

AFRL-IF-RS-TM-2003-1
In-House Technical Memorandum
February 2003

GRAPHICAL INTERFACE CONCEPT FOR
 A SIGNAL DETECTION PROCESS

Brian Costello

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

 This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

 AFRL-IF-RS-TM-2003-1 has been reviewed and is approved for publication.

APPROVED:

 GERALD C. NETHERCOTT
 Chief, Multi-Sensor Exploitation Branch
 Information and Intelligence Exploitation Division

FOR THE DIRECTOR:

 JOSEPH CAMERA
 Chief, Information & Intelligence Exploitation Division
 Information Directorate

-^^2l^C-«^

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 074-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
FEBRUARY 2003

3. REPORT TYPE AND DATES COVERED
In House Tech Memo, May 2002 – August 2002

4. TITLE AND SUBTITLE

GRAPHICAL INTERFACE CONCEPT FOR A SIGNAL DETECTION
PROCESS

6. AUTHOR(S)

Brian Costello

5. FUNDING NUMBERS

PE - 62702F
PR - 459E
TA - PR
WU - OJ

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

AFRL/IFEC
32 Brooks Road
Rome, NY 13441-4114

8. PERFORMING ORGANIZATION
 REPORT NUMBER

AFRL-IF-RS-TM-2003-1

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

AFRL/IFEC
32 Brooks Road
Rome, NY 13441-4114

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

AFRL-IF-RS-TM-2003-1

11. SUPPLEMENTARY NOTES
AFRL Project Engineer: Dr. Andrew Noga/IFEC/315-330-2270/Andrew.noga@rl.af.mil
Brian Costello is a participant in AFRL’s summer student engineering employment program.

12a. DISTRIBUTION / AVAILABILITY STATEMENT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 Words)

A concept is presented for a graphical interface to the Adjustable Bandwidth Concept (ABC) signal energy detection
process, U.S. Patent 5,257,211. To verify the utility and effectiveness of the interface, a MATLAB (Mathworks, Inc)
implementation has been developed. The emphasis is on those applications which would require real-time processing.
Although the implementation itself does not run in real-time for higher sampling rates, it does serve as a design that can
be used in the development of such systems.

15. NUMBER OF PAGES
36

14. SUBJECT TERMS war simulation, computer games

graphical user interface, signal detection, signal grouping 16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
 OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
 OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

i

Table of Contents

Paragraph

1.0
1.1
1.2

2.0
2.1
2.1.1
2.1.2
2.2
2.2.1
2.2.2

3.0
3.1
3.2
3.3
3.3.1
3.3.2
3.3.3

4.0
4.1
4.2
4.3

5.0
5.1
5.2
5.3
5.4

Title

Introduction
Overview of ABC Process
Background

Prototype GUI Implementation
ABC-Analyzer Window
ABC-Analyzer Menus
ABC-Analyzer Display
Signal Object Display Window
Signal Object Display Menus
Signal Object Display

Signal Object Creation Algorithm
Motivations for a New Algorithm
Constraints
Algorithm Description
First Pass
Second Pass
Display

Other Output
Parameter Text File
Line Object Text File
Signal Object Text File

Conclusions
Speed
Design Comments
Other Uses
Acknowledgements

References

Page

1
1
1

2
3
4
13
16
17
20

23
23
24
24
25
26
28

29
29
30
30

30
30
31
31
31

32

1

1.0 Introduction

This report covers work done under the Summer Engineering Aide

Program, for the year 2002. Work was concentrated in the building of a prototype

graphical user interface for a real-time implementation of the ABC Process.

1.1 Overview of the ABC Process

The ABC Process is a signal detection algorithm that uses various stages of

time and frequency averaging. This algorithm was developed within AFRL/IFEC,

and is covered under U.S. Patent #5,257,211.

The ABC algorithm incrementally increases time averaging while

decreasing frequency averaging. By using multiple stages of this averaging, the

ABC process is able to detect signals with a wide range of bandwidths. This

allows the operator to see all of the signals in the region of interest, even if they

are overlapped.

1.2 Background

During the 1999 Summer Engineering Aide program, a Matlab based

program was developed that ran the ABC algorithm on a user-defined .wav file.

This work was documented in [1]. This program is satisfactory for off-line

2

applications, however, there is also interest in a real-time implementation of the

ABC process. The issue then arose that the software engineers developing the

new implementation would not know what parameters the RF engineers would

want to be able to control. The solution was to create a prototype implementation

that would simulate running at real-time, and would show the developers what the

engineers and operators would like to see and be able to control. This prototype

implementation is discussed herein.

2.0 Prototype GUI Implementation

The main goal of this implementation was not necessarily to run at real-

time, but more to emulate running at real-time. To do this, existing functions were

used, and some new ones were created. The existing ABC program was written in

Matlab; therefore, Matlab was chosen to be the basis for this implementation.

Another existing program, a running spectrogram, was also written in Matlab and

facilitated further development.

The new GUI is made up of three windows: the ABC-Analyzer window,

the Signal Object Display, and a waitbar.

3

2.1 ABC-Analyzer Window

The ABC-Analyzer Window is derived from an existing program, fft_scan,

that was written by AFRL/IFEC Dr. Andrew Noga. As seen in Figures 2.1.1 and

2.1.2, it shows the input spectrogram as well as spectrograms for all of the ABC

stage outputs. It also contains menus to edit all of the relevant ABC parameters.

Fig 2.1.1 Screen Shot of the ABC-Analyzer Window

V ■BtT-ftnaTyrer

Ffe Ptots ^obal Parametefs 5tage Parametefs Took He^

'kinjxj

1.021 1.022 1.023 1.024 1.025 1.026 1.027 1.020 1.029

xio"

4

Fig 2.1.2 The ABC-Analyzer Menu Bar

2.1.1 ABC-Analyzer Menus

Referring to Figure 2.1.3, the first menu in the ABC-Analyzer window is

the ‘File’ menu It contains general options that apply to either the file as a whole,

or to the running of the ABC program. This includes information related to the

type of filtering. It also contains options to save the current display, and to exit the

program. The filter information is used for the running calculation of the noise

floor estimate. An option to change the running average factor was also included

in an effort to give the operator the maximum control possible.

Fig 2.1.3 ABC-Analyzer ‘File’ Menu and Sub-Menus

.

Ffe Ptots ^obal Parametefs 5tage Parametefs Took He^

V ABC-Analyzer

File Plot^ Global Parameters Stage Parameters Tools Help

Save Figure

Noise Floor Estimation »

Exit

V i ABC-Analyzer

File Plots Global Parameters Stao^arametajs

Save Figure |

Noise Floor Estimation »I Filter Range

■J Exit
Filter Shape Factor

Averaging Factor

^n|j<|

k
Low Pass

^ Band Pass

High Pass

5

Fig 2.1.4 ABC-Analyzer ‘Plots’ Menu and Sub-Menu

Referring to Figure 2.1.4, the ‘Plots’ menu is the second menu in the

window. This menu allows the user to adapt the display to their current needs and

> ABC-An^yzer

Fit fplDts ^obal Parametefs 5tage Parametefs Took Help

^ Chamell

Cha¥iel2

FtpSpectnAi

^ ll^Hlt

^ 5tagel

^ 5tage2

^ 5tage3

Colomtap

Plot Dedmabon

SetY-lJnts

DefaiJ: Y-lJnts

^ AOC-Aoal/icr

Plots Global Parametefs 5tdge ParametefS Tools Help

^ chamell

Cha¥iel2

FtpSpectnAi

^ trfut
^ ^tagel

^ 5tage2

^ 5tage3

1 CokitmaD > 1 Autuim

. Plot Dedmation

" SetY-lifrtls

DefaiJ: Y-lJnts

Bone

Cool

Copper

Flag

Hot

HSV

3Bt

Lines

Prism

Sprtig

Sinimer

^ Wiiter

6

preferences. Options include the ability to switch between channels (if the data

has multiple channels), flip the spectrum left to right, turn on and off the different

stage plots as desired, change the color scheme, the ability to change the refresh

rate of the display, and to change the range of the vertical axes. It should be noted

that the ABC algorithm is set to calculate on the selected channel only. Also,

turning off the plot of one stage does not stop that stage from being calculated. It

only stops that stage from being seen on the display. Likewise, turning a stage off

in the ABC-Analyzer window does not turn it off in the Signal Object Display.

The ‘Flip Spectrum’ option works similarly in that it only flips the spectrum

visually in the ABC-Analyzer window. Any output will be calculated as if the flip

option was turned off. Next, the ‘colormap’ option allows the operator to change

the color scheme that is used for the different plots. The submenu for this option

contains all of the colormaps that come standard in Matlab. The ‘Plot Decimation’

option changes the number of time segments between refreshes of the display.

However, every time segment is still calculated and run through the algorithm

regardless of the decimation setting. Unlike the last option though, the plot

decimation does apply to both display windows. Finally, The Y-Limit options

allow the user to edit the range for the vertical axis. The ‘Default Y-Limits’ sets

the range from –100 dBx to 20 dBx.

Referring to Figure 2.1.5, the ‘Global Parameters’ menu allows the user to

edit ABC parameters that apply to the entire algorithm. It contains the options to

change the FFT size, to allow a 50% FFT overlap, and to change the number of

7

stages. The ‘FFT Size’ submenu contains options that are powers of two, ranging

from 256 frequency bins to 8192 bins. The ‘FFT Overlap?’ option toggles the use

of a 50% FFT overlap in the running of the ABC algorithm.

Fig 2.1.5 ABC-Analyzer ‘Global Parameters’ Menu and Sub-Menus

The ‘# of Stages’ submenu allows the user to change the number of ABC

processing stages that the algorithm is using. The options for this menu range

from one to five, as a number higher than five seemed to increase processing time

without any significant increase in the detection capability.

/ AQC-Analyzer

Ffe Ptots ^obdPaanetefs ScagePaiamet&s Took Hdp

FFT5ize ►

FFT Overlap?

/ ABC-Analyzer

Ffe Ptots ^obd Paanetefs 5tage Parameters Tocb He^

^^^^^^^B 256
FFT Overly? 512

f of 5ta3K » ^ 1024

1^8192

/ ABC-Analyzer Ejnjxj
Fie Plots , ^obd Paanetefs 5tage Parameters Took He^

FFT5ize ►

FFT Overlap?

B or ilages 15tages

25tages

^ 35tages

_ 45tages

IH5 5taqH

8

The next menu is the ‘Stage Parameters’ menu. (See Figures 2.1.6 through

2.1.8) This menu allows the operator to adjust ABC parameters that affect each

stage of the algorithm individually. The submenus for this option differ depending

on which stage is selected.

Fig 2.1.6 ABC-Analyzer ‘Stage Parameters’ Menu

Fig 2.1.7 ABC-Analyzer ‘Stage Parameters’ Sub-Menus

4 ABC-Analyz

Fie plots Glotfll Parameters | 5(dge Parameters Tools Hefc

Stage I ^

Stage Z >

Stage 3 >

DeFault Thf e^holcb

' ABC-Analyzer

Rie Plots GlobaJ Parameters Stage Paraneters Tools

Stage l
StageZ
Stage 3
Default Thresholds

Tfne Delay »

Flier Type

F«er Del^

Threshold Mode ►

t ABC-Analyzer

File Plots Qobal Parairieters Stage Parameters Tools

Stage 1 ►
Staged

Stages

Default Thresholds

Help

Time Delay

Filter Type

Filter Delay

' ABC-Analyzer

File Plots Global Parameters Stage Parameters Tools Help

Stage 1 >

Stage ?

Default Thresholds

Time Delay »

9

The ‘Time Delay’ option is used to adjust the amount of time averaging,

and has possible values from zero to nineteen. This option can be found in all of

the stage submenus.

Fig 2.1.8 ABC-Analyzer ‘Time Delay’ Sub-Menu

Referring to Figures 2.1.9 and 2.1.10, the ‘Filter Type’ option opens a new

window to allow the user to switch that stage’s low pass filter type. It can be

switched between ‘Hanning’, ‘Hamming’, and ‘Rectangular’ filters. This

parameter can be found in all of the stages except for the last one.

-i ABC-Analyzer

File Plot^ Global Parameters Stage Parameters Tools Help

- n X

stage I Time Delay

Stage 2 * Filter Type

Stage 3 * Filter Delay

Default Thresholds Threshold Mode *

•f 0

I

2

3

4

1^
6

7

9

10

II

12

13

14

IS

16

17

18

19

10

Fig 2.1.9 Filter Type Selection Window

Fig 2.1.10 Filter Delay Selection Window

it HtnMi]

^ mmmirfl

f UtruMiuW

c-. Cri)»l

DiOitLrnglli
1M4

 —!"~^—-ZH" ! ! ! ! ! ! ! !—

^\ .^-4—^ i ; ; ; ; ;
 1 \ ; X. I A y : "N >—<.

yi i Y'^l~'^
i M i\

i

i i i 1 i i i i i i
t> icD lai ^ an m m axi jx an

f^rw^nm

] '^T^-^O i i i i i i !
JO

i\^4^-,^^_^i i i i 1 1
\ Y \ ^^--^^T-^ K—-k, i r

-n

 .j j ^—^—^ j.

Vl i \M^^
! 1 i K

-HI
i i i i i i i i i i

J(* » so 40

P

11

The ‘Filter Delay’ option works similarly to the ‘Filter Type’ option, except

that it allows the operator to set the amount of frequency averaging that the

selected stage uses. This option is also located in the submenus of all but the last

stage. The two windows for the ‘Filter Type’ and ‘Filter Delay’ selections were

taken from the previously existing ABC implementation [1].

Next, the ‘Threshold Mode’ option selects the “mode” that applies to the

stage one threshold, as shown in Figure 2.1.11. Since this option applies only to

the stage one threshold, it is only listed in the submenu of the first stage. The two

modes are ‘Float’ (the default mode) and ‘Hold’. The actual implications of these

modes will be discussed in the section on the ABC-analyzer display.

Fig 2.1.11 ABC Analyzer ‘Threshold Mode’ Sub-Menu

Finally, the ‘Default Thresholds’ menu option, located directly under

‘Stage Parameters’, sets the detection threshold for all stages back to the default.

For the first stage, it sets the threshold 3 dB above the noise floor estimate. For

the other stages, it varies the thresholds between 0 and 6.

i ABC-Analyser

File Plots Global Parameters

.=ln|x
1 stage Parameters Tools Help

1 stage 1 * Time Delay ►

Stage 1 »

Stage 3 >

Filter Type

Filter Delay

Default Thresholds Threshold Mode *

1
Float

•4 Hold

12

Referring to Figure 2.1.12, the ‘Tools’ menu is the simplest menu in the

window. This menu only has one option: ‘Show Toolbar’. This option toggles the

display of the figure toolbar, so that if it is not needed, it can be hidden to give

more room for the display.

Fig 2.1.12 ABC-Analyzer ‘Show Toolbar’ Menu

The final menu in the ABC-Analyzer window is the ‘Help’ menu, as shown

in Figure 2.1.13. The options under this menu give simple information on the other

menus, which were previously discussed here. It also gives general information

on the algorithm and program as a whole.

Fig 2.1.13 ABC-Analyzer ‘Help’ Menu

■> ABC-Analyzer

File Plot^ Global Parameters Stage Parameters | Tools Help

Show Toolbar

■&n|x|

' ABC-Analyzer

Ffe Ptots ^obal Parametefs 5tage Parametefs Took He^

|njj<j

Dc^ya »tA^/ ^ ^. ■:; </ Show Toolbar

f ABC-Analyzer

Ffe Plots Oobal Parameters Stage Parameters Tools Help

File

Plots

Global Parameters

Stage Parameters

T«Js

13

2.1.2 ABC-Analyzer Display

Fig 2.1.14 ABC-Analyzer Display

In the ABC-Analyzer display, the user will see a running spectral display of

not only the input signal, but also the spectral display for the output of each stage

of the algorithm. This is shown in Figure 2.1.14. The horizontal axis represents

frequency in Hz, while the unit of the vertical axis is dBx. Each plot trace is a

different color, so that the operator can better distinguish between the stages. Also

plotted, are the noise floor estimate and the detection thresholds. The noise floor

estimate is plotted as a white, dashed line. Its placement and size are determined

by the n.f.e. and filter parameters that are set under the ‘File’ menu. The

14

detection thresholds are plotted as horizontal lines, and are the same color as the

stage output plot that they represent. The first stage threshold defaults to the

‘Float’ mode. This means that instead of staying at one value (as in the ‘Hold’

mode), it will float a specified distance above the noise floor estimate.

The display section of the ABC-Analyzer window is designed to be just as

interactive as the window's menubar. Clicking either the left or right mouse button

over any plot trace will tell the operator which stage that trace corresponds to, as

seen in Figure 2.1.15.

Fig 2.1.15 Plot Identification Pop-Up

Similarly, clicking either button on the noise floor estimate line will display the

current running estimate value as shown in Figure 2.1.16.

Fig 2.1.16 Noise Floor Estimate Pop-Up

The detection thresholds are different though. All of the threshold values can be

edited either graphically or numerically. Left clicking on any of the thresholds,

15

makes them follow the cursor until they are clicked on a second time. If the stage

one threshold is clicked on and it is the ‘Float’ mode, this process will also

automatically switch it over to the ‘Hold’ mode. Clicking the right mouse button

on any of the threshold lines opens a dialog window to allow the thresholds to be

edited numerically. See Figure 2.1.17.

Fig 2.1.17 Numerical Threshold Editor

The number that appears in the edit box is the current value of that threshold.

Referring to Figure 2.1.18, if the stage one threshold is in the ‘Float’ mode, right

clicking on it will allow access to the distance between the threshold and the noise

floor estimate.

Fig 2.1.18 Numerical Threshold Editor for Float Mode

'^tage 3 Threshold 2£l
Enler New Threshold Value (-174<x<30) clBx

V Stage 1 Threshold ■^

Bter Flod Rage (-62 JI767>x>141 92331 dBx

f- Gated OK

16

2.2 Signal Object Display Window

The Signal Object Display window is the second major window of the new

GUI, and is based on a concept proposed by IFEC/Dr. Noga. Its purpose is to

display the running output of the ABC process and the new Signal Object Creation

algorithm. This window also has it’s own menubar and toolbar, as shown in

Figure 2.2.1.

Fig 2.2.1 Screen Shot of the Signal Object Display Window

/ Signal Obiect Display

Ffe Plots Color Sc^ig Took He^

"m^

026 1.027 1.020 1

xlO'^

17

2.2.1 Signal Object Display Menus

The first menu in the Signal Object Display window is the ‘File’ menu, in

keeping with the standard Windows menubar. See Figure 2.2.2.

Fig 2.2.2 Signal Object Display Window Menu Bar

Fig 2.2.3 Signal Object Display ‘File’ Menu

Referring to Figure 2.2.3, the first option in the ‘File’ menu is the ‘Save

Figure’ option. This allows the user to save the Signal Object Display as a Matlab

.fig file. The next two options tell the program whether or not to write the

detected objects to text files. New files will always be created each time the

program is run, but these options toggle whether or not the program will append

objects into the file. The objects written will be discussed in more detail in

paragraph 3.1.1. The last option under this menu is the ‘Close Window’ option.

This not only closes the display window, but also ends execution of the program

and closes all other windows as well.

The second menu is the ‘Plots’ menu, as shown in Figure 2.2.4.

i Signal Object Display

File Plot^ Color Scaling Tool^ Help

Signal Object Display

Ffe Plots Color Sc^ig Tools

SaveRgire

Het

Save lie Objects?

Save Si^td Objects?

ODseWndDW

-^Mm

-iDlxl

18

Fig 2.2.4 Signal Object Display ‘Plots’ Menu

As in the ABC-Analyzer window, this menu contains options that adjust the

appearance of the display. This menu includes the ability to toggle the visibility of

the outputs from the individual stages. It also contains the ‘NFE Visibility

Threshold’ option. The value edits the visibility of the displayed signal objects

based on their (S+N)/N value. Any objects with a ratio value lower than the

threshold are made invisible. Conversely, any object that has a higher ratio value

is made visible.

The next menu is the ‘Color Scaling’ menu, as shown in Figure 2.2.5. The

options under this menu adjust the scaling method used to set the color intensity of

the displayed signal objects.

Fig 2.2.5 Signal Object Display ‘Color Scaling’ Menu

The four options are: ‘None’; ‘Input Intensity’ (based on the intensity of the input

signal at the site of the detection); ‘(S+N)/N’ (based on the signal + noise to noise

i Signal Object Display TES
File I Plots Color Scaling

^ Stage 1
^ Stage 2
^ Stage 3

Tool? Help

t NFE Visibility Threshold

Signal Qbject Display iDJjd
Ffe Plots Color Sc^ig Tools

None
^ Input Intensiy

(S+N)/N
(S+NVT

H*

19

ratio of that detection); and ‘(S+N)/T’ (based on the maximum output to threshold

ratio of the stage output over that detection area). When selected, these options

apply to all stages, and to all following time segments. It does not change the

color scaling of any previously plotted objects, unless those objects are still active

(“active” will be defined in the section on the Signal Object Creation Algorithm).

The scaling functions are based on stretching the sine curve from –π/2 to +π/2 to

over the range of possible values for the selected option. This function was

chosen because it gives more separation over the center range, where it is needed

the most.

The fourth option in the Signal Object Display window is the ‘Tools’ menu

shown in Figure 2.2.6.

 Fig 2.2.6 Signal Object Display ‘Tools’ Menu

The only option under this menu is again the ‘Show Toolbar’ option. This works

the same way as in the ABC-Analyzer window, in that it simply toggles the

visibility of the figure toolbar.

/ Signal Obiect Display

Ffe Plots Color Sc^ig Took He^

^howToobar

^n|x|

* Signal Object Display ^n|j<|
File Plots Color Scaling Tools Help

.=1 ' fc ^ Show Toolbar D ^ F

20

The final menu of this window is the ‘Help’ menu. As shown in Figure

2.2.7, the options under this menu give brief descriptions of the other menu items

in the Signal Object Display window.

Fig 2.2.7 Signal Object Display ‘Help’ Menu

2.2.2 Signal Object Display

This display presented in Figure 2.2.8 shows all of the signal objects

created by the new Signal Object Creation algorithm. As on the ABC-Analyzer

display, the horizontal axis shows frequency in Hz. However, in this window, the

vertical axis represents time in seconds. Different shapes indicate objects that

were detected in different stages of the ABC process. Circles represent stage one;

diamonds represent stage two; triangles, stage three; squares, stage four; and stars

represent stage five detections.

If an object was detected in the most recent time segment, it is considered

active. The object is then plotted in green. Objects that are no longer being

detected are considered expired. Those objects are plotted in red.

■i 1 signal Object Dliplay
File Plots Color Scaling Tools 1 Help

File
Plots

1 Color Scaling
1 Tools

21

Fig 2.2.8 Signal Object Display

The stage marker shapes are displayed at the center of the object. Coming

from that center, are two lines. The vertical line denotes the time period that the

object was detected over. The horizontal line denotes the maximum and minimum

frequencies that the object was detected at over the duration of the detection.

These lines are also plotted in red or green, as it applies to that object.

The color intensity of the plotted symbol varies according to the scaling

method used. A weaker color corresponds to a weaker value, whether it is for the

(S+N)/T, (S+N)/N, or Input Intensity methods. This scaling applies only to the

object symbol, not the time and frequency range lines.

22

The display in this window is also interactive. Clicking either mouse

button on an object will bring up a window that displays various information about

that particular signal object, as shown in Figure 2.2.9.

Fig 2.2.9 Object Information Pop-Up

This information includes the stage number, time and frequency ranges, and

average signal strength. The ‘Object Number’ listed is stage dependant. This is

not an overall count of the objects. So, for the case shown, the selected object was

the sixteenth object in stage two. The ‘Avg. Strength’ listing is the average input

intensity in the area of this object's detection.

Finally, the ‘(S+N)/T’ value gives the maximum distance between that

stage's output and the detection threshold over the course of the selected object’s

detection.

1 ' A!bC2002 ^F^Jn|^
Sl^eNuiter 2
OtyedNuiter 16
Freq. Range (Hz): 1il2504ei008 -1 JI2505ei008
Tine Range (sees): 2M800e-002- 2M800e-002
Avg. Sbei^h (lEx): -53B
Noise Fknr EslXiBx) :-lllB
(S4N>N(<fi): 580
(S*Nyr(cB): 0.1

^^^^^ OK J

23

3.0 Signal Object Creation Algorithm

In an attempt to reduce the size and complexity of the output of the ABC

process, an algorithm was created to automatically convert detections into “signal

objects”.

3.1 Motivations for a New Algorithm

In the previous ABC implementation, a color-coded binary detection grid

was displayed. In the example shown in Figure 3.1.1, the display shows in excess

of 100 time segments. In the new implementation, it would be necessary to have

thousands of time segments displayed on the screen at once.

Fig 3.1.1 Previous ABC Output Display

For real-time scenarios, using this previous display would have two problems:

more detections than screen pixels, and the scroll speed. With current monitors,

24

resolution usually goes up to 1200x1600 pixels. At a sampling rate of 1.6 MHz,

and using an FFT size of 1024 bins, one second of data would take up over 1500

time segments. Even with a full screen display, some detections could be missed.

Also, because the screen would have to be refreshed every second, the operator

would miss a considerable amount of information. This led to the need for a new

output system.

3.2 Constraints

In order to work real time with the ABC algorithm, the signal object

creation process would have to work while only given one time segment at a time.

Also, the output would have to be plausible. Finally, it would have to be useful to

a human operator. This means that it would have to combine the correct

detections together, while weeding out noise, and overlapping signals. At the

same time, it must also be able to display the new information for a longer time

period at higher sampling rates, and in such a way that screen resolution and

refresh rates would not result in lost data.

3.3 Algorithm Description

The new algorithm works in two passes. The first pass combines all

consecutive detections within the current time segment. The second pass

compares these “line objects” in the current segment with the active line objects

25

from the previous time segment. This process occurs independently in each stage,

such that each stage has its own list of detected signal objects.

3.3.1 First Pass

In the first pass, the new algorithm uses the binary detection grid for the

current time segment from each stage output. It combines all of the frequency-

consecutive detections into “line objects”, as well as collects information about the

signal strength. The list of line objects is actually a Nx8 array, where N is the

number of objects. The 8 elements of the array are shown in Table 3.3.1.

Start
freq.

End
freq.

active
objects
it
overlaps

of
related
signal
object

Length
of
object

Input
signal
strength

Time
detected

ABC
stage
output
strength

Table 3.3.1 Line Object Layout

This list is then saved, as it contains all of the active objects. On the first time

segment, the second pass is skipped, as there is no previous time segment to

compare to. New signal objects are then created for all current line objects, and

the algorithm progresses to the next time segment.

In the flowchart shown in Fig. 3.3.3, the blue objects designate the first

pass. All other objects denote functions of the second pass. Signal objects are

ordered as Nx11 arrays, where N is the number of signal objects for that stage.

The 11 elements of the arrays are shown in Table 3.3.2.

26

Obj

Min
Freq

Max
Freq

Start
Time

End
Time

Avg
Signal
Power

Stage

Total
Area

ABC
Stage
Output
Strength

S+N

N

S+N

T

Table 3.3.2 Signal Object Layout

3.3.2 Second Pass

ABC Detection
Output for Time
Segment 1

Select Output
From Desired
Stage

Combine
Consecutive
Detections Into
Line1 Objects

Repeat for each Stage

ABC Detection
Output for Time
Segment 2

Select Output
From Desired
Stage

Combine
Consecutive
Detections Into
Line2 Objects

Repeat for each Stage

Select
Line1
Object

1

1
2 2

Close Signal
Objects For All
Overlapping
Line1 Objects

Create New
Signal Objects
For Overlapping
Line2 Objects

(A)

(B)

(B)

y

y

n

n
More Line1
Objects?

y

n

Select
Line2
Object

2

n

n

2

1
2

(C)

(D)

(E)

More Line2
Objects?

y

1 1

Create New
Signal Object
For Selected
Line2 Object

Passes
Stage
Dependant
Overlap
Threshold

n

n

Update Signal
Object With
Line2 Object
Data

Line2 Objects
Replace Line1

y

y

y

(A)

Next Time Segment
Replaces Line2

Close Signal
Object For
Selected
Line1 Object

Go

Relates
To An
Existing
Signal
Object?

n

y
Signal Objects
Exist For
Line2 Objects?

y

n

Close Signal Objects
Related To Ungrouped
Line1 Objects

Remove
Line1
Object
From List

Fig 3.3.3 Signal Object Creation Algorithm Flowchart

This pass compares overlapping objects from the first pass of the current

time segment (line2) and the first pass of the previous time segment (line1). In

doing this, the algorithm checks for five specific overlap cases. The algorithm

checks for the first two cases while cycling through the line1 objects, and checks

for the other three while cycling through the line2 objects. The overlap referred to

is frequency domain overlap, and occurs between consecutive time segments.

27

First, the algorithm cycles through the list of line1objects. This process detects the

first two overlap cases, and processes the line objects as necessary.

The first case is when a line1 object does not overlap any line2 objects.

The algorithm finds the corresponding signal object, and marks it as expired. It

then removes this line object from the line1 list, thus eliminating any needless

further processing on it.

The second case involves a line1 object overlapping more than one line2

object. When this happens, the line1 object is treated as a branch point and again

the related signal object is marked as expired. The line2 objects are then checked

to see if related signal objects have been created that correspond to the significant

line2 objects. If not, new signal objects are created for each of the multiple line2

objects that are overlapping with the selected line1 object.

When the algorithm is done cycling through the line1 objects, it begins to

cycle through the list of line2 objects. This checks for the last three possible

overlap cases. While cycling through, the process checks the selected line2 object

to see if a corresponding signal object has been created. If one has, the algorithm

skips over this line2 object and proceeds to process the next object in the list.

The third case is similar to the first case. It occurs when a line2 object does

not overlap any line1 objects. When this happens, a new signal object is created

that relates to the line2 object.

The fourth case occurs when a line2 object overlaps more than one line1

object. The line2 object is now treated as an intersection. The signal objects that

28

correspond to all of the overlapping line1 objects are marked as expired, while a

new signal object is created that relates to the line2 object.

The fifth, and final, case is when one line1 object overlaps with one line2

object. The amount of overlap is calculated as the percentage of the longer object

that touches the shorter object. This number is then compared to a stage

dependent threshold. The thresholds vary evenly between 50% for the first stage

and 0% for the last stage. If the amount of overlap is less than or equal to the

threshold percentage for that stage, the signal object relating to the line1 object is

marked as expired, and a new one is created for the line2 object. Otherwise, The

signal object tied to the line1 object is updated using the existing information and

the new information from the line2 object.

Once the line comparison is complete, the signal objects corresponding to

any unclassified line1 objects are marked as expired. The line1 list then is thrown

out and replaced by the line2 list. The algorithm repeats this process for each time

segment.

3.3.3 Display

The display of the signal objects is tied directly into the creation algorithm.

Since the information about an object can change with each time segment, the

display must be able to reflect that change at the same time.

29

Every time segment is now plotted, and since the symbols used to denote

objects are larger than one pixel wide, they will always be visible unless covered

by another object. If one object covers another, this can be clarified by simply

zooming in on the desired region. All of the shapes and colors displayed in the

Signal Object Display are selected based on information contained in the signal

object list. If the operator needs more specific information, they can click on the

object symbol and directly access most of the information contained in that list.

4.0 Other Output

In addition to displaying the calculated information, this new program also

creates a few text files containing other information for use in post-processing.

4.1 Parameter Text File

The first output file contains the parameter list for the ABC process, and is

aptly named “params.txt”. Any time a parameter is changed, a new line is added

to this file telling what parameter was changed by use of an ‘action’ code. Also,

this line lists the new parameter values. Another text file, “Legend.txt”, tells the

user what the ‘action’ codes mean.

30

4.2 Line Object Text File

The next output is a text file that contains a list of detected line objects.

This file’s name is “LineObjs.txt”. These line objects are appended to the file,

only if the corresponding menu switch is turned on. The file list contains all of the

information contained in the objects as discussed in paragraph 3.3.1.

4.3 Signal Object Text File

The third text file lists the detected signal objects, and it is named

“SigObjs.txt”. Once again, these files are only written to if the menu switch is

turned on. The list in the file contains the signal object information as discussed in

paragraph 3.3.1.

5.0 Conclusions

After testing, a few conclusions could be made about the new prototype

implementation.

5.1 Speed

It has been determined that the prototype implementation is not capable of

actually handling real-time data. However, during testing, the program was

clocked at speeds up to 10 kHz. That speed relates to the number of samples the

program could handle in one second. When this number is compared to sampling

31

rates of the order of 10 MHz that could be used in some collections, it is easy to

see that there is a need for speed enhancements, possibly employing parallel-

processing.

5.2 Design Comments

After completing the GUI, it was found to be highly satisfactory. Using

pull down menus for parameter adjustment allowed for a maximum display area.

If other controls had been used, they would cut into the possible size of the

display, and make viewing more difficult. Also, the use of menus kept all of the

options in one area, making them simpler and easier to find.

5.3 Other Uses

During the period of time that this program was being developed, it was

also used for purposes other than as a program model. The main use was as a test

for the data collection system that was in use. This program not only detected

collected signals, but in certain cases, it could also indicate problems with the

collection such as dropped data. While these problems could be detected easily

with this program, they might have otherwise been overlooked.

32

5.4 Acknowledgements

The author would like to extend his gratitude to Dr. Andrew Noga for his

guidance and help in understanding the subject matter at hand. Dr. Noga

developed the tasking for the work performed. He would also like to thank Rich

Floyd for his assistance in both technical and non-technical matters. Finally, the

author would like to express his appreciation for the opportunities given to him by

the Summer Engineering Aide Program of the Information Directorate of the Air

Force Research Lab.

References

[1] AFRL-IF-RS-TM-1999-6, In House Technical Memorandum, “A Signal
Energy Detection Implementation,” Timothy M. Hughes, December 1999.

