI

3y} ‘pgxx = IX

‘e

31

-gg days o3 ob ‘3

“auoq

*days snotasud ut
Kiowaw utew woudj pead eieg = gx
9X43 = IX
L = L1l 389
0 =91 14
) A311A119v snaol

PJOM SS3uppY
, = SS3Jppe je AJowaw uiew peay

HE

P

q

JUYMAYI 4

TINNVHD 0/1 0L H0SSII0Ud

6

yon

JWYN

(" 3u02)
v/0 oLo

ASIa SSVN)
INJA3

92

.Nw dais o3 ob ‘3s5]

*q dajs 03 0y

*da3ys snotasad uL pead ejeg = gx

9x43 = IX
L g
91 4
(¥ 13uueyd) A3tatiov sngol

l
“HOO 4ed|) 0
“pJaom ejep jdeday p

“S-W) 30 SJua0d
= ssauappe je AJowaw uiew peay

" (dva)
S-W) 30 Ssjuajuod 03 | ppy

(paoM ejeq)
(3 "Y2) g-WO jo sjuau0) = QX
9x43 = IX
L =Ll g
. 0 =91 119
ugc:nauvuamuu<.m Auox_mzzngu,»am>m~u<m=mo_

1]

i

.
Q

‘q

‘e

syl ‘g = WL J1 "y

(M28) ¥-WD 30 [0 pue 00 SILE = Wi

(*oN (duuey) (edatboy + 0goo) = ssasppe je
Asowaw upew ug paom 3dnUJIdU] Y3 3403S

*padtsap paop ydnaadjul = 1y

J1 dwLY Styy 3@ paued|d aq Aew 313 :310N Gx43 = IX
0=11 39

“¥13 Jeal) 0 =9 38

‘paoM 1dNAAIIUL uanldy -y K11A139v sndol

NOILOV JUVMOYVH TINNVHD EL 0 E

("3u03) SISNOJSIY IN3AT — ALIALILOV SNEOT TINNVHD O/1 OL HOSSIIONd

Y

*J10N

v

Hao 9/2 oLo

L) E| S/l 010

E ASIG SSY1)
IN3AI

93

‘400 Jed|)
paomM eieq 3dasoy

v

"400 Jeay)
‘paomM eiEp 3d9doy

NOILIV JUYMOUVH TINNVHO

“pv da1s 03 06 353

*duop a5|a

‘g doys 03 ob UAYY ‘g = xMI9 IF1
*¥MI9 JuswRLIag 3
L =g 1318 °q

"paL(1j-043z ‘paijiasnf
=3yb6ta ‘a3hq jueagrubrs 3sow
(¥ "Yd) g-W) jo sjuajuoy = QX
9x43 = JIX
L = L1 24
0 =91 118
e (% Lauueyy) A3Latiov sndor e

un

—prttmn.

U3y} ‘0 =g pue | = w1 J1

" (M8)
W3 J0 m—.lﬁc WH_.Q mm wMI9n
*(M08) v-WI Jo €0 11Q SL .8. :ILON

"¢y dais 03 ob ‘IS|3

‘g dais 03 on °g

(X °"Yd) €I jo sjudsjuo) = QX
9xd43 = JX
L =Ll 14
0 =9 34
-p (3 [duueys) A3LALIOV Sngol e

USYY ‘2 40 0 = WL 31

JHvMuY LA

(*3u03) SISNOISIY INIAT - ALIAILIV SNEOI TINNVHD O/1 OL HOSSII0Ud

(~ju02)
Hao 9/2 oto

JHVN NSIQ SSV1)
JLELE]

94

*(M28) 0-WD JO S1-¥O SILG St ¥MOE

(M28) 0-WI Jo £0 1t8 = @
. (% "ya)
(MJ9) 0-WJ 30 0 PU® 00 S3L8 = WL >SILON i} L/e 010
" (e3eq)

g9-W) ul ejep ayj3 auols pue (dvd) G-WI
JO SJUIU0D = sSauppe je AJowaw ulew peay

*3 dais o3 of ‘*asi3
{auop pue

XXXX

o 6%43 =

L =Ll 19

(19 J1) YO0 Jea|d L =9l 39
"¥20 135 K311A139Y S80I

(0X) pdoM ®ieqQ 3daday °q uay3 ‘o = xMog J1

0X
X

*(xM29) b-UWI 3O SIUIIU0D JUAWBULIAQ

*(% "Y2)
(dvdl) S-W) JO SIUIIUOD JUIWIAIUF

g dajs o3 ob ‘a5

*g da3s 01 o6 pue o = g 3as

. * *paj|ti-oaaz
‘93Aq jueatyubis yseay

(X "Yya) 8-WI Jo sjuauol = QX

9X43 = JX

L=1 18

“400 Jest) 0 =91 349

‘pdom eieq 3dedoy e (¥ 13uueyd) A31AL30V SnEOT

‘q

‘e

uayy ‘L =g pue | = =+ 31

NOILIV JHYMOUVH TINNVHI ELL Ot E

(*3u0d) SISNO4SIY INIAT ~ ALTIAILIV SNEOI TINNVHD O/1 Of HOSS3IIOHd

3

(3u00)
yao 9/2 oto

JWvN ASIQ SSY1D
INIAT

95

“HQI 4e3|)
*(IX) paom ejeq uaniay

‘H01 aea)
“(IX) pdoM eeg uaniay

NOILIV JHYMOUVH TINNVHO

*3 d91s 01 ob s3]

‘g doys 03 oy °q
*g dais uL pauieiqo
elep 3y} ajlam L(dvd) [-WI JO
SIUaIU03 = sSauppe je Alowsw ujew up e
U3y ‘g 40 Z = WL JT
‘q days o1 ob 35|89
‘W da3s 03 0B USYF 0 = WL I
paopM eieg = IX
%43 = X
0= Ll 14
0 =9l 14
-g (X "yYy3) A1taL3av sngol

‘g days o3 ob as(3

*g dajs 03 oy
p| _ngmcp = (dv8) L-WJ juswaudu]
*¥ Lauuey) doy (d4va) 1-WD JO

SIUIUO) = Ssadppe e Auowow uLew uy
da1s snotaaud wouas puaoM eieg au0ls

i

paom ejeq = IX

%43 = 9%

0 =11 u8

0 =9t 38

e (Jex |3uueyd) A3LAL10Y SNEOTL

i

e

usyl ‘g = Wi

FHVMWNT A

(3u02) SIASNOISIY INIAI — ALIAILOV SAEOI TINNVHD 0/1 OL HOSSII0Hd

h-J

‘e

I

‘a

)

. Hai

JWUN

(-3u09)
/e ol0

ASIa Ssv1d
IN3AT

96

"3uop. ‘asio

XXXX = QX
\ovXd43 = 9
L =11 ng
Y01 Jeay) 1 =91 g
431 189S fA1iat3oy sngog -
"(0X) paom eyeq 9desoy - UsgT ‘0 = yMo8 3T 1

"(xM08) 0-W) Juoweudag -y
"(dvl) 1-WD juawauou] -p
‘g days 03 ob 35(3
'ndays 03 oy <2

' 0=413s -

8

\

"(dve) L-W) 30 sjuajuod = ssauppe e
Atowsw utew uy | a3q 03 g days ut

pauleiqo eiep ayr o gsy g ayy ajtam ‘e

e —

Uy ‘p =g pue | =yt JT -4
°4 doys 03 ob 353
‘Hdays 0y op -0
L =919 -q
“(dvE) L-W) J0 sjuajuon = ssadppe e
Adowaw Utew ut g 33Aq 03 g days ut
Paulelqo elep ay1 jo gsy g sy} artuM e
(*3u02)
usyi ‘o =@ pue | =W 31 '3 i) L/ olo
NOILDV JMVMOMYH TINNYHD JUYMUHT 4 JWYN Asia ssvid
IN3A3

~ (*3u0)) S3ISNOdSIY INIAT - ALIATIIOV SN0I T3NNVHD 0/1 04 ¥0SS3J04d

97

‘Z-V 21qe1 99§ -UOLIINUISUL ULBYD By} uo spuadsg @

“dyd Jeal) (°pasn st

wdyds Buisoquiu-31q aJemM1jos ayl eyl ajon)
‘uoLyedtjioads juswdinbl woisAsqns ynding/andug
~ 00LZLLpL IUsWNIOp Ul pagGLaaIsap se jeuol

Y3 IARY ||PYS PUOM SLYL “PIOM SNILIS UUNIBY

NOTLIV JHYMOHVH TINNVHI

Y

*(dvd) Z-W) juswauoul

. *(dv2)

Z-W) JO SIUdU0I = SSauppe e Auowaw
ULeW WOJ) UOLIONJISUL UR JO @SW 9| peay
"UoLIINUSUL ULRYD 3Y3 andaxzy

*q dais 03 ob 3s(3

*q dajs o1 o6 pue g-yy JuawdUIIU] "7

*(dvd)

9-W) JO SIUaU0I = ssauppe e Adowaw
Ulew woaj uoLidndisul jo gS71 91 peay |

U3Y7 " ‘U0L3ONIISUL pUOM-Z JT
“(dvd) 9-W) juswaUduf

*(dv2)
9-1J 30 SIUIUOI = ssauppe e Auowaw
ulew woJdj UOLIONJRSUL ue JO gSW 9| peay

.?mi_:z. f1La0L4d pue Jaqunn
[auueyg eorboy usamiaq asuapuodsaduo))
*A1ju3 dvl @jedauan

paoy snjers = IX
8x43 = X

0 =11 39

1 =91 319
K3tat3ov snaol

EL L L E

("3u0)) SISNOJSIY INIAI — ALIAILOV SNEOI TINNVHO O/1 OL ¥0SSIJ0Hd

41

430

dvid

EL

9/¢ 001
741 001
v/0 001
ASIO SSYTD
IN3AD

98

v

-paJysap
JL BuL} SLY3 3o pauea|d aq Aew 313 :ILON

“H13 Jea|)
*(1X) paoyM 3dnaadju] uaniay

age} 335 "UOL1INIISUL uleyd uo juapuadag

NOTLIV FHYMOUYH TINNVHD

v

‘MO|3q paqLaasap se
St aodejuajul sSNEOI 8yl e [auueyd ¢/1
ayy Aq usas se 3[nsaa ayy ‘asea Aue uj

*3dnaaajul
111 Sse|d 8y} sa|puey ndd ay3 ‘dol ov
St 843yl 1 -dnuaaajul 111 sse{) ayy
sa|puey 4ol 9yy ‘aossazoud e se Guypjoe
st dol 343 J1 °ndd Yy o} passed
S 3dnuaajul ‘111 Sse(d ayj ‘J4a||043u0d
e se Bupjoe wayshs ayy ul st 4oi ue JI

- (fenuey a0ualLa4eYy S,Jaureaboad 1S
uoLtIoNAIsSuUl pi-NAV/NV — 00022ipL JO 6

uoL399s 99S) -3dnausjul II1 SSe|J ademM
~3J0S ® UL 3|NS3J SIUBAA ||| SSe|D ||V

"oN (auuey) [eaLbol + 0800 = SsaJppe
je Auowaw urew ut psoy 3dnuJajul 3.403S

%

paog jdnaaazug
ax43

0=1I1 M8

I =9 389
A11AL19y snEOT

IX
X

*UOLIINJISUL ULPYD 3y} 3INIax3
*U0L}INAISUL JO GSH Jeal)

*q dags 03 o6 BS|

*g dais 03 of pue g-1§ juawauouy -

o~

*(dv2)

Z-WJ3 40 SIUU0I = ssauappe je AsowRw
uLew WO UOLIINAISUL 4O AST 91 pedy |
[TETTE) .powuuzgumcm paom-2 31

el E

(-3u0)) SASNOJSIY INIAT — ALIATLOV SAEOI TINNVHO 0/1 OL ¥OSSII0Ud

*310N

v

y13 L/e oot

{ - 1u02)
Y1 9/2 oot

JWYN ASIA SSY1)

IN3AT

99

THISPAGE INTENTIONALLY LEFT BLANK

100

APPENDIX E: VHDL SOURCE CODE

Hirear chy Of Souce Code

Level | Level Il Level 111
X kg.vhd
Sdramcent.vhd SPeRGY
Odd_parity.vhd
Mbus_controller.vhd Grant_logic.vhd
Xs pckg.vhd
Adapter_top.vhd X_grant_logic.vhd
Xbus_controller.vhd Xs pckg.vhd
Add_select.vhd
Xs_pckg.vhd
evtfsm.vhd

101

Memory Arbitrator <Mem_Arbitrator.vhdl>

Project: AYK-14 VHSIC Processor Module Hardware Emulator

Component: Memory Use Arbitrator

Description: Sate Machine which provides a rotating access scheme to
provide access to the on chip memory to all users,
specifically the Processor, the Xbus, and the Mbus.

Author: LT Bryan Fetter, USN

Advisor: Dr. Russ Duren

Co-advisor: Dr. Hersch Loomis

L ocation: Naval Postgraduate School

Created: 30 August 2002

Modified: 6 November 2002

Simulated:

Target: XCV1000E FG1156

Software: Synplify Pro 7.1

Notes:

Disclaimer: NPS, makes no warranty for the use of this code or design. This code is
provided "AsIs'. NPS, assumes no responsibility for any errors, which may appear in
this code, nor does it make a commitment to update the information contained herein.
NPS specifically disclaims any implied warranties of fitness for a particular purpose.

Copyright (c) 2002 NPS
All rights reserved.

library |EEE;
use IEEE.std logic 1164.all;

entity mem_arbitrator is

generic(
DATA_WIDTH: natura := 32;
ADDR_WIDTH: natural := 23
);
port (
Clk: in std_logic;
RST: in std_logic;
--Signals from SDRAM Controller
Mem_Done: in std_logic;
-- Memory Available signal from SDAM Cir

102

RD: out std logic;

WR: out std_logic;

hAddr: out std logic vector(ADDR_WIDTH-1 downto 0);
hData In: out std logic vector(DATA_WIDTH-1 downto 0);
--Out TO SDRAM

hData Out: in std_logic_vector(DATA_WIDTH-1 downto 0);
--In FROM SDRAM

--Signals from Processor

P_Addr_In: in std_logic_vector(ADDR_WIDTH-1 downto 0);
-- Memory Address In

P Data In: in std_logic_vector(DATA_WIDTH-1 downto 0);
P Data Out: out std logic vector(DATA_WIDTH-1 downto 0);
P_Mem Done: out std logic;

P RD:in std_logic;

P_WR:in std_logic;

--Signalsfrom MBus

M_Addr_In: in std_logic_vector(ADDR_WIDTH-1 downto 0);
-- Memory Address In

M_Data In: in std_logic_vector(DATA_WIDTH-1 downto 0);
M_Data Out: out std logic_vector(DATA_WIDTH-1 downto 0);

M_Mem_Done: out std logic;
M_RD: in std_logic;
M_WR: in std _logic;
--Signals from XBus

X_Addr_In: in std_logic_vector(ADDR_WIDTH-1 downto 0);
-- Memory Address In

X Data In: in std_logic_vector(DATA_WIDTH-1 downto 0);
X Data Out: out std logic vector(DATA_WIDTH-1 downto 0);

X_Mem _Done: out std logic;
X_RD:in std_logic;

X_WR: in std_logic

);

end mem_arbitrator;
architecture behavioral of mem_arbitrator is

constant Addr_Z: Std Logic Vector(ADDR_WIDTH-1
downto 0):="ZZ777777777777777777777",;

type statetypeis (

Idle, -- Idle state when no entity is requesting Memory

P, -- State when Processor has control of Memory
X, -- State when Xbus has control of Memory

M -- State when Mbus has control of Memory

103

);

signal curr_state, next_state : statetype;
signal P_ REQ,M_REQ,X_REQ : std_logic;

begin

P REQ<=P RDor P WR;
M REQ<=M RDorM_WR,;
X REQ<=X_RDor X_WR;

--Process to determine next state

nxtStProc:
process (P_REQM_REQ,X_ REQ,curr_state Mem Done,P_RD,P_WR,
M_RD,M_WR,X_RD,X_WR,next_state)

begin

casecurr_stateis
when |dle =>

if P REQ ="1"then --First If statements determine if any user wants memory
next_state <= P;

elsf X_REQ ="1'then
next_state <= X;

elsf M_REQ ="1"then
next_state <= M;

else
next_state <= Idle;

end if;

case next_stateis
--As soon as the highest priority user is determined from statements above, the RD or
WR signal is sent to the SDRAM controller

when Idle =>
RD <='0;
--Thisisto ensure that the SDRAM controler goes to the RW state on the following clock
WR <=0}
when P =>
RD <=P_RD;
WR<=P WR;
when X =>
RD <= X_RD;
WR <=X_WR;
when M =>

104

RD <= M_RD;
WR <=M WR;
when others =>
null;
end case;

when P =>

if Mem_Done ='0'" then
--Each state remains in that state until the Mem_Done signal indicates that memory
isavailable
RD <=P_RD;
WR <=P_WR;
next_state <= P,
elsif Mem_Done ="1' then
--The next state priority is determined by the order of the if statements
if X_REQ ="1"then
next_state <= X;
elsf M_REQ ="1"then
next_state <= M;
else
--If the same user is the only one that wants memory, the state must first go to the Idle
state.This is to prevent timing issues in regrard to reasserting the Request signals. This
may not be needed after testing with hardware
next_state <= Idle;
end if;
end if;

when M =>

if Mem_Done ='0'" then
RD <= M_RD;
WR<=M_WR,;
next_state <= M;

elsif Mem_Done ="1' then
if P REQ ='1' then

next_state <= P,

elsif X_REQ ="1'then
next_state <= X;

else
next_state <= Idle;

end if;

end if;
when X =>

105

if Mem_Done ='0'" then
RD <= X_RD;
WR<=X_WR;
next_state <= X;

elsif Mem_Done ="1' then
if M_REQ ="1"then

next_state <= M;
elsf P_REQ ="1" then
next_state <= P,
else
next_state <= Idle;
end if;
end if;

when others =>
null;

end case;
end process NxtStProc;
--This process determines the output signals based on the current state and input signals

outConProc:

process(curr_state,next_state,P RD,P WR,M_RD,M_WR,X_RD,X_WR,X_Addr_In,
P_Addr _In,M_Data In,hData Out,P_Data In,X_ Data In,M_Addr_In,
Mem_Done)

begin
case curr_stateis

when |dle =>
--In Idle, al the memory done signals are set to '0' to prevent misreading of
invalid memory signals
X_Mem_Done<="0,
P_Mem Done<='0;
M_Mem_Done<="0';

--hAddr <= ADDR _Z; --Connect Address busto high Z
when P =>
hAddr <= P_Addr_In; --Connect P lines to Input/Output Lines

P_Data Out <= hData Out;
hData In<=P_Data In;
P_Mem_Done <= Mem_Done;

106

when X =>
hAddr <= X_Addr_In; --Connect X linesto Input/Output Lines
X_Data Out <= hData Out;
hData In<= X Data In;
X_Mem_Done <= Mem_Done;

when M =>
hAddr <=M_Addr_In; --Connect M lines to Input/Output Lines
M_Data Out <= hData Out;
hData In<=M _Data In;
M_Mem_Done <= Mem_Done;

when others =>
hAddr <= ADDR _Z; --Connect Address busto high Z

end case;
end process;
--Process to go from state to state (Syncronize outputs)

state to_state: process (CLK,RST)
--Procedes to next state when Memory Operation is done
begin
if (RST ="1") then
curr_state<=Idle;
glsif (CLK'EVENT and CLK="1") then --and Mem_Done ='1") then
curr_state <= next_state;
end if;

end process;

end behavioral;

107

Address Selector <Add _Select.vhd>

Project: AYK-14 VHSIC Processor Module Hardware Emulator

Component: Address Selector for MBUS

Description: Address multiplexor that provides the Desire signals to
the MBUS ARDbitrator for requests for memory from the
Processor that are out of range of the On Board Memory.
It defaults values to High Z when the data requested is
available on board.

Author: LT Bryan Fetter, USN

Advisor: Dr. Russ Duren

Co-advisor: Dr. Hersch Loomis

L ocation: Naval Postgraduate School

Created: 25 October 2002

Modified: 7 November 2002

Simul ated:

Target: XCV1000E FG1156

Software: Foundation 4.2i

Notes:

Disclamer: NPS, makes no warranty for the use of this code or design. This code is
provided "AsIs'. NPS, assumes no responsibility for any errors, which may appear in
this code, nor does it make a commitment to update the information contained herein.
NPS specifically disclaims any implied warranties of fitness for a particular purpose.
Copyright (c) 2002 NPS
All rights reserved.

library |EEE;
use IEEE.std logic_1164.all;
use |EEE.numeric_std.all;

package Add Selectis

component Add_Select
port (
--Processor Side
Add_In_Proc: in unsigned (22 downto 0);
Data WR_Proc: in unsigned (31 downto 0);
Data RD_Proc: out unsigned (31 downto 0);

108

RD_Req in_Proc: in STD_LOGIC;

WR_Req in_Proc: in STD_LOGIC;

Mem req Done Proc: out STD_LOGIC;
--Mem_Writedoub_request: in STD_LOGIC,;
--IR_Bus: in unsigned (31 downto 0);
--Protect: in unsigned (2 downto 0);

--MBUS Side

Data RD_MBUS: in unsigned (31 downto 0);
Data WR_MBUS: out unsigned (31 downto 0);
Add_out MBUS: out unsigned (22 downto 0);
RD_Req out MBUS: out STD_L OGIC,;
WR_Req out MBUS: out STD_LOGIC;

Proc Desire L_MBUS: out STD_LOGIC;
Mem _req Done MBUS: in STD_LOGIC,;

--OBM Side

Add_In_OBM: out unsigned (22 downto 0);

Data RD_OBM: in unsigned (31 downto 0);

Data WR_OBM: out unsigned (31 downto 0);

RD_Req OBM: out STD_LOGIC;

WR_Req OBM: out STD_LOGIC;

Mem _req Done OBM: in STD_LOGIC
--Mem_Writedoub_request OBM: out STD_LOGIC;
--IR_Bus OBM: out unsigned (31 downto 0);
--Protect. OBM: out unsigned (2 downto 0);

);

end component;

end package Add_Select;

library |EEE;
use IEEE.std logic_1164.all;
use |EEE.numeric_std.all;

entity Add_Select is
port (

--Processor Side
Add_In_Proc: in unsigned (22 downto 0);
Data WR_Proc: in unsigned (31 downto 0);
Data RD_Proc: out unsigned (31 downto 0);
RD_Req in_Proc: in STD_LOGIC;
WR_Req_in_Proc: in STD_LOGIC;
Mem req _Done Proc: out STD_LOGIC,

--Mem_Writedoub_request: in STD_LOGIC;

109

--IR_Bus: in unsigned (31 downto 0);
--Protect: in unsigned (2 downto 0);

--MBUS Side

Data RD_MBUS: in unsigned (31 downto 0);
Data WR_MBUS: out unsigned (31 downto 0);
Add_out MBUS: out unsigned (22 downto 0);
RD_Req out MBUS: out STD_L OGIC,;
WR_Req out MBUS: out STD_LOGIC;

Proc Desire L _MBUS: out STD_LOGIC;
Mem_req Done MBUS: in STD_LOGIC,;

--OBM Side

Add_In_OBM: out unsigned (22 downto 0);

Data RD_OBM: in unsigned (31 downto 0);

Data WR_OBM: out unsigned (31 downto 0);

RD_Req OBM: out STD_LOGIC;

WR_Req OBM: out STD_LOGIC;

Mem _req Done OBM: in STD_LOGIC
--Mem_Writedoub_request OBM: out STD_LOGIC;
--IR_Bus OBM: out unsigned (31 downto 0);
);

end Add_Select;

architecture Add_Select_arch of Add_Select is

constant Mem BIk 1 L : natural := 1048576 ;
--Lower bound of VPM Master OBM (100000H)
constant Mem BIk 1 H: natura := 2097151 ;
--Upper bound of VPM Master OBM (1FFFFFH)
constant Mem BIk 2 L : natural := 2097152 ;
--Lower bound of VPM Slavel OBM (200000H)
constant Mem BIk 2 H: natura := 3145727 ;
--Upper bound of VPM Slavel OBM (2FFFFFH)

signal Address: unsigned (22 downto 0);
--signal Data RD : unsigned (31 downto 0);
signal Data RD_M : unsigned (31 downto 0);
signal Data RD_O : unsigned (31 downto 0);
signal Data WR: unsigned (31 downto 0);
signal RD_Req : std logic;

signal WR_Req : std_logic;

signal Mem_req_Done: std_logic;

begin

110

Address<=Add _In_Proc;
--Data RD Proc <= Data RD;

Data RD_M <=Data RD_MBUS;

Data RD_O <=Data RD_OBM,;

Data WR <= Data WR_Proc;
RD_Req<=RD_Req In_Proc;

WR_Reg <=WR_Req In_Proc;

Mem _req _Done_Proc <= Mem _req_Done;

process
(Address,Data WR,RD_Req,WR_Reg,Data RD_MBUSMem_req Done MBUS,
Data RD_OBM,Mem_req Done OBM,Data RD_M,Data RD_O)

begin
--If addressisin OBM range, conect signalsto OBM
--and put MBUS signalsto High Z
if (Address>=to_unsigned(Mem BIlk 1 L,23)
and Address <=to_unsigned(Mem_Blk_1 H,23)) then
--Connect Signal to OBM
Add_In_OBM <= Address;
Data WR_OBM <= Data WR;
Data RD Proc <= Data RD_O;
RD_Req OBM <=RD_Req;
WR_Req OBM <=WR_Req;
Mem _req Done <= Mem _req Done OBM,;
--High Z signalsto MBUS
Add_out_ MBUS <= (others =>'Z");
Data WR_MBUS <= (others => 'Z");
RD_Req out MBUS <="0';
WR_Req out MBUS <="0}
Proc Desire L MBUS<="'1"

--If addressis out of OBM range, connect signalsto MBUS
--and put OBM signals High Z
elsif (Address<to_unsigned(Mem BIlk 1 L,23)
or (Address >=to_unsigned(Mem_Blk_2 L ,23)
and Address <=to_unsigned(Mem_Blk 2 H,23))) then
--Connect signalsto MBUS
Add out MBUS <= Address;
Data WR_MBUS <= Data WR;
Data RD_Proc <= Data RD_M;
RD_Req out MBUS <= RD_Req;
WR_Req out MBUS <= WR_Req;
Mem_req Done <= Mem_req Done MBUS,

111

Proc Desire L MBUS <= (RD_Req NOR WR_Req);
--High Z signalsto OBM

Add In_ OBM <= (others=>'Z";

Data WR_OBM <= (others =>'Z");

RD_Req OBM <="0,

WR_Req OBM <="0

else
Data RD_Proc <= (others =>'Z");
Add_out MBUS <= (others=>'Z");
Data WR_MBUS <= (others =>'Z";
RD_Req out MBUS<="0/
WR_Req out MBUS <="0}
Proc Desire L_MBUS<="'1"
Add In_OBM <= (others=>"Z");
Data WR_OBM <= (others =>'Z";
RD_Req OBM <=0}
WR_Req OBM <="0,
Mem _req _Done <="0

end if;
end process;

end Add_Select_arch;

112

Event Bus Controller (State-Machine) <evt_fsm.vhdl>

Project: AYK-14 VHSIC Processor Module Hardware Emulator

Component: Event Bus Interface Controller

Description: State Machine that provides the interrogation of all polled Events
via the EBUS using control signals on the EMON Bus. Provides
capability to lock-out Class Il interrupts via monitoring of SR1-
Bit3.Contains Timing loop that provides 9 clock cycles for each
state. This can be changed by calculating number of clock-cycles
required to permit a cycle time of 444 nsec.

Author: LT Bryan Fetter, USN

Advisor: Dr. Russ Duren

Co-advisor: Dr. Hersch Loomis

L ocation: Naval Postgraduate School

Created: 25 October 2002

Modified: 28 October 2002

Simulated:

Target: XCV1000E FG1156

Software: Foundation 4.2i

Notes:

Disclaimer: NPS, makes no warranty for the use of this code or design. This code is
provided "AsIs'. NPS, assumes no responsibility for any errors, which may appear in
this code, nor does it make a commitment to update the information contained herein.
NPS specifically disclaims any implied warranties of fitness for a particular purpose.
Copyright (c) 2002 NPS
All rights reserved.

library |EEE;

use IEEE.std logic_1164.all;
use |EEE.numeric_std.all;
use WORK.common.all;

entity EVT_FSM is

port (
EBUS: inSTD_LOGIC VECTOR (0to7); -- Event BusInput
CLK:inSTD_LOGIC; -- Clock
RST:in STD_LOGIC; -- Reset

113

SR1 BIT:inSTD_LOGIC; -- Status Register 1 Bit 3
EMON: out STD_LOGIC _VECTOR (0to 7); -- Event Monitor Bus
E VCTR: out STD_LOGIC_VECTOR (0 to 8)-- Event Vector (modified)
);
end EVT_FSM;

architecture EVT_FSM_arch of EVT_FSM is

typeevt FSM_typeis(ldie,Cls Req, Grp_Req, Disc_Req);

constant Clock _Freq: natural :=40_000_000; --INPUT CLOCK FREQ inHz
--*** CHANGE THIS BASED ON OPERATING FREQ***
constant Design_Freq: natural := 40_000_000; --Design Freqin Hz

constant Max_Cycles: natural :=9* (Clock_Freq/ Design_Freq);

signal curr_State, next_State: evt FSM _type;

signa clk_count: unsigned(log2(Max_Cycles)-1 downto 0);

-- Used to count clock cycles

signal termCitrl: std_logic;

-- Used in counting process

signal Pri_Cls, Pri_Disc, Pri_Grp: std_logic_vector (2 downto 0);
--Used to generate Event Vector

begin
-- Process to generate Next State

nxt_St Proc: process (curr_State, EBUS, SR1 BIT,clk_count)
begin

casecurr_Stateis
when |dle =>
if (EBUS ="00000000") then --No Events Active
next_State <= Idle;
else
next_State <= Cls_Req;
end if;
when Cls_Req =>
if (EBUS ="00000000") then --No Events Active
next_State <= Idle;
--Non 1/0O Class 0
elsif ((std_match(EBUS,"1------- ")
and clk_count = TO_UNSIGNED(Max_Cycles-1,clk_count'length)) then

114

next_State <= Disc_Req;
--1/0O Class 1
elsif ((std_match(EBUS,"01------ ")
and clk_count = TO_UNSIGNED(Max_Cycles-1,clk_count'length)) then
next_State <= Grp_Req;
--1/0O Class 2
elsif ((std_match(EBUS,"001-----"))
and clk_count = TO_UNSIGNED(Max_Cycles-1,clk_count'length)) then
next_State <= Grp_Req;
--Non 1/0O Class 3
elsif ((std_match(EBUS,"0001----"))
and clk_count = TO_UNSIGNED(Max_Cycles-1,clk_count'length)) then
next_State <= Disc_Req;
--1/0 Class 4
elsif ((std_match(EBUS,"00001---"))
and clk_count = TO_UNSIGNED(Max_Cycles-1,clk_count'length)) then
next_State <= Grp_Req;
--Non I/O Class 5
elsif ((std_match(EBUS,"000001--"))
and clk_count = TO_UNSIGNED(Max_Cycles-1,clk_count'length)) then
next_State <= Disc_Req;
--Non 1/0 Class 6
elsif ((std_match(EBUS,"0000001-"))
and clk_count = TO_UNSIGNED(Max_Cycles-1,clk_count'length)) then
next_State <= Disc_Req;
--1/0O Class 7
elsif ((std_match(EBUS,"00000001"))
and clk_count = TO_UNSIGNED(Max_Cycles-1,clk_count'length)
and (SR1_BIT ='1") then
next_State <= Grp_Req;
else
next_State <= CIs_Req;
end if;

when Grp_Req =>
-- Walit in this state for Max clocks
if (clk_count =TO_UNSIGNED(Max_Cycles-1,clk_count'length)) then
next_State <= Disc_Req;
else
next_State <= Grp_Req;
end if;

when Disc_Req =>
-- Wait in this state for Max clocks
if (clk_count =TO_UNSIGNED(Max_Cycles-1,clk_count'length)) then
next_State <= Cls req;

115

else
next_State <= Disc_Req;
end if;

when others =>
null;

end case;
end process nxt_St_Proc;
--Current State Process - Clock triggered to make current state = next state

curStProc: process (CLK, RST)
begin
if (RST ='1") then
curr_State <= Idlg;
elsif (CLK'event and CLK ="1") then
curr_State <= next_State;
end if;
end process curStProc;

-- Clock Counter - Provides 9 clock-cycles for each State when an event is active

clock_counter: process (CLK, RST)
begin
case curr_Stateis
when Idle =>
clk_count <= TO_UNSIGNED(O,clk_count'length);
termCtrl <="1";
when others =>

if (CLK'event and CLK ='1") then

if (termCtrl ='1") then
clk_count <= TO_UNSIGNED(0,clk_count'length);
else
clk_count <= clk_count + 1;
end if;

if (clk_count = TO_UNSIGNED(Max_Cycles-1,clk_count'length)) then
termCtrl <="1";

else
termCtrl <="0";

end if;

116

end if;
end caseg;
end process clock_counter;

--Output Conditioning Logic

outConProc: process (curr_State, EBUS, Pri_Cls, Pri_Grp, Pri_Disc, SR1_BIT)
begin
casecurr_Stateis
when Idle =>
EMON <= "01000000";
--if (EBUS = "00000000") then
-~ Pri_Cls<="000";
-~ Pri_Grp<="000";
-~ Pri_Disc <="000";
--end if;

when Cls_Req =>
if (std_match(EBUS,"1------- ")) then --Non /O Class 0
Pri_Cls<="000";
Pri_Grp <="000";
elsif (std_match(EBUS,"01------ ")) then --1/O Class 1
Pri_Cls<="001";
elsif (std_match(EBUS,"001-----")) then --1/0O Class 2
Pri_Cls<="010"
elsif (std_match(EBUS,"0001----")) then --Non /O Class 3
Pri_Cls<="011";
Pri_Grp <="000";
elsif (std_match(EBUS,"00001---")) then --1/O Class 4
Pri_Cls<="100";
elsif (std_match(EBUS,"000001--")) then --Non I/O Class 5
Pri_Cls<="101";
Pri_Grp <="000";
elsif (std_match(EBUS,"0000001-")) then --Non 1/O Class 6
Pri_Cls<="110";
Pri_Grp <="000";
elsif ((std_match(EBUS,"00000001"))
and (SR1 BIT ="1"))then --l/OClass7
Pri_Cls<="111";
else
Pri_Cls<="000";
end if;
EMON <= "01000000";
when Grp_Req =>
if (std_match(EBUS;,"1------- ")) then --Group 0/1

117

Pri_Grp <="000";

elsif (std_match(EBUS,"01------ ")) then --Group 2/3
Pri_Grp <="001";
elsif (std_match(EBUS,"001-----")) then --Group 4/5
Pri_Grp <="010";
elsif (std_match(EBUS,"0001----")) then --Group 6/7
Pri_Grp <="011";
elsif (std_match(EBUS,"00001---")) then --Group 8/9
Pri_Grp <="100";
elsif (std_match(EBUS,"000001--")) then --Group A/B
Pri_Grp <="101";
elsif (std_match(EBUS,"0000001-")) then --Group C/D
Pri_Grp <="110";
elsif (std_match(EBUS,"00000001")) then --Group E/F
Pri_Grp<="111";
else
Pri_Grp <="000";
end if;

EMON <="10" & Pri_Cls & "000";
when Disc_Req =>
if (std_match(EBUS,"1------- ")) then
Pri_Disc <="000";
elsif (std_match(EBUS;,"01------ ")) then
Pri_Disc <="001";
elsif (std_match(EBUS;,"001-----")) then
Pri_Disc <="010";
elsif (std_match(EBUS,"0001----")) then
Pri_Disc<="011";
elsif (std_match(EBUS,"00001---")) then
Pri_Disc <="100";
elsif (std_match(EBUS,"000001--")) then
Pri_Disc<="101";

esif (std_match(EBUS,"0000001-")) then --Discrete 7 or Odd 3
Pri_Disc <= "110";

elsif (std_match(EBUS,"00000001")) then --Discrete 8 or Odd 4
Pri_Disc<="111";

else
Pri_Disc <="000";

end if;

EMON <="11" & Pri_Cls& Pri_Grp;

when others =>
null;

--Discrete 1 or Even 1

--Discrete 2 or Even 2
--Discrete 3 or Even 3
--Discrete 4 or Even 4
--Discrete 5 or Odd 1

--Discrete 6 or Odd 2

end case;

end process outConProc;

118

E VCTR<=Pri_Cls& Pri_Grp & Pri_Disc;

end EVT_FSM_arch;

119

-- SDRAM Controller <sdramecnt.vhdl>

-- Project: AYK-14 VHSIC Processor Module Hardware Emulator

-- Component: SDRAM Controller

-- Description: State Machine that acts as the interface to the SDRAM and
provides all neccesary control and upkeep functions required for
SDRAM usage.

-- Author: D. Van Den Bout

-- Modified for usein

-- thisthesis by: LT Bryan Fetter

-- Advisor: Dr. Russ Duren

-- Co-advisor: Dr. Hersch Loomis

-- Location: Naval Postgraduate School

-- Modified: 27 November 2002

-- Simul ated: 30 October 20020

-- Target: XCV1000E FG1156

-- Software: Foundation 4.2i

-- Notes:

Disclaimer: NPS, makes no warranty for the use of this code or design. This code is
provided "AsIs'. NPS, assumes no responsibility for any errors, which may appear in
this code, nor does it make a commitment to update the information contained herein.
NPS specifically disclaims any implied warranties of fitness for a particular purpose.
Copyright (c) 2002 NPS
All rights reserved.

library |EEE;

use IEEE.std logic_1164.all;
use |EEE.numeric_std.all;
--use unisim.vcomponents.all;
use WORK.common.all;

use WORK .xilinx.all;

package sdramis

component sdramCntl
generic(

120

FREQ: natural := 40_000;-- operating frequency in KHz
DATA_WIDTH: natural := 16;-- host & SDRAM data width
NROWS: natura :=4096; -- number of rowsin SDRAM array
NCOLS: natural :=512; -- number of columnsin SDRAM array
HADDR_WIDTH: natural := 23;-- host-side address width
SADDR_WIDTH: natural := 12 -- SDRAM-side address width

);
port(
clkin: in std_logic; -- master clock
-- host side
bufclk: out std_logic; -- buffered master clock
clko: out std_logic; -- host clock sync'ed to master clock
clk2x: out std_logic; -- double-speed host clock
lock: out std_logic; -- indicate when clock circuitry is
-- locked to master clock
rst: in std_logic; -- reset
rd: in std_logic; -- read data
Wr: in std_logic; -- write data
done: out std logic; -- read/write op done
hAddr:in unsigned(HADDR_WIDTH-1 downto 0);
-- address from host
hDIn: in unsigned(DATA_WIDTH-1 downto 0);
-- data from host
hDOuit: out unsigned(DATA_WIDTH-1 downto 0);
-- data to host
sdramCntl_state: out std logic_vector(3 downto 0);
-- SDRAM side
sclkfb: in std_logic; -- clock from SDRAM after PCB delays
sclk: out std _logic; -- SDRAM clock sync'ed to master clock
sclk_tst: out std_logic;
cke: out std logic;-- clock-enable to SDRAM
cs out std logic;-- chip-select to SDRAM
ras n: out std logic; -- command input to SDRAM
cas n: out std logic; -- command input to SDRAM
we n: out std logic;-- command input to SDRAM
ba: out unsigned(1 downto 0);
-- SDRAM bank address bits
SAddr: out unsigned(SADDR_WIDTH-1 downto 0);
-- SDRAM row/column address
sData: inout unsigned(DATA_WIDTH-1 downto 0);
-- SDRAM in/out databus
dgmh: out std logic; -- high databits 1/0 mask
dgmil: out std logic -- low databits I/O mask
);

end component;

121

end package sdram;

library IEEE;--,unisim;

use IEEE.std _logic_1164.all;
use |[EEE.numeric_std.all;
--use unisim.vcomponents.all;
use WORK.common.all;

use WORK .xilinx.all;

entity sdramCntl is

generic(
FREQ: natural :=40_000; -- operating frequency in KHz
DATA_WIDTH: natural := 16; -- host & SDRAM datawidth
NROWS: natural := 4096; -- number of rowsin SDRAM array
NCOLS: natural :=512; -- number of columns in SDRAM
array
HADDR WIDTH: natural :=23; -- host-side address width
SADDR_WIDTH: natural := 12 -- SDRAM-side address width
);
port(
clkin: in std_logic; -- master clock
-- host side
bufclk: out std_logic; -- buffered master clock
clko: out std _logic; -- host clock sync'ed to master clock
clk2x: out std_logic; -- double-speed host clock
lock: out std_logic; -- indicate when clock circuitry
-- islocked to master clock
rst: in std_logic; -- reset
rd: in std_logic;-- read data
Wr: in std_logic;-- write data
done: out std logic; -- read/write op done

hAddr:in unsigned(HADDR_WIDTH-1 downto 0);
-- address from host

hDIn: in unsigned(DATA_WIDTH-1 downto 0);
-- data from host

hDOut: out unsigned(DATA_WIDTH-1 downto 0);
-- data to host

sdramCnitl_state: out std_logic_vector(3 downto 0);

-- SDRAM side

sclkfb: in std_logic; -- clock from SDRAM after PCB delays
sclk: out std logic; -- SDRAM clock sync'ed to master clock
sclk_tst: out std_logic;

cke: out std logic;-- clock-enable to SDRAM

122

cs n: out std logic;-- chip-select to SDRAM

ras n: out std logic; -- command input to SDRAM
cas n: out std logic; -- command input to SDRAM
we n: out std logic;-- command input to SDRAM
ba out unsigned(1 downto 0);

-- SDRAM bank address bits
SAddr: out unsigned(SADDR_WIDTH-1 downto 0);
-- SDRAM row/column address
sData: inout unsigned(DATA_WIDTH-1 downto 0);
-- SDRAM in/out databus
dgmh: out std logic; -- high databits 1/0O mask
dgmil: out std logic -- low databits I/O mask
);
end sdramCntl;

architecture arch of sdramCntl is

-- constants
constant ColCmdPos:. natural := 10;
-- position of command bit in SDRAM column address

constant Tinit: natural := 100; -- min initialization interval (us)
constant Tras: natural := 44; -- mininterval between active
to precharge commands (ns)

constant Trc: natural := 66; -- mininterval between active
to active commands (ns)
constant Trcd: natural := 20; -- min interval between active

and R/W commands (ns)
constant Tref: natural := 64_000_000;-- maximum refresh interval (ns)

constant Trfc: natural := 66; -- duration of refresh operation (ns)
constant Trp: natural := 20;-- min precharge command duration (ns)
constant Twr: natural := 15;-- write recovery time (ns)
constant Ccas: natural := 3; -- CASlatency (cycles)
constant Cmrd: natural ;= 3; -- mode register setup time (cycles)
constant RfshCycles: natural :=8; -- number of refresh cycles needed
to init RAM
constant ROW_LEN: natura :=0g2(NROWYS);
-- number of row address bits
constant COL_LEN: natural :=10g2(NCOLYS);
-- number of column address bits
constant NORM: natural :=1 000 000;

--normalizens* KHz
constant INIT_CYCLES: natural := 1+ ((Tinit * FREQ) / 1000);

123

-- SDRMA power-on initialization interval

constant RAS CYCLES: natural := 1+ ((Tras* FREQ) / NORM);

-- active-to-precharge interval

constant RC_CY CLES: natural := 1+ ((Trc * FREQ) / NORM);
-- active-to-active interval

constant RCD_CYCLES: natural := 1+ ((Trcd * FREQ) / NORM);

-- active-to-R/W interval

constant REF_CY CLES: natural := 1 + (((Tref/NROWS) * FREQ) / NORM);
-- interval between row refreshes

constant RFC_CY CLES: natural := 1+ ((Trfc * FREQ) / NORM));

-- refresh operation interval

constant RP_CYCLES: natural := 1+ ((Trp* FREQ) / NORM);
-- precharge operation interval
constant WR_CY CLES: natural := 1+ ((Twr * FREQ) / NORM);

-- write recovery time

-- states of the SDRAM controller state machine

type cntlStateis (
INITWAIT, --initidization—

waiting for power-on initialization to complete

INITPCHG, --initialization - doing precharge of banks
INITSETMODE,-- initiaization - set SDRAM mode
INITRFSH, --initidization - do refreshes
REFRESH, -- refresh arow of the SDRAM

RW, -- wait for read/write operationsto SDRAM
RDDONE, -- indicate that the SDRAM read is done
WRDONE, -- indicate that the SDRAM write is done

ACTIVATE -- open arow of the SDRAM for reading/writing
);
signal state r, state_next: cntlState; -- state register and next state

constant AUTO_PCHG_ON: std_logic :='1
-- set SAddr(10) to this value to auto-precharge the bank

constant AUTO_PCHG_OFF: std_logic :='0;
-- set sSAddr(10) to this value to disable auto-precharge
constant ALL_BANKS: std_logic:="1}

-- set SAddr(10) to this value to select all banks

constant ACTIVE_BANK: std_logic:="0;

-- set SAddr(10) to this value to select only the active bank
signal bank: unsigned(barange);

signal row: unsigned(ROW_LEN - 1 downto 0);

signal col: unsigned(COL_LEN - 1 downto 0);

signal col_tmp: unsigned(sAddr'high-1 downto sAddr'low);
signal changeRow: std_logic;

signal dirOut: std_logic; -- high when driving datato SDRAM

124

-- registers

signal activeBank_r, activeBank _next: unsigned(bank'range);
-- currently active SDRAM bank

signal activeRow _r, activeRow_next: unsigned(row'range);
-- currently active SDRAM row

signal inactiveFlag_r, inactiveFlag_next: std_logic;

-- 1 when al SDRAM rows are inactive

signal doRfshFlag_r, doRfshFlag_next: std_logic;

-- 1 when arow refresh operation is required

signal wrFlag_r, wrFlag_next: std_logic;

-- 1 when writing datato SDRAM

signal rdFlag_r, rdFlag_next: std_logic;

-- 1 when reading data from SDRAM

signal rfshCntr_r, rfshCntr_next: unsigned(log2(RfshCycles+1)-1 downto 0);
-- counts initialization refreshes

-- timer registers that count down times for various SDRAM operations
signal timer_r, timer_next: unsigned(log2(INIT_CY CLES+1)-1 downto 0);
-- current SDRAM op time
signal rasTimer_r, rasTimer_next: unsigned(log2(RAS CYCLES+1)-1
downto 0);
-- active-to-precharge time
signal wrTimer_r, wrTimer_next: unsigned(log2(WR_CY CLES+1)-1 downto 0);
-- write-to-precharge time
signal refTimer_r, refTimer_next: unsigned(log2(REF_CY CLES+1)-1 downto 0);
-- time between row refreshes

-- SDRAM commands
subtype sdramCmd is unsigned(5 downto 0);
-- ¢md = (cs_n,ras_n,cas _n,we_n,dgmh,dgml)

constant NOP_CMD: sdramCmd :="011100";
constant ACTIVE_CMD: sdramCmd := "001100";
constant READ_CMD: sdramCmd := "010100";
constant WRITE_CMD: sdramCmd := "010000";
constant PCHG_CMD: sdramCmd := "001011";
constant MODE_CMD: sdramCmd := "000011";
constant RFSH_CMD: sdramCmd := "000111";

signal cmd: sdramCmd;

-- SDRAM mode register
subtype sdramMode is unsigned(11 downto 0);
constant MODE: sdramMode :="00" & "0" & "00" & "011" & "0" & "000";

-- clock DLL signals
signal logicO: std _logic;
-- signalsfor internal logic clock DLL

125

begin

PCBd

signa bufclkin, dilint_clkO, dllint_clk2x, bufdllint_clkO,
bufdllint_clk2x, lockint: std_logic;

-- signals for external logic clock DLL

signal bufdllext_clkO, dilext_clkO, lockext: std_logic;

signa clk: std_logic; -- clock for SDRAM controller logic

logicO <="0}

-- master clock must come from a dedicated clock pin
clkpad: IBUFG port map (I=>clkin, O=>bufclkin);
bufclk <= bufclkin;

-- generate an internal clock sync'ed to the master clock

dilint: CLKDLL port map(
CLKIN=>bufclkin, CLKFB=>bufdllint_clk0, CLKO=>dllint_clkO,
RST=>logic0, CLK90=>0pen, CLK180=>0pen, CLK270=>0pen,
CLK2X=>dllint_clk2x, CLKDV=>0pen, LOCKED=>lockint

);

-- sync'ed single and double-speed clocks for use by internal logic

clkg: BUFG port map (I=>dllint_clkO, O=>bufdllint_clkO0);

clkg2x: BUFG port map(I=>dllint_clk2x, O=>bufdllint_clk2x);

clk <= bufdllint_clkO; -- SDRAM controller logic clock
clkO <= bufdllint_clkO; -- clock to other FPGA logic
clk2x <= bufdllint_clk2x; -- doubled clock to other FPGA logic;

lock <= lockint and lockext; -- indicate lock status of the DLLs

-- generate an external SDRAM clock sync'ed to the master clock
clkfbpad : IBUFG port map (I=>sclkfb, O=>bufsclkfb); -- SDRAM clock with
elays
dilext: CLKDLL port map(
CLKIN=>bufclkin, CLKFB=>bufsclkfb, CLKO=>dllext_clkO,
clkfbpad : BUFG port map (I=>dllext_clk0, O=>bufdllext_clk0);
-- SDRAM clock with PCB delays
dilext: CLKDLL port map(
CLKIN=>bufclkin, CLKFB=>bufdllext_clk0, CLKO=>dllext_clkO,
RST=>logic0, CLK90=>0pen, CLK180=>0pen, CLK270=>0pen,
CLK2X=>0pen, CLKDV=>0pen, LOCK ED=>|ockext
);
-- output the sync'ed SDRAM clock to the SDRAM

clkextpad: OBUF port map (I=>dllext_clk0, O=>sclk);
clkextpad 2: OBUF port map (I=>bufdllext_clkO, O=>sclk_tst);

126

hDOut <= sData(hDOut'range); -- connect SDRAM data bus to host data bus
sData <= hDIn(sDatarange) when dirOut="1" else (others=>'Z"); \
-- connect host data bus to SDRAM data bus

combinatorial: process(rd,wr,hAddr,hDin,state r,bank,row,col,changeRow,

activeBank_r,activeRow_r,doRfshFlag_r,rdFlag_r,wrFlag_r,

rfshCntr_r,timer_r,rasTimer_r,wrTimer_r,refTimer_r,cmd,col_tmp,inactiveFlag_r

begin

-- attach bits in command to SDRAM control signals
(cs_n,ras _n,cas_n,we _n,dgmh,dgml) <= cmd;

-- get bank, row, column from host address

bank <= hAddr(bank'length + ROW _LEN + COL_LEN -1
downto ROW_LEN + COL_LEN);

row <= hAddr(ROW_LEN + COL_LEN - 1 downto COL_LEN);

col <= hAddr(COL_LEN - 1 downto 0);

-- extend column (if needed) until it isaslarge

asthe (SDRAM address bus - 1)
col_tmp <= (others=>'0"); -- setittoal zeroes
col_tmp(col'range) <=col; -- write column into the lower bits

-- default operations

cke<=YES; -- enable SDRAM clock input

cmd <= NOP_CMD; -- set SDRAM command to no-operation

done <= NQO; -- pending SDRAM operation is not done

ba<=bank; --set SDRAM bank address bits

-- set SDRAM address to column with interspersed command bit

SsAddr(ColCmdPos-1 downto 0) <= col_tmp(ColCmdPos-1 downto 0);

sAddr(sAddr'high downto ColCmdPos+1) <=
col_tmp(col_tmp'high downto Col CmdPos);

SAddr(ColCmdPos) <= AUTO_PCHG_OFF;

-- set command bit to disable auto-precharge

dirOut <= NOQ;

-- default register updates

state_next <= state r;
inactiveFlag_next <= inactiveFlag_r;
activeBank _next <= activeBank_r;
activeRow_next <= activeRow r;
doRfshFlag_next <= doRfshFlag_r;
rdFlag_next <=rdFlag_r;
wrFlag_next <=wrFlag_r;
rfshCntr_next <= rfshCntr_r;

127

-- update timers

if timer_r /=TO_UNSIGNED(O,timer_r'length) then
timer_next <=timer_r - 1,

else
timer_next <=timer_r;

end if;

if rasTimer_r/=TO_UNSIGNED(O,rasTimer_r'length) then
rasTimer_next <=rasTimer_r - 1,

else
rasTimer_next <= rasTimer_r;

end if;

if wrTimer_r/=TO_UNSIGNED(O,wrTimer_r'length) then
wrTimer_next <=wrTimer_r - 1;

else
wrTimer_next <=wrTimer_r;

end if;

if refTimer_r /= TO_UNSIGNED(O,ref Timer_r'length) then
refTimer_next <=refTimer_r - 1,

else

-- on timeout, reload the timer with the interval between row refreshes

-- and set the flag that indicates a refresh operation is needed.

refTimer_next<=
TO_UNSIGNED(REF_CY CLES refTimer_next'length);
doRfshFlag_next <= YES;

end if;

-- determine if another row or bank in the SDRAM is being addressed
if row /= activeRow_r or bank /= activeBank_r
or inactiveFlag_r = YES then
changeRow <= YES;
else
changeRow <= NO,;
end if;

-- ****% compute next state and outputs *****

-- SDRAM initiaization

-- don't do anything if the previous operation has not completed yet.

-- Place this before anything else so operationsin the previous state

-- complete before any operations in the new state are executed.

if timer_r/=TO_UNSIGNED(O,timer_r'length) then
sdramCntl_state <="0000";

128

elsif state r = INITWAIT then
-- initiate wait for SDRAM power-on initialization
timer_next
<=TO_UNSIGNED(INIT_CYCLES timer_next'length);
-- set timer for init interval
state_next <= INITPCHG,;
-- precharge SDRAM after power-on initialization
sdramCntl_state <="0001";
elsif state r = INITPCHG then
cmd <= PCHG_CMD; -- initiate precharge of the SDRAM
SsAddr(ColCmdPos) <= ALL_BANKS;, -- precharge all banks
timer_next <= TO_UNSIGNED(RP_CY CLEStimer_next'length);
-- set timer for this operation
-- now setup the counter for the number of refresh ops
-- needed during initialization
rfshCntr_next <=
TO_UNSIGNED(RfshCycles,rfshCntr_next'length);
state_next <= INITRFSH;
-- perform refresh ops after setting the mode
sdramCntl_state <="0010";
elsif state r = INITRFSH then
-- refresh the SDRAM a number of times during initialization
if rfshCntr_r /= TO_UNSIGNED(O,rfshCntr_r'length) then
-- do arefresh operation if the counter is not zero yet
cmd <= RFSH_CMD; -- refresh command goes to SDRAM
timer_next <=
TO_UNSIGNED(RFC_CY CLES timer_next'length);
-- refresh operation interval
rfshCntr_next <= rfshCntr_r - 1;
-- decrement refresh operation counter
state next <= INITRFSH;
-- return to this state while counter is non-zero

else
-- refresh op counter reaches zero,
-- S0 set the operating mode of the SDRAM
state next <= INITSETMODE;

end if;

sdramCntl_state <= "0100";
elsf state r = INITSETMODE then
-- set the mode register in the SDRAM
cmd <= MODE_CMD;
-- initiate loading of mode register in the SDRAM
sAddr <= MODE;
-- output mode register bits onto the SDRAM address bits
timer_next <= TO_UNSIGNED(Cmrd,timer_next'length);

129

-- set timer for this operation

state next <= RW,

-- process read/write operations after initialization is done
sdramCntl_state <="0011";

-- refresh arow of the SDRAM when the refresh timer hits zero and
setsthe flag
-- and the SDRAM is no longer being read/written.
-- Place this before the RW state so the host can't block refreshes by doing
-- continuous read/write operations.
elsif doRfshFlag r = YES and wrFlag_r = NO and rdFlag_r = NO then
if rasTimer_r = TO_UNSIGNED(O,rasTimer_r'length)
and wrTimer_r = TO_UNSIGNED(O,wrTimer_r'length) then
doRfshFlag_next <= NO;
-- reset the flag that initiates a refresh operation
cmd <= PCHG_CMD;
-- initiate precharge of the SDRAM
SsAddr(ColCmdPos) <= ALL_BANKS;,
-- precharge all banks
timer_next <=
TO_UNSIGNED(RP_CY CLEStimer_next'length);
-- set timer for this operation
inactiveFlag_next <= YES,
-- all rows areinactive after a precharge operation
state next <= REFRESH,;
-- refresh the SDRAM after the precharge
end if;
sdramCntl_state <="0101";
elsif state r = REFRESH then
cmd <= RFSH_CMD:;-- refresh command goes to SDRAM
timer_next <=
TO_UNSIGNED(RFC_CY CLES timer_next'length);
-- refresh operation interval
-- after refresh is done, resume writing or reading the SDRAM
if in progress
state next <= RW,;
sdramCntl_state <= "0110";

-- do nothing but wait for read or write operations
elsf state r = RW then
if rd=YESthen
-- the host has initiated a read operation
rdFlag_next <= YES;
-- set flag to indicate aread operation isin progress
-- if adifferent row or bank is being read,
-- then precharge the SDRAM and activate the new row

130

if changeRow = YES then
-- wait for any row activations or writesto
-- finish before doing a precharge
if rasTimer r
=TO_UNSIGNED(O,rasTimer_r'length)
and wrTimer_r
=TO_UNSIGNED(O,wrTimer_r'length) then
cmd <= PCHG_CMD;
-- initiate precharge of the SDRAM
sAddr(ColCmdPos) <= ALL_BANKS,
-- precharge all banks
timer_next <=
TO_UNSIGNED(RP_CYCLES,
timer_next'length);
-- set timer for this operation
inactiveFlag_next <= YES;
-- dl rows areinactive after a
precharge operation
state next <= ACTIVATE;
-- activate the new row after the
prechargeis done
end if;
-- read from the currently active row
else
cmd <= READ_CMD;
-- initiate aread of the SDRAM
timer_next <=
TO_UNSIGNED(Ccastimer_next'length);
-- setup timer for read access
state next <= RDDONE;
-- read the data from SDRAM after the accesstime
end if;
sdramCntl_state <="0111";
elsif wr = YESthen
-- the host has initiated awrite operation
-- if adifferent row or bank is being written,
-- then precharge the SDRAM and activate the new row
if changeRow = YES then
wrFlag_next <= YES,
-- set flag to indicate awrite operation isin progress
-- wait for any row activations or writes to finish
-- before doing a precharge
if rasTimer_r =
TO_UNSIGNED(O,rasTimer_r'length)
andwrTimer_r =
TO_UNSIGNED(O,wrTimer_r'length) then

131

cmd <= PCHG_CMD;
-- initiate precharge of the SDRAM
sAddr(ColCmdPos) <= ALL_BANKS;
-- precharge al banks
timer_next <=
TO_UNSIGNED(RP_CYCLES,
timer_next'length);
-- set timer for this operation
inactiveFlag_next <= YES;
-- all rows areinactive after a
precharge operation
state next <= ACTIVATE;
-- activate the new row after
the precharge is done
end if;
-- write to the currently active row
else
cmd <= WRITE_CMD;
-- initiate the write operation
dirOut <= YES;
-- set timer so precharge doesn't occur
-- too soon after write operation
wrTimer_next <=
TO_UNSIGNED(WR_CYCLES,
wrTimer_next'length);
state next <= WRDONE;
-- go back and wait for another read/write operation
end if;
sdramCntl_state <= "1000";
else
null; -- no read or write operation, so do nothing
sdramCntl_state <="1001";
end if;

-- enter this state when the data read from the SDRAM is available

elsif state r = RDDONE then
rdFlag_next <= NO;-- set flag to indicate the read operation is over
done<=YES; --tell the host that the data is ready
state_next <= RW; -- go back and do another read/write operation
sdramCntl_state <="1010";

-- enter this state when the data is written to the SDRAM
esif state r = WRDONE then

dirOut <= YES;

wrFlag_next <= NO;

-- set flag to indicate the write operation is over

132

done<=YES; --tell the host that the datais ready
state_next <= RW; -- go back and do another read/write operation
sdramCntl_state <="1011";

-- activate arow of the SDRAM
elsif state r = ACTIVATE then
cmd <= ACTIVE_CMD;
-- initiate the SDRAM activation operation
SAddr <= (others=>'0");
-- output the address for the row that will be activated
SAddr(row'range) <= row;
activeBank_next <= bank;-- remember the active SDRAM row
activeRow_next <= row;
-- remember the active SDRAM bank
inactiveFlag_next <= NO;-- the SDRAM is no longer inactive
rasTimer_next <=
TO_UNSIGNED(RCD_CY CLESrasTimer_next'length);
timer_next <=
TO_UNSIGNED(RCD_CY CLES timer_next'length);
state next <= RW,
-- go back and do the read/write operation that
caused this activation
sdramCntl_state <="1100";

-- No operation
else
null;
sdramCntl_state <="1101";
end if;
end process combinatorial;

-- update registers on the rising clock edge
update: process(clk)

begin
if clk'event and clk="1" then
if rst = YESthen
state r <= INITWAIT,
activeBank _r <= (others=>'0");
activeRow _r <= (others=>'0");
inactiveFlag_r <=YES;
doRfshFlag_r <=NO;
rdFlag_r <=NO;
wrFlag_r <=NG;

133

rfshCntr_r <=TO_UNSIGNED(O,rfshCntr_r'length);
timer_r <=TO_UNSIGNED(O,timer_r'length);
refTimer r <=

TO_UNSIGNED(REF_CY CLES refTimer_r'length);

rasTimer_r <=TO_UNSIGNED(O,rasTimer_r'length);
wrTimer_r <=TO_UNSIGNED(O,wrTimer_r'length);
else
state r <= state_next;
activeBank_r <= activeBank_next;
activeRow _r <= activeRow_next;
inactiveFlag_r <= inactiveFlag_next;
doRfshFlag_r <= doRfshFlag_next;
rdFlag_r <=rdFlag_next;
wrFlag r <= wrFlag_next;
rfshCntr_r <= rfshCntr_next;
timer_r <=timer_next;
refTimer_r <=ref Timer_next;
rasTimer_r <=rasTimer_next;
wrTimer_r <=wrTimer_next;
end if;
end if;

end process update;

end arch;

134

Xs_package <xs_pckg.vhd>

Project: AYK-14 VHSIC Processor Module Hardware Emulator

Component: Commom Component Declaration

Description: Declaration of simple components needed in other
components.

Author: D. Van den Bout

Adapted by: LT Bryan Fetter

Advisor: Dr. Russ Duren

Co-advisor: Dr. Hersch Loomis

L ocation: Naval Postgraduate School

Created: 1 September 2002

Modified: 7 November 2002

Simul ated:

Target: XCV1000E FG1156

Software: Foundation 4.2i

Notes:

Disclamer: NPS, makes no warranty for the use of this code or design. This code is

provided "Ass'. NPS, assumes no responsibility for any errors, which may appear in
this code, nor does it make a commitment to update the information contained herein.
NPS specifically disclaims any implied warranties of fitness for a particular purpose.

Copyright (c) 2002 NPS
All rights reserved.

library |EEE;
use IEEE.std logic_1164.all;
use |EEE.numeric_std.all;

package common is
constant YES: std logic :="'1";
constant NO: std logic :="0';
constant HI: std logic :="1";
constant LO: std logic :="0';
function log2(v: in natural) return natural;

end package common;

135

library |EEE;
use IEEE.std logic_1164.all;
use |EEE.numeric_std.all;

package body common is

function log2(v: in natural) return natural is
variable n: natural;
variable logn: natural;
begin
n:=1,
foriinOto 128 loop
logn :=i;
exit when (n>=v);
n:=n*2
end loop;
return logn;
end function logz;

end package body common;

library IEEE;-- VIRTEX;

use IEEE.std logic_1164.all;
use |EEE.numeric_std.all;
--use VIRTEX.components.all;

package xilinx is

component IBUFG
port(
O: out std ulogic;
I in std_ulogic

);
end component;
component CLKDLL
port(
CLKIN: in std ulogic :='0;
CLKFB: in std ulogic:='0}
RST: in std ulogic:='0'
CLKO: out std_ulogic :='0,
CLK9O0: out std_ulogic :='0,

CLK180: out std_ulogic :='0,

136

CLK270:

CLK2X:

CLKDV:

LOCKED:
);

end component;

component BUFG

port(
O: out
l: in
);
end component;
component OBUF
port(
O: out
I in
);

end component;

end package xilinx;

out std_ulogic :="0';
out std_ulogic :='0,
out std_ulogic :="'0';
out std_ulogic :='0’

std_ulogic;
std_ulogic

std_ulogic;
std_ulogic

137

Odd Parity Generator <oddparity.vhd.vhd>

Project:

Component:
Description:

Author:

Adapted by:

Advisor:
Co-advisor:
Location:

Created:
Modified:
Simulated:
Target:
Software:
Notes:

Disclaimer:

AYK-14 VHSIC Processor Module Hardware Emulator

Odd Parity Generator

Odd parity generator adapted from a design in "Essential VHDL"
by Sundar Rgjan. Generates sets of XORs and connects them to the
bits of the incoming Byte to generate odd parity

Sundar Rgjan

LT Bryan Fetter, USN

Dr. Russ Duren

Dr. Hersch Loomis

Naval Postgraduate School

25 October 2002
24 November 2002

XCV 1000E FG1156
Foundation 4.2i

NPS, makes no warranty for the use of this code or design. This code is

provided "AsIs'. NPS, assumes no responsibility for any errors, which may appear in
this code, nor does it make a commitment to update the information contained herein.
NPS specifically disclaims any implied warranties of fitness for a particular purpose.

Copyright (c) 2002 NPS
All rights reserved.

library |EEE;

use IEEE.std logic 1164.all;
use |[EEE.numeric_std.all;

package oddParity is

component oddParityGen
generic(width : integer := 8);

port (

data: in UNSIGNED (width - 1 downto 0);

);

end component;

parity: out STD_LOGIC

end package oddParity;

138

library |EEE;
use IEEE.std logic_1164.all;
use |EEE.numeric_std.all;

entity oddParityGen is
generic(width : integer := 8);
port (
data: in UNSIGNED (width - 1 downto 0);
parity: out STD_LOGIC

);
end oddParityGen;

architecture oddParityGen_arch of oddParityGen is
begin
process (data)
variable loopXor: std_logic;
begin
loopXor :='0}
foriinOtowidth-11loop
loopXor := loopXor xor data(i);
end loop;
parity <=loopXor;
end process;

end oddParityGen_arch;

139

MBUS Desire/ Grant Arbitrator <grant_|logic.vhd>

Project: AYK-14 VHSIC Processor Module Hardware Emulator
Component: MBUS Grant Arbitrator
Description: State machine that provides rotating priority logic to determine the

next user of the MBUS. The component analyzes the MBUS
Request signals from the 3 MBUS users and provides MBUS
Grant signals to the appropriate user. The priority is arotating type
that ensures that each user has equal access to the bus based upon
the previous user.

Author: LT Bryan Fetter, USN
Advisor: Dr. Russ Duren
Co-advisor: Dr. Hersch Loomis

L ocation: Naval Postgraduate School
Created: 25 October 2002
Modified: 7 November 2002
Simulated:

Target: XCV1000E FG1156
Software: Foundation 4.2i

Notes:

Disclaimer: NPS, makes no warranty for the use of this code or design. This code is
provided "AsIs'. NPS, assumes no responsibility for any errors, which may appear in
this code, nor does it make a commitment to update the information contained herein.
NPS specifically disclaims any implied warranties of fitness for a particular purpose.
Copyright (c) 2002 NPS
All rights reserved.

library |EEE;

use IEEE.std logic 1164.all;

use |[EEE.numeric_std.all;

--use |[EEE.std_logic_unsigned.all;
--use |[EEE.std_logic_arith.all;

package Grant is
component Grant_Logic
port (
M_Desire Ext: in UNSIGNED (1 downto 0);
M_Desire Proc: in STD_LOGIC,;

140

M_Grant_Ext: out UNSIGNED (1 downto 0);
M_Grant_Proc: out STD _LOGIC,;
Clk:in STD_LOGIC,;
Rst: in STD_LOGIC
);

end component;
end package Grant;

library |IEEE;

use IEEE.std _logic_1164.all;

use |[EEE.numeric_std.all;

--use |[EEE.std_logic_unsigned.all;
--use |[EEE.std_logic_arith.all;

entity Grant_Logicis

port (
M_Desire Ext: in UNSIGNED (1 downto 0);
M_Desire Proc: in STD_LOGIC,;
M_Grant_Ext: out UNSIGNED (1 downto 0);

M_Grant_Proc: out STD_LOGIC;

Clk: in STD_LOGIC;
Rst: in STD_LOGIC

);

end Grant_Logic;
architecture Grant_Logic_arch of Grant_Logic is

type FSM _typeis (Idle,Grant);

signal Curr_State, Next_State : FSM_Type;

signal User : UNSIGNED (1 downto 0);

signa Pri_O,Pri_1,Pri_2: UNSIGNED (1 downto 0);

signal M_Desire_Int : UNSIGNED (2 downto 0);
signa M_Grant_Int : UNSIGNED (2 downto 0);

begin

M_Desire Int(1) <= M_Desire_Ext(1);
M_Desire Int(0) <= M_Desire Ext(0);
M_Desire_Int(2) <= M_Desire_Proc;

M_Grant_Ext(1) <= M_Grant_Int(1);
M_Grant_Ext(0) <= M_Grant_Int(0);
M_Grant_Proc <= M_Grant_Int(2);

141

nxtStProc: process(Curr_State,Next_State, M_Desire _Int, User)
begin

case Curr_Stateis

when ldle=>

if M_Desire Int/="111" then
Next_State <= Grant;

else
Next_State <= Idle;

end if;

when Grant =>
if (M_Desire_Int(to_integer(User)) ='0") then
Next State <= Grant;
else
Next State <= Idle;
end if;

when others =>
null;

end case;
end process NxtStProc;

--Process to register current state

curStProc: process (Clk, Rst)
begin
if (Rst="0" then
Curr_State <= Idle;
elsif (Clk'event and Clk ='1") then
Curr_State <= Next_State;
end if;
end process curStProc;

--Process to generate outputs
outConProc: process(Curr_State,M_Desire _Int,Pri_0,Pri_1,Pri_2,User)
begin
142

case Curr_Stateis

when Idle =>
M_Grant_Int <="000";

--to handle Reset
if (Pri_O=Pri_1) then
if (M_Desire_Int(0)) ='0")then
User <="00";
elsif (M_Desire_Int(1)) ='0')then
User <="01"
elsif (M_Desire_Int(2)) ='0'")then
User <="10"
end if;
elsif (M_Desire_Int(to_integer(Pri_0)) ='0")then
User <=Pri_0;
elsif (M_Desire_Int(to_integer(Pri_1)) ='0")then
User <=Pri_1;
elsif (M_Desire_Int(to_integer(Pri_2)) ='0")then
User <=Pri_2;
end if;

when Grant =>
M_Grant_Int(to_integer(User)) <="1;

if User ="00" then
Pri_0<="01";
Pri_1 <="10";
Pri_2<="00";

elsif User ="01" then
Pri_0<="10";
Pri_1<="00";
Pri_2<="01";

elsif User ="10" then
Pri_0<="00";
Pri_1<="01";
Pri_2<="10";

else
Pri_0<="00";
Pri_1<="01";
Pri_2<="10";

end if;

when others =>

143

null;
end case;
end process outConProc;

end Grant_Logic_arch;

144

MBUS Controller <mbus_controller.vhd>

Project: AYK-14 VHSIC Processor Module Hardware Emulator

Component: MBUS Controller

Description: State Machine that controls the MBUS interface. It determines the
user of the bus via the Grant_Logic component and generates the
appropriate control signals for operation of the Bus for reads and
writes both to OBM by an external user as well as reads and writes
to external memory by the Processor. It also generates and
validates the appropriate parity signals.

Author: LT Bryan Fetter, USN

Advisor: Dr. Russ Duren

Co-advisor: Dr. Hersch Loomis

L ocation: Naval Postgraduate School

Created: 25 October 2002

Modified: 23 November 2002

Simulated: 27 November 2002

Target: XCV1000E FG1156

Software: Foundation 4.2i

Notes:

Disclaimer: NPS, makes no warranty for the use of this code or design. This code is

provided "AsIs'. NPS, assumes no responsibility for any errors, which may appear in
this code, nor does it make a commitment to update the information contained herein.
NPS specifically disclaims any implied warranties of fitness for a particular purpose.
Copyright (c) 2002 NPS
All rights reserved.

library |EEE;

use IEEE.std logic 1164.all;
use |[EEE.numeric_std.all;

use WORK.Grant.all;

use WORK.common.all;

use WORK .oddParity.all;
--use |[EEE.std_logic_arith.all;

package MBUS CTRL is
component MBUS_Controller
generic(

FREQ: natural :=40_000 -- operating frequency in KHz

145

);

port (

Clk: instd_logic;

Rst: in std_logic;

-- Signals from Processor

P Data WR: inunsigned(31 downto 0);
P_Data RD: out unsigned(31 downto 0);
P_Addr: inunsigned(22 downto 0);
P_RD_Req: in std_logic;

P_WR_Req: instd_logic;

P_Desire L: in std_logic;

P Mem Done: out STD _LOGIC;
P_Grant_Out: out std logic; --Grant signal to Processor

-- Signals from Memory Arbitrator
Mem_Addr: out unsigned(22 downto 0);
Mem_Data WR: out unsigned(31 downto 0);
Mem_Data RD: in unsigned(31 downto 0);
Mem_ WR_Reg: out std _logic;
Mem_RD_ Req: out std logic;
Mem_Done: instd logic;
-- Signals on/off Adapter
M_BUS: inout unsigned(22 downto 0);
--M_GRANT_IN_L: instd logic; Used only when used as Slave
M_DESIRE_IN_L: in unsigned(1 downto 0);
M_GRANT_OUT: out unsigned(1 downto 0);
--M_DESIRE_OUT _L.: out std_logic;--Used only when VPM used as Slave
M_REQUEST L: inout std_logic;
M_ACKNOWLEDGE_L:instd_logic;
M_RESUME_L:inout std_logic;
S BUSY L: out std_logic;
M_BUSY_L: inout std_logic;
BUS ERROR _L: inout std_logic;

--Parity Bits
LSB PARITY: inout std_logic;
MSB_PARITY: inout std_logic;

ADRS PARITY: inout std_logic;

CMD_PARITY: inout std_logic;
--Control Bits

MSB WRITE L: inout std_logic;

LSB WRITE_L:inout std_logic;
THREE_TWO _DATA: inout std_logic;
IPL_WRITE: inout std_logic;

--Signals used for Testing Only
Timer_Out: out unsigned(log2(9+1)-1 downto 0);

146

Timer_next_Out: out unsigned(log2(9+1)-1 downto 0);
M_ACKNOWLEDGE L _test Out: out std logic

);

end component;
end MBUS _Cirl;

library |EEE;

use IEEE.std logic_1164.all;

use |EEE.numeric_std.all;

use WORK .Grant.all;

use WORK.Common.all;

use WORK .oddParity.all;--use IEEE.std_logic_arith.all;

entity MBUS_Controller is
generic(

FREQ: natural :=40 000 -- operating frequency in KHz
);
port (

Clk: instd_logic;

Rst: in std_logic;

-- Signals from Processor

P Data WR: inunsigned(31 downto 0);
P_Data RD: out unsigned(31 downto 0);
P_Addr: inunsigned(22 downto 0);

P_RD Req: instd_logic;

P_WR_Req: in std_logic;

P Desire L: instd_logic;
P_Mem_Done: out STD_LOGIC,
P_Grant_ Out: out std logic; --Grant signal to Processor

-- Signals from Memory Arbitrator
Mem_Addr: out unsigned(22 downto 0);
Mem_Data WR: out unsigned(31 downto 0);
Mem_Data RD: in unsigned(31 downto 0);
Mem WR_Req: out std logic;
Mem_RD_ Req: out std logic;
Mem_Done: instd_logic;
-- Signals on/off Adapter
M_BUS: inout unsigned(22 downto 0);
-- M_GRANT_IN _L: instd logic; --Used only when VPM used as Slave
M _DESIRE IN_L: in unsigned(1 downto 0);
M_GRANT_OUT: out unsigned(1 downto 0);
- M_DESIRE_OUT L: out std logic;--Used only when VPM used as Slave
M_REQUEST L: inout std_logic;

147

M_ACKNOWLEDGE_L:in std_logic;

M_RESUME_L:inout std_logic;

S BUSY _L: out std_logic;

M_BUSY _L: inout std_logic;

BUS ERROR L: inout std_logic;
--Parity Bits

LSB_PARITY: inout std_logic;--Odd Parity for Bits MBUS(0:7)

MSB_PARITY: inout std_logic;--Odd Parity for Bits MBUS(8:15)

ADRS PARITY: inout std_logic;--Odd Parity for Bits MBUS(16:22)

CMD_PARITY: inout std_logic;--Odd Parity for

--MSB_Write/LSB_Write/32_Bit_DatallPL_Write

--Control Bits

MSB_WRITE _L: inout std_logic;

LSB_ WRITE_L:inout std_logic;

THREE_TWO _DATA: inout std_logic;

IPL_WRITE: inout std_logic;

--Signals used for Testing Only
Timer_Out: out unsigned(log2(8+1)-1 downto 0);
Timer_Next_Out: out unsigned(log2(8+1)-1 downto 0);
M_ACKNOWLEDGE L _test Out: out std logic
);
end MBUS _Controller;

architecture MBUS_Controller_arch of MBUS_Controller is
--constants

constant Mem BIk 1 L : natural := 1048576 ;

--Lower bound of VPM Master OBM (100000H)

constant Mem BIk 1 H: natura := 2097151 ;

--Upper bound of VPM Master OBM (1FFFFFH)

constant Mem _BIlk 1 Up_ Bits: unsigned(2 downto 0) :="001";
--Bits 22-20 of Address=001if inBlk 1

constant Mem BIk 2 L : natural := 2097152 ;

--Lower bound of VPM Slavel OBM (200000H)

constant Mem BIk 2 H: natura := 3145727 ;

--Upper bound of VPM Slavel OBM (2FFFFFH)

constant MAX_ DELAY: natural := 200;

-- Max Delay interval (ns) (Changed for testing only)

constant TIMER_CYCLES: natural := 1+ (MAX_DELAY * FREQ) / 1000000);
-- ACK Signal Max Delay (20ns)

--Constants for Clarity of Code
constant ACTIVE: std_logic :="1

148

constant ACTIVE_L: std_logic :='0 --For active low signal
constant INACTIVE: std _logic :="0';
constant INACTIVE_L: std logic :="1"; --For active low signal

signa Timer, Timer_next: unsigned(log2(TIMER_CY CLES+1)-1 downto 0);
-- current Delay time

--All signalstied to input/output have same name with _Int addended

signal Clk_Int: std_logic;

signal Rst_Int: std_logic;

signal P_Grant_Int: std logic; --Signal used for Processor Grant Indication
signa M_BUS Int: unsigned(22 downto 0); --INOUT

signa M_BUS Read: unsigned(22 downto 0);

signal P_Data WR_Int: unsigned(31 downto 0);
signal P_Data RD _Int: unsigned(31 downto 0);
signal P_Addr_Int: unsigned(22 downto 0);

signa P_RD_Req Int: std_logic;

signa P_WR_Req_Int: std_logic;

--Signals used for Grant_Logic

signa M_GRANT_OUT _Int: unsigned(1 downto 0);
signd M_Grant_Proc _Int: std_logic;

--Signals used for control logic

signad M_DESIRE_IN_L_Int: unsigned(1 downto 0);
signa M_REQUEST _L _Int:std_logic; --INOUT
signad M_ACKNOWLEDGE_L _Int: std_logic;

signad M_RESUME_L _Int: std_logic; --INOUT

signad MSB_WRITE_L _Int: std_logic; --INOUT
signa LSB_ WRITE L _Int: std_logic; --INOUT

signa THREE_TWO_DATA_Int: std_logic; --INOUT
signa IPL_WRITE Int: std_logic; --INOUT
signa M_BUSY _L_Int: std_logic; --INOUT
signa Mem_DONE _Int: std_logic;

signa S BUSY_L_Int: std_logic;

signa Mem_Addr_Int: unsigned(22 downto 0);

signa BUS ERROR_L _Int: std_logic;

--Signal used for timeout

signa Time Out: std logic;

--Signal to indicate Parity Error

signal Parity_Error_Int: std_logic;

--Signals for parity generation for External drivers of signals

signal LSB_Parity Generate Inpuit: std_logic;
signa MSB_Parity _Generate Input: std_logic;
signa ADRS Parity_Generate Input: std_logic;
signa CMD_Parity Generate |nput: std_logic;

--Signals for parity generation for Internal drivers of signals

149

signa LSB_Parity Generate Output: std_logic;
signa MSB_Parity_Generate Output: std_logic;
signad ADRS Parity Generate Output: std_logic;
signa CMD_Parity Generate Output: std_logic;
--Signals for parity input

signal LSB_Parity_Int: std_logic; --INOUT
signa MSB_Parity_Int: std_logic; --INOUT
signa ADRS Parity_Int: std_logic; --INOUT
signa CMD_Parity_Int: std_logic; --INOUT

--Signal for Parity Generator Format

signa ADRS Parity_Input: unsigned(7 downto 0);
signa ADRS Parity_Output:unsigned(7 downto 0);
signa CMD_Parity_Input: unsigned(7 downto 0);
signa CMD_Parity_Output: unsigned(7 downto 0);

--Signal to drive INOUTS

signal Drive MBUS: std_logic;
signal Drive_Resume: std_logic;
signa Drive Request: std_logic;
signal Drive_M_Busy: std_logic;

signal Drive _Bus Error: std_logic;
signal Drive LSB_Parity: std_logic;
signal Drive MSB_Parity: std_logic;
signal Drive ADRS Parity: std_logic;
signal Drive CMD_Parity: std_logic;

signal Drive MSB_Write: std_logic;

signal Drive LSB_Write: std_logic;

signa Drive_Three Two_Data: std_logic;

signal Drive IPL_Write: std_logic;

--Signalsto Latch

signa M_ACKNOWLEDGE L _test:std logic;

signa Mem_Data RD_Int: unsigned(31 downto 0);
signa Mem_Data WR_Int: unsigned(31 downto 0);

signa Mem_Data WR_Int_Out: unsigned(31 downto 0);
--Latch Driver Signals

signal M_ACK _Latch: std_logic;
signal P_ DATA_RD_Latch: std_logic;
signal M_Addr_Latch: std_logic;
signal Mem_Data RD_L atch: std_logic;
signa Mem_Data WR_L atch: std_logic;

150

type FSM_typeis

(Idle, Addr_ Out M,Req M, Ack Read M, Data Clk_ In_ M, Rsm Read M,

Ack_Write M, Data Clk_Out_M,

Rsm_Write M,

Req Read SAddCIkIn_ Read S, Ack Read S, Rsm Read S, Reaa_Done_S,
Req Write_S, AddCIkin_Write S, Ack_Write S, Write Data S, Rsm_Write S,

Write_Done_S,Error_Internal, Error_External);

--Req_M - if Master has use of MBUS
--Req_Write_S - if dave has use of MBUS for Write Operation
--Req _Read_S- if dave has use of MBUS for Read Operation
--Ack_Read M - Acknowlege Phase of a Master read operation
--Data Clk_In_M - State that clocks in Data off BUS
--Ack_Write_M - Acknowlege Phase of a Master write operation
--Ack_Read S - Acknowlege Phase of a Slave read operation
--Ack_Write_S- Acknowlege Phase of a Slave write operation
--Rsm_Read M - Resume Phase of a Master read operation
--Rsm_Write M - Resume Phase of a Master write operation
--Data Clk_Out_M - Clock Out the Data to be written
--Rsm_Write_S - Resume Phase of a slave read operation
--Rsm_Read S - Resume Phase of a slave write operation
--Error_Internal- Error state caused by Internal Error
--Error_External- Error state caused by Externa Error
--AddCLkIn_Read S- Clock in Address for Read operation
--AddClkin_Write_S- Clock in Address for Write operation
--Read_Done_S - Data removed from bus but bus not available yet
--DataClkin_Write_S - Clock in data to write to memory
--Write_Data_S - Wait state for data to be written to memory
--Write_Done_S - Wait state for completion of Write operation
--Addr_Out_M - Wait 1 clock after puting address on Bus to
--drive Request Signal

signal Curr_State, Next_State: FSM_Type;

begin

--Connect all appropriate signals

Clk_Int <=Clk;

Rst_Int <= Rt

M_GRANT_OUT <=M_GRANT_OUT _Int;
--Connect Grant signals to output port
--P_RD_Req Int<=P_RD_Req;
--P_WR_Req_Int <= P_WR_Req;
P_Addr_Int<=P_Addr;

P_Data WR_Int <= P_Data WR;
P_Grant_Out <= M_Grant_Proc_Int;

M_DESIRE_IN_L_Int<=M_DESIRE_IN_L;

151

M_ACKNOWLEDGE L Int<=M_ACKNOWLEDGE L;
S BUSY L <=S BUSY_L_Int;

Mem_Data WR <= Mem_Data WR_Int_Out;
Mem_DONE_Int <= Mem_DONE;

M_BUS Read <=M _BUS;

Mem_ Addr <= Mem_Addr_Int;

--Tristates for INOUTSs

M_RESUME L <=M_RESUME L _Int when Drive Resume = ACTIVE else ('Z);
M_BUS<=M_BUS Int when Drive MBUS = ACTIVE else (others =>'Z");
M_REQUEST_L <=M_REQUEST L _Int when Drive_Request = ACTIVE else ('Z");
M_BUSY L <=M _BUSY_L _Int whenDrive M_Busy = ACTIVE else ('Z");
LSB_PARITY <=LSB_PARITY_Int when Drive_LSB_Parity = ACTIVE ese (‘'Z');
MSB_PARITY <= MSB_PARITY_Int when Drive MSB_Parity = ACTIVE else ('2");
ADRS PARITY <= ADRS PARITY_Int when Drive ADRS Parity = ACTIVE dse
(29

CMD_PARITY <= CMD_PARITY _Int when Drive CMD_Parity = ACTIVE else ('Z);
MSB_WRITE L <=MSB WRITE_L_Int when Drive MSB_Write = ACTIVE €se
(29

LSB WRITE L <=LSB WRITE_L_Int when Drive LSB_Write= ACTIVE ese (‘'29;
THREE_TWO_DATA <= THREE_TWO_DATA_Int when Drive Three Two_Data =
ACTIVE else ('2Y);

IPL_WRITE<=IPL_WRITE_Int when Drive IPL_Write=ACTIVE ese ('Z');

BUS ERROR_L <=BUS ERROR_L Int when Drive Bus Error = ACTIVE else

(‘29;

--Latch Signals

P_DATA_RD Int <= ("0000000000000000" & M_Bus(15 downto 0)) when
P DATA _RD Latch=ACTIVE else P DATA_RD _Int;

P _Data RD <= P _Data RD_Int;

Mem_Addr_Int<=M_BUSwhen M_Addr_Latch=ACTIVE else Mem_Addr_Int;

Mem _Data RD Int <= Mem_Data RD when Mem Data RD Latch = ACTIVE else
Mem_ Data RD_Int;

Mem Data WR_Int Out <= Mem Data WR_Int when Mem Data WR_Latch
ACTIVE else Mem Data WR_Int_Out;

--Signalsfor Testing only

Timer_Out <= Timer;

Timer_Next_Out <= Timer_Next;

--Latch Test

M_ACKNOWLEDGE L _test <= M_ACKNOWLEDGE L when M_ACK_Latch
ACTIVE else M_ACKNOWLEDGE L _test;

M_ACKNOWLEDGE_L_test Out<=M_ACKNOWLEDGE_L _test;

--Assigning Signals for Parity Generator

152

ADRS Parity Input <= M_BUS Int(22 downto 16) & "0";

ADRS Parity Output <= P_Addr_Int(22 downto 16) & "0";

CMD_Parity_Input <= MSB_WRITE_L & LSB_WRITE_L & THREE_TWO DATA &
IPL_WRITE & "0000";

CMD_Parity Output <= MSB WRITE L Int & LSBWRITE L Int &
THREE_TWO DATA Int& IPL_WRITE_Int & "0000";

--Instantiate Grant Logic Module

uO: Grant_logic port map (M_Desire Ext =>M_DESIRE_IN_L _Int,
M_Desire Proc =>P Desire L,
M_Grant_ Ext=>M_GRANT_OUT _Int ,
--Grant Signal to external signal
M_Grant_Proc => M_Grant_Proc_Int,
--Grant Signal to internal signal
Clk => Clk_Int,
Rst => Rst_Int

);

--Instantiate Parity Generator
--LSB Parity for Input
ul: oddParityGen port map (
data=>M_BUS Int(7 downto 0),
parity => LSB_Parity_Generate_Input
);

u2: oddParityGen port map (
data=>P_Addr_Int(7 downto 0),
parity => LSB_Parity_Generate Output
);
--MSB Parity for Input
u3: oddParityGen port map (
data=>M_BUS Int(15 downto 8),
parity => MSB_Parity_Generate Input
);

u4: oddParityGen port map (
data=>P_Addr_Int(15 downto 8),
parity => MSB_Parity_Generate Output
);
--ADRS Parity for Input
u5: oddParityGen port map (
data=> ADRS Parity_Input,
parity => ADRS Parity Generate Input
);

u6: oddParityGen port map (

153

data=> ADRS Parity_Input,

parity => ADRS Parity_Generate Output
);
--CMD Parity for Input
u7: oddParityGen port map (

data=> CMD_Parity Input,

parity => CMD_Parity_Generate_Input

);

--CMD Parity for Output
u8: oddParityGen port map (
data=> CMD_Parity_Output,
parity => CMD_Parity Generate Output

);

--Next State Conditioning Logic (Process 1)

nxtStProc: process(Curr_State, Timer, Timer_next,BUS ERROR L,M_DESIRE IN L,
Mem DONE,LSB WRITE L,CMD_Parity,
M_RESUME_L,M_Grant_Proc_Int, MSB_Parity Generate Input,LSB_Pa
rity_Generate Input,M_BUSY_L,M_BUS Read,M_BUS Int,M_BUS,
MSB_WRITE_L,Time Out,P RD_Req,CMD_Parity _Generate Input,P_
WR_Req,MSB_Parity,

ADRS Parity_Generate Input,M_REQUEST L,M_ACKNOWLEDGE
L _Int,M_GRANT_OUT Int,LSB _Parity,
ADRS Parity,M_DESIRE_IN_L _Int)

begin
case Curr_Stateis

when |dle =>
--Go to Master statesif processor has been granted bus use

if M_Grant_Proc_Int = ACTIVE then
next_state <= Addr_Out_M;
Timer_Next <= TO_UNSIGNED(TIMER_CY CLES, Timer'length);
--Start Timer
--If Slave has bus use AND address in OBM range AND Write signals are active
GOTO Slave Write states
elsif ((M_GRANT_OUT Int(0) = ACTIVE or M_GRANT_OUT Int(1)
ACTIVE) and M_REQUEST L = ACTIVE L and (M_BUS(22 downto 20)
Mem Blk 1 Up Bits)and MSB_WRITE L = ACTIVE_ L
and LSB_WRITE_L = ACTIVE_L) then
--Check Parity

154

if (LSB_Parity Generate Input = LSB_Parity and MSB_Parity Generate Input =
MSB_Parity and CMD_Parity_Generate Input = CMD_Parity and
ADRS Parity_Generate Input = ADRS_Parity) then
next_state <= Req Write S,
Timer_Next<= TO_UNSIGNED(TIMER_CY CLES,Timer'length); --Start Timer
else
next_state <= Error_Internal;
end if;
--If Slave has bus use AND address in OBM range AND Write signals are
INACTIVE GOTO Slave Write states
elsif ((M_GRANT_OUT _Int(0) = ACTIVE or M_GRANT_OUT_ Int(1)
ACTIVE) and M_REQUEST L = ACTIVE L and (M_BUS(22 downto 20)
Mem BIk 1 Up Bits) and MSB_ WRITE L = INACTIVE L and LSB_ WRITE L
INACTIVE_L) then

--Check Parity
if (LSB_Parity_Generate Input = LSB_Parity and MSB_Parity Generate Input =
MSB_Parity and CMD_Parity_Generate Input = CMD_Parity and

ADRS Parity Generate Input = ADRS Parity) then
next_state <= Req Read S;
Timer_Next<= TO_UNSIGNED(TIMER_CY CLES, Timer'length); --Start Timer
else
next_state <= Error_Interna;
end if;
else
next_state <= Ildle;
end if;
--States for Master Bus Usage
when Addr_Out_ M =>
next_state <= Req_M;

when Reg M =>
if (M_ACKNOWLEDGE_L_Int=ACTIVE_L) then
if (P_RD_Req=ACTIVE) then
next_state <= Ack_Read M;
elsif (P_WR_Req = ACTIVE) then
next_state <= Ack_Write_M;
end if;
elsif (BUS ERROR_L = ACTIVE_L) then
next_state <= Error_External;
elsif (Time_Out = ACTIVE and M_ACKNOWLEDGE_L_Int = INACTIVE_L)
then
next_state <= Error_Internal;
else
next_state <= Reg_M;
end if;
--States for Master Read

155

when Ack_Read M =>
--if (M_RESUME_L_Int=ACTIVE_L) then
if (M_RESUME_L = ACTIVE_L) then
next_state <= Data Clk_In M;
else
next_state <= Ack_Read M;
end if;

when Data Clk_In_ M =>
next_state <= Rsm Read M;

when Rsm_Read M =>

if (M_ACKNOWLEDGE_L_Int =INACTIVE_L) then
next_state <= Idle;

else
next_state <= Rsm_Read M;

end if;

--States for Master Write
when Ack_Write M =>
next_state <= Data Clk_Out_M;

when Data CIk_Out M =>

if (M_RESUME_L = ACTIVE_L) then
next_state <= Rsm_Write M;

else
next_state <= Data Clk_Out_M;

end if;

when Rsm_Write M =>
if (M_ACKNOWLEDGE_L_Int=INACTIVE_L) then
next_state <= Idle;
else
next_state <= Rsm_Write M;
end if;
--States for External user of MBUS
--States for a Slave Read
when Req Read S=>
next_state <= AddCLkIn_Read S,
when AddCLKIn_Read S=>

156

if (Mem_DONE = ACTIVE) then
next_state <= Ack Read S;
else
next_state <= AddCLkIn _Read S;
end if;

when Ack_Read S=>
if (M_REQUEST L =INACTIVE_L) then
next_state <= Rsm _Read S;
else
next_state <= Ack_Read_ S;
end if;

when Rsm_Read S=>
if (M_BUSY_L = INACTIVE_L) then
next_state <= Read Done S,
else
next_state <= Rsm Read S;
end if;

when Read Done S=>
next_state <= Ildle;

--States for Slave Write

when Req_Write S=>
next_state <= AddClkin_Write_S;

when AddClkIn_Write S=>
if (M_REQUEST L = INACTIVE_L) then
next_state <= Ack_Write S;
else
next_state <= AddClkin_Write_S;
end if;

when Ack_Write S=>
next_state <= Write_Data S;

when Write Data S=>
if (Mem_DONE = ACTIVE) then
next_state <= Rsm_Write S;
else
next_state <= Write Data S,
end if;

when Rsm_Write S=>

157

if (M_BUSY_L = INACTIVE_L) then
next_state <= Write Done_S;

else
next_state <= Rsm_Write S;

end if;

when Write_Done_S=>
next_state <= ldle;

-- States for errors
when Error_Internal =>
if (M_DESIRE_IN_L(0) = INACTIVE L and M_GRANT_OUT_Int(0)
INACTIVE) or (M_DESIRE IN_L(1) =INACTIVE L and M_GRANT_OUT Int(1)
INACTIVE)) then
next_state <= Ildle;
else
next_state <= Error_Internal;
end if;

when Error_External =>
if (BUS ERROR_L =INACTIVE_L) then
next_state <= Idle;
else
next_state <= Error_External;
end if;

when others =>
null;

end case;

--Timer will count down after being started by leaving Idle State
case Curr_Stateis

when ldle =>
null;

when others =>

if Timer /= TO_UNSIGNED(0,Timer'length) then
Timer_next <= Timer - 1,
Time _Out <= INACTIVE;
else
--Timer_next <= Timer;
Time_Out <= ACTIVE;

158

endif;
end case;

end process nxtStProc;
--Current State Vector Register (Process 2)

curStProc: process (Clk_Int, Rst_Int)
begin
if (Rst_Int="0") then
Curr_State <= Idle;
elsif (Clk_Int'event and Clk_Int ='1") then
Curr_State <= Next_State;
Timer <= Timer_next;
end if;
end process curStProc;

--Output Conditioning Logic (Process 3)

outConProc:
process(Curr_State Mem Data RD_Int,MSB_Parity_Generate Input,M_BUS Int,LSB_
Parity_Generate Input,P_RD_Req,CMD_Parity_Generate Input, ADRS Parity Generate
_Input,P_Data WR_Int,P_Addr_Int,LSB_Parity Generate Output,MSB_Parity Generat
e Output,ADRS Parity Generate Output, CMD_Parity_Generate Output,M_BUYS)

begin
--Default Signal to drive all Tristates High Z
Drive MBUS <= INACTIVE;
M_RESUME L _Int<=INACTIVE L;
Drive_Resume <= INACTIVE;
M_REQUEST L _Int<=INACTIVE L;
Drive_Request <= INACTIVE;
M_BUSY L Int<=INACTIVE_L;
Drive_ M_Busy <= INACTIVE;
BUS ERROR_L _Int <=INACTIVE;
Drive Bus Error <= INACTIVE;
LSB _PARITY Int <= INACTIVE;
Drive LSB_Parity <= INACTIVE;
MSB_PARITY Int <= INACTIVE;
Drive MSB_Parity <= INACTIVE;
ADRS PARITY Int <= INACTIVE;
Drive ADRS Parity <= INACTIVE;
CMD_PARITY _Int <= INACTIVE;
Drive CMD_Parity <= INACTIVE;
MSB WRITE_L_Int <= INACTIVE;
Drive MSB_Write <= INACTIVE;

159

LSB_ WRITE_L_Int <= INACTIVE;
Drive LSB_Write <= INACTIVE;
THREE_TWO_DATA_Int <= INACTIVE;
Drive Three Two Data<=INACTIVE;
IPL_WRITE_ Int <= INACTIVE;
Drive IPL_Write <= INACTIVE;
--Drive dl outsinactive
S BUSY L _Int<=INACTIVE_L;
P_Mem _Done <= INACTIVE;
Mem WR_Req <= INACTIVE;
Mem_RD_Req <= INACTIVE;
--Latch Drivers
M_ACK_Latch <= INACTIVE;
P DATA_RD Latch <=INACTIVE;
Mem Data RD_Latch <= INACTIVE;
Mem_Data WR_Latch <= INACTIVE;
M_Addr_Latch <= INACTIVE;

case Curr_Stateis

when ldle =>
null;

--States for Master Operations

when Addr_Out_ M =>
M _BUS Int<=P_Addr_Int; --Put Addresson Bus
Drive MBUS <= ACTIVE;
--Command Signals
Drive MSB_Write <= ACTIVE;
Drive LSB_Write<= ACTIVE;
MSB_WRITE L _Int<=P_RD_Req;
LSB WRITE L_Int<=P _RD_Req;
--Thissignal isactive low. The RD signal is active high,therfore
--when the write signal is active, the read signa will be low.
Drive_Three Two_Data<= ACTIVE;
THREE_TWO_DATA _Int <= INACTIVE;
Drive IPL_Write <= ACTIVE;
IPL_WRITE_Int <= INACTIVE;
--Assign Parity Values
Drive MSB_Parity <= ACTIVE;
MSB PARITY Int<= MSB_Parity_Generate Output;
Drive LSB_Parity <= ACTIVE;
LSB PARITY Int<=LSB_Parity Generate Output;
Drive ADRS Parity <= ACTIVE;

160

ADRS PARITY_Int <= ADRS Pearity_Generate Output;
Drive CMD_Parity <= ACTIVE;
CMD_PARITY _Int <= CMD_Parity _Generate Output;

when Req M =>
--Bus Control Signals
M_BUS Int<=P_Addr_Int; --Put Addresson Bus
Drive_ MBUS <= ACTIVE;

Drive_Request <= ACTIVE;
M_REQUEST L_Int<=ACTIVE _L;
--Drive the control signal low to indicate Addressisvalid
Drive MSB_Parity <= ACTIVE;
MSB_PARITY Int <= MSB_Parity_Generate Output;
Drive LSB_Parity <= ACTIVE;
LSB PARITY Int<=LSB_Parity Generate Output;
Drive_ ADRS_Parity <= ACTIVE;
ADRS PARITY_Int <= ADRS Parity_Generate Output;
Drive CMD_Parity <= ACTIVE;
CMD_PARITY _Int <= CMD_Parity_Generate Output;
Drive MSB_Write <= ACTIVE;
Drive LSB_Write <= ACTIVE;
MSB_WRITE L_Int<=P_RD_Req;
LSB WRITE L_Int<=P RD_Req;
--Thissignal isactive low. The RD signal is active high,therfore
--when the write signal is active, the read signal will be low.
Drive_Three Two_Data<= ACTIVE;
THREE_TWO_DATA Int <=INACTIVE;
Drive IPL_Write <= ACTIVE;
IPL_WRITE_Int <= INACTIVE;

M_ACK_Latch <= ACTIVE;

--State for Master Read
when Ack_Read M =>
--Activate M_Busy Signal
Drive M_Busy <= ACTIVE;
M_BUSY _L_Int<=ACTIVE_L;

when Data Clk_In_ M =>
P_Data RD_Latch <= ACTIVE;
Drive M_Busy <= ACTIVE;
M _BUSY L Int<=ACTIVE L;

when Rsm_Read M =>
P_Mem_Done <= ACTIVE;

161

Drive M_Busy <= ACTIVE;
M_BUSY L_Int<=INACTIVE L:

--States for Master Write
when Ack_Write M =>
Drive_Request <= ACTIVE;
M _REQUEST L Int<=ACTIVE L;
Drive MSB_Write <= ACTIVE;
Drive LSB_Write<= ACTIVE;
MSB WRITE L_Int<=P RD Req;
LSB WRITE L_Int<=P RD Req;
Drive MSB_Parity <= ACTIVE;
MSB PARITY Int<= MSB_Parity Generate Output;
Drive LSB_Parity <= ACTIVE;
LSB PARITY Int<=LSB_Parity Generate Output;

Drive M_Busy <= ACTIVE;

M _BUSY L Int<=ACTIVE L;

--Drve the MBUS with data

Drive MBUS <= ACTIVE;

M_BUS Int <= ("0000000" & P_Data WR_Int(15 downto 0));

when Data Clk_Out_ M =>
Drive MSB_Parity <= ACTIVE;
Drive MSB_Write <= ACTIVE;
Drive LSB Write <= ACTIVE;
MSB WRITE L _Int<=P _RD _ Req;
LSB WRITE L_Int<=P_RD_Req;
MSB PARITY Int <= MSB_Parity _Generate Output;
Drive LSB_Parity <= ACTIVE;
LSB PARITY Int<=LSB_Parity Generate Output;
Drive M_Busy <= ACTIVE;
M _BUSY L Int<=ACTIVE L;
Drive MBUS <= ACTIVE;
M_BUS Int <= ("0000000" & P_Data WR_Int(15 downto 0));

when Rsm_Write M =>
P_Mem Done <= ACTIVE;
Drive MSB_Write <= ACTIVE;
MSB_WRITE_L_Int <= INACTIVE_L;
Drive LSB Write<= ACTIVE;
LSB WRITE_L_Int <= INACTIVE_L;
Drive M_Busy <= ACTIVE;
M_BUSY L_Int<=INACTIVE_L;
--M_BUS Int <= (others =>'Z");

162

--States for External user of MBUS

--States for Slave Read
when Req Read S=>
M_Addr_Latch <= ACTIVE;
Mem RD_Req<=ACTIVE;

when AddCLKIn Read S=>
Mem_RD_Req <= ACTIVE;
Mem Data RD Latch <= ACTIVE;--Latches Data off of SDRAM
S BUSY_L_Int<=ACTIVE_L; --Notify user that addressis clocked in

when Ack_Read S=>
Drive MBUS <= ACTIVE;
M_BUS Int <= ("0000000" & Mem_Data RD_Int(15 downto 0));
Drive MSB_Parity <= ACTIVE;
MSB_PARITY Int <= MSB_Parity_Generate Output;
Drive LSB_Parity <= ACTIVE;
LSB PARITY Int<=LSB_Parity Generate Output;
S BUSY L _Int<=ACTIVE_L,;

when Rsm_Read S=>
Drive MBUS <= ACTIVE;
M_BUS Int <= ("0000000" & Mem_Data RD_Int(15 downto 0));
S BUSY L _Int<=ACTIVE L;
M_RESUME_L_Int<=ACTIVE_L;
Drive_Resume <= ACTIVE;

when Read Done S=>
M_RESUME L Int<=ACTIVE L;
Drive_Resume <= ACTIVE;
S BUSY L Int<=ACTIVE L;

--States for Slave Write
when Req_Write S=>
M_Addr_Latch <= ACTIVE;
Drive_Resume <= ACTIVE;
when AddClkIn_Write S=>

S BUSY_L_Int<=ACTIVE_L;
Drive_Resume <= ACTIVE;

163

when Ack_Write S=>
Mem Data WR_Latch <= ACTIVE;
Mem_Data WR_Int <= ("0000000000000000" & M_BUS(15 downto 0));
Mem WR_Req <= ACTIVE;
S BUSY L Int<=ACTIVE L;
Drive_Resume <= ACTIVE;

when Write Data S=>
S BUSY _L_Int<=ACTIVE_L;
Drive_Resume <= ACTIVE;
Mem WR_Req <= ACTIVE;

when Rsm_Write S=>
M_RESUME_L Int<=ACTIVE L;
Drive_Resume <= ACTIVE;
Mem WR_Req <= INACTIVE;
S BUSY_L_Int<=ACTIVE_L,;

when Write_Done_S=>
M_RESUME L _Int<=ACTIVE L;
Drive_Resume <= ACTIVE;

--States for Errors

when Error_Internal =>
null;

when Error_External =>
Drive Bus Error <= ACTIVE;
BUS ERROR L _Int<=ACTIVE L;

when others =>
null;

end case;
end process outConProc;

end MBUS _Controller_arch;

164

XBUS Arbitrator <x_grant_logic.vhd>

Project:
Component:
Description:

-- Author:
-- Advisor:

-- Co-advisor:

-- Location:

-- Created:
-- Modified:
-- Simul ated:
-- Target:

-- Software:
-- Notes:

Disclaimer:

provided "Asls".

AYK-14 VHSIC Processor Module Hardware Emulator

XBUS Arbitrator

State Machine that determines the next user of the XBUS via a
rotating priority scheme and generates the control signals to notify
the current user. The signals monitored are the Desire signals from
6 external users plus the Processor. The control signals generated
are the Grant Signals.

LT Bryan Fetter, USN

Dr. Russ Duren

Dr. Hersch Loomis

Naval Postgraduate School

25 October 2002
21 November 2002

XCV1000E FG1156
Foundation 4.2i

NPS, makes no warranty for the use of this code or design. This code is
NPS, assumes no responsibility for any errors, which may appear in

this code, nor does it make a commitment to update the information contained herein.
NPS specifically disclaims any implied warranties of fitness for a particular purpose.

Copyright (c) 2002 NPS
All rights reserved.

library |EEE;

use IEEE.std logic 1164.all;
use |[EEE.numeric_std.all;

use IEEE.std logic_unsigned.all;
use IEEE.std logic_arith.all;

package X_GRANT is

component X_GRANT_LOGIC

port (

X _Desire: in std_logic_vector (6 downto 0);
X_Grant: out std_logic_vector (6 downto 0);
X_Resume: inout STD_LOGIC;

165

Clk: in STD_LOGIC;
Rst: in STD_LOGIC
);

end component;
end package X_GRANT;

library |EEE;

use IEEE.std _logic_1164.all;

use |[EEE.numeric_std.all;

use IEEE.std_logic_unsigned.all;
use IEEE.std logic_arith.all;

entity X GRANT_LOGIC is
port (
X _Desire: in std_logic_vector (6 downto 0);
X_Grant: out std_logic_vector (6 downto 0);
X_Resume: inout STD_LOGIC;
Clk: in STD_LOGIC;
Rst: in STD_LOGIC
);
end X_GRANT_LOGIC;

architecture X_GRANT _LOGIC archof X GRANT _LOGIC is

type FSM _typeis (Idle,Grant);

signal Curr_State, Next_State: FSM_Type;

signal Next_User : std_logic_vector (2 downto 0);

signa Pri_O,Pri_1,Pri_2,Pri_3,Pri_4,Pri_5Pri_6: std logic vector (2 downto 0);

signal X_Desire Int : std_logic_vector (6 downto 0);

signal X_Grant_Int : std_logic_vector (6 downto 0);
signal X_Resume _Int: std _logic;

begin
X _Desire_Int <= X_Desire;

X_Resume_Int <= X_Resume;,
X_Grant <= X_Grant_lInt;

nxtStProc: process(Curr_State,Next_State,
X _Desire_Int, X_Resume_Int,Next_User)
begin
166

case Curr_Stateis

when Idle =>
if X_Desire Int/="1111111" then
Next State <= Grant;
else
Next State <= Idle;
end if;

when Grant =>

if (X_Resume_Int="1'
and X_Desire_Int(conv_integer(Next_User)) = '1") then
Next_State <= Idle;
else
Next_State <= Grant;
end if;

when others =>
null;

end case;
end process NxtStProc;

--Process to register current state

curStProc: process (Clk, Rst)
begin
if (Rst="0" then
Curr_State <= Idleg;
elsif (Clk'event and Clk ='1") then
Curr_State <= Next_State;
end if;
end process curStProc;

--Process to generate outputs

outConProc: process(Curr_State,X _Desire Int,Pri_O,Pri_1,Pri_2,
Pri_3,Pri_4,Pri_5,Pri_6,Next_User)

begin
case Curr_Stateis
when ldle =>

167

X_Grant_Int <="0000000";
--The 1st If statement is to handle the reset case

if (Pri_O=Pri_1)then

if (X_Desire_Int(conv_integer(0)) ='0")then
Next_User <="000";

elsif (X_Desire_Int(conv_integer(1)) ='0")then
Next_User <="001";

elsif (X_Desire_Int(conv_integer(2)) ='0")then
Next_User <="010";

elsif (X_Desire_Int(conv_integer(3)) ='0")then
Next User <="011";

elsif (X_Desire_Int(conv_integer(4)) ='0")then
Next_User <="100";

elsif (X_Desire_Int(conv_integer(5)) ='0")then
Next User <="101";

elsif (X_Desire_Int(conv_integer(6)) ='0")then

end if;

elsif X_Desire_Int(conv_integer(Pri_0)) ='0'then
Next User <= Pri_0;

elsif X_Desire_Int(conv_integer(Pri_1)) = 'O'then
Next User <=Pri_1,

elsif X_Desire_Int(conv_integer(Pri_2)) = '0O'then
Next User <=Pri_2;

elsif X_Desire_Int(conv_integer(Pri_3)) = 'O'then
Next_User <= Pri_3;

elsif X_Desire_Int(conv_integer(Pri_4)) = 'O'then
Next User <= Pri_4;

elsif X_Desire_Int(conv_integer(Pri_5)) = 'O'then
Next_User <= Pri_5;

elsif X_Desire_Int(conv_integer(Pri_6)) = 'O'then
Next_User <= Pri_6;

end if;

when Grant =>
X_Grant_Int(conv_integer(Next_User)) <="1';

if Next_User ="000" then
Pri_0<="001";
Pri_1<="010";
Pri_2<="011";
Pri_3 <="100";
Pri_4<="101";

168

Pri_ 5<="110";
Pri_6<="000";

elsif Next_User ="001" then

Pri_0<="010"
Pri_1<="011",
Pri_2 <="100"
Pri_3 <="101",
Pri_4 <="110"
Pri_5 <= "000";
Pri_6 <="001";

elsif Next_User = "010" then

Pri_0<="011"
Pri_1 <="100";
Pri_2 <="101"
Pri_3 <="110"
Pri_4 <="000",
Pri_5 <="001";
Pri_6 <="010"

elsif Next_User ="011" then

Pri_0 <="100"
Pri_1<="101";
Pri_2 <="110"
Pri_3 <="000";
Pri_4 <="001";
Pri_5<="010";
Pri_6 <="011"

elsif Next_User =

Pri_ 0<="101";
Pri_1<="110"
Pri_2 <="000";
Pri_3<="001";
Pri_4<="010";
Pri_5<="011"
Pri_6<="100";

elsif Next_User =

Pri_0<="110";
Pri_1<="000";
Pri_2 <="001";
Pri_3<="010";
Pri_4 <="011";
Pri_5<="100";
Pri_6<="101";
elsif Next_User

Pri_0 <="000";
Pri_1<="001";
Pri_2<="010";

"100" then

"101" then

"110" then

169

Pri_3<="011";
Pri_4 <="100"
Pri_5<="101";
Pri_6 <="110"
else
Pri_0<="001";
Pri_1<="010";
Pri_2<="011";
Pri_3<="100";
Pri_4<="101";
Pri_5<="110";
Pri_6<="000";
end if;

when others =>
null;

end case;
end process outConProc;

end X_GRANT _LOGIC arch;

170

MBUS Desire/ Grant Arbitrator <grant_logic.vhd>

Project: AYK-14 VHSIC Processor Module Hardware Emulator
Component: MBUS Grant Arbitrator
Description: State machine that provides rotating priority logic to determinethe

next user of the MBUS. The component analyzes the MBUS Request signals from the 3
MBUS users and provides MBUS Grant signals to the appropriate user.The priority is a
rotating type that ensures that each user has equal access to the bus based upon the
previous user.

Author: LT Bryan Fetter, USN
Advisor: Dr. Russ Duren
Co-advisor: Dr. Hersch Loomis

L ocation: Naval Postgraduate School
Created: 25 October 2002
Modified: 7 November 2002
Simulated:

Target: XCV1000E FG1156
Software: Foundation 4.2i

Notes:

Disclaimer: NPS, makes no warranty for the use of this code or design. This code is
provided "As Is'. NPS, assumes no responsibility for any errors, which may appear in
this code, nor does it make a commitment to update the information contained herein.
NPS specifically disclaims any implied warranties of fitness for a particular purpose.
Copyright (c) 2002 NPS
All rights reserved.

library |EEE;

use IEEE.std logic 1164.all;

use |[EEE.numeric_std.all;

--use |[EEE.std_logic_unsigned.all;
--use |[EEE.std_logic_arith.all;

package Grant is

component Grant_Logic

port (
M_Desire Ext: in UNSIGNED (1 downto 0);

171

M_Desire Proc: in STD_LOGIC,;
M_Grant_Ext: out UNSIGNED (1 downto 0);
M_Grant_Proc: out STD_LOGIC;
Clk: in STD_LOGIC;
Rst: in STD_LOGIC
);

end component;
end package Grant;

library |EEE;

use IEEE.std logic_1164.all;

use |EEE.numeric_std.all;

--use |[EEE.std_logic_unsigned.all;
--use |[EEE.std_logic_arith.all;

entity Grant_Logicis

port (
M_Desire_Ext: in UNSIGNED (1 downto 0);
M_Desire Proc: in STD _LOGIC;
M_Grant_Ext: out UNSIGNED (1 downto 0);

M_Grant_Proc: out STD _LOGIC,;

Clk: in STD_LOGIC;
Rst: in STD_LOGIC

);

end Grant_L ogic;
architecture Grant_Logic_arch of Grant_Logic is

type FSM _typeis (Idle,Grant);

signal Curr_State, Next_State: FSM_Type;

signal User : UNSIGNED (1 downto 0);

signa Pri_0O,Pri_1,Pri_2: UNSIGNED (1 downto 0);

signal M_Desire_Int : UNSIGNED (2 downto 0);
signal M_Grant_Int : UNSIGNED (2 downto 0);

begin

M_Desire Int(1) <=M _Desire Ext(1);
M_Desire_Int(0) <= M_Desire_Ext(0);
M_Desire Int(2) <= M_Desire _Proc;

M_Grant_Ext(1) <= M_Grant_Int(1);
M_Grant_Ext(0) <= M_Grant_Int(0);

172

M_Grant_Proc <= M_Grant_Int(2);

nxtStProc: process(Curr_State,Next_State, M_Desire_Int, User)
begin

case Curr_Stateis

when ldle =>

if M_Desire_Int /="111" then
Next State <= Grant;

else
Next State <= Idle;

end if;

when Grant =>
if (M_Desire_Int(to_integer(User)) ='0") then
Next_State <= Grant;
else
Next_State <= Idle;
end if;

when others =>
null;

end case;
end process nxtStProc;

--Process to register current state

curStProc: process (Clk, Rst)
begin
if (Rst="0" then
Curr_State <= Idle;
elsif (Clk'event and Clk ='1") then
Curr_State <= Next_State;
end if;
end process curStProc;

--Process to generate outputs

outConProc: process(Curr_State,M_Desire Int,Pri_O,Pri_1,Pri_2,User)

173

begin
case Curr_Stateis

when Idle =>
M_Grant_Int <="000";

--to handle Reset
if (Pri_O=Pri_1) then
if (M_Desire_Int(0)) ='0")then
User <="00";
elsif (M_Desire_Int(1)) ='0'")then
User <="01",
elsif (M_Desire_Int(2)) ='0'")then
User <="10"
end if;
elsif (M_Desire_Int(to_integer(Pri_0)) ='0")then
User <= Pri_0;
elsif (M_Desire_Int(to_integer(Pri_1)) ='0")then
User <=Pri_1,
elsif (M_Desire_Int(to_integer(Pri_2)) ='0")then
User <=Pri_2;
end if;

when Grant =>
M_Grant_Int(to_integer(User)) <="1;

if User ="00" then
Pri_0<="01";
Pri_1<="10";
Pri_2<="00";

elsif User ="01" then
Pri_0<="10";
Pri_1<="00";
Pri_2<="01";

elsif User ="10" then
Pri_0<="00";
Pri_1<="01";
Pri_2<="10";

else
Pri_0<="00";
Pri_1<="01";
Pri_2<="10";

end if;

174

when others =>
null;

end case;
end process outConProc;

end Grant_Logic_arch;

175

XBUS Controller <xbus_controller.vhd>

Project: AYK-14 VHSIC Processor Module Hardware Emulator

Component: XBUS Controller

Description: State Machine that determines the user of the XBUS via use of the
X_GRANT_LOGIC program and generates the control signals for
XBUS operation depending upon type of operation and user. For
I/O module (DSM) memory requests, generates the 23-bit address
from Page Register set 0 and generates control signals for
memory interface.

Author: LT Bryan Fetter, USN

Advisor: Dr. Russ Duren

Co-advisor: Dr. Hersch Loomis

L ocation: Naval Postgraduate School

Created: 25 October 2002

Modified: 21 November 2002

Simulated:

Target: XCV1000E FG1156

Software: Foundation 4.2i

Notes:

Disclaimer: NPS, makes no warranty for the use of this code or design. This code is
provided "As Is'. NPS, assumes no responsibility for any errors, which may appear in
this code, nor does it make a commitment to update the information contained herein.
NPS specifically disclaims any implied warranties of fitness for a particular purpose.
Copyright (c) 2002 NPS
All rights reserved.

library |EEE;

use IEEE.std logic_1164.all;
use |EEE.numeric_std.all;
use WORK.X_GRANT all;
use WORK.common.all;

package XBUS CTRL is

component XBUS_Controller
generic(

);
port (

FREQ: natural := 40 _000-- operating frequency in KHz

176

Clk: instd_logic;

Rst: in std_logic;

-- Signals from Processor

P_Command: inunsigned(23 downto 0); --Command Word for X_BUS

P_Data In: in unsigned(15 downto 0); --Data Word for X_BUS
P_Data Out: out unsigned(15 downto 0);--Data read by XBUS
--P_Page 0: --Page Register set 0

P Desire L: instd_logic; --Desire Signa

P_GRANT: out STD_LOGIC; --Grant Signal

-- Signals from Memory Arbitrator

Mem_Addr: out unsigned(22 downto 0);
Mem_Data WR: out unsigned(31 downto 0);
Mem_Data RD: in unsigned(31 downto 0);

Mem_ WR_Reg: out std _logic;

Mem_RD_ Req: out std logic;

Mem_Done: instd logic;

--Test Port

--Timer_Port: out unsigned(1 downto 0);

-- Signals on/off Adapter

X_BUS: inout unsigned(23 downto 0);
X_GRANT_OUT: out std_logic_vector(5 downto 0);
X_DESIRE_IN_L: in std_logic_vector(5 downto 0);
X _REQUEST L.: inout std_logic;
X_ACKNOWLEDGE _L:inout std_logic;
X_RESUME_L: inout std logic;

IPC_MODE_L: inout std logic

end component;

end XBUS_Cirl;

library |EEE;

use IEEE.std logic 1164.all;
use |[EEE.numeric_std.all;
use WORK.X_GRANT .all;
use WORK.Common.all;

entity XBUS_Controller is

generic(
FREQ: natural := 40 _000-- operating frequency in KHz

port (
Clk: instd_logic;

177

Rst: in std_logic;
-- Signals from Processor
P_Command: inunsigned(23 downto 0); --Command Word for X_BUS

P_Data In: in unsigned(15 downto 0); --Data Word for X_BUS
P_Data Out: out unsigned(15 downto 0);--Dataread by XBUS
--P_Page 0O: --Page Register set 0

P Desire L: instd _logic; --Desire Signdl

P_GRANT: out STD _LOGIC; --Grant Signal

-- Signals from Memory Arbitrator
Mem_Addr: out unsigned(22 downto 0);
Mem_Data WR: out unsigned(31 downto 0);
Mem_Data RD: in unsigned(31 downto 0);
Mem_ WR_Reg: out std logic;
Mem_RD_Req: out std logic;
Mem_Done: instd_logic;
--Test Port
--Timer_Port: out unsigned(1 downto 0);
-- Signals on/off Adapter
X_BUS: inout unsigned(23 downto 0);
X_GRANT_OUT: out std _logic_vector(5 downto 0);
X _DESIRE_IN L.: in std_logic_vector(5 downto 0);
X _REQUEST L.: inout std_logic;
X_ACKNOWLEDGE L:inout std logic;
X_RESUME_L: inout std_logic;
IPC_MODE_L: inout std logic
);
end XBUS_Controller;

architecture XBUS Controller_arch of XBUS Controller is

--constants
constant DELAY _TWO _ZERO: natural :=20; -- 20 nsDelay interval
constant DELAY _FIVE_ZERO: natural :=50; -- 50 ns Delay interval

-- ACK Signal Max Delay (20ns)

constant TIMER_CYCLES TWO_ZERO: natural := 1 + ((DELAY_TWO_ZERO *
FREQ) / 1000000);

-- Delay (50 ns)

constant TIMER_CYCLES FIVE_ZERO:natural := 1 + ((DELAY_FIVE ZERO *
FREQ) / 1000000);

constant MSTR_ADDR: unsigned(3 downto 0) :="0000";

--Address of VPM on XBUS

--Constants for Clarity of Code

constant ACTIVE: std_logic :='1

constant ACTIVE_L: std_logic :='0 --For active low signal

178

constant INACTIVE: std_logic :="0';
constant INACTIVE_L: std logic :="1"; --For active low signal

signal Timer, Timer_next: unsigned(log2(TIMER_CYCLES FIVE_ZERO+1)-1 downto
0);

-- current Delay time

signa Time_Out: std_logic;

signal User: natural;

--All signalstied to input/output have same name with _int addended

signal Clk_Int: std_logic;

signal Rst_Int: std_logic;

signad X_GRANT_OUT Int: std_logic_vector(6 downto 0);
signa X_DESIRE_IN_L_Int: std_logic_vector(6 downto 0);
signa X_BUS Int: unsigned(23 downto 0);

signa X_REQUEST L _Int: std_logic;

signal X_ACKNOWLEDGE_L _Int:std _logic;
signad X_RESUME L_Int: std_logic;
signa IPC_MODE_L_Int: std_logic;

--Signal to drive INOUTS

signal Drive_X_BUS: std_logic;

signal Drive X REQUEST: std_logic;

signal Drive X_ACKNOWLEDGE: std logic;

signal Drive X _RESUME: std_logic;

signa Drive IPC_MODE: std_logic;

--Signalsto Latch

signal P_Command_Int: unsigned(23 downto 0);

--Command Word for X_BUS

signal P_Data In_Int: unsigned(15 downto 0); --Data Word for X_BUS
signal P_Data Out_Int: unsigned(15 downto 0); --Data Word for X_BUS
signa Mem_Data WR_Int: unsigned(31 downto 0);

signal Mem_Data RD_Int: unsigned(31 downto 0);

signa Mem_Done Int: std_logic;

signa Mem_Addr_Int: unsigned(22 downto 0);

--Latch Driver Signals

signal P_Command_L atch: std_logic; --Command Word for X_BUS
signal P_Data In_Latch: std_logic; --DataWord for X_BUS

signal P_Data Out_Latch: std_logic; --DataWord for X_BUS

signal Mem_Data WR_L atch: std_logic;

179

signa Mem_Data RD_Latch: std _logic;
signal Mem_Done_L atch: std_logic;
signa Mem_Addr_L atch: std _logic;

type FSM _typeis (Idle,Proc_Bdcst,Req Proc_Write, Ack_Proc_Write,Rsm_Proc_Write,

Req Proc_Read,Ack Proc_Read,Read Wait,Rsm Proc_Read,

DSM_Bdcst, Req DSM_Write, Addr_Clkin DSM_WR, Ack_DSM_Write,

Data Clkin_DSM_WR,Req DSM_Read,Addr_Clkin_ DSM_RD,

Data ClkOut_ DSM_RD, Ack_DSM_Read);
--Proc_Bdcst Processor Broadcast Operation
--Req _Proc_Write Request Phase of Processor Write Operation
--Ack_Proc_Write Acknowledge Phase of Processor Write Operation
--Write_Wait Wait for resume signal to indicate memory written
--Rsm_Proc_Write Resume Phase of Processor Write Operation
--Req Proc Read Request Phase of Processor Read Operation
--Ack_Proc Read Acknowledge Phase of Processor Read Operation
--Rsm_Proc_ Read Resume Phase of Processor Read Operation
--DSM_Bdcst DSM Broadcast Operation
--Req DSM_Write Request Phase of DSM Write Operation
--Ack_DSM_Write Acknowledge Phase of DSM Write Operation
--Req DSM_Read Request Phase of DSM Read Operation
--Ack_ DSM_Read Acknowledge Phase of DSM Read Operation

signal Curr_State, Next_State : FSM_Type;

begin

--Test Signd
--Test Port
--Timer_Port <= Timer;

--Connect all appropriate signals
Clk_Int <= CIk;
Rst_Int <= Rst;

X_DESIRE_IN_L_Int<=X_DESIRE_IN_L & P _Desire L;
X_GRANT_OUT <= X_GRANT_OUT _Int(5 downto 0);
P_GRANT <= X_GRANT_OUT_Int(6);

Mem_Addr <= Mem_Addr_Int;

--X_RESUME L _Int<=X RESUME L;

P Data Out <= P _Data Out_Int;

Mem Data WR <= Mem_Data WR_Int;

180

--Tristates for INOUTS

X_BUS<=X_BUS Int when Drive X_BUS = ACTIVE else (others =>'Z");
X_REQUEST L <= X_REQUEST _L_Int when Drive X_REQUEST = ACTIVE edse
(2%,

X_ACKNOWLEDGE L <= X_ACKNOWLEDGE L _Int when

Drive X_ACKNOWLEDGE = ACTIVE else ('Z');

X_RESUME_L <= X_RESUME_L_Int when Drive X_RESUME = ACTIVE else ('Z');
IPC_MODE_L <= IPC_MODE_L_Int when Drive IPC_ MODE = ACTIVE else
(‘2));

--Latch Signals
P_Command Int <= P _Command when P_Command Laich = ACTIVE else
P_Command_Int;
P_Data In_Int <= P_Data Inwhen P_Data In_Latch=ACTIVE else P_Data In_Int;
P_Data Out_Int <= X_BUS(15 downto 0) when P_Data Out_Latch = ACTIVE else
P_Data Out_lInt;
Mem_Addr_Int <= X _BUS(22 downto 0) when Mem_Addr_Latch = ACTIVE else
Mem_Addr_Int;
Mem_Data WR_Int <= (*0000000000000000" & X_BUS(15 downto 0))

when Mem_Data WR_Latch = ACTIVE else Mem_Data WR_Int;
Mem_Data RD_Int <= (Mem_Data RD) when Mem_Data RD Latch = ACTIVE else
Mem_Data RD_Int;
Mem Done Int <= Mem Done when Mem Done Laich = ACTIVE €se
Mem_Done_Int;

--Instantiate Grant Logic Module

u0: X_GRANT_LOGIC port map (

X _Desire=> X _DESIRE IN_L_Int,
X_Grant => X_GRANT_OUT _Int,
X_Resume=>X_RESUME_L _Int,
Clk => Clk_Int,
Rst => Rst_Int
)i

--Next State Conditioning Logic (Process 1)

nxtStProc:

process(Curr_State, Mem_Done, Timer,User,X_DESIRE IN L,X RESUME L,
X_ACKNOWLEDGE_L,X_REQUEST _L,P_Command,
X_BUSX_GRANT_OUT_Int, Mem_Done_Int)

begin

181

case Curr_Stateis

when Idle =>
if (X_GRANT_OUT _Int(6) = ACTIVE) then --Processor Operations
if (P_Command(19) = ACTIVE) then
next_state <= Proc_Bdcst;
elsif (P_Command(17) = ACTIVE) then
next_state <= Req_Proc_Write;
else
next_state <= Req_Proc_Read;
end if;
elsif (X_GRANT_OUT _Int(5 downto 0) /= "000000") then --DSM Operations
if (X_REQUEST L = ACTIVE_L) then
if (X_BUS(19) = ACTIVE) then
next_state <= DSM_Bdcst;
elsif (X_BUS(19) = INACTIVE
and X_BUS(23 downto 20) = MSTR_ADDR) then
if (X_BUS(17) = INACTIVE) then
next_state <= REQ_DSM_Read;
elsif (X_BUS(17) = ACTIVE) then
next_state <= REQ_DSM_Write,
end if;
end if;
end if;
else
next_state <= ldle;
end if;
--Determine User
if X_GRANT_OUT _Int(0) = ACTIVE then
User <=0;
elsif X_GRANT_OUT_Int(1) = ACTIVE then
User <=1,
elsif X_GRANT_OUT_Int(2) = ACTIVE then
User <= 2;
elsif X_GRANT_OUT_Int(3) = ACTIVE then
User <= 3;
elsif X_GRANT_OUT _Int(4) = ACTIVE then
User <=4,
elsif X_GRANT_OUT_Int(5) = ACTIVE then
User <=5
else
User <=0;
end if;
--Broadcast Command by Processor
when Proc_Bdcst =>
if X_GRANT_OUT _Int(6) = INACTIVE then

182

next_state <= Idle;
else
next_state <= Proc_Bdcst;
end if;
--Processor Write Operations
when Req_Proc_Write =>
if X_ACKNOWLEDGE_L = INACTIVE_L then
next_state <= Ack_Proc_Write;
else
next_state <= Req_Proc_Write;
end if;

when Ack_Proc_Write =>
if X_RESUME_L =ACTIVE_L then
next_state <= Rsm_Proc_Write;
else
next_state <= Ack_Proc_Write;
end if;

when Rsm_Proc_Write =>
if X_RESUME_L = INACTIVE_L then
next_state <= Ildle;
else
next_state <= Rsm_Proc_Write;
end if;
--Processor Read Operation

when Req_Proc_Read =>
if X_ ACKNOWLEDGE_L = ACTIVE_L then
next_state <= Ack_Proc_Read;
else
next_state <= Req_Proc_Read;
end if;

when Ack_Proc_Read =>
if X_RESUME_L = ACTIVE_L then
next_state <= Read Wait;
else
next_state <= Ack_Proc_Read;
end if;

when Read Wait =>
next_state <= Rsm_Proc_Read,;

when Rsm_Proc_Read=>
if X_RESUME_L = INACTIVE_L then

183

next_state <= Idle;
else

next_state <= Rsm_Proc_Read;
end if;

when DSM_Bdcst =>
if (X_DESIRE_IN_L(User) = INACTIVE_L) then
next_state <= ldle;
else
next_state <= DSM_Bdcst;
end if;
--DSM Write to Memory
when Req DSM_ Write =>
next_state <= Addr_Clkin DSM_WR;

when Addr_Clkin DSM_WR =>
if Timer = 0then
next_state <= Ack_ DSM_Write;
else
next_state <= Addr_Clkin DSM_WR;
end if;

when Ack_DSM_Write =>
next_state <= Data Clkin DSM_WR;

when Data Clkin DSM_WR =>
if (Mem_Done Int=ACTIVE
and X_DESIRE_IN_L(User) = INACTIVE_L) then
next_state <= Idle;
else
next_state <= Data Clkin_ DSM_WR,;
end if;
--DSM Read from Memory
when Req DSM_Read =>
next_state <= Addr_Clkin DSM_RD;

when Addr_Clkin DSM_RD =>
if Mem_Done= ACTIVE then
next_state <= Data ClkOut DSM_RD;
else
next_state <= Addr_Clkin_ DSM_RD;
end if;

when Data_ClkOut_DSM_RD =>
next_state <= Ack_DSM_Read;

184

when Ack_DSM_Read =>

if Timer = 0then
next_state <= Idle;

ese
next_state <= Ack DSM_Read;

end if;

when others =>
null;
end case;
--Timer Logic

case Curr_Stateis

when ldle =>
null;

when others =>

if Timer /= TO_UNSIGNED(O,Timer'length) then
Timer_next <= Timer - 1;
Time_Out <= INACTIVE;

else
--Timer_next <= Timer;
Time_Out <= ACTIVE;

end if;

end case;

end process nxtStProc;
--Current State Vector Register (Process 2)

curStProc: process (Clk_Int, Rst_Int)
begin
if (Rst_Int="0") then
Curr_State <= Idleg;
Timer <= TO_UNSIGNED(O, Timer'length);
elsif (Clk_Int'event and Clk_Int ='1") then
Curr_State <= Next_State;
Timer <= Timer_next;
end if;
end process curStProc;

--Output Conditioning Logic (Process 3)

185

outConProc: process(Curr_State,P_Command_Int,P_Data In_Int,
Mem_Data RD_Int)

begin
--Default Signal to drive all Tristates High Z

Drive X_BUS <= INACTIVE;

X_REQUEST L_Int <= INACTIVE_L;

Drive X_REQUEST <= INACTIVE;
X_ACKNOWLEDGE_L_Int <= INACTIVE_L;
Drive X_ACKNOWLEDGE <= INACTIVE;
X_RESUME L _lInt <= INACTIVE_L;

Drive X_RESUME <= INACTIVE;
IPC_MODE_L_Int <= INACTIVE_L;

Drive IPC_MODE <= INACTIVE;

--Drive dl outsinactive
Mem_WR_Req <= INACTIVE;
Mem RD_ Req<=INACTIVE;

--Latch Drivers
P_Command_Latch <=INACTIVE; --Command Word for X_BUS
P Data In Latch <= INACTIVE; --Data Word for X_BUS
P_Data Out_Latch <= INACTIVE;
Mem_Data WR_Latch<=INACTIVE;
Mem_Data RD Latch<= INACTIVE;
Mem Done Laich <=INACTIVE;
Mem Addr Latch <=INACTIVE;

case Curr_Stateis

when Idle =>
P_Command_L atch <= ACTIVE;
--Thislatches the signal when leaving Idle
P Data In_Latch <= ACTIVE;

when Proc_Bdcst =>
P_Command_Latch <= ACTIVE;
Drive X_BUS <= ACTIVE;
X_BUS Int <=P_Command_Int;
X_REQUEST L_Int<=ACTIVE_L;
Drive X _REQUEST <= ACTIVE;

when Req_Proc_Write =>
Drive X_BUS<= ACTIVE;

186

X_BUS Int <= P_Command_Int;
X _REQUEST L _Int<=ACTIVE_L;
Drive X_REQUEST <= ACTIVE;

when Ack_Proc_Write =>
Drive X_BUS<=ACTIVE;
X_BUS Int(15 downto 0) <= P_Data In_Int;
Drive X _REQUEST <= ACTIVE;

when Rsm_Proc_Write =>
Drive X_REQUEST <= ACTIVE;

--Processor Read Operation

when Req_Proc_Read =>
Drive X_BUS<=ACTIVE;
X_BUS Int <=P_Command_lInt;
X _REQUEST L _Int<=ACTIVE_L,;
Drive X_REQUEST <= ACTIVE;

when Ack_Proc_Read =>
Drive_X_REQUEST <= ACTIVE;

when Read Wait =>
P_Data Out_Latch <= ACTIVE;
Drive X _REQUEST <= ACTIVE;

when Rsm_Proc_Read=>
Drive X _REQUEST <= ACTIVE;

--DSM Operations
when DSM_Bdcst =>
--No response Required

--DSM Write Operation
when Req DSM_Write =>
Mem_Addr_Latch <=ACTIVE;
Drive X_RESUME <= ACTIVE;
Drive X_ACKNOWLEDGE <= ACTIVE;

when Addr_Clkin DSM_WR =>
X_ACKNOWLEDGE L_Int<=ACTIVE L;
Drive X_ACKNOWLEDGE <= ACTIVE;
Drive X_RESUME <= ACTIVE;

when Ack_DSM_Write =>

187

Mem Data WR_Latch <= ACTIVE;
Drive X _RESUME <= ACTIVE;
Drive X_ACKNOWLEDGE <= ACTIVE;

when Data_ Clkin_DSM_WR =>
X _RESUME_L_Int<=ACTIVE L;
Drive X_RESUME <= ACTIVE;
Drive X_ACKNOWLEDGE <= ACTIVE;
Mem WR_Req <= ACTIVE;

--DSM Read Operation
when Req DSM_Read =>
Mem Addr Latch <= ACTIVE;
Drive X _RESUME <= ACTIVE;
Drive X_ACKNOWLEDGE <= ACTIVE;

when Addr_Clkin DSM_RD =>
X_ACKNOWLEDGE_L_Int<=ACTIVE_L;
Drive X_ACKNOWLEDGE <= ACTIVE;
Drive X _RESUME <= ACTIVE;
Mem RD_ Req<=ACTIVE;
Mem_Data RD Latch <= ACTIVE;

when Data ClkOut DSM_RD =>
Drive X_BUS<= ACTIVE;
X_BUS Int(15 downto 0) <= Mem_Data RD_Int(15 downto 0);
Drive X _RESUME <= ACTIVE;
Drive X_ ACKNOWLEDGE <= ACTIVE;

when Ack_ DSM_Read =>
Drive X BUS<=ACTIVE;
X_BUS Int(15 downto 0) <= Mem_Data RD_Int(15 downto 0);
X _RESUME L _Int<=ACTIVE L;
Drive X_RESUME <= ACTIVE;
X_ACKNOWLEDGE_L _Int<=INACTIVE_L;
Drive X _ACKNOWLEDGE <= ACTIVE;

when others =>
null;

end case;

end process outConProc;

end XBUS_Controller_arch;

188

Adapter Module <adapter top.vhd>

Project: AYK-14 VHSIC Processor Module Hardware Emulator

Component: Adapter (Top level module)

Description: Adapter module combines all of the components in the project,
including the processor (data path.vhd), and connects all
appropriate signals. The ports correspond to the ports on the VPM
and the SDRAM available on the AVNET board.

Author: LT Bryan Fetter, USN

Advisor: Dr. Russ Duren

Co-advisor: Dr. Hersch Loomis

L ocation: Naval Postgraduate School

Created: 25 October 2002

Modified: 1 December2002

Simulated:

Target: XCV1000E FG1156

Software: Foundation 4.2i

Disclaimer: NPS, makes no warranty for the use of this code or design. This code is
provided "As Is'. NPS, assumes no responsibility for any errors, which may appear in
this code, nor does it make a commitment to update the information contained herein.
NPS specifically disclaims any implied warranties of fitness for a particular purpose.

Copyright (c) 2002 NPS
All rights reserved.

library |EEE;

use IEEE.std logic_1164.all;
use |[EEE.numeric_std.all;

use IEEE.std_logic_unsigned.all;
use WORK.common.all;

use WORK .Event_Bus.all;
use WORK.Add_Sel .all;

use WORK.Mem_Arb.all;

use WORK .Grant.all;

use WORK .oddParity.all;

use WORK.MBUS CTRL.dl;
use WORK.X_Grant.all;

use WORK.XBUS CTRL.al;
use WORK .sdram.all;

189

entity Adapter_Topis

generic(
SD FREQ: natura :=40_000;-- operating frequency in KHz
SD DATA_WIDTH: natural := 16;-- host & SDRAM data width
SD SADDR _WIDTH: natural := 12;-- SDRAM-side address width
SD HADDR WIDTH: natura := 23;
DATA_WIDTH_Arb: natural := 32;
ADDR WIDTH_Arb: natural := 23;
XFREQ: natural :=40_000

)i
port (

CLK: instd logic;
RST: instd logic;
--MBUS Signals

M_BUS: inout unsigned(22 downto 0);
--Handshaking Signals
M_REQUEST _L: inout STD_LOGIC;
M_ACKNOWLEDGE_L: inout STD_LOGIC;
M_RESUME_L: inout STD_LOGIC;
--Arbitration / Control Signals
--M_DESIRE_OUT _L: out STD_LOGIC;
M_DESIRE_IN_L: in unsigned(1 downto 0);
M_GRANT_OUT: out unsigned(1 downto 0);
--M_GRANT IN:inSTD_LOGIC; --Used whenVPM isdave
M_BUSY_L:inout STD_LOGIC;
S BUSY_L:out STD_LOGIC;
--MBus parity bits
LSB_PARITY: inout STD_LOGIC;
MSB_PARITY: inout STD_LOGIC;
ADRS PARITY: inout STD _LOGIC;
CMD_PARITY: inout STD_LOGIC;
--Control Bits
MSB_WRITE_L: inout STD_LOGIC;
LSB_WRITE_L:inout STD_LOGIC;
BUS ERROR_L: inout STD_LOGIC;
THREE_TWO _DATA: inout STD_LOGIC;
IPL_WRITE: inout STD_LOGIC;

--XBUS Signals
X_BUS: inout unsigned(23 downto 0);
--Handshaking Signals
X_REQUEST L:inout STD_LOGIC;
X_ACKNOWLEDGE L:inout STD_LOGIC;
X_RESUME_L:inout STD_LOGIC;
--X_DESIRE_OUT _L: out STD_LOGIC;
--Arbitration Signals

190

X_GRANT_OUT: out std logic_vector(5 downto 0);
X_DESIRE_IN: instd logic_vector(5 downto 0);
--X_GRANT _IN: in STD_LOGIC;
--O_X_GRANT_IN: inSTD_LOGIC,;

--IPC Control

IPC_MODE: inout STD_LOGIC,;

--Event System Signals
E_BUS: in STD_LOGIC_VECTOR (7 downto 0);
--Event Control Signals (EMON Bus)
EMON: out STD_LOGIC_VECTOR (7 downto 0);

--SDRAM Signals
sclkfb: in std_logic;
sclk: out std_logic;
sclk_tst: out std_logic;
cke: out std logic;
cs n: out std logic;
ras n: out std logic;
cas n: out std logic;
we n: out std logic;
ba: out unsigned(1 downto 0);
SAddr: out unsigned(SD_SADDR_WIDTH-1 downto 0);
sData: inout unsigned(SD_DATA_WIDTH-1 downto 0);
dgmh: out std logic;
dgmil: out std logic

);
end Adapter_Top;

architecture Adapter_Top_arch of Adapter Topis

signa Clk_Int: std_logic;

signal Rst_Int: std_logic;

--Signals for Event Controller

signa E_VCTR Int: std_logic_vector(8 downto 0);

signa SR1 Bit Int: std logic;

--Signalsfor Add_Select

signa Add_In _Proc_Int: unsigned (22 downto 0);

signa Data WR_Proc_Int: unsigned (31 downto 0);

signa Data RD_Proc_Int: unsigned (31 downto 0);

signa RD_Req in_Proc _Int: STD_LOGIC;

signad WR_Req in _Proc_Int: STD_LOGIC;

signa Mem_req Done Proc_Int: std_logic;
--MBUS Side

signa Data RD_MBUS Int: unsigned (31 downto 0);

191

signa
signal
signa
signal
signa
signal

Data WR_MBUS Int: unsigned (31 downto 0);
Add out MBUS Int: unsigned (22 downto 0);
RD_Req out MBUS Int: STD_LOGIC;
WR_Req out MBUS Int: STD_LOGIC;
Proc_Desire L_MBUS Int: STD_LOGIC;

Mem req Done MBUS Int: STD_LOGIC;

--OBM Side

signal
signa
signal
signa
signal
signa

Add In_OBM _Int: unsigned (22 downto 0);
Data RD_OBM _Int: unsigned (31 downto 0);
Data WR_OBM _Int: unsigned (31 downto 0);
RD_Req OBM_Int: STD_LOGIC;

WR_Req OBM_Int: STD_LOGIC;
Mem_req Done OBM_Int: STD_LOGIC;

--Data Path

signa
signal
signa
signal
signa
signal

IR_BUS int_Int: std_logic_vector (31 downto 0);
abs addr_1 Int: std logic_vector (22 downto 0);
Icen Int: std logic;

rcen_Int: std_logic;

mem_READ _req |_Int: std_logic;
mem_WRITE req | _Int: std_logic;

--MBUS

signal
signa
signal
signa
signal
signal
signal

P_Grant_Out_Int: std_logic;

M_Mem_Addr_Int: unsigned(22 downto 0);
M_Mem_Data WR_Int: unsigned(31 downto 0);
M_Mem_Data RD_Int: unsigned(31 downto 0);
M_Mem_WR_Req Int: std_logic;

M_Mem_RD Req Int: std logic;
M_Mem_Done _Int: std_logic;

--XBUS

signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal

P_Command_Int: unsigned(23 downto 0);
P _Data In_Int: unsigned(15 downto 0);
P_Data Out_Int: unsigned(15 downto 0);
P Desire L_Int: std_logic;

P_GRANT _Int: std_logic;
X_Mem_Addr_Int: unsigned(22 downto 0);
X_Mem Data WR_Int: unsigned(31 downto 0);
X_Mem Data RD_Int: unsigned(31 downto 0);
X_Mem WR_Req Int: std_logic;

X _Mem RD Req Int: std logic;

X_Mem Done Int: std logic;

--SDRAM Cirl

signal
signal
signal
signal
signal

SD_bufclk_Int: std _logic;
SD_clk2x_Int:std_logic;
SD_lock_Int: std_logic;
SD rd Int: std logic;
SD_wr_Int: std_logic;

192

signa
signal
signa
signal
signa

begin

SD_done_Int: std_logic;

SD_hAddr_Int: unsigned(SD_HADDR_WIDTH-1 downto 0);
SD_hDIn_Int: unsigned(SD_DATA_WIDTH-1 downto 0);
SD_hDOut_Int: unsigned(SD_DATA_WIDTH-1 downto 0);
SD_sdramCntl_state Int: std_logic_vector(3 downto 0);

--Clk_Int <= CLK;
Rst_Int <= RST;

EBUSL: EVT_FSM port map(
EBUS=>E BUS,
CLK => Clk_Int,
RST => Rst_Int,
SR1 BIT =>SR1 Bit_Int, --Needsto be updated
EMON => EMON,
E VCTR=>E VCTR Int

);

ADD_SEL1: Add_Select port map(
Add_In_Proc =>Add_In_Proc_lInt,
Data WR_Proc => Data WR_Proc _Int,
Data RD_Proc => Data RD_Proc_Int,
RD_Req in_Proc=>RD_Req in_Proc_Int,
WR_Req_in_Proc =>WR_Req in_Proc_Int,
Mem _req _Done Proc => Mem_req_Done_Proc_Int,

--MBUS Side

Data RD_MBUS => Data RD_MBUS Int,

Data WR_MBUS => Data WR_MBUS Int,
Add_out MBUS => Add_out_MBUS Int,

RD_Req out MBUS=>RD_Req out MBUS Int,

WR_Req out MBUS =>WR_Req out MBUS Int,

Proc Desire L_MBUS=> Proc_Desire L_MBUS Int,
Mem_req Done MBUS => Mem_req Done MBUS Int,

--OBM Side

Add In_ OBM => Add In OBM _Int,
Data RD_OBM => Data RD_OBM _Int,
Data WR_OBM => Data WR_OBM _Int,
RD_Req OBM =>RD_Req OBM _Int,
WR_Req OBM =>WR_Req OBM_Int,
Mem req Done OBM => Mem req Done OBM _Int
);

193

Mem_Arbl: mem_arbitrator generic map(
DATA WIDTH =>DATA_WIDTH_Arb,
ADDR_WiDTH => ADDR_WIDTH_Arb)
port map(
Clk => Clk_Int,
RST => Rst_Int,
--Signals from SDRAM Controller
Mem_Done => SD_done _Int,
RD =>SD rd Int,
WR =>SD_wr_Int,
hAddr => SD_hAddr_Int,
hData In=>SD_hDIn_Int,
hData Out =>SD_hDOut_Int,
--Signals from Processor
P _Addr In=>Add In OBM Int,
P_Data In=>Data RD_OBM_Int,
P Data Out => Data WR_OBM Int,
P_Mem_Done => Mem_req Done OBM_Int,
P_RD =>RD_Req OBM_Int,
P_WR =>WR_Req OBM_Int,
--Signalsfrom MBus
M_Addr_In=>M_Mem_Addr_Int,
M Data In=>M_Mem Data RD Int,
M_Data Out =>M_Mem_Data WR_Int,
M_Mem Done=>M_Mem _Done Int,
M_RD =>M_Mem RD_Req Int,
M_WR=>M_Mem_WR_Req Int,

--Signals from XBus
X_Addr_In=>X_Mem_Addr_Int,
X_Data In=>X_Mem_Data WR_Int,
X_Data Out => X_Mem Data RD_Int,
X_Mem_Done=> X_Mem_Done_Int,
X_RD =>X_Mem RD_Req Int,

X WR=>X_Mem WR_Req Int

);

Processor:data_path port map(
reset => Rst_Int,
clock => Clk_Int,
mem_req DONE => Mem_req_Done_Proc_Int,
mem_READ req=>RD_Req in _Proc_Int,
mem_WRITE_req=>WR_Req_in_Proc_Int,
IR BUS=>IR_BUS Int,
mem_BUS=> Data RD_Proc_Int,

194

abs_addr => Add_In_Proc_Int,

abs addr_1=>abs addr 1 Int,

Icen =>Icen_Int,

rcen =>lcen_Int,

mem_READ req | =>mem READ reqg | _Int,
mem_WRITE_req | => mem WRITE req |

);

MBUS: mbus_controller port map(
Clk => Clk_Int,
Rst => Rst_Int,
-- Signals from Processor
P_Data WR =>Data WR_MBUS Int,
P Data RD =>Data RD_MBUS Int,
P_Addr => Add_out_ MBUS Int,
P_RD _Req=>RD_Req out MBUS Int,
P_WR_Req=>WR_Req out MBUS Int,
P Desire L =>Proc Desire L _MBUS Int,
P_Mem_Done=>Mem req Done_ MBUS Int,
P_Grant_Out => P_Grant_Out_Int, --Grant signal to Processor

-- Signals from Memory Arbitrator
Mem_Addr =>M_Mem_Addr_Int,
Mem Data WR => M_Mem Data WR_Int,
Mem Data RD => M_Mem Data RD_Int,
Mem WR_Req=>M_Mem WR_Req Int,
Mem RD_Req=>M_Mem_RD_Req Int,
Mem_Done=>M_Mem_Done _Int,

-- Signals on/off Adapter
M_BUS=>M_BUS,
--M_GRANT_IN_L => ; Used only when used as Slave
M_DESIRE IN_L =>M_DESIRE IN_L,
M_GRANT OUT = M_GRANT_OUT,
--M_DESIRE_OUT L ;--Used only when VPM used as Slave
M_REQUEST L => M _REQUEST L,
M_ACKNOWLEDGE L =>M_ACKNOWLEDGE L,
M_RESUME_L=> M_RESUME L,
S BUSY L =>S BUSY L,
M_BUSY L =>M _BUSY L,
BUS ERROR L => BUS ERROR L,

--Parity Bits
LSB PARITY =>LSB_PARITY ,
MSB_PARITY =>MSB PARITY ,
ADRS PARITY => ADRS PARITY,
CMD_PARITY => CMD_PARITY ,

195

--Control Bits
MSB WRITE L =>MSB WRITE L,
LSB WRITE L => LSB WRITE L,
THREE TWO DATA =>THREE TWO DATA,
IPL_ WRITE =>IPL_WRITE

);

XBUS: xbus_controller
generic map(FREQ => XFREQ)
port map (
Clk => Clk_Int,
Rst => Rst_Int,
-- Signals from Processor
P_Command => P_Command_Int,
P _Data In=>P_Data In_Int,
P Data Out => P_Data Out_Int,
--P_Page 0: --Page Register set 0
P Desire L =>P Desire L_Int,
P_GRANT =>P_GRANT Int,

-- Signals from Memory Arbitrator
Mem_ Addr =>X_Mem_Addr_Int,
Mem_ Data WR => X_Mem_Data WR_Int,
Mem Data RD => X Mem Data RD Int,
Mem WR_Req=>X_Mem WR_Req Int,
Mem RD_Req=>X_Mem_RD_Req Int,
Mem_Done => X_Mem_Done _Int,

-- Signals on/off Adapter

X_BUS=> X _BUS,

X_GRANT_OUT => X_GRANT_OUT,
X_DESIRE_IN_L =>X_DESIRE_IN,

X_REQUEST L =>X_ REQUEST L,
X_ACKNOWLEDGE_L =>X_ACKNOWLEDGE L,
X_RESUME_L =>X_RESUME L,

IPC_MODE_L =>IPC_MODE

SDRAM: sdramCntl
generic map(
FREQ => SD_FREQ,
HADDR WIDTH =>SD HADDR WIDTH,
SADDR WIDTH =>SD SADDR WIDTH

)
196

port map (

clkin=> CLK,

bufclk => SD_bufclk_Int,
clkO => Clk_Int,

clk2x => SD_clk2x_Int,
lock => SD lock_Int,
rst => Rst_Int,

rd=>SD rd Int,

wr =>SD_wr_Int,

done => SD_done Int,
hAddr =>SD_hAddr_Int,
hDIn=>SD_hDIn _Int,
hDout =>SD_hDOut_lInt,
sdramCntl_state => SD_sdramCntl_state Int,
-- SDRAM side

sclkfb => sclkfb,

sclk => sclk,

sclk_tst => sclk_tst,

cke => cke,

cs h=>cs n,

ras n=>ras n,

cas n=>cas n,

we n=>we n,

ba=> ba,

SAddr => sAddr,

sData => sData,

dgmh => dgmh,

dgml => dgml

end Adapter_Top_arch;

197

THISPAGE INTENTIONALLY LEFT BLANK

198

LIST OF REFERENCES

1 Croskrey, M., Design Recovery and Rapid Prototyping of a Legacy Processor,
Masters Thesis, Naval Postgraduate School, Monterey, CA, September 2002

2. “Aging Avionics in Military Aircraft,” Committee on Aging Avionicsin Military
Aircraft, Air Force Science and Technology Board, Division on Engineering and Physical
Sciences, National Research Council

3. Duren, Russ, “Options for Upgrading Legacy Avionics Systems,” Proceedings of
the 21% Digital Avionics Systems Conference, Irvine, CA, 27-31 October 2002

4. Datasegment.com.
http://onlinedictionary.datasegment.com/word/Desi gn%20recovery/ December 8, 1996.

5. Doom, Travis, Formal Design Recovery for Obsolete Digital Systems, Power
Point Presentation, Write State University, Computer Science and Engineering

6. Chikofsky, E. and Cross I, J.,, Reverse Engineering and Design Recovery: A
Taxonomy, January, 1990

7. Kidd, Christopher , Masters Thesis, Naval Postgraduate School, Monterey, CA,
September 2002

8. Van den Bout, David, The Practical XILINX Designers Lab Book, Prentice Hall,
Inc., 1999

0. Rajan, Sundar, Essential VHDL RTL Synthesis Done Right,Sundar Rajan and
Gennis Lafayette, 1999

10. Avnet Design Services, Virtex-E Development Kit Users Manual, Avnet Design
Services, 2001

11. Micron, 256Mb: x4, x8, x16 SDRAM Industrial Temp, Micron Technology Inc.,
2002

199

http://onlinedictionary.datasegment.com/word/Design recovery/

THISPAGE INTENTIONALLY LEFT BLANK

200

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
Ft. Belvoir, Virginia

Dudley Knox Library
Naval Postgraduate School
Monterey, California

Chairman and Distinguished Professor Max F. Platzer, Code AA/PL
Department of Aeronautics and Astronautics

Naval Postgraduate School

Monterey, California

Associate Professor Russell Duren, Code AA/DR
Department of Aeronautics and Astronautics
Naval Postgraduate School

Monterey, California

Professor Herschel Loomis, Code EC/LM
Department of Electrical and Computer Engineering
Naval Postgraduate School

Monterey, California

Mr. Barry Douglas

NAWC-WD

F/A-18 Advanced Weapons L aboratory
ChinaLake, Cdlifornia

Dr. Ken Trieu

NAWC-WD

F/A-18 Advanced Weapons L aboratory
ChinaLake, California

Mr. Charles Bechtel

NAWC-WD

F/A-18 Advanced Weapons L aboratory
China Lake, Cdifornia

Mr. Rex Coombs

PMA-209, Nava Air Systems Command
NAS Patuxent River, Maryland

201

10.

Commander Rich Brasel

U. S. Naval Test Pilot School

Naval Air Warfare Center Aircraft Division
NAS Patuxent River, Maryland

202

	I.INTRODUCTION
	A.THE LEGACY AVIONICS ISSUE
	B.POTENTIAL SOLUTIONS TO THE LEGACY PROBLEM
	C.REENGINEERING
	D.PURPOSE OF STUDY

	II.DESIGN RECOVERY
	A.OVERVIEW OF REENGINEERING PROCESS
	B.OVERVIEW OF THE AYK-14
	1. History of the AYK-14
	2. Processor Subsystem
	3. Memory Subsystem
	4. Input / Output Subsystem
	5. Power Subsystem
	6. Chassis Subsystem

	C.AYK-14 CONFIGURATION ON THE F-18C/D
	D.VPM PROCESSOR
	E.ADAPTER
	F.EXTERNAL BUS OPERATION
	1. Standalone Mode MBUS Operation
	2. Standalone XBUS Operation

	G.EVENT SYSTEM
	1. Polled Event System
	a. 1st State: ESTATE = 01
	b. 2nd State: ESTATE = 10
	c. 3rd State: ESTATE = 11

	2. Direct Events

	H.INPUT / OUTPUT MODULE OPERATION
	1. I/O Channel Software
	2. I/O Channel Control Memory
	3. I/O Channel Chain Programs
	4. I/O Channel Software Interrupts
	5. I/O Channel Events
	6. I/O Channel Basic Operation

	I.DISCRETE AND SERIAL MODULE
	1. DSM Personalities and Modes
	2. Smart I/O Operation

	J.COMPUTER CONTROL UNIT

	III. DESIGN IMPLEMENTATION
	A.FORWARD ENGINEERING PROCESS
	1. Field Programmable Gate Array
	2. VHSIC Hardware Design Language (VHDL)
	3. FPGA Design Tools
	4. Finite State Machine Design
	5. Modular Approach to Overall Design

	B.TARGET FOR DESIGN IMPLMENTATION
	C.COMPONENT DESIGN DESCRIPTION
	1. SDRAM Controller
	2. Memory Arbitrator
	3. MBUS Controller
	4. XBUS Controller
	5. Event Bus Controller
	6. Top Level Design Interface

	IV. CONCLUSIONS
	APPENDIX A: DOCUMENTATION LIST FOR THE AYK-14
	APPENDIX B: DIRECT AND POLLED EVENTS
	APPENDIX C: I/O INSTRUCTIONS
	APPENDIX D: XBUS COMMAND WORDS
	APPENDIX E: VHDL SOURCE CODE
	LIST OF REFERENCES
	INITIAL DISTRIBUTION LIST

