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ABSTRACT 
  

Recovery of Autonomous Underwater Vehicles (AUVs) can often be an 

autonomous operation itself.   In the case of an AUV that is launched and recovered at 

some significant depth below the surface, the recovery platform to which the vehicle will 

dock is often not a stationary platform.  The recovery cage/platform has dynamics 

associated with it, which are induced by wave motion effects on the ship to which the 

cage is tethered.   In order to successfully recover a vehicle into a cage platform it will be 

preferred for the vehicle to have the capability to compensate for this motion when 

making its final approach to the cage.  Using active compensation, a smaller cage can be 

utilized for recovery of an AUV. 

This research attempts to investigate a means by which a vehicle may be made to 

track, in depth, dynamic motion with zero phase lag between the vehicle and the recovery 

platform utilizing an error space controller. 
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I. INTRODUCTION  
 

A. BACKGROUND  

Research in the field of autonomous underwater vehicles (AUVs) at the Naval 

Postgraduate School (NPS) has progressed steadily since the inception of the Center for 

AUV Research in 1987.  The operational capabilities and sophistication of software and 

hardware has greatly increased with each new generation of vehicle.  From humble 

beginnings in swimming pools to open ocean operation, these vehicles have been at the 

forefront of AUV research. 

The current generation of NPS AUV is the Acoustic Radio Interactive 

Exploratory Server (ARIES).  While ARIES is designed for the purpose of research into 

Minewarfare and Acoustic Communications, it remains a valuable platform for controls 

testing of AUV’s.  With its dual onboard computers, ARIES is a highly configurable test 

platform with which various aspects of AUV operations and research can be conducted. 

One particular area of interest is the capability to deploy and recover AUV’s from 

a tethered cage at some depth below the surface of the water. These AUV’s are utilized 

for deep water operations where the cage deployment and docking operations become 

necessary to conserve endurance of the AUVs.  The challenge arrives upon recovery of 

the AUV to the cage platform.  The cage platform has dynamics associated with it which 

are induced by wave motion effects of the ship to which the cage is tethered.   In order to 

successfully recover a vehicle into a cage it will be necessary for the vehicle to have the 

capability to compensate for this motion when making its final approach to the cage. 

 

B. SCOPE OF THIS WORK 

Previous work in the field of AUV control has shown many different techniques 

for controlling an AUV’s trajectory.  From simple state feedback methods, to optimal 

methods like Linear Quadratic Regulator (LQR), to Lyapanov based methods like Sliding 

Mode Control (SMC), there are many methods which can be successfully utilized, each 

having particular advantages and disadvantages.   In many cases “control” means the 

AUV’s ability to “drive” a pre-planned track of waypoints or to regulate the vehicles 

depth or altitude.  Tracking a moving object is a more complex problem.  This is due to 



2 

the fact the dynamics of the moving object may not be know a priori, and the AUV 

tracking control must have a way to compensate for the signal dynamics. 

While there have been successful applications of recovery of AUV’s into 

recovery platforms such as with MIT’s REMUS vehicle [1], this study attempts to show a 

new method in which tracking and recovery onto a moving platform is enabled. 

The focus of this thesis is two-fold: 

1.    Develop an error space control method to obtain zero error tracking of a 

dynamic cage system by an AUV in depth control mode. 

2.   Verify the controller’s performance by developing models, simulation, and 

experimental validation utilizing ARIES as a test platform. 

Chapter II will focus on the equations of motion for an AUV and methods for 

modeling AUV dynamics.  Chapter III will discuss tracking control and the use of a 

general error space method to track a dynamic signal.  Chapter IV will discuss 

application of an error space controller to an AUV attempting to track periodic motion.  

Chapter V will present simulation and experimental results from the implementation of 

the error space controller in ARIES. 
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II. EQUATIONS OF MOTION AND AUV MODELING 
 

A. GENERALIZED EQUATIONS OF MOTION 

This section describes the equations of motion for an AUV.  It is from these 

equations of motion that a model can be developed for both simulation of motion as well 

as construction of model based controllers for AUV’s. 

 Using a Newton-Euler approach, Healey [2] derives the equations of motion for 

six degrees of freedom as: 

SURGE EQUATION OF MOTION 

m[ ( ) ( ) ( )qprzrpqyrqxqwrvu GGGrrr &&& ++−++−+− 22 ] ( ) fXBW =θ−+ sin                    (1) 

SWAY EQUATION OF MOTION 

m[ ( ) ( ) ( )pqrzrpyrpqxpwruv GGGrrr &&& −++−++−+ 22 ] ( ) fYBW =φθ−− sincos            (2) 

HEAVE EQUATION OF MOTION 

m[ ( ) ( ) ( )22 qpzpqryqprxpvquw GGGrrr +−++−++− &&& ] ( ) fZBW =φθ−+ coscos          (3) 

ROLL EQUATION OF MOTION 

( ) ( ) ( ) ( ) ( )[ pvquwymrpqIrqIqprIqrIIpI rrGxzyzxyyzx +−++−−−−+−+ &&&& 22            (4)  

  ( )] ( ) ( ) fBGBGrrrG KBzWzByWypwruvz =φθ−+φθ−−−+− sincoscoscos&  

PITCH EQUATION OF MOTION 

( ) ( ) ( ) ( ) ( )[ pvquwxmrpIrpqIpqrIprIIqI rrGxzyzxyzzy +−−−+−++−−+ &&&& 22             (5) 

( )] ( ) ( ) fBGBGrrrG MBzWzBxWxqwrvuz =θ−+φθ−++−− sincoscos&  

YAW EQUATION OF MOTION 

( ) ( ) ( ) ( ) ( )[ pwruvxmpqrIqprIqpIpqIIrI rrrGxzyzxyxyz −++−++−−−−+ &&&& 22           (6) 

( )] ( ) ( ) fBGBGrrrG NByWyBxWxqwrvuy =θ−−φθ−−+−− sinsincos&  

 



4 

Where:   

ur, vr, wr = component velocities for a body fixed system with respect to the water 
p, q, r = component angular velocities for a body fixed system 
W = weight 
B = buoyancy 
I = mass moment of inertia terms 
xB, yB, zB = position difference between geometric center of the AUV and center of 

buoyancy 
xG,  yG,  zG = position difference between geometric center of AUV and center of 

gravity 
Xf, Yf, Zf, KF, Mf, Nf = sums of all external forces and moments acting on an AUV in 

the particular body fixed direction 
 

 
Figure 1 Coordinate System for Vehicle Dynamics from Ref [3] 

 
 

1.  Diving System Model 

For the purposes of this study a diving mode controller will be designed, therefore 

a diving system model will be developed from the above equations of motion.  The 

primary variables of interest are wr, q, θ   and z while rv , r, p, ϕ  , ψ  , x, y are neglected.    

Assuming the vehicle is already in forward motion, under constant forward speed relative 

to the water, all products of small motions are ignored and the horizontal plane motions 
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coupled to the vertical plane equations can be dropped.  Primarily considering the effects 

of vehicle inertia, hydrostatic and weight terms, and hydrodynamic force components 

from lift and added mass a set of simplified equations of motion are developed [2]. 

To handle the force and moment terms, an assumption of “small” motions is made 

to develop “hydrodynamic coefficients” that can be defined relative to the individual 

motion components.  This will allow the description of the forces and moments as a 

function of vehicle dynamic states. For heave motion, equation (3), the force in the z 

direction is: 

r rf w r w r q qZ Z w Z w Z q Z q= + + +& && &                                                         (7) 

and for pitch motion , equation (4) ,  the rotational moment is: 

rf w r w r q qM M w M w M q M q= + + +& && &                                          (8) 

This leads to: 
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∂& & ; 
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∂& & ; f

q
Z

Z
q

∂
=

∂
; 

and 

              
r

f

r
w

M
M

w
∂

=
∂& & ; 

r

f

r
w

M
M

w
∂

=
∂

; f
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q
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∂
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Where: 

rwZ & = added mass due to heave velocity  

qM &  = added mass due to pitch rate 

rwZ = coefficient of heave force induced by heave velocity 

qZ  = coefficient of heave force induced by pitch rate 

rwM & = added mass moment of inertia due to heave velocity 

qM &  = added mass moment of inertia due to pitch rate 

rwM = coefficient of pitch moment induced by heave velocity  

qM  = coefficient of pitch moment induced by pitch rate 

In addition, the action of the planes will produce forces that when linearized are: 

( )
pld tplZ δ  and ( )

p ld tplM δ .  The dynamics of the vehicle are thus defined as: 
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0ru U=          (9) 

0 ( )cos ( )
r r plr w r w r q q plmw mU q W B Z w Z w Z q Z q Z tδθ δ= + − + + + + +& && & &           (10) 

( )sin
r ryy B G q q w r w rI q z B z W M q M q M w M wθ= − + + + +& && & &     (11) 

qθ =&           (12) 

0cos sinrZ w Uθ θ= −&        (13) 

 

Further assumptions of small pitch angle, therefore sinθ θ≈ and cos 1θ ≈ , and 

small motions in the vertical plane results in a set of linerized equations that can be put in 

the in matrix form, M  x& = Ax + Bu : 

( ) 0 0( ) 0 0

( ) 0( ) 0 0
( )

0 1 0 00 0 1 0 0
1 0 00 0 0 1 0

plrr

rr pl

w o qw q r r

w q B Gw yy q
pl

o

ZZ mU Zm Z Z w w
M M z B z WZ I M q q M

t

Z ZU

δ

δ δ
θ θ

+  − −      
      −− −         = +       

               −        

& &

& &

&
&
&
&

 (14) 

 

B.   CURRENT ARIES CONTROL LAW FOR DIVING MODE 

In 1993 Healey and Lienard proposed utilizing Multivariable Sliding Mode 

control for Diving and Steering control of AUV’s.  ARIES current diving mode controller 

is based on this concept and is presented in reference [4].  The diving controller is based 

on the linearized dynamics given in equation (14), however the heave velocity equation is 

ignored. This is primarily because there is no sensor onboard ARIES that directly can 

measure heave velocity.  Since heave velocity affects are small they are handled as a 

disturbance to the system.  This allows equation (14) to be reduced to a simpler third 

order model: 

( ) 0 ( ) ( )
0 0 1 0 1 0 0 ( ) 0
0 0 0 1 0 0 0

plr rw yy q w q B G

pl

o

MZ I M M M z B z Wq q M t
t

Z U Z

δ δ
θ θ δ

 − − −        
         = + +          

          −          

& & &
&
&

    (15) 

where ( )M tδ  is bounded. 
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For ARIES the control output ( )pl tδ  is a single control output; however the 

command is sent to the bow and stern planes as equal and opposite signals. 

In development of Sliding Mode Controller, a sliding surface is created from a 

linear combination of the state variable errors, ignoring any nonzero pitch angle and rate 

commands: 

( ) '( )comt sσ = −x x          (16) 

Equation (15) is rewritten in the form u= +x Ax B&  where −= 1A M A  and 
-1B = M B .  Now pole placement is utilized to obtain linear state feedback gains k, with 

at least one of the poles placed at zero.  The closed loop dynamics matrix can then be 

calculated where cA = A - B k  and the sliding surface polynomial (s) is found from the 

left eigenvector of 0s ='
cA . The resulting control law is then obtained from: 

1( ) ( ) sgn( )pl t satδ η
φ

−= − −
s'x

kx s'B        (17) 

The resulting controller design for ARIES obtained is the combination of 

equations (18) and (19) and can be found in reference [5]. 

( ) 0.7693( ) 0.6385( ) 0.0221( )com com comt q q z zσ θ θ= − − − − + −    (18) 

where as previously mentioned qcom=0, and 0comθ = . 

( )
( ) 0.4994 -0.4105q + 0.1086  + tanh( )pl

t
t

σ
δ θ η

φ
 

=  
 

    (19) 

where 1.0η =  and 0.5φ = . 

 

C.  SIMULATION RESULTS FOR SLIDING MODE CONTROL  

The current depth controller is designed primarily to act as a depth regulator, 

where once a command for depth is received; its job is to approach the commanded depth 

with desired characteristics and stability.  Figure 2 below shows the response of ARIES 

Depth Controller to a ten meter change in commanded depth. 
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This response is excellent when the mode of the depth controller is acting as 

regulator, responding to step changes in depth.   The study for this thesis is more 

interested in tracking a depth command that changes continuously with time.   Figure 3 

shows the response of ARIES Depth Controller to a sinusoidal commanded depth of 

amplitude one meter and period of twenty seconds. 

It can be seen there is a significant phase lag in the depth achieved and even an 

inability to match amplitude of the commanded signal. In all fairness, this is not a 

deficiency in the controller or sliding mode control in general. The controller in ARIES 

was designed for regulation and not tracking control.  A sliding mode control could be 

developed and tuned to better handle this tracking control problem.  This example will 

merely set a standard for which to compare later control law developments so qualitative 

and quantitative comparisons can be made. 
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Figure 2 ARIES Depth Controller response to 10 m change in depth 
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Figure 3 ARIES Depth controller response to sinusoidal depth command 
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III.  TRACKING CONTROL  
 

A. INTRODUCTION AND BACKGROUND 

In controls there are two broad categories of control, regulation and tracking.  For 

controls that are designed for regulation, the concept is to maintain a system parameter or 

series of parameters at a defined steady state value in the presence of disturbances and 

changes in overall system parameters.   With regulation, a controller can often be 

designed, optimized and tested around a particular setpoint which allows for linearization 

assumptions, ample analysis of system stability, and ability for shortened testing of 

control schemes.   For tracking control, the objective is to have a parameter or series of 

parameters track a given time varying input.  In tracking control the precise input signal 

dynamics may or may not be know at the time of controller design. This leads to 

concerns that linearization assumptions may not be valid, testing over the broad range of 

possible input signal dynamics may be required, and a more complex control design is 

often required to achieve acceptable performance. 

The design of a controller for an AUV that is to dock onto a cage system whose 

position varies with time can be approached as a tracking control problem.  The goal is to 

have the AUV track the motion of the cage and match the cage’s change in depth as it 

makes the final approach.  Many model based approaches can be implemented 

successfully in order to solve this tracking control problem.  In the next section the theory 

for an approach utilizing an error space control will be shown. 

 

B. TRACKING A DYNAMIC SIGNAL WITH ZERO ERROR 

1. Theory 

The control design method presented in this section utilizes error space control to 

attain zero error tracking. Essential for implementation of this controller is a shift from 

the state space control of a system to an error space control.  The error space is a coupled 

system including the dynamics of the error signal with the system dynamics.  Below is 

the formulation for the control law that was inspired by an Integral Error Space approach 

presented in reference [6]. 
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To start off, the system being controlled in state space is: 

                       [ ] [ ]s s s sx A x B u= +&  with [ ]s sy C x=     (20) 

The reference signal that is being tracked has the following dynamics: 

[ ] [ ]r r r r rx A x B u= +&     with  [ ]r rr C x=    (21) 

in which the order of the reference dynamics is not the same as the system model, 

and ru  may be considered to be zero mean white noise. 

  

The tracking error is then defined as:  

 e y r= −        (22) 

The goal of the control law design is to design a compensator system that will 

compensate for the signal dynamics of the input and allow for near zero error tracking.   

One way to do this is to utilize a compensator system, which has the same dynamics as 

the input signal and is driven by the error between the output of the system and the input 

signal.   

 

The compensator system will therefore have dynamics given by : 

[ ] [ ]c r c rx A x B e= +&         (23) 

 

A combined system is then developed such that: 

 

{ }
0

0
c r c r

s s s s

x A x B
e u

x A x B
      

= +      
      

&
&       (24) 

 

knowing that [ ]s se C x r= −    the error space system can be rewritten as 

 

0

0 0
c r r s c r

s s s s

x A B C x B
u r

x A x B
−        

= + +        
       

&
&      (25)  
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As can be seen in equation (25), a cross coupled system is obtained, in which the 

system that is being controlled is being driven both by the input signal, r, and the control 

force, u. 

 

Now pole placement or Linear Quadratic Regulator (LQR) methods can be 

utilized to stabilize the entire error space system with a feedback control law given by: 

 

[ ] c
c s

s

x
u K K

x
 

= −  
 %                    (26) 

 

 where sx%  is used for the system state feedback based on command error, i.e. 

 
T

s s sx x rC= −%                                                                                                   (27)  

 

therefore the closed loop system becomes: 

 

c r r s c r
T

s s r s s s s s s s

x A B C x B
r

x B K A B K x B K C

−      
= +      − −      

&
&     (28) 

 

and is assumed to be fully controllable. 

 

Note:  The model reference portion is controllable in this case as opposed to other 

model reference tracking systems. 

 

The new error space system can be written now as  

 

[ ] [ ]z E z F r= +&          (29) 

    

By designing an error space system that fits the model of equation (29) it can be 

seen that a system of desired characteristics can be obtained which is being driven by the 

input command signal, r.  
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The error dynamics are now given by equation (29) which is stable, with an error 

output equation given by: 

[ ]0 se C z r= −  

It remains to show that output y tracks the input r as t → ∞ .  

 

For the steady state portion of z(t) and  r(t) : 
1( ) ( )

t
z t E F r t−

→∞
= − ⋅                       (30) 

 

[ ]{ }1( ) 0 ( )s
t
e t C E F I r t−

→∞
∴ = − −       (31) 

 

It can be shown the  error space controller as designed is able to achieve zero error 

tracking is due to [ ] 10 sC E F I−− =  

 

  

 

 Figure 4 below shows the resulting MATLAB SIMULINK model of the 

controller.  This shows in particular how the controller can be implemented.  A 

compensator control input signal is developed based on the input error signal.  The 

system is stabilized by control input obtained from the state feedback of the error states, 

i.e., the difference between the commanded states and the actual states of the system. 
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Figure 4 SIMULINK Model of an Error Space Controller 

 

2. Evaluation 

As a test platform for the Error Space Controller a simple sping-mass system was 

developed in which a mass with control force acting on it attempts to track a vibrating 

spring mass system as pictured in Figure 5.   Figure 6 shows the resulting controller 

response to a second order reference signal from the modeled spring-mass system.  As 

can be seen the controller is able to track the reference signal with zero error once the 

initial error between the system position and reference mass position is overcome.   

Appendix B has the MATLAB code used to model the system and design and simulate 

the controller and system response. 

This controller was chosen as the focus for the thesis study because it offers 

tracking with zero error and displays the best tracking performance of all the controllers 

studied.  This is a very robust design, but one that has limits when converted to discrete 

form that will be discussed.  In addition, there are limitations on the gains that can be 

utilized when there is a limited control authority available. 
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Figure 5 Second order system to be modeled and controlled by Error Space 

Controller 

 
Figure 6 Error Space Controller Response 
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3. Robustness 

As with the many other control laws this method relies heavily on the knowledge 

of the model of the signal being tracked as well as a model of the system being 

controlled.   This modeling requirement can be a limitation for the controller depending 

on the ability to accurately model both systems.  This particular design however, is robust 

in that it can handle errors in modeling the dynamics of the input signal that is being 

tracked.   

As a test of the robustness, performance of the controller was examined when 

errors in modeling the reference signal were present. For this case, once the gains for the 

controller were chosen based on an assumed model of the reference signal, the controller 

was able to track a signal of different set of model parameters with little degradation in 

tracking performance.    Figure 7 shows the results with 100% error in the modeling of 

the coefficients of the reference signal, and shows the tracking error to be within 4% the 

maximum amplitude of motion. 

The controller has the same robustness properties as any LQR state feedback 

controller having infinite gain margin and is tolerable to signals that are off-design 

frequency. 
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Figure 7 Error Space Controller Response with errors in modeling the 

reference signal 
 

A look at Figure 8, the bode plot of the error compared to reference signal, shows 

the controller is indeed robust.  For the given example the controller is designed for a 

0.316 rad/sec signal which is where the peak of -80.6 dB (0.009% error) occurs.  At 0.1 

rad/sec the magnitude of error compared to signal is -51.6 dB (0.26% error), and out to 1 

rad/sec , -35.9 dB (1.6% error). 

An improvement in controller design could be made by making the controller an 

adaptive controller.  If the coefficients of signal dynamics matrix, Ar, are determined 

recursively utilizing a least squares method, the controller could adapt to the precise 

signal dynamics [7].  This would allow for a large range of signal input as well as time 

varying signal dynamics (i.e. Ar(t)).  The cost of this of course is a more complex 

controller design, and will not be studied in this thesis, but is recommended for future 

studies. 
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Figure 8 Bode plot of error to reference signal (e/r) 

 

4. Stability 

The stability of a controller over a wide range of operating conditions is a 

desirable trait.  While this design shows great robustness there are a few areas that need 

to be carefully considered when designing the controller, to assure stability of the 

controller and system. 

a. Saturation 

One important design point to carefully consider is the initial control force 

required to get the system tracking.  This can be large in the presence of large position 

error, and if saturation of the controller occurs, due to limits in the control authority 

available, the result can be unstable control.  This can be tuned in the controller by 

lowering the frequency at which the poles of the system are placed, yielding smaller 

gains and therefore smaller initial control force commanded.  However, decreasing gains 
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will decrease the tracking capability and require a longer time period to bring the tracking 

error to zero.  Another option is to use a different controller to get the system “close” and 

then allow the Error Space Controller to do the tracking of the time varying signal. 

b. Discrete Controller Form 

As a continuous controller this design is very robust.  However, when 

converting the controller to a discrete form there are some additional limitations.  There 

is a relationship between the discrete time step used and the frequency at which the poles 

of the system can be placed.   As shown in discrete control theory, the highest system 

frequency should be at most, one half the sampling frequency [8]. Since the assumption 

of an 8 Hz sampling frequency (as is found in ARIES) was used, the discrete time steps 

will be 0.125 sec, and therefore, the controller design has a limited frequency at which 

the system poles can be placed.  The highest pole that can be placed is estimated to be 

1 2 1 2
25.2 /sec

2 2 0.125sec
rad

T
π π

ω    = = =   
   

. As discovered when implementing this 

controller design, the actual limitation appears to be 1/6th of the sampling frequency or 

around four rad/sec for our example case. 

5. Tunability 

The gains of this controller can easily be adjusted by moving the poles selected 

for pole placement.  The higher the frequency of the poles, the faster the error will go to 

zero (faster settling time) and the larger the intial overshoot.  All this comes at the cost of 

higher gains, which yield large initial control forces that may be unrealistic for any 

available actuators.  In addition these large gains have an amplifying effect on any noise 

found in the system.   

6. Conclusion 

This controller proves to be very capable of tracking a dynamic signal with near 

zero error.   Application of its use in an AUV tracking a dynamic cage system will be 

discussed in the Chapter IV. 
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IV. DESIGN OF AN ERROR SPACE TRACKING CONTROLLER 
FOR ARIES 

 

A. MODELING ARIES 

Many controllers use model based techniques to develop the control law. The 

error space controller relies heavily on the knowledge of both the system parameters of 

the vehicle being controlled, as well of the parameters of the object that is being tracked. 

This section will show a method in which a combination of least squares and first 

principles can be utilized to create a reasonable model for the vehicle and its parameters 

for utilization in the control law design. 

1.   Vehicle Model 

As previously discussed in Chapter II, a series of differential equations can be 

formulated to form a state space model of an AUV in the diving mode. 

 

Given the following equations of motion for heave and pitch 

Heave 

( )coso w w q q plmw mU q W B Z w Z w Z q Z q Zδθ= + − + + + + +& && & &    (32)  
 
Pitch 

( )sinyy B G q q w w pl plI q z B z W M q M q M w M w Mθ δ= − + + + + +& && & &    (33) 

qθ =&           (34) 

Depth          

0cos sinrz w Uθ θ= −&         (35) 

 

The following simplifications are made: 

sinθ θ≈ ,cos 1θ ≈ , W-B is small, and the cross coupling terms (q&  in heave, and w&  in 

pitch ) are ignored.    
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As a result the system can be put in state space form: 

( ) 0 0( ) 0 0

( ) 0( ) 0 0
( )

0 1 0 00 0 1 0 0
1 0 00 0 0 1 0

plrr

rr pl

w o qw q r r

w q B Gw yy q
pl

o

ZZ mU Zm Z Z w w

M M z B z WZ I M q q M
t

Z ZU

δ

δ δ
θ θ

+  − −       
       −− −         = +       

       
        −        

& &

& &

&
&
&
&

     (36) 

 

B. PARAMETER IDENTIFICATION 

Parameter or System Identification is a topic that is treated in many areas of 

controls; in particular controls that utilize the system model parameters to formulate the 

control law.  One such technique is an adaptive control that utilizes recursive parameter 

identification as part of the control law development [7].   For the error space controller, a 

good estimate of the parameters of the vehicle only needs to be made once and need not 

be part of a recursive algorithm.   The parameters can be estimated from calculation of 

first principles of dynamics of marine vehicles, from statistical least squares estimation of 

experimental data, or a combination of the two.   The identification of the parameters of 

the item being tracked can be approached in many different ways.  The parameters can be 

determined once, from a model of the expected input signal.  It also could be done 

adaptively utilizing a recursive method to identify the parameters of the incoming signal.  

The focus of the discussion for this section will be on the AUV parameter identification 

methods. The input signal dynamics will be assumed to be known at the time of 

controller design.  Further studies into the identification of the input signal dynamics 

parameters are recommended for future studies. 

 

1.  Least Squares Estimation 

The heave and pitch equations (32), (33) can be cast into form:  ( ) ( ) ( )y t H t t= Θ .   

Where y(t) is the next time step state history for the equation of interest, H(t) is a 

matrix containing a time history of the states affecting a particular equation of motion and 

Θ   is a vector of the yet to be determined parameters in the equation of motion.   

For heave:  

Utilizing an Euler transformation 

( 1) ( )w t w t
w

t
+ −

=
∆

&  , therefore equation (32) can be written 
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( )
( 1) 1 q plw

pl
totw totw totw

mU Z t Z tZ t
w t w q

M M M
δ δ

+ ∆ ∆     ∆
+ = + + +     

     
  (37) 

 where totw wM m Z= − &  

Therefore 

1

1

1

( )

t

t

t

t n

w
w

y t w

w

+

−

− +

 
 
 
 =
 
 
  

M
 ,

1 1 1

2 2 2( )

t t t

t t t

t t t

t n t n t n

w q
w q

H t w q

w q

δ
δ

δ

δ

− − −

− − −

− − −

 
 
 
 =
 
 
  

M M M
 and 

1

( )

w

totw

q

totw

pl

totw

Z t
M

mU Z t

M

Z t

M
δ

  ∆
+  

  
 + ∆  Θ =    
 

∆  
     

 

 

   where n is the batch length. 

 

Using a least squares method to estimate the parameters Θ    [9], an error in 

output  estimate is defined as: 

ˆ( ) ( ( ) ( ) ( ))e t y t H t t= − Θ      (38) 

 where ˆ ( )tΘ  is the estimate of ( )tΘ .  

 

 In order to minimize the error, a scalar positive squared error measure is defined, 

 '

1

( ) ( ) ( )
n

t

J n e t e t
=

= ∑        (39) 

and then the minimization of J is given by: 

 '

1

0 ( ) ( )ˆ

n

t

dJ
H t e t

d =

= = −
Θ

∑       

and substituting  ( ) ( ) ( )y t H t t= Θ  produces: 

 '

1

ˆ0 ( )( ( ) ( ) ( ))
n

t

H t y t H t t
=

= − − Θ∑    

Rearranging this into matrix form and solving for ˆ ( )tΘ  gives: 

  ' 1 'ˆ [ ]H H H y−Θ =      (40)  

The known states in equation (37) are , , plw q δ  which can be obtained from data 

collected from onboard sensors and planes output during an experimental run.  The 
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parameters Zw, Zq, and Zpl are the parameters to be estimated.    The mass (m), added 

mass in heave( wZ & ), are known or calculated properties of the vehicle, and the t∆  is the 

discrete processing time of the sensor data available.  For ARIES the discrete sampling 

time is based on the 8 Hz sampling frequency of the sensors yielding a t∆   = 0.125 sec. 

The mass of ARIES is 222 kg and the added mass in heave is estimated to be 234 kg [10]. 

An experiment can be run which excites the heave mode of motion by making 

continuous depth changing maneuvers. It should be noted that the regression matrix, 

'

1

[ ( ) ( )]
n

t

H t H t
=

∑ , must be positive and strong (with no singularity) otherwise its inverse 

does not exist.  This means that the system must be perpetually excited by its input.  

From the data obtained from onboard sensors Θ̂ is estimated from equation (40) and from 

this estimate the unknown parameters can be calculated. 

 

(1)( 1) totw
w

M
Z

t

Θ −
=

∆
                  (41) 

(2) totw
q

M
Z mU

t

Θ
= −

∆
       (42) 

(3) totw
pl

M
Z

t

Θ
=

∆
       (43) 

 

At this point the parameters that will be estimated will minimize the least squares 

error for the data obtained during the experiment. The parameters that result may not 

necessarily be the actual parameters for the vehicle but should be a good estimate.  Errors 

or simplifications in modeling the equations of motion, errors in estimates of parameters 

like added mass, all can lead to errors in the parameter identification.  Astrom [7] 

recommends providing the parameter estimation as many know parameters as possible to 

allow for the most realistic model to be identified.   For the case of an AUV, a reasonable 

estimation of the planes coefficients can be made which help to obtain good parameter 

estimation. 
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a. First Principles Calculation 

The force in the z direction due to the planes comes from the lift force provided 

by each of the planes. 

The lift force coefficient for one plane is: 

2
1

1
2plane fin LZ U A Cρ=        (44) 

For ARIES , Afin=0.02163 m2, 
1.2

0.4L
C

rad
= , U was taken to be 1.41 m/s. 

Since on ARIES the bow and stern planes act in opposite directions, the lift forces 

act in opposite directions.  Also an assumption is made that the bow planes are about 

80% as effective as the stern planes.  Therefore : 

 

1 1 12 2(0.8 ) 0.4pl plane plane planeZ Z Z Zδ = − =     (45) 

 

2 2
3

1 1.2
0.4 (1024 )(1.4 ) (0.02163 ) 26.1

2 0.4pl

kg m N
Z m

m s rad radδ
 = =  

 

 
b. Least Squares Estimate with First Principles Parameter 

Now the number of parameters that are estimated in the heave equation can be 

reduced by one.  Since the remaining parameters Zw and Zq are not easily or accurately 

calculated from first principles, the least squares parameter identification is utilized 

where: 

 

  ( ) ( 1) pl
pl

totw

Z t
y t w t

M
δ

∆
= + − , ( ) [ ( ) ( )]H t w t q t=  and 

1

( )
( )

w

totw

q

totw

Z t
M

t
mU Z t

M

  ∆
+  

  Θ =  + ∆      

(46) 

 

and the parameters are calculated from equations (41) and (42). 
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c. Pitch Equation Parameter Identification 

The same procedure of least squares estimation with first principle parameter 

calculation can then be done for the pitch equation (33). 

The known parameters for ARIES are Iyy=119.1 kg m2  and Mq=93.13 kg m2 [10]. 

The parameter B GM z B z Wθ = −  can be easily estimated since the ARIES body is 

symmetric, the center of buoyancy located at the center therefore zB=0.  The center of 

gravity is estimated to be about 0.5 in below the center of the body therefore 

2

0.026
0.5 222 9.81 28.3

m m
M in kg Nm

in sΘ = − ⋅ ⋅ ⋅ = −  

First principles are used to calculate 2
1

1
2plane fin LM U A C Lρ=  where L is the 

distance from the fin to the center of rotation.  The center of rotation was taken to be the 

midpoint between the bow planes and the stern planes. For the planes, since they act in 

opposite direction, they provide the same direction moment and therefore  

1 1 12 2(0.8 ) 3.6pl plane plane planeM M M Mδ = + =     (47) 

2 2
3

1 1.2
3.6 (1024 )(1.4 ) (0.02163 ) 1.013 237.9

2 0.4pl

kg m Nm
M m m

m s rad radδ
 = =  

 

  

 The pitch equation is now written as: 

 ( 1) 1q plw
pl

totp totp totp totp

M t M tM t M t
q t w q

M M M M
δθ θ δ

       ∆ ∆∆ ∆
+ = + + + +              

       
  (48) 

 

Now the first principles parameters are included:  

( ) ( 1) ( ) ( )
p l

pl

totp totp

M tM t
y t q t t t

M M
θ θ δ

∆∆
= + − −  , [ ]( ) ( ) ( )H t w t q t= , ( )

1

w

totp

q

totp

M t
M

t
M t
M

  ∆
     Θ =  
 ∆ +      

 (49) 
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2. Parameter Identification Results 

An experimental run was conducted with ARIES.  A commanded depth change 

between 4 and 10 meters was utilized.  The run was designed to have near continuous 

changing of all the states to ensure that the batch least squares estimation will be 

sufficiently excited to allow for good parameter identification.   Figure 9 shows the 

results which include the data collected from the run, and simulation of the model 

utilizing the parameters identified from the experimental data. 

It can be seen that the data for heave has a great deal of noise.  This is because 

there is no sensor that directly measures the heave velocity. An onboard acoustic doppler 

sensor measures depth rate ( z& ), and a gyro measures pitch angle (θ ). From these two 

sensor data streams, heave velocity is calculated from 
sin

cos
z U

w
θ

θ
−

=
&

 and therefore has a 

combination of the noise from two different sensors.  The noise is not a problem for the 

parameter identification as long as the noise is zero mean white noise.  All sensor data 

was de-meaned prior to least squares estimation to ensure zero mean data. 
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Figure 9 Parameter Identification data and results 
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A summary of all the parameters, known, calculated and estimated are shown in 

Table 1  and Table 2  below. 

Known/Calculated Parameters m (kg) Zw_dot (kg) U(m/s) dt (sec)
222 234 1.41 0.125

First Principles Calculations Zdpl (N/rad)
26.1

Least Squares Estimation Zw (Nsec/m) Zq(Nsec)
Identified using Parameter ID -764 120  

Table 1   Heave motion parameter results 
 
 

Known/Calculated Parameters Iyy (kg m^2) Mq_dot (kg m^2) U(m/s) dt (sec)
119.1 93.3 1.41 0.125

First Principles Calculations Mdpl (Nm/rad) Mtheta(Nm)
237.5 -28.3

Least Squares Estimation Mw (Nsec) Mq(Nmsec)
Identified using Parameter ID 45.5 -1147.8
 

Table 2   Pitch motion parameter results 
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C. THE TRACKING CONTROLLER 

Now that a model with all of the parameters for ARIES has been obtained, all that 

remains is the model of the signal dynamics.  For the remainder of this thesis study the 

model of the signal is assumed to be a known second order signal with known frequency.   

As mentioned previously the signal can be and is most likely more complex.  Analysis of 

the signal dynamics of the cage is recommended for future studies. A step by step 

solution to the design of an Error Space Controller to be implemented in ARIES is as 

follows: 

1. Signal Dynamics 

Since the cage motion is modeled as a simple sinusoid the resulting dynamics 

matrix becomes: 

                        2

1 0
0rA

ω
 

=  − 
      (50) 

where, for the model, a period of 20 seconds was chosen as a nominal value about which 

to test the controller. The resulting frequency is 0.3142 rad/sec therefore : 

1 0
0.0987 0rA

 
=  − 

  

2. ARIES Dynamics 

As previously shown ARIES dynamics are given by equation(36).  Placing this 

equation in the form s s s su= +x A x B&  where s
−= 1A M A  and s

-1B = M B  and utilizing 

the coefficients calculated from first principles and parameter identification in Chapter 

III, ARIES dynamics and  control force matrices become: 

 

-2.0466    3.2363    0.0421         0
 1.3892   -8.5590   -0.1575         0
      0             1             0             0
      1             0       -1.4100         0

sA

 
 
 =
 
  
 

     (51) 
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 0.4207
-1.3606
     0
     0

sB

 
 
 =
 
  
 

        (52) 

 

These matrices are utilized in the simulation of the response of ARIES in the 

diving mode. 

For design of the controller the heave mode is ignored.  As previously discussed, 

this is because of the uncertainity of ability to measure or estimate the heave velocity. 

The controller proves to be still valid with this assumption.  Therefore the model 

becomes: 

 

 -6.7012   -0.1333        0

      1             0             0
      0       -1.4100         0

smA
 
 =  
 
 

      (53) 

 

-1.1191

     0
     0

smB
 
 =  
 
 

        (54) 

 

It is these matrices that will be utilized in the controller design. 

 

3. Compensator Design 

Now the error space matrices are formed such that 

 

0

0 0
c r r s c r

s s s s

x A B C x B
u r

x A x B
−        

= + +        
       

&
&  
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where  

         0         1         0         0          0
   -0.0987     0         0         0          1

         0         0   -6.7012   -0.133    0
         0         0         1         0          0
     

E =

    0         0         0      -1.41       0

 
 
 
 
 
 
 
 

, 

     0
     0

 -1.1191
     0
     0

F

 
 
 
 =
 
 
 
 

 

 

The poles are then placed at :  

                ( )-0.4400   -0.4620   -0.4730   -0.4840   -0.4950poles =  

 

 Pole selection was determined through iterative tuning process in which the 

higher the frequency the poles were placed the better the tracking performance.  

However, at a certain point in the iterative process placing the poles any higher yielded 

plane saturation that did not allow for stable tracking of the signal.                

 

The resulting gains chosen are: 

    ( )-0.0361    0.0229    3.8847   -1.7725    0.5133k =  

 

4.  C code Implementation in ARIES 

The resulting design of the Error Space Controller was implemented as another 

mode of the Flight Depth Controller in ARIES.  The originally designed Sliding Mode 

Controller would be kept as the mode for achieving normal depth regulation and changes 

in ordered depth.   The new mode could then be implemented as a change in the mode of 

the Flight Depth Controller in which this new mode of the controller is used to track a 

dynamic signal utilizing the error space design. 

The following is general description how the code is implemented inside the 

vehicle. The actual code for ARIES Flight Depth Controller is found in Appendix E. 

First the depth error is calculated from the commanded depth, which theoretically 

comes from the current dynamic depth state of the cage, but for experimental validation a 

sinusoidal signal of given amplitude and period about a given mean depth was utilized.  

The Depth is found as measured by ARIES on board sensor: 
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      Deptherror = Depth - Depth_com 

 

Then the compensator input to the control is calculated from: 

 

      ucomp =   xcom1  

 

where xcom1 is the first state of the compensator. 

 

Then the control input from state feedback is calculated from: 

      ufb = -  3.8847*q  + 1.7725*theta  -  0.5133*Deptherror 

  

note : that the default commanded pitch rate and pitch angle are zero, but the 

depth state is feedback from Deptherror to allow for tracking about a commanded depth 

not a zero depth. 

The resulting input to the planes is then: 

      delta_sp = ucomp + ufb 

 

Last the compensator states are updated: 

    xcom1(i+1) =   0.9992*xcom1 +    0.1250*xcom2   -   0.0026*Deptherror 

    xcom2(i+1) =  -0.0123*xcom1 +    0.9992*xcom2  +   0.0045*Deptherror 

 

note :  in actual implementation of this controller it is important not to allow the 

compensator to update its state from the zero state until you are within a predetermined 

range of the commanded depth.  This is because if there is a large intial depth error the 

integration of that error will cause the compensator states to grow too large.  Results of 

not limiting the conditions when the compensator is activated will be shown and 

discussed in Chapter V. 

The resulting controller design and simulation code are found APPENDIX D and 

simulation results are shown and discussed in Chapter V. 
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V. RESULTS 
 

A. SIMULATION OF ARIES VEHICLE RESPONSE TO SINUSOIDAL 
TRACKING SIGNAL 

The resulting controller and full state vehicle response can be simulated under 

various intial conditions, and with differing input signal characteristics.  The controller 

proves to be fairly robust, and able to track a signal with zero error.   In an effort to 

understand the controller’s strengths and weaknesses, a number of cases are presented 

below that highlight the Error Space Controller’s features. 

The resulting vehicle response to tracking a half meter amplitude sine wave of 

period 20 seconds is shown in Figure 10 and Figure 11 . 

 
Figure 10 Error Space Control of ARIES with input signal  T=20 secs, 

Amp=0.5m  
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Figure 11     ARIES state responses to tracking a sinusoidal wave 

 

As is shown in Figure 10, ARIES is able to track a half-meter amplitude signal of 

period twenty seconds with zero error.   The intial conditions for this case show a half-

meter position error between the depth of ARIES and the commanded depth.  The depth 

error intial condition is an important requirement to be aware of to ensure the controller 

will have the ability to show accurate tracking.  The compensator in the Error Space 

Controller should not be started until the vehicle is within a specified depth error band.  It 

was found through iterative simulation that fo r ARIES, this depth band was around one 

meter.  The initial depth error limitation is handled by turning on the compensator only 

after ARIES is within the one-meter depth error band.  The result is the controller is 

simply a state feedback controller that will stabilize the vehicle about the ordered depth 

until the ARIES is within the depth error band at which time the compensator portion of 

the controller is turned on.   Figure 12 shows the controller and vehicle response when 
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the vehicle position starts at zero meters, and the sinusoidal command is the same as the 

previous example. 

 
Figure 12 ARIES response to large intial depth error 

 

As can be seen in Figure 12, the controller still has the ability to track the signal 

with zero error.  In this case it takes nearly 80 seconds to reach good tracking of the 

signal vice the 20 seconds it took when the vehicle started only a half meters off the 

commanded signal.  It it obvious though that this is mainly due to the intial planes 

saturation period that occurs when the controller is trying to achieve the large depth 

change manuever.  This shows the stability of the controller design even to large errors in 

depth.  The controller’s performance however is still not ideal, in that it doesn’t approach 

the mean depth with the most desired characteristics, i.e. there is a large overshoot of 

mean depth initially.   It is for this reason that when implemented in ARIES a Sliding 
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Mode Depth Control will be utilized to achieve the ordered depth change. This will allow 

the vehicle to get within a one-meter depth band of the signal to be tracked, and then the 

Error Space Controller will be activated to track the time varying signal.  

As an alternative to using the Sliding Mode Controller, the Error Space controller 

could be tuned for use in depth changing maneuvers, where the poles of the controller are 

now placed to allow a more damped response, and therefore less overshoot of the ordered 

depth.  This is good for approaching ordered depth, but results in a longer time to reach 

zero error tracking.  The resulting performance is seen in Figure 13, where the new poles 

of the system are places at: [-0.32,-0.2584+0.188i, -0.2584 - 0.188i,                                       

-0.0984 + 0.3040i, -0.0984 - 0.3040i] 

The resulting compensator and feedback states are as follows: 

ucomp =   xcom1 

ufb = -  5.0646*q  + 0.2701*theta  -  0.0436*Deptherror 

delta_sp = ucomp + ufb 

xcom1(i+1) =   0.9992*xcom1 +    0.1250*xcom2 +    0.0007*Deptherror 

xcom2(i+1) =  -0.0123*xcom1 +    0.9992*xcom2 +    0.0003*Deptherror 

 

 



39 

 
Figure 13 ARIES responses to large depth error with more damped poles 

 

There are other limitations that have to be addressed with the controller.  These 

limits are primarily associated with the limited control authority available to the vehicle 

and the characteristics of the dynamics matrix of the vehicle.   

For a given period signal there is an associated maximum amplitude signal that 

can be tracked.  As can be seen in Figure 14, a signal of one meter amplitude is not able 

be tracked because the planes are continually being saturated, therefore preventing zero 

error tracking of the signal.  
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Figure 14 Response to 1 meter amplitude, 20 second period signal  

 

The solution to this problem lies in the limits on control authority in the pitch and 

heave mode of the vehicle.  An increase in control authority in heave and pitch mode 

would allow for better tracking of higher amplitude signals as well as shorter period 

signals.  For the case of ARIES, vertical thrusters could be added to provide more control 

authority if deemed necessary to track faster or higher amplitude signal.   In case of a 

completely new vehicle design, consideration could be made for heave and pitch mode 

control authorities as well as general shape and mass of the vehicle that allows for more 

favorable hydrodynamic coefficients. 

 As is shown in Figure 15, if the signal where of longer period of 30 seconds, 

ARIES could track the signal of one meter amplitude. 
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Figure 15 Response to 1 meter amplitude, 30 second period signal 

 

The next limitation to investigate is the effects of a mismatch between the 

estimated period of the signal being tracked with that of the actual period of the signal.  

Figure 16 shows the results of a modeled 20 second period signal, and the actual signal is 

22 second period. 
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Figure 16 Response to mismatch in modeled input signal dynamics 

 

As can be seen, the controller is not able to achieve zero error tracking and thus 

highlights the neccesity to have identified the input signal characterstics somewhat 

accurately.   

The results shown here show the feasibility of the use of the Error Space 

Controller for tracking a time time varying depth command.   The controller has shown to 

be robust, stable, and readily tunable.   
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B. EXPERIMENTAL RESULTS FOR NEW TRACKING CONTROL 
IMPLEMENTED IN ARIES 

The next step is experimental validation of the error space code inside ARIES.   

Since experimentally no cage system was available for which to conduct the test with, the 

control signal for the depth of the cage was generated inside ARIES during the 

experimental runs.     

For the experimental runs ARIES was command to change depth to three meters 

using mode 0 of the Flight Depth Controller (see Appendix E), which is the original 

Sliding Mode Control design.  ARIES is given 40 seconds to conduct this maneuver after 

which time the Flight Depth Control mode is changed to mode 2, the error space control.  

Once inside the error space control code the command for depth is generated from the 

mean commanded depth of three meters and a sinusoidal componet of period 20 seconds 

and amplitude 0.5 meters.    Two runs were conducted in Monterey Bay on November 

14th, 2002 to validate the controller’s performance; the results are presented in Figures 

17-20. 
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Figure 17 Experimental Run 1 – Tracking a 0.5 m amplitude, 20 second 

sinusoidal depth command 

 
Figure 18 State response to tracking sinusoidal depth command – Run 1  
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Figure 19 Experimental Run 2 – Tracking a 0.5 m amplitude, 20 second 

sinusoidal depth command 

 

A few observations can be made from the experimental results shown in Figures 

17-19.      First off, there appears to be a 0.25 m offset from the signal being tracked and 

the actual position of ARIES.   As was shown previously in Figure 10, the simulated 

response of the controller shows no offset.  This is due to the fact in the simulation, 

effects of a buoyancy mismatch were ignored as well as any other external disturbance 

effects such as currents.   For ARIES there is an actual buoyancy mismatch whose value 

depends on the operating depth and conditions of the water (temperature and salinity). 

During the experimental runs was the water conditions at the operating depth were such 

that a resulting buoyancy mismatch occurred.  This leads to the vehicle tracking at a 

depth deeper than the commanded depth. A conclusion can be made that the vehicle 

appears to be running slightly heavy at the operating depth of three meters and therefore 

tracks at a depth slightly below the commanded.  However, as can be seen in Figure 17 

and Figure 19 the error in depth due to this mismatch in weight and buoyancy is kept 
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relatively small, with the error on average beign about 0.25 meter.   This degree of offset 

depending on the operationally requirements of the docking cage should be acceptable. 

The compensation for this buoyancy mismatch is readily solvable by through 

disturbance compensation techniques and is recommended for future refinement of this 

controller.  The results of this experiment show the valuable need for experimental 

validation of model based control codes and the value of having a test platform such as  

ARIES to conduct these tests.  Often in modeling and simulation, assumptions are made 

and models formed to attempt to effectively simulate an AUV; however, any mismatch in 

model parameters or invalid assumptions can cause a design to not completely meet the 

design requirements.  

Removing the effects of the buoyancy mismatch Figure 20 shows that ARIES 

tracks the signal the commanded sinusoidal signal with near zero error. 

 

 
Figure 20 Results removing effect of buoyancy mismatch 
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VI. CONCLUSIONS AND RECOMMENDATIONS 
 

A. CONCLUSIONS 

This thesis has shown that utilizing a model based, Error Space Controller, an 

AUV can track a time varying depth command with zero error.  The Error Space 

Controller has proven to be fairly robust and readily tunable.  However, there are 

limitations, in particular its sensitivity to errors in modeling the input signal.   This 

controller design provides a means by which an AUV could possibly compensate for the 

time varying depth of a cage system to which it is attempting to dock. 

In addition this thesis has shown a good technique for developing the 

hydrodynamic coefficients of an AUV through a combination of first principles and least 

squares parameter identification. With these parameters, the engineer is able to readily 

calculate many new model based control laws and simulate the expected response of the 

vehicle to various conditions.  Finally it has been shown that once satisfactory simulation 

of the new control law is completed, Naval Postgraduate School’s ARIES vehicle 

provides a valuable test platform for testing new controls code in a real time ocean 

environment. 

 

B. RECOMMENDATIONS 

It was shown that the Error Space Controller was readily able to track a dynamic 

signal with zero error.  However, in order to focus this thesis study on the controller 

development an assumed input signal was utilized.  In reality the input signal 

characteristics will not be of a known constant value but rather an input into the 

controller at the time of operation.  It is expected that the dynamic parameters of a 

moving cage system may change with time and that estimation of the signal parameter 

may be necessary as a real time calculation.  Since the the Error Space Controller relies 

on the model of the input signal to develop the control law, an adaptive control technique 

may be required to allow for time varying input signal parameters.  Further research in to 

methods by which the controller can obtain the time varying dynamics parameters for the 

signal and implement them into the control code is recommended for future studies.     
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In addition to the development of a technique for identifying the cage dynamics, 

research into the area of expected dynamics of a tethered cage sytem would also be 

useful.  With this data the range of the input signals could be bound.   Therefore the limits 

of the controller/vehicle combination could more accurately be simulated and a better 

tuned and tested controller could be developed. 

This thesis did not attempt to solve the entire problem of how to dock an AUV 

onto a moving cage system. The focus was on the compensation for dynamics in the 

vertical plane. In order for a real time docking to take place, consideration to the x-y 

plane approach to the cage needs to be considered.  The horizontal plane portion of the 

design problem is much less of a dynamic tracking problem, and more of formulating a 

steering controller to head into the cage within some predefined heading band.  The 

problem of designing a controller for horizontal plane approach during the docking 

procedure is recommended for future studies. 
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APPENDIX A -  ARIES SLIDING MODE DEPTH CONTROL 
% ARIES current sliding mode depth control model 
% Note this utilizes original model parameters used to design 
controller 
% Code developed by Dr. Dave Marco and modified by Joe Keller 
 
clear; clc; 
 
% ARIES  HEAVE AND PITCH COEFFICIENTS (calculated and estimated) 
W   = 500.0;   %lbs 
rho = 1.9903;  %density of seawater slugs/ft^3 
Boy = 505.0;   %lbs 
g = 32.174;    %ft/s^2 
 
zg = 0.5/12.0; %ft 
U = 5;       %ft/s (=3.55 kts or 1.8 m/s)  
m = W/g; 
a = m;       %check this assumption 
M = m+a; % Mass + Added Mass in Heave 
L = 10.0;  %ft 
Iy =100 ; % lbsec^2/ft % Scaled to 500 lb & Longer from Jay Johnson 
87.82 
Mq_dot = -0.00625*(rho/2)*(L^5);   
Mw_dot = -0.00253*(rho/2)*(L^4); 
Zq_dot = -0.00253*(rho/2)*(L^4);   
Zw_dot = -0.009340*(L^3);   % looks wrong 
Mq  = -0.01530*(rho/2)*(L^4);%these are all the non-dimensional 
coeff*rhoL^5/2 but not times U 
Mth = -zg*W; 
Mw  =  0.05122*(rho/2)*(L^3); 
Zw  = -0.78440*(rho/2)*(L^2); 
Zq  = -0.07013*(rho/2)*(L^3); 
%Msp = -2.6496; % Stern Plane Moment Effectiveness Approx for Aires  
%Mbp =  1.989; % Bow Plane Moment Effectiveness Approx for Aires 
Msp = -0.02110*(rho/2)*(L^2)*(L/2); % Stern Plane Moment Effectiveness  
(but not time U^2) 
Mbp =  0.02110*(rho/2)*(L^2)*(L/2)*0.8; % Bow Plane Moment 
Effectiveness 
Zds = -0.02110*(rho/2)*(L^2); % Stern Plane Force Effectiveness Approx 
for Aires 
Zdb = -0.02110*(rho/2)*(L^2); % Bow Plane Force Effectiveness Approx 
for Aires 
 
% With cross coupled terms 
MM = [(Iy-Mq_dot) 0   -Mw_dot       0;... 
           0      1       0         0;... 
      -Zq_dot     0    (m-Zw_dot)   0;... 
           0      0       0         1]; 
 
    
% [q theta w z] 
 
AA = [Mq*U  Mth  Mw*U   0;... 
     1       0      0   0;... 
     Zq*U  0      Zw*U  0;... 
     0      -U      1   0]; 
% Unaugmented A Matrix 
Aua=inv(MM)*AA; 
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% Combining Stern & Bow Plane Effectivness 
 
Mpl = Msp - Mbp; 
Zpl = 0.0; % Since Bow and Stern Planes operate equal and opposite  
BB = [Mpl*U^2; 0; Zpl*U^2; 0]; 
 
% Unaugmented B Matrix 
Bua=inv(MM)*BB; 
 
 
E = ([0;0;0;0]);   %  no disturbances 
 
 
Dist = inv(MM)*E; 
% Augmented A Matrix 
A = zeros(5,5); 
A([1:4],[1:4]) = Aua; 
A(5,4) = -1; 
 
% Augmented B Matrix 
Bua(5,1) = 0; 
B=Bua; 
 
% Controller Model Has no Heave Velocity FeedBack 
I = Iy - Mq_dot; 
eta = 1.0; 
phi = 0.5; 
dt = 0.125; 
time=40; 
t = [0:dt:time]'; 
q = 0.0*ones(size(t)); theta = q; z = q; sigma = q; 
w=q; dpl=q; 
q_com     = 0.0;  q(1)     = 0.0; 
theta_com = 0.0;  theta(1) = 0.0; 
w_com     = 0.0;  w(1)     = 0.0; 
 
Depth(1) = 0.0;  
z(1) = 0; 
Ize(1) = 0.0; 
C = eye(4); 
D = zeros(4,1); 
 
x(:,1) = [q(1);theta(1);w(1);z(1);0]; % Full State 
xcm(:,1) = [q(1);theta(1);z(1);0];    % Controller State 
 
     INT = 0; 
     omega=2*pi/20;              
     ampl=1;                  
     Depth_com= z(1) + ampl*sin(omega*t); 
     %Depth_com=10*ones(1,length(t)); 
 
for i=1:length(t)-1, 
    %control signal in execf.c 
     
    sigma(i)=-0.7693*(q_com-q(i))-0.6385*(theta_com-theta(i))    
+0.0221*3.28*(Depth_com(i)-Depth(i)); 
    dpl(i)=1.2801*(-0.4105*q(i)+0.1086*theta(i)+ 
eta*tanh(sigma(i)/phi)); 
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   if(abs(dpl(i)) > 0.4) 
      dpl(i) = 0.4*sign(dpl(i)); 
   end; 
 
% True State 
   x_dot(:,i) = [A(1,1)*q(i) + A(1,2)*theta(i) + A(1,3)*w(i) + ... 
                 A(1,4)*z(i) + B(1,1)*dpl(i) + Dist(1); ... 
                 A(2,1)*q(i) + A(2,2)*theta(i) + A(2,3)*w(i) + ... 
                 A(2,4)*z(i) + B(2,1)*dpl(i);... 
                 A(3,1)*q(i) + A(3,2)*theta(i) + A(3,3)*w(i) + ... 
                 A(3,4)*z(i) + B(3,1)*dpl(i) + Dist(3);... 
                 A(4,1)*q(i) + A(4,2)*theta(i) + A(4,3)*w(i) + ... 
                 A(4,4)*z(i) + B(4,1)*dpl(i);... 
                 INT*((Depth_com(i)-z(i)))]; 
 
% Measurements of the State 
   x(:,i+1)   = x(:,i) + dt*x_dot(:,i); 
    
   e(i)=0*rand(1);     % add noise to states 
   sigmad=0.15; sigmaq=0.02; sigmath=0.04;sigmaw=0.15; 
   q(i+1)     = x(1,i+1)+sigmaq*e(i); 
   theta(i+1) = x(2,i+1)+sigmath*e(i); 
   w(i+1)     = x(3,i+1)+sigmaw*e(i); 
   z(i+1)     = x(4,i+1)+sigmad*e(i);  
   Ize(i+1)   = x(5,i+1)+e(i); 
   Depth(i+1)   = z(i+1)/3.28 ; % Measurement of z in meters 
 
end; 
 
%%%%% Plot Results 
clf; 
orient tall; 
figure(1); 
Depth_com(i+1)=Depth_com(i); 
hold off; 
subplot(3,1,1);plot(t,(w/3.208)),xlabel('time(sec)'),ylabel('w_r 
(m/sec)'),grid on; 
title('Heave, pitch rate, pitch angle, depth and planes angle vs 
time'); 
subplot(3,1,2);plot(t,q),xlabel('time(sec)'),ylabel('q (rad/sec)'),grid 
on; 
subplot(3,1,3);plot 
(t,theta.*180/pi),xlabel('time(sec)'),ylabel('\theta(degrees)'),grid 
on; 
figure(2); 
subplot(2,1,1);plot(t,Depth);grid; 
hold;plot(t,Depth_com,'r .');%axis([0 40 0 11]); 
xlabel('time (sec)');ylabel('depth(m)');legend('ARIES Depth','Commanded 
Depth') 
subplot(2,1,2);plot(t,dpl*(180/pi));grid; 
xlabel('time(sec)');ylabel('\delta_p_l (degrees)'); 
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APPENDIX B -  SPRING MASS SYSTEM SIMULATION FOR 
ERROR SPACE CONTROL 

%Discrete spring mass damper control system 
% By LT Joe Keller Naval Postgraduate School for Thesis work 
 
% Integral error space control - (Feedback control textbook version pg 
595 Franklin) 
 
%  See intererr2rev2.mdl for simulink response 
clear; 
 
k=1; 
m=10; 
c=0.1; 
 
Ar=[0 1;-k/m -c/m];        %Modeled reference signal dynamics 
Br=[0; 1/m]; 
Cr=[1 0]; 
D=0; 
 
As=[0 1;0 0];              %Modeled system dynamics 
Bs=[0; 1/m]; 
Cs=[1 0]; 
Ds=0; 
 
Ara=[0 1;-100*k/m -100*c/m]; % Actual reference signal dynamics; 
Bra=[0;1/m];             % This is useful for showing robustness under 
modeling error 
 
%Initial Conditions 
dt=0.125; 
tt=25;  
 
T=0:dt:tt; 
 
%WORKER MASS MOTION 
 x(:,1)=[0.5;0.2]; 
 [p,g]=c2d(Ara,Bra,dt); 
  
  for i=1:length(T) 
   x(:,i+1)=p*x(:,i); 
   y(:,i)=0.7*sin(sqrt(k/m)*i*dt) + 3; 
  end 
   
% SERVER CONTROLLER  
%Form error space matrices 
E=[Ar Br*Cs;zeros(2) As]; 
F=[0;0;Bs]; 
poles=1.0*[-3.707+3.707i,-3.707-3.707i,-4.1,-4.2]; 
K=place(E,F,poles); 
 
Ko=[K(3) K(4)];  %Plant feedback gains 
 
Ec=Ar;             %compensator dynamics 
Fc=[K(1) K(2)];  %compensator error feedback gains 
Gc=[1 0]; 
Hc=0; 
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Acom=[Ar Br*Cs;-Bs*Fc As-Bs*Ko]; 
Bcom=[-Br;0;0]; 
Ccom=-K; 
Bcom=[-Br;Bs*Ko*Cs']; 
 
mu1=-[0 0 Cs]*inv(Acom)*Bcom; 
 
%Frequency response of controller and system 
[num,den]=ss2tf(Ar,Fc',Gc,Hc); 
Gcomp=tf(num,den);                 %compensator 
[num2,den2]=ss2tf(As-Bs*Ko,Bs,Cs,Ds);  %plant with feedback 
Gsys=tf(num2,den2); 
Gtot=Gcomp*Gsys/(Gcomp*Gsys-1);  %output to input transfer function 
er=Gtot-1;                %error to input transfer function 
 
figure(2); 
margin(er);grid; 
 
%Change to disrcete 
 
[Ard,Brd]=c2d(Ar,Br,dt); 
[Asd,Bsd]=c2d(As,Bs,dt); 
[Adcom,Bdcom]=c2d(Acom,Bcom,dt); 
 
%Initial Conditions 
 
y(1)=[0]; 
xcom(:,1)=[0;0;0;0]; 
 
for i=1:(length(T)-1) 
   xcom(:,i+1)=Adcom*xcom(:,i)+Bdcom*y(i); 
   u(i)=-K*xcom(:,i)+Ko*Cs'*y(i); 
   e(i)=xcom(3,i)-y(i); 
end  
 
%Plot Results 
figure(1); 
subplot(3,1,1) 
plot(T,y,T,xcom(3,:));title('Error Space Controller Response');grid on; 
ylabel('Position (m)');xlabel('Time(sec)');legend('Reference 
Signal','System Response'); 
subplot(3,1,2); 
plot((1:i)*dt,u);grid; 
ylabel('Control Force (N)');xlabel('Time(sec)') 
subplot(3,1,3); 
plot((1:i)*dt,e);grid; 
ylabel('Position error (m)');xlabel('Time(sec)') 
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APPENDIX C-PARAMETER IDENTIFICATION OF ARIES 
%  Parameter ID for pitch and heave modes of ARIES  
% 
%  code by LT Joe Keller, Naval Postgraduate School 
%  for completion of Masters Thesis 
 
clear; 
clc; 
 
load experdatam  % loads only need states from Nav_d and d081602_02.d 
files 
load wtemp 
 
% %De-mean all values 
w=w-mean(w); 
q=q-mean(q); 
theta=theta-mean(theta); 
dsp=dsp-mean(dsp); 
umean=mean(u); 
 
 
%Insert Lag into planes (see Johnson pg 28,53) 
lagdsp(1)=dsp(1); 
tau=0.5;    % see rudder vs pitch rate response for a lag of 0.5 sec 
for i=2:length(dsp); 
    lagdsp(i)=(1-tau)*lagdsp(i-1)+tau*dsp(i-1); 
end 
lagdsp=lagdsp'; 
 
% takes data up to first turn 
start=692;      %before turn 
finish=3169; 
% start2=4480;             %after turn 
% finish2=6936; 
start2=3170; 
finish2=3170; 
 
w=[w(start:finish);w(start2:finish2)]; 
q=[q(start:finish);q(start2:finish2)]; 
theta=[theta(start:finish);theta(start2:finish2)]; 
dsp=[dsp(start:finish);dsp(start2:finish2)]; 
lagdsp=[lagdsp(start:finish);lagdsp(start2:finish2)]; 
Depth=[Depth(start:finish);Depth(start2:finish2)]; 
 
%%%  Pitch Equation Parameter ID  %%%%%% 
 
dt=0.125; % sample time for Aries 
U=1.41;  % m/s from umean 
L=10/3.208;  % ft 
rho = 1020;  %density of seawater kg/m^3 
Iyy=119.1; %kg*m^2  (Johnson thesis pg 20) 
Mq_dot = -93.13; % kg*m^2 = Nr_dot Johnson pg 51 
Mw_dot = -0.00253*(rho/2)*(L^4);   %check this 
Mtotp=Iyy-Mq_dot; 
 
% Asssume Mdsp known from first principle calculations 
Mdsp=-237.5 ; % Nm/rad 
theta4=Mdsp*dt/Mtotp; 
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Mtheta=-28.3; %Nm 
theta3=Mtheta*dt/Mtotp; 
 
for ii=2:length(q) 
    yp(ii-1)=q(ii)-theta3*theta(ii-1)-theta4*lagdsp(ii-1); 
end 
yp(ii)=yp(ii-1); 
yp=yp'; 
 
H=[w q]; 
 
thetahat=inv(H'*H)*H'*yp; 
 
 Mw=thetahat(1)*Mtotp/dt;  
 Mq=(thetahat(2) - 1)*Mtotp/dt; 
%  Mdsp=thetahat(3)*Mtotp/dt; 
 
  
 %%% Check Condition and error 
  
 Conditionp=cond(H'*H); 
 errorp=yp-H*thetahat; 
 Jp=1/max(size(H))*(errorp'*errorp); 
 relerrorp=sqrt(Jp)/std(yp)*100; 
  
   
 sprintf('Mw %5.1f   Mq %5.1f   Mtheta %5.1f   Mdsp %5.1f  Relative 
Error %3.1f%',Mw,Mq,Mtheta,Mdsp,relerrorp) 
  
%%%%%%  Heave equation Parameter ID  %%%%%%%%%%%%%%%%%%%%%%% 
 
m   = 222;   %kg from Jay Johnson Thesis 
Zw_dot = -234 ;  %kg  =Yv_dot=-234 kg from Johnson pg 51  
Zq_dot = -0.00253*(rho/2)*(L^4); %check this 
Mtotw=m-Zw_dot; 
 
% Provide coeff's from first principles 
Zdsp=26.1 ; % N 
thetaw3=Zdsp*dt/Mtotw; 
 
 
for ii=2:length(w) 
    yw(ii-1)=w(ii) - thetaw3*lagdsp(ii-1); 
end 
yw(ii)=yw(ii-1); 
yw=yw'; 
 
Hw=[w q]; 
 
thetahatw=inv(Hw'*Hw)*Hw'*yw; 
 
 Zw=(thetahatw(1)-1)*Mtotw/dt;  
 Zq=thetahatw(2)*Mtotw/dt-m*U; 
%  Zdsp=thetahatw(3)*Mtotw/dt; 
  
  %%% Check Condition and error 
 Conditionw=cond(Hw'*Hw); 
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 errorw=yw-Hw*thetahatw; 
 Jw=1/max(size(Hw))*(errorw'*errorw); 
 relerrorw=sqrt(Jw)/std(yw)*100; 
  
 sprintf('Zw%5.1f Zq%5.1f Zdsp%5.1f Relativeerror 
%3.1f%',Zw,Zq,Zdsp,relerrorw) 
   
 %%%  Simulate vehicle response with new coefficients  %%%%%% 
  
 %Coefficient matrices 
 
  
% Actual Vehicle Matrices 
M=[m-Zw_dot -Zq_dot 0 0;         
   -Mw_dot Iyy-Mq_dot 0 0; 
    0 0 1 0; 
    0 0 0 1]; 
A=[Zw m*U+Zq 0 0; 
   Mw Mq Mtheta 0; 
   0 1 0 0; 
   1 0 -U 0]; 
B=[Zdsp Mdsp 0 0]';  
 
As=inv(M)*A; 
Bs=inv(M)*B; 
 
Cs=[0 0 0 1];   
Ds=0; 
 
 
[Asd,Bsd]=c2d(As,Bs,dt); 
 
 
ys(:,1)=[w(1);q(1);theta(1);Depth(1)]; 
 
%States ys(:,1)=w; ys(:,2)=q; ys(:,3)=theta; ys(:,4)=Depth 
 
T=0:dt:(length(q)-1)*dt; 
 
for i=1:(length(T)-1) 
    ys(:,i+1)=Asd*ys(:,i)+Bsd*lagdsp(i);          %Aries full state 
motion 
end  
 
for i=2:(length(T)-1) 
    ys(4,i)=ys(4,i) + (0.0092)*i*dt;   % takes linear trend out of 
depth 
end 
 
 
% Plot Results 
 
%  figure(1);subplot(3,1,1);plot(T,w); 
xlabel('time(sec) '),ylabel('wr (m/sec)'),grid on; 
figure(1);subplot(3,1,1);plot(T,w,T,ys(1,:)),xlabel('time(sec)'), 
ylabel('wr (m/sec)'),grid on; 
title('Heave velocity, pitch rate, and pitch angle vs time'); 
legend('Actual Vehicle','Modeled Vehicle'); 
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subplot(3,1,2);plot(T,q,T,ys(2,:)),xlabel('time(sec)'); 
ylabel('q (rad/sec)'),grid on; 
%subplot(3,1,2);plot(T,q),xlabel('time(sec)') 
ylabel('q (rad/sec)'),grid on; 
subplot(3,1,3); 
plot(T,theta*180/pi,T,ys(3,:)*180/pi),xlabel('time(sec)'),ylabel('\thet
a (degrees)'),grid on; 
%subplot(3,1,3); 
plot(T,theta*180/pi); 
xlabel('time(sec)'),ylabel('\theta (degrees)'),grid on; 
figure(2);subplot(2,1,1);plot(T,Depth,T,ys(4,:)); 
xlabel('time (sec)'),ylabel('Z (m)'),grid on; 
% figure(2);subplot(2,1,1); 
plot(T,Depth),xlabel('time (sec)'),ylabel('Z (m)'),grid on; 
title('Depth Change vs Time'); 
legend('Actual Vehicle','Modeled Vehicle'); 
subplot(2,1,2);plot(T,lagdsp*180/pi); 
xlabel('time(sec)'),ylabel('dsp(degrees)');grid; 
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APPENDIX D – ARIES ERROR SPACE CONTROL CODE 
 
%  Aries diving control Using Error Space Control 
% 
%  Code by LT Joe Keller, Naval Postgraduate School 
%  for completion of Masters Thesis 
%   
clear; clc; 
 
%Vehicle Characteristics 
 
% ARIES  HEAVE AND PITCH COEFFICIENTS 
 
% All units metric 
U=1.41;  % m/s from umean 
L=10/3.208;  % m 
rho = 1020;  %density of seawater kg/m^3 
Iyy=119.1; %kg*m^2  (Johnson thesis pg 20) 
Mq_dot = -93.13; % kg*m^2 = Nr_dot Johnson pg 51 
Mw_dot = -0.00253*(rho/2)*(L^4);   %check this 
Mtotp=Iyy-Mq_dot; 
m   = 222;   %kg from Jay Johnson Thesis 
Zw_dot = -234 ;  %kg  =Yv_dot=-234 kg from Johnson pg 51  
Zq_dot = -0.00253*(rho/2)*(L^4); %check this 
Mtotw=m-Zw_dot; 
 
 
%% From parameter id 
Mw=45.5; 
Mq=-1422.2; 
Mtheta=-28.3; 
Mdsp = -237.5; 
 
Zw=-764; 
Zq=120; 
Zdsp=26.1; 
 
%Set time scale 
dt=0.125;   
tt=150; 
T=0:dt:tt; 
 
%Recovery Cage motion 
Tc=20; % cage period (seconds) 
w=2*pi/Tc;    
Amp=0.5;  
Ar=[0 1;-(w^2) 0]; 
Br=[0;0]; 
Cr=[1 0]; 
 
Mean_depth = 3; 
 
x(:,1)=[0;Amp]; 
 
 [p,g]=c2d(Ar,Br,dt); 
  
  for i=1:length(T) 
   x(:,i+1)=p*x(:,i); 
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   y(:,i)= Mean_depth + Amp*sin(2*pi*i*dt/(1*Tc));    %note this change 
  end 
 
%Coefficient matrices 
 
% Actual Vehicle Matrices 
M=[m-Zw_dot -Zq_dot 0 0; 
   -Mw_dot Iyy-Mq_dot 0 0; 
    0 0 1 0; 
    0 0 0 1]; 
A=[Zw m*U+Zq 0 0; 
   Mw Mq Mtheta 0; 
   0 1 0 0; 
   1 0 -U 0]; 
B=[Zdsp Mdsp 0 0]';  
 
As=inv(M)*A; 
Bs=inv(M)*B; 
Cs=[0 0 0 1];   
Ds=0; 
 
% For controller design model of Aries assuming no influence of heave 
and use 3 state model 
% As well as utilizing values from Parameter identification 
Mm=[Iyy-Mq_dot 0 0; 
    0 1 0; 
    0 0 1]; 
 
Am=[Mq Mtheta 0; 
   1 0 0; 
   0 -U 0]; 
 
Bm=[Mdsp 0 0]'; 
 
Asm=inv(Mm)*Am; 
Bsm=inv(Mm)*Bm; 
Csm=[0 0 1];   
Dsm=0; 
 
 
 
%Form error space matrices for controller design 
E=[Ar Br*Csm;[zeros(3,2)] Asm]; 
F=[0;0;Bsm]; 
poles=1.1*[-0.4,-0.42,-0.43,-0.44,-0.45]; % poles to use if controller 
initialized with small depth error , faster tracking 
%poles=0.8*[-0.4,-0.323+0.235i,-0.323-0.235i,-0.123+0.38i,-0.123-
0.38i]; % poles to use if using with large intial depth error 
 
K=place(E,F,poles); 
 
Ko=[0 K(3) K(4) K(5)];  %Plant feedback gains 
 
Ec=Ar;             %controller dynamics 
Fc=-[K(1);K(2)];   %controller error feedback gains 
Gc=[1 0]; 
Hc=0; 
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%Change to disrcete 
 
[Ecd,Fcd]=c2d(Ec,Fc,dt); 
[Asd,Bsd]=c2d(As,Bs,dt); 
[Asdm,Bsdm]=c2d(Asm,Bsm,dt); 
  
 
 
% Aries response with error space controller 
% Coded as it will be used in vehicle C code 
 
%Initial values 
 
Depth_com=y; 
 
xcom1(1)=0; 
xcom2(1)=0; 
w(1)=0; 
q(1)=0; 
theta(1)=0; 
Depth(1)=2.5; 
 
 
for i=1:(length(T)-1) 
 
    Deptherror(i)=Depth(i)-Depth_com(i);   %error in depth 
     
    %Compensator input to control (u) 
    ucomp(i)= Gc(1)*xcom1(i)+Gc(2)*xcom1(i); 
     
    %State Feedback input to control 
    ufb(i)= -Ko(2)*q(i) - Ko(3)*theta(i) - Ko(4)*Deptherror(i);  
     
    %Total control input to dive planes 
    delta_sp(i)= ucomp(i) + ufb(i);     
 
     
    %compensator dynamics 
 
    % this prevents compensator from turning on until within reasonable 
depth error                
    if abs(Deptherror(i))>1.0   
        xcom1(i+1)=0;        % is achieved 
        xcom2(i+1)=0; 
    else 
       xcom1(i+1)=Ecd(1,1)*xcom1(i)+Ecd(1,2)*xcom2(i)+ 
Fcd(1,1)*Deptherror(i);  
       xcom2(i+1)=Ecd(2,1)*xcom1(i)+Ecd(2,2)*xcom2(i)+ 
Fcd(2,1)*Deptherror(i); 
   end 
        
 
     
    %limits the bow/stern planes to 0.4 radians 
    if abs(delta_sp(i))>0.4 
        delta_sp(i)=0.4*sign(delta_sp(i));         
    end      



62 

     
    %Simulate Aries full state motion 
     
    ys(:,i+1)=Asd*[w(i);q(i);theta(i);Depth(i)]+Bsd*delta_sp(i);      
     
    w(i+1)=ys(1,i+1); 
    q(i+1)=ys(2,i+1); 
    theta(i+1)=ys(3,i+1); 
    Depth(i+1)=ys(4,i+1); 
   
end  
 
%%%%%%%%%%%%%%%%%%%% 
% Plot the results % 
%%%%%%%%%%%%%%%%%%%% 
 
figure(1) 
subplot(2,1,1);plot(ufb);ylabel('ufb');subplot(2,1,2);plot(ucomp);ylabe
l('ucomp'); 
 
 T=(1:(i+1))*dt; 
 delta_sp(i+1)=delta_sp(i); 
 figure(2);subplot(4,1,1);plot(T,w); 
 xlabel('time(sec) '),ylabel('w_r (m/sec)'),grid on; 
 title('Heave velocity, pitch rate, pitch angle, and planes input vs 
time'); 
 subplot(4,1,2);plot(T, q); 
 xlabel('time(sec)'),ylabel('q (rad/sec)'),grid on; 
 subplot(4,1,3);plot (T, theta*180/pi); 
 xlabel('time(sec)'),ylabel('\theta (degrees)'),grid on; 
 subplot(4,1,4);plot(T,delta_sp*180/pi); 
 xlabel('time(sec)'),ylabel('\delta_s_p(degrees)');grid; 
 figure(3);subplot(2,1,1);plot(T,Depth); 
 xlabel('time (sec)'),ylabel('Z (m)'),grid on; 
 title('Depth Change vs Time'); 
 hold on; 
 plot(T,Depth_com,'r'); hold off; 
 legend('ARIES depth','Commanded Depth'); 
 
;subplot(2,1,2);plot(T,delta_sp*180/pi);xlabel('time(sec)'),ylabel('\de
lta_s_p(degrees)');grid; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%  Output lines of code for insertion into ARIES  %%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
sprintf('Deptherror = Depth - Depth_com')  
sprintf('ucomp = %8.4f*xcom1 + %8.4f*xcom2',Gc(1),Gc(2)) 
sprintf('ufb = -%8.4f*q  - %8.4f*theta  -
%8.4f*Deptherror',Ko(2),Ko(3),Ko(4)) 
sprintf('delta_sp = ucomp + ufb') 
sprintf('xcom1(i+1) = %8.4f*xcom1 +  %8.4f*xcom2 +  
%8.4f*Deptherror',Ecd(1,1),Ecd(1,2),Fcd(1,1)) 
sprintf('xcom2(i+1) = %8.4f*xcom1 +  %8.4f*xcom2 +  
%8.4f*Deptherror',Ecd(2,1),Ecd(2,2),Fcd(2,1)) 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%   Create Data file for vrml display % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
%%%%%  Aries [t,X,Y,Z]  note vrml y is ARIES -z    
xaries=1.4*T;   %  U=1.4 m/s  
aries=[T',xaries',-ys(4,:)',0*T']; format short; 
save ariesdata.d aries -ASCII -DOUBLE -TABS 
 
%%%%%  Cage [t,X,Y,Z]     
xcage=(1.41*max(T)*ones([1,length(T)])); 
cage=[T',xcage',-y',0*T']; 
save cagedata.d cage -ASCII -DOUBLE –TABS 
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APPENDIX E – MODIFIED ARIES C CODE INCLUDING MODE 2 – 
ERROR SPACE CONTROLLER 

 
 
FlightDepthControl(Depth_com,Mode) 
   double Depth_com; /* Meters */ 
   int Mode;     /* Mode 1 = Int Cont, 0 = No Int Cont ,                 
      Mode 2 = Int Err Space*/ 
{ 
   double q_com,theta_com; 
   double Sigma_FlightDepth,DepthError; 
   double ufb, ucomp, Depth_com_es, xcom1_new, xcom2_new; 
       
 
   q_com     = 0.0; 
   theta_com = 0.0; 
 
 switch(Mode) 
{ 
 
 /* Sliding Mode depth control*/ 
 case 0: 
 
    /* From /vault3/marco/ocean_test/MODEL/dive_designAires.m */ 
    /* For Poles = [0.0 -0.41 -0.42 ]                         */ 
    /* Eta_FlightDepth = 1.0; Phi_FlightDepth = 0.5;          */ 
 
    DepthError = Depth_com - Depth; 
  
    /* Saturate the Error at 2.0 meters */ 
    /*if(fabs(DepthError) > 2.0) 
    { 
       DepthError = 2.0*dsign(DepthError); 
    }*/ 
 
    Sigma_FlightDepth = -0.7693*(q_com - q) - 0.6385*(theta_com -  
          theta)+ 0.0221*(3.28*DepthError); 
 
    delta_sp = 1.2801*( -0.4105*q + 0.1086*theta  
              +     
 Eta_FlightDepth*dtanh(Sigma_FlightDepth/Phi_FlightDepth) ); 
    
   
    break;/*End Case 0*/ 
 
 
  /* Integral error space control with sinusoidal Depth_com*/ 
  case 2: 
 
     Depth_com_es = Depth_com + 0.5*sin(0.3142*t); 
     /* printf("%f\n",Depth_com_es); */ 
     DepthError = Depth - Depth_com_es; 
     
/* Update compensator state*/ 
 
     if(DepthError > 1.0) 
     {  
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      xcom1_new = 0.0; 
 xcom2_new = 0.0; 
     }  
     else 
     { 
 
     xcom1_new = 0.9992*xcom1 + 0.1250*xcom2 - 0.0026*DepthError; 
     xcom2_new = -0.0123*xcom1 + 0.9992*xcom2+0.0045*DepthError; 
 
     } 
      
     xcom1 = xcom1_new; 
     xcom2 = xcom2_new; 
 
     ucomp = xcom1; 
     ufb = -3.8847*q + 1.7725*theta -0.5133*DepthError; 
     delta_sp = ucomp + ufb; 
 
       
     break;  /*End Case 2*/ 
 
   }  /* End Switch */ 
   
 
   if(fabs(delta_sp) > 0.4) 
   { 
      delta_sp = 0.4*delta_sp/fabs(delta_sp); 
   } 
 
   /* Depth Below Which Suction Force is Negligible */ 
   if( (Depth < DepthSuck) && (Depth_com > DepthSuck)) 
   { 
      Planes(0.4,-0.4); /* Give the Max Deflection */ 
   } 
   else 
   { 
      Planes(delta_sp,delta_sp); 
   } 
} 
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