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Introduction 
A number of important defense and industrial applications present computational 
demands greatly exceeding the capabilities of consumer (desktop or mainframe) 
computers.  For decades, these specialized demands have driven the development and 
evolution of a supercomputing industry.  Moore’s Law predicts the doubling of 
semiconductor performance every eighteen months.  Because it has held true for nearly 
four decades (and most experts expect it to hold for at least the next 10-15 years), the 
capabilities of high performance computing enjoy the revolutionary impact of continued 
exponential growth.  At the same time that processors have followed Moore’s Law, the 
computational power of configurable logic has grown even faster.  In less than two 
decades. FPGAs (Field Programmable Gate Arrays) have grown from small prototyping 
or “glue logic” applications to the point of now holding nearly ten million gates of logic.  
The impressive capacity and much-improved speed of FPGAs have made them useful in 
many applications, including some with significant computational demand.  Although the 
combination of supercomputing platforms with configurable logic seems like an 
attractive approach for achieving tremendous performance, many challenges exist as 
well.  The most appropriate architectures, computational models, runtime systems, 
applications, and development environments must be considered.  This technical report 
discusses research aimed at developing an initial programming infrastructure for this 
emerging supercomputing technology. 
 
High Performance Computing (HPC) is the use of multiple processors or processing 
nodes collectively on a common problem.  Reconfigurable Computing (RC) is the 
combination of reconfigurable logic with a general-purpose microprocessor.  The 
architectural intent is to achieve higher performance than typically available from 
software-only solutions with more flexibility than achievable with hardware ASICs.  In 
RC architectures, the microprocessor performs those operations that cannot be done 
efficiently in the reconfigurable logic such as loops, branches, and possible memory 
accesses, while computational cores are mapped to the reconfigurable hardware [34]. 
 
High Performance Reconfigurable Computing (HPRC) is the architectural combination 
of High Performance Computing and Reconfigurable Computing.  The proposed HPRC 
platform as shown in Figure 1 consists of a number of distributed computing nodes 
connected by some interconnection network (the network can be a switch, hypercube, 
systolic array, etc. using Ethernet, Myrinet, or some other networking technology), with 
some or all of the computing nodes having RC element(s) associated with them.  The 
HPRC platform will potentially allow users to exploit the performance speedups 
commonly achieved in parallel systems in addition to the speedup offered by 
reconfigurable hardware coprocessors.  Many applications such as image or signal 
processing algorithms and various simulation algorithms stand to benefit from the 
potential performance of this architecture. 
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Figure 1.  High Performance Reconfigurable Computer (HPRC) Architecture 

 

The addition of a configurable network connecting the RC elements offers even more 
performance advantages for many applications such as discrete event simulation and 
many numeric computations.  The additional network would provide a less inhibited 
route for synchronization, data exchange, and other communications between processing 
nodes.  Research by Chamberlain [4,5,6], Reynolds et. al. [38,39,40], and  Underwood et. 
al. [44] all confirm the performance benefits of a specialized configurable network for 
applications with barrier synchronization events or applications requiring the exchange of 
large amounts of data. 
 
As individual platforms for computing, HPC and RC are challenging enough to program 
and utilize effectively.  Combining these powerful domains will require the development 
of new analysis and design tools.  In this report, we discuss efforts to develop a 
performance modeling infrastructure for HPRC, model communications between the 
various reconfigurable computing and processing elements, evaluate the most appropriate 
computation models for HPRC, and consider the programming effectiveness of different 
languages, tools, and libraries for HPRC.   
 
A performance modeling framework with models describing this new architecture will 
help not only in understanding and exploiting the design space but will be a building 
block for many of these tools.  The performance of the HPRC system is affected by 
architectural variables such as number of nodes, number of FPGAs, FPGA size, 
heterogeneity, and network performance, just to name a few, and the available 
permutations make the design space extremely large.  Without a modeling framework to 
assist with the analysis of these issues, tradeoffs cannot be effectively analyzed, 
potentially resulting in grossly inefficient use of the resources. 
 

Reconfigurable Computing 
Reconfigurable computing (RC) is the coupling of reconfigurable hardware such as 
FPGAs to general-purpose processors.  Some examples of the potential coupling of the 
reconfigurable hardware are a PCI bus card with FPGA or PLD (Programmable Logic 
Device) devices, a reconfigurable co-processor mapped in the processors memory space, 
or an area of reconfigurable logic integrated on the same die with the processor.  
Research has shown that many of today’s computationally intensive applications can 
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benefit from the speed offered by application specific hardware co-processors.  For 
applications with multiple specialized needs, it is not feasible to have a different co-
processor for every specialized function.  Such diverse applications stand to benefit the 
most from the flexibility of RC architectures since one RC unit can provide the 
functionality of several ASIC co-processors in a single device.  Several research groups 
have demonstrated successful RC architectures [12,13,15,16,18,25,27,28,44,46,48]. 
 
There are many RC systems available from companies such as Annapolis Microsystems 
[2], Nallatech [29], Virtual Computer Corporation [45], and research organizations such 
as University of Southern California’s Information Sciences Institute (ISI) [18], The 
Chinese University of Hong Kong [25], and Carnegie Mellon University [13,28].  The 
Wildforce and Firebird units from Annapolis Microsystems [2] and the SLAAC units 
from ISI [18]are all PCI-bus cards with onboard memory.  The Pilchard architecture 
developed by The Chinese University of Hong Kong [25] interfaces through the memory 
bus for closer coupling with the processor.  The PipeRench reconfigurable fabric [13,28] 
is an interconnected network of configurable logic and storage elements that uses pipeline 
reconfiguration to reduce overhead which is one of the primary sources of inefficiency in 
other RC systems. 
 

High Performance Reconfigurable Computing 
The proposed HPRC platform consists of a system of RC nodes connected by some 
interconnection network (switch, hypercube, array, etc.).  Each of the RC nodes may have 
one or more reconfigurable units associated with it.  This architecture provides the user 
with the potential for more computational performance than traditional parallel computers 
or reconfigurable coprocessor systems alone. 
 
The HPRC architecture offers many architecture options.  Starting with the traditional 
HPC aspects of the HPRC architecture, there are many network and processor 
considerations.  These options alone make performance analysis complicated and 
interesting.  Adding in the options available for RC such as the coupling of 
reconfigurable hardware to the processor, number of reconfigurable units, size of 
FPGA(s), dedicated interconnection network, and others, the analysis problem becomes 
enormous.  Understanding these issues and how they affect the overall system 
performance is vital in exploiting this potentially powerful architecture.  An analytical 
modeling framework addressing these issues will be a key tool towards understanding 
through analysis. 
 
HPRC could prove a very useful platform for applications involving heavy number 
crunching and rigorous computations. Examples of these would be signal and image 
processing algorithms. It can also be used to perform time-consuming simulations – it is 
natural to expect them to improve simulation times considerably given that they use two 
speed-up techniques simultaneously.  A number of algorithms to solve graph problems 
also seem promising for HPRC applications. 
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Parallel supercomputers have moved from vector supercomputing technologies to 
microprocessor-based massively parallel computers.  With the promulgation of both 
powerful computers and fast communications technologies, a huge amount of potential 
computational capabilities exists.  Grid-based computing technologies seek to exploit 
these resources, particularly the cycles that would otherwise be lost for idle computers.  
Communications libraries, distributed job schedulers, and related software developments 
combined with the availability of powerful, inexpensive computational and 
communications infrastructure has lead to the popularity of Beowolf clusters.  Using a 
number of clustered commodity PCs, an organization can create a powerful parallel 
computing infrastructure.  The primary difference between Beowolf clusters and high 
performance computers is the optimized interconnection networks used by HPC 
platforms. 
 
Although FPGA boards are not as inexpensive (yet), one can assemble a powerful HPRC 
platform for a modest hardware investment.  In this report, we discuss several 
applications that illustrate the potential for HPRC applications to speed up computations.  
For a number of important defense applications, such as in signal and image processing, 
there is significant potential for HPRC to help accelerate these critical applications. 
 
One possible criticism of the HPRC approach for defense applications, especially for 
signal and image processing, is that a Beowolf cluster or HPC platform augmented with 
reconfigurable computing elements may have limited potential for packaging in 
embedded systems.  Hence, aerospace or man-portable use of this technology may not be 
practical.   
 
As Moore’s Law continues its inexorable pace, the number of transistors available for use 
on integrated circuits continues to grow exponentially.  By the end of the decade, chips 
with over a billion gates will be available.  With this tremendous growth, the question of 
how these transistors can be exploited is a concern.  Even now, design engineer 
productivity is severely lagging behind current demands.  To address this, large circuits 
will include a collection of processors, cores for specific functions, and reconfigurable 
logic.  In short, HPRC platforms will be available on a chip.  Hence, this effort not only 
addresses programming HPRC platforms one would expect to find in a machine room or 
equipment rack, it also addresses critical needs in application development for next-
generation embedded systems. 
 
This trend towards the convergence of parallel processing and reconfigurable computing 
is already evident.  Reconfigurable logic device manufacturers such as Xilinx, Altera, 
Atmel, Cypress, and others are already bringing together their reconfigurable logic 
devices with embedded microprocessors and microcontrollers.  In the case of the Xilinx 
Virtex II Pro family, multiple PowerPC cores are integrated on the same die as tens of 
millions of gates of FPGA circuitry.  In addition, a number of high-speed 
communications links are provided to get data into and out of the parts.  HPRC on a chip 
is not only technically feasible it is currently commercially available.  The problem of 
effectively programming these platforms remains. 
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Related Work 
A significant amount of related work has been performed under the auspices of the 
DARPA Adaptive Computing Systems (ACS) program.  The most relevant work under 
the ACS program addresses the application development task.  The Synopsys Nimble 
Compiler effort targets the synthesis of C onto reconfigurable logic, but is not oriented 
for high performance computing tasks.  The USC/ISI DEFACTO effort exploits the SUIF 
project to address compilation of more abstract representations onto reconfigurable 
hardware, and includes some nice capabilities to map to customized ALU/CPU structures 
for a given program.  Once again, this is a very low-level view of the partitioning and 
mapping problem.  The compilation technology from these programs can be applied to 
compiling function blocks to reconfigurable computing elements once partitioning is 
completed and the blocks are mapped to RC elements. 
 
Efforts from Northwestern University and UT exploit visual programming languages like 
Khoros or MATLAB to ease the reconfigurable hardware programming task.  These 
approaches provide an excellent programming model for applications developers.  These 
projects do not currently support the migration of functionality between CPUs and RC 
elements in either a static or dynamic manner.  This effort addresses static mapping 
between CPUs and RC elements in a HPRC architecture, while considering the 
evaluation capabilities required for a dynamic mapping capability. 
 
There are several Java-related ACS programs for applications targeting FPGAs.  Brigham 
Young University researchers have developed the JHDL Java-based hardware description 
language environment for programming FPGAs.  The approach enjoys the benefits of 
code portability inherent with Java, while still achieving good hardware performance on 
the FPGA devices.  With respect to hardware/software systems, the approach suffers 
from the reduced performance typically encountered with Java interpreters or compilers, 
which limits its applicability to high performance computing environments.  A related 
effort from Lava Logic (a division of TSI Telesys) targets the use of Java for 
programming reconfigurable devices by developing hardware implementations for Java 
bytecodes, but it suffers from the same high performance computing software drawbacks 
as the JHDL effort.  The Xilinx JBITS effort targets the use of the fine-grain 
reconfigurability of the Virtex family of FPGA devices.  This ability to perform fine-
grain reconfigurability during operation promises a performance boost, but focuses on 
low-level design issues.  Hence, we can easily leverage such advances, but the work 
discussed here addresses a different programming problem. 
 
The System Level Applications of Adaptive Computing (SLAAC) program provides the 
primary demonstration vehicle for the DARPA ACS program.  The SLAAC RC 
architecture has been developed and used for a number of technology demonstrations.  In 
addition SLAAC completed compilation work to map C to VHDL on Annapolis 
Microsystems RC boards.  The Virginia Tech ACS work uses the BYU JHDL design 
environment, but it does not have automatic partitioning onto multiple FPGAs.  The 
manual intervention required for this task is significant; supporting multiple RC boards 
further complicates the design task.  The SLAAC API is being developed at Virginia 
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Tech to make porting application host code between reconfigurable computing boards 
easier. 
 
In an attempt to better support portability of vector, signal, and image processing 
applications, the embedded systems community created the VSIPL API for commonly 
used functions.  Vendors for various HPC platforms support the VSIPL API by providing 
a library of functions optimized for their particular machines.  Because a variety of 
vendors support VSIPL, applications developers can develop their applications using 
familiar programming languages/tools like C/C++, MATLAB, or Khoros, and can more 
easily port their applications to other platforms.  Unfortunately, the VSIPL library does 
not currently support parallel processing, although preliminary work has begun on 
developing a parallel VSIPL extension.  A reasonable strategy for making effective use of 
HPRC platforms would exploit the parallel VSIPL infrastructure for HPC platforms to 
provide hardware/software codesign support for automatic partitioning and mapping of 
tasks between multiple processors and multiple FPGAs.  The proposed research takes 
important steps in this direction and helps validate the appropriateness of the approach. 
 

Programming Environments 
It would be ideal to have a tool that would let users design their application and map it 
onto the HPRC system without having to know the details of parallel processing or 
reconfigurable computing. Such a tool would essentially achieve the following: 
 

User  CAD Tool  design specification  HPRC 
 
In this research, we are investigating the efficacy of using the Ptolemy II framework 
[21,22,37], MATLAB, Khoros, or other popular tools to program HPRC platforms.  We 
know that the modeling framework for the HPRC architecture is also suitable to the 
design of Systems on a Chip (SoC), because the design and architecture of HPRC and 
SoCs will be homomorphic.  Both the architectures contain Reconfigurable Units (RC 
units) and also share some of the same design methodologies in Hardware/Software 
Codesign [23].  
 
Previous work at UT focused on the use of Khoros, a graphical design environment 
primarily used for image processing applications.  The CHAMPION program used 
Khoros to capture algorithms, and then provided a set of VHDL libraries to map the 
application to a reconfigurable computing board with one or more FPGAs.  A partitioning 
algorithm automatically broke the application into pieces that were then mapped to the 
collection of available FPGAs.  Using this approach, speedups of up to 2000x were 
achieved in mapping applications to FPGAs. 
 
MATLAB is another tool for capturing algorithms and is widely used.  We discuss the 
interfaces provided with MATLAB for using parallel processing and how we can develop 
the interface between a processor running a MATLAB program and the FPGAs we 
would like to use to accelerate portions of the MATLAB problem.  First, we discuss 
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some issues related to computational models and how we are investigating the models of 
computation one may wish to consider for HPRC applications. 

Models of computation in Ptolemy II 
Ptolemy is a software framework developed at the University of California, Berkeley and 
is used for modeling, simulation and design of concurrent, real-time embedded systems. 
The advantage of this tool is that it allows heterogeneous mixing of different “models of 
computation”. A model of computation varies from another mainly in its notion of 
“time”. Ptolemy II is a JAVA-based component-assembly framework and its GUI allows 
the user to create designs that involve one or more interacting components (which could 
be of different models of computation) [24].  
 
“Models of computation” are architectural patterns, which focus on relationships between 
concurrent or sequential components.   Ptolemy II includes a suite of domains, each of 
which realizes a model of computation. It also includes a component library, in which 
most components are domain polymorphic, in that they can operate in several of the 
domains. Most are also data polymorphic, in that they operate on several data types. The 
domains that have been implemented are listed below. 

CT: continuous-time modeling,  

DE: discrete-event modeling,  

FSM: finite state machines,  

PN: process networks,  

SDF: synchronous dataflow  

CSP: communicating sequential processes, (only in the full release)  

DDE: distributed discrete events (experimental),  

DT: discrete time, (experimental),  

Giotto: periodic time-driven (experimental) and  

GR: 3-D graphics (experimental).  

SR: Synchronous Reactive (experimental).  

TM: Timed Multitasking (experimental). 

 
The first aim of the research into computational models is to demonstrate the feasibility 
of using HPRC for the applications/computational models chosen.  For each 
computational model, the process of dividing tasks between the processors and the 
reconfigurable units is done by hand.  In so doing, a better understanding of the types of 
applications and the implementation approaches that are most appropriate for HPRC 
architecture.  This insight is critical to the ultimate goal is to find a way to efficiently 
automate the process while achieving high performance.  The applications we consider 
for HPRC include different computational models, so these demonstration applications 
help in understanding which computational models are most appropriate for HPRC 
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platforms.  Although a sampling of results has been obtained using Ptolemy II and other 
tools for HPRC applications, this work is still preliminary and in progress.  Some 
comments are included in the application discussion below concerning their 
computational model and the effectiveness in mapping the application/computational 
model to HPRC. 
 

Parallel Programming  
The Grid is the name given for the vast collection of interconnected computers 
distributed throughout the world, combined with the software tools and infrastructure 
required to develop and execute applications on these computational resources.  A wide 
variety of tools provide support for job scheduling, including such tools as Condor, 
Utopia, and LSF.  Other tools such as the Internet Backplane Protocol for Logistical 
Computing help in caching data for distributed grid applications.  Distributed operating 
system work, including the Globus project, seek to exploit grid resources as well by 
allowing tasks to be spawned off to other machines and migrated as necessary. 
 
The programming infrastructure to support communicating processes executing on the 
grid is a quite difficult problem.  Early efforts to provide these capabilities include PVM 
and MPI, which are libraries of communications and control functions to coordinate 
processes on the grid.  PVM is quite popular and widely distributed, with support for a 
wide variety of architectures.  It supports a dynamic process model; hence tasks can be 
created or destroyed at runtime.  In contrast, MPI supports a CSP-like computational 
model in which tasks continue for the entire life of the distributed program.  MPI built 
upon much of the experience in using PVM and is widely used for HPC platforms 
because most HPC platforms provide a high performance, native MPI implementation.  
Hence, for heterogeneous systems or for problems with dynamic process behavior, PVM 
is preferred.  Otherwise, MPI is the most common communications library used for 
parallel processing.  Efforts to extend MPI to support dynamic process creation and 
destruction have not been successful, although an early implementation of PVMPI was 
completed.  PVM or MPI are used in our work for parallel applications. 
 
The NetSolve project is being developed at the University of Tennessee's Innovative 
Computing Laboratory. NetSolve is a client-server system that enables users to solve 
complex scientific problems remotely. The system allows users to access both hardware 
and software computational resources distributed across a network. NetSolve searches for 
computational resources on a network, chooses the best one available, and using retry for 
fault-tolerance solves a problem, and returns the answers to the user. A load-balancing 
policy is used by the NetSolve system to ensure good performance by enabling the 
system to use the computational resources available as efficiently as possible 
 
The problem description file (PDF) is the mechanism through which Netsolve enables 
services for the user.  The pdf has been written which explains the problem .The pdf also 
explains the inputs and output files , the size of the matrix and the C code to which it 
links.  Servers are introduced to the Netsolve agent and indicate the collection of 
programs that they support.  Clients wishing to use Netsolve ask the agent to supply a list 
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of the best machines available for their particular problem.  The client will then interact 
with the chosen server to perform the problem. 
 
Netsolve is a good fit for HPRC applications at this point because the FPGA bitstreams 
for the RC elements are not portable to other RC boards of FPGA families.  The most 
practical way to support HPRC applications with the grid is to use Netsolve.  Research in 
to the performance of Netsolve, its effectiveness for HPRC, and how to extend Netsolve 
to provide any necessary extensions is discussed later in the report. 
 

Reconfigurable Computing Development 
Reconfigurable computing comes from a broader application of programmable logic 
device technology.  Programmable logic devices provide designers with the ability to 
modify circuit functionality after its fabrication.  Examples of programmable logic 
devices include programmable arrays of logic (PALs), complex programmable logic 
devices (CPLDs), field programmable system level integrated circuits (FPSLICs), and 
field programmable gate arrays (FPGAs), with FPGAs the most commonly used devices 
for reconfigurable computing. 
 
Currently, reconfigurable computing systems are typically comprised of processing nodes 
associated with co-processing boards with FPGAs.  This co-processing model uses 
software executing on the processor for general computation and control, with the 
reconfigurable hardware accelerating computational intensive operations.  Following 
some promising research results, the emerging system on a chip market will likely 
provide SoCs with configurable logic. 
 
Computing systems, particularly those employed in embedded applications, are 
increasingly benefiting from the use of programmable logic.  Many developers use 
programmable logic devices (PLDs) to rapidly develop customized circuitry for various 
applications, and then ship the systems with the configured programmable logic devices.  
FPGAs used to be widely used for system prototyping or implementing glue logic on 
boards.  The reduced device costs, increased capacities, faster operational speeds, and 
shrinking product time to market requirements now result in the common deployment of 
FPGAs in embedded systems as a substitute for ASICs.  Such systems typically have a 
static configuration throughout their lifetime.   
 
In some cases, the configurations of the programmable logic devices can be updated after 
the system is fielded, resulting in a configurable computing system.  This ability to 
configure a system can reduce maintenance costs and extend product lifetimes via system 
upgrades in the field accomplished by updated configurations.  In contrast, reconfigurable 
computing systems frequently change the programming of the logic devices during 
operation.  Recent developments in programmable logic device technology (density, 
speed) have made reconfigurable computing practical. 
 
Reconfigurable computers provide the user with the ability to dynamically change the 
logical operation of its computational elements.  Configurable computers also provide the 
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ability to change the logical operation of computational elements, but in a more 
constrained manner. 
 
Reconfigurable computing promises to provide a wide variety of benefits to system 
designers.  A primary reason for the initial use of programmable logic devices is the 
relative ease in employing them in designs.  Configuration requires seconds to perform, 
as opposed to the weeks required for fabricating an ASIC.  If there are errors in the logic 
implementation, attractive system improvements, or changes to the specification, 
designers can make changes as necessary before the system is deployed.  These benefits 
are equally applicable for configurable and reconfigurable systems. 
 
The use of configurable or reconfigurable systems provides similar benefits in fixing 
errors, adding features, or providing other updates to systems throughout their life cycle.  
By modifying the functionality with a new configuration of the programmable logic, 
minimal update costs may be required.  If one combines this model of providing upgrades 
or bug fixes with internet-connected configurable systems, radical improvements in the 
ability to maintain embedded systems become possible.  Because reconfigurable 
computing provides this capability to modify system functionality to fix bugs or add 
features, cost reductions during design as well as after deployment result in significantly 
reduced life cycle costs.  For products with long lifetimes, this cost reduction can be 
substantial. 
 
The use of programmable logic results in accelerated development cycles yielding a 
reduced time to market.  By avoiding the extended design and fabrication times required 
for ASICs, designers can reach the market more quickly.  If design flaws or engineering 
change orders arise near the end of the design process, modifications to programmable 
logic can usually be implemented quickly with the existing parts.  In the case of an ASIC-
based design, a new version of the ASIC will typically be required, resulting in additional 
costs and delays.  By avoiding these additional costs and delays, reconfigurable 
computing systems can reach the market more quickly.  Because the timeliness in 
reaching the market often determines if a product is profitable or not, one cannot 
overstate the importance of the schedule risk mitigation due to reconfigurable hardware. 
 
The flexibility coming from the ability to reconfigure components of a system based on 
environmental or operational conditions enables systems to be fielded for a broad range 
of applications and for dynamic or unknown environments.  A single reconfigurable 
computing system can be applied to image processing, signal processing, cryptographic, 
and string matching problems through reconfigurations.  An ASIC-based hardware 
approach would require a large investment in hardware resources while a software 
solution may not achieve the require performance.  In this context, the flexibility of 
reconfigurable computing provides unmatched capabilities. 
 
By optimizing the hardware to address the specific task at hand, reconfigurable 
computing platforms can often perform operations using much less power than general 
purpose hardware or software based solutions.  Even custom or specialized hardware may 
not provide the power savings obtainable from customizing the hardware used to the 
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specific application.  For example, in a number of signal and image processing 
applications, variable word sizes can be implemented with programmable logic to 
provide sufficient accuracy but no more.  Reconfigurable computers can reduce the 
number of gates used in the design by optimizing word sizes as needed, whereas digital 
signal processors, microcontrollers, or general purpose processors must be designed with 
a static word size that can not be changed to reduce power. 
 
Reconfigurable computers can support a very large number of gates through the use of 
multiple configurations.  In effect, a given set of programmable logic devices can replace 
a much larger collection of ASICs.  This will result in a reduction in the physical size 
required for the electronics comprising embedded systems. 
 
Programmable logic devices provide an ideal capability to detect, identify, and isolate 
faulty hardware elements in embedded systems.  With the ability to support testing 
configurations and to adapt to detected faults, reconfigurable computers can support a 
variety of critical applications.  By enabling graceful system degradation in the presence 
of faults, much cheaper and more reliable critical systems can be fielded. 
 
Last, and certainly not least, designers can achieve higher performance by using 
reconfigurable computing to adapt to the environmental conditions during operation. 
In one recent cryptography example, engineers achieved higher performance with an 
FPGA-based reconfigurable computing solution than available with an ASIC developed 
for the same task after a long and expensive development [33]. 
 
With reconfigurable computing systems, key attributes that determine its capabilities 
include the speed and granularity of reconfiguration.  The ability to reconfigure 
programmable logic quickly makes it practical to change configurations more frequently 
during operation.  The technology used in the programmable logic device dictates the 
granularity of reconfiguration that can most effectively be supported.  The ability to 
selectively reconfigure parts of the programmable logic is known as fine-grain 
reconfiguration.  Many families of programmable logic devices do not support the 
random access and modification necessary to support fine-grain reconfiguration.  For 
these parts, most or all of the part must be reconfigured at the same time.  Because the 
time to configure an entire part takes a large number of cycles, the performance penalty 
associated with such reconfigurations renders it impossible to support frequent function 
modifications while still attaining high performance.  Hence, reconfigurable systems 
assembled from such parts have a coarse granularity of reconfiguration.  In contrast, 
some newer generations of programmable logic devices support the fine-grain 
reconfigurability that enables hardware optimization based on the operations and data at 
hand. 
 
Reconfigurable computers must include runtime systems to support the configuration 
data for the programmable logic device elements, much like a processor uses a sequence 
of instructions.  For systems with slower, coarse-grain configuration, the programmable 
logic devices may be updated when each new application is run, or during changes 
between operational phases.  As the frequency of reconfigurations increases and their 
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granularity decreases, the runtime support required becomes more sophisticated.  
Memory banks or configuration caches may hold the necessary configuration data, as 
with instruction and data caches.  Although in principal, dynamic optimization of 
configurations is possible via the runtime system, in practice current limitations in the 
design tools currently make it impractical.  Work with the Xilinx Jbits interface is 
improving the runtime and design environment to make such systems practical in the 
future.  This research does not directly address runtime reconfiguration or configuration 
caching, but the performance modeling framework is intended to support these 
capabilities with little, if any, modification. 
 
Reconfigurable computers bring together aspects of both hardware and software systems.  
Not surprisingly, debate rages about the best design languages, methodologies, and tools 
for reconfigurable computing systems.  Many of the same issues and arguments 
concerning systems design and hardware/software codesign are applicable. 
 
Most development efforts to map applications onto reconfigurable computers uses VHDL 
or Verilog for capturing the design, typically at the register transfer level.  In doing so, 
hardware designers can use the same design capture, simulation, and synthesis languages 
and tools already used for ASIC development.  In practice, the productivity from directly 
using HDLs lags behind industry needs.  Designers write much of the HDL code at RTL, 
and too often do not employ language constructs such as VHDL generics, configurations, 
and generate statements to create portable, flexible designs.  In addition, the synthesis 
tools provide roughly equivalent capability for FPGAs as with ASICs, enabling the reuse 
of much of ASIC design flows and tools. 
 
The same domain specific attributes that make hardware description languages effective 
for designing electronic systems prove to be a significant limitation to the widespread 
adoption of VHDL or Verilog for capturing designs intended for reconfigurable 
computers.  Software and systems engineers are not familiar with these hardware 
description languages and resist using them. 
 
At the system design level, a number of proposed extensions to C or C++ have been 
forwarded by various companies to address behavioral design.  Because C/C++ is widely 
used by systems engineers to develop system prototypes or executable specifications, it is 
hoped providing a facility to develop hardware designs in some C/C++ dialect will 
improve productivity and bring systems and hardware engineers closer together.  
Adoption of a C/C++ dialect potentially will potentially enable a much larger pool of 
designers to describe hardware because C/C++ users dwarf the HDL user population.  
The amount of infrastructure required with these C/C++ extensions may approach or 
even exceed that of using HDLs. 
 
In an attempt to leverage the surging popularity of the Java programming language, as 
well as its support for code portability and for reuse via object-oriented facilities, 
researchers at BYU developed JHDL (see http://www.jhdl.org).  The JHDL approach 
exploits the explosion in software development tools for Java and the much larger 
population of Java programmers to ease in the general adoption of reconfigurable 
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computing.  JHDL lowers many of the barriers to entry for potential developers, and 
significantly simplifies the mapping of functionality between hardware and software.  
Nonetheless, performance limitations for Java hinder its adoption for high-performance 
applications. 
 
A number of challenges remain for developers using reconfigurable computers.  The 
verification of RC systems faces all the challenges of ASIC verification combined with 
the additional complexity of multiple configurations.  Fine-grain adaptation of 
configurations provides a higher bar for systems verification. 
 
Design languages, tools, and methodologies for RC systems continue to be a topic of 
research and development.  The same productivity gap between available gates and 
designed gates currently hindering ASIC designers affects RC designers as well.  Tools 
that support more abstract design while automatically extracting a problem’s parallelism 
and the most appropriate configurations are needed.  Addressing this problem is the focus 
of this research. 
 
For software engineers, the notion of an instruction set architecture greatly reduces the 
difficulty in developing applications.  This abstraction of a processor provides sufficient 
insight into the hardware to enable its effect use without overwhelming the programmer.  
Currently, reconfigurable computers lack such a standard “programmable configuration 
architecture” to serve a role like that of an instruction set architecture.  This lack of a 
programmable configuration architecture could pose significant portability problems for 
the industry in the future. 
 
Understanding the impact of architectural changes is just beginning; the changes to 
models of computation are not well understood yet.  This remains as an exciting area of 
basic research with wide-reaching implications.  For example, just as the notion of virtual 
memory has resulted in significant improvements in software, the notion of the 
virtualization of hardware will provide similar benefits for hardware design. 
 

Mathematical Foundations 
Performance analysis and architecture design for HPC and RC systems are challenging 
enough in their individual environments.  For the proposed HPRC architecture, these 
issues and their interaction are potentially even more complex.  Given these observations, 
it is evident that a mathematical modeling framework is a necessary tool for analyzing 
various performance metrics.  Although substantial performance analysis research exists 
in the literature with regard to High Performance Computing (HPC) architectures 
[1,3,7,14,17,26,31,32,34,35,36,43] and even some with respect to Reconfigurable 
Computing (RC) [8,9,34], the analysis of these architectures working together has 
received little attention to date and currently there is a gap in the performance analysis 
research with regard to an HPRC type of architecture. 
 
A modeling framework covering the common metrics found in HPC and RC research 
will fill this gap enabling performance analysis of the architecture and the analysis design 
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tradeoffs.  The development of a modeling framework for a complex architecture such as 
HPRC presents several challenges and questions which will need to be addressed: 
modeling communication time (node-to-node, processor-to-RC unit, and RC unit-to-RC 
unit), modeling computation time (software in processor and firmware in RC unit), 
modeling setup costs (application setup, RC unit configuration, and network 
configuration), and modeling load imbalance (application tasks or data imbalance and 
hardware versus software imbalance). 
 
HPC performance is commonly measured in terms of speedup and efficiency.  The basic 
definition for speedup in HPC is the ratio of the execution time of the best possible serial 
algorithm on a single processor to the parallel execution time of the parallel algorithm on 
an m-processor parallel system: 
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RmS =   where R represents the execution time (1) 

Efficiency is defined as the ratio of speedup to the number of processors, m: 
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We can also discuss speedup and efficiency for reconfigurable computing.  Rather than 
processing nodes running software algorithms in parallel on a common problem as in 
HPC, in RC we have hardware and software algorithms working together on a common 
problem.  In general, we will define RC speedup as the ratio of the execution time of the 
best possible software only algorithm on a single processor to the execution time of the 
RC algorithm executing in software and hardware: 
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S =   where R represents the execution time (3) 

We should note that depending on the algorithm and implementation, there may be a 
hardware/software load imbalance.  We will discuss this further in a later section but this 
essentially means that the execution may have a percentage of hardware/software overlap 
ranging from fully parallel (both are busy 100% of the time) to no overlap where the 
passing from software to hardware is essentially serial.  A higher percentage of overlap 
will result in the greatest potential for speedup leading to the idea of efficiency.  The 
definition of RC efficiency will be slightly different from HPC efficiency.  For HPC, we 
have software tasks divided among a number of processing nodes all working in parallel 
to produce some amount of speedup.  The efficiency is a result of this speedup relative to 
the overhead induced from the number of nodes working in parallel.  For RC, we have k 
software tasks, and one or more hardware tasks, n.  The efficiency will be the speedup 
achieved relative to the additional RC system overhead (setup, communication, 
configuration, etc.).  We will assume this overhead is related to the total number of 
hardware and software tasks even though these tasks are not necessarily performing the 
same functions, resulting in the following definition for RC efficiency: 
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Again for HPRC performance metrics, we will consider speedup and efficiency.  Our 
general definition for HPRC speedup is the ratio of the execution time of the best 
possible serial software only algorithm executing on a single processor to the parallel 
execution time of the parallel HPRC algorithm executing in software and hardware at 
some load balance on an m-node system (where a node is a workstation with or without 
RC units): 
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HPRC =   where R represents the execution time (5) 

We will discuss the details of the load balance implications in a later section.  Similar to 
the case for RC efficiency, we define HPRC efficiency where n is the total number of 
hardware tasks and k is the total number of software tasks across all nodes of the system: 
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Other metrics such as power, cost, physical size, etc. are important especially in 
embedded systems.  For these metrics, we can form cost functions from the performance 
analysis equations and optimize the metric as appropriate. 

Overview 
To effectively use the proposed HPRC architecture, we must be able to analyze design 
tradeoffs and evaluate the performance of applications as they are mapped onto the 
architecture.  Performance models are commonly used tools for analyzing and exploiting 
available computational resources in HPC environments.  Some commonly used 
modeling techniques in the analysis of computing systems are analytic models, 
simulations, and measurements.  The best suitable modeling approach depends on the 
required accuracy, level of complexity, and analysis goal of the model.  We can employ 
one or more of these modeling approaches to better understand the tradeoffs in mapping 
applications to HPRC resources as well as the most effective ways of doing so. 
 
To develop a representative modeling framework for HPRC we will begin by 
investigating and characterizing the RC architecture and expanding this model to multiple 
nodes representative of an HPRC platform.  In the RC environment, the focus will be on 
FPGA configuration, processor to FPGA communication, data distribution between 
FPGA and processor, memory access time, computation time in hardware and software, 
and other RC application setup costs.  Next, we apply this knowledge to the multi node 
environment building on the earlier load balance work by Peterson [35].  We will develop 
an analytic modeling methodology for determining the execution time of a synchronous 
iterative algorithm and the potential speedup.  Synchronous iterative algorithms, present 
in a large class of parallel applications, are iterative in nature and each iteration is 
separated from the previous and subsequent iterations by a synchronization operation.  
Examples of synchronous iterative algorithms include simulations and many image 
processing and data classification algorithms. 
 
What follows below is the first iteration of the model using our available hardware and 
firmware.  Table 1 lists the symbols and definitions used in this section. 
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Table 1.  Symbols and Definitions 

Symbol Definition Symbol Definition 

m Number of workstations n Number of hardware tasks 

SP Speedup tRC Time for a parallel 
hardware/software task to 
complete 

RP Runtime on parallel 
system 

tRC_work Total work performed in 
hardware and software 

RRC Runtime on RC system tavg_task Average completion time 
of hardware or software task 
on RC system in a given 
iteration 

I Number of iterations β Load imbalance factor 
between hardware and 
software 

toverhead Iteration overhead 
operations 

σ Hardware acceleration 
factor for RC system 

tSW Time to complete 
software tasks 

R1 Runtime on a single 
processor 

tHW Time to complete 
hardware tasks 

r Number of hardware tasks 
not requiring new 
configuration 

tparallel, 

RC 
Time to complete parallel 

task on multi node system 
d Number of hardware tasks 

not requiring new data set 

tP Time to complete parallel 
host software tasks 

tconfig Time for FPGA 
configuration 

twork Total work performed in 
hardware and software on all 
nodes of a multi-node system 

tdata Time for data access 

βk RC node Load imbalance 
factor at node k in a multi-
node system 

thost serial Host serial operations 

α Load Imbalance factor 
between host nodes in a 
multi-node system 

tnode 

serial 
RC node serial operations 

σk Hardware acceleration 
factor for node k in muti-
node system 

thost 

overhead 
Iteration overhead 

operations for hosts 

  tnode 

overhead 
Iteration overhead 

operations for RC nodes 
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Reconfigurable Computing Node Analysis 
Our performance model analysis will begin with a single RC node running a synchronous 
iterative algorithm.  These restrictions will allow us to investigate the interaction between 
the processor and RC unit. 
 
First, we will assume we have a segment of an application that has I iterations and all 
iterations are roughly the same as shown in Figure 2.  The RC unit has at least one FPGA 
(there may be other reconfigurable devices which provide control functions) and tasks 
can potentially execute in parallel in hardware (RC unit(s)) and in software on the 
processor.  We should point out that the hardware and software task trees can be 
arbitrarily complex.  Figure 2 shows a simple hardware/software tree structure.  
Additionally, hardware can be reused within a given iteration if the number of tasks or 
size of the task exceeds the number of available FPGAs. 
 

Setup

Config
FPGA(s)

Xfer
Data

SW
task

Xfer
Data

Shutdown

HW
task

HW
task

Iterations

or

Configuration may not be
required on every iteration;
Depends on the algorithm

Kernel to be
accelerated

Serial

Serial

Iterations

 
Figure 2.  Synchronous Iterative Algorithm 

 
For a synchronous iterative algorithm, the time to complete a given iteration is equal to 
the time for the last task to complete either in hardware or software.  For each iteration of 
the algorithm, there are some operations which are not part of the kernel to be accelerated 
and are denoted tserial,i.  Other overhead processes that must occur such as configurations 
and exchange of data are denoted toverhead,i.  The time to complete the kernel tasks 
executing in software and hardware are tSW,i and tHW,i. respectively.  For I iterations of the 
algorithm where n is the number of hardware tasks, the runtime, RRC, can be represented 
as [35]: 

To make the math analysis cleaner, we will make a couple of reasonable assumptions.  
First, we will assume that each iteration requires roughly the same amount of 
computation allowing us to remove the reference to individual iterations in equation (7).  
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Second, we will model each term as a random variable and use their expected values.  
Thus we define tserial as the expected value of tserial,i and toverhead as the expected value of 
toverhead,i.  The mean time required for the completion of the parallel hardware/software 
tasks is represented by the expected value of the maximum (tSW, tHW).  Finally, we will 
assume that each of the random variables are independent and identically distributed 
(iid).  We can then write the run time as: 
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If the iterations are not iid, we must retain the first form of equation (8) and the math 
analysis is more difficult. 
 
We can rewrite the RC system hardware/software tasks in terms of the total work.  We 
will assume that all hardware tasks are the same and that the time to complete a software 
tasks is the same as that for a hardware task.  With these simplifying assumptions, we 
will define E[tavg_task] is the expected average task completion time (including hardware 
and software tasks) within an iteration for the RC system.  Therefore the total work 
completed on the RC system, measured in runtime is given by: 

][)1(][ __ taskavg
n
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The division of tasks between hardware and software creates an RC load imbalance [35] 
which we will represent as β.  Considering the affect of the imbalance on the task 
completion time, the expected value of the maximum task completion time can be 
expressed as the average task time within an iteration multiplied by the RC load 
imbalance factor: 
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Combining equations (9) and (10) we can rewrite the maximum task completion time as, 
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Note that if the load is perfectly balanced β is the ideal value of 1 and the total work is 
divided equally among the hardware and software tasks.  If the tasks are performed 
serially (no concurrent hardware/software operation), β is the worst case value of (n+1), 
where n is the number of hardware tasks.  Thus as the load imbalance becomes worse, β 
increases ranging from a value of 1 to (n+1). 
 
Noting that the total work measured in time for a software-only solution is not equivalent 
to the total work measured in time on an RC system solution, we introduce an 
acceleration factor σ to account for the difference.  Since the goal of RC systems is to 
speed up an application, only tasks that would be faster in hardware are implemented in 
hardware.  For example, an FFT in software may take longer to execute than an 
equivalent implementation in the hardware.  Given the total work that will be completed 
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in hardware and software on an RC system, we can represent the software only run time 
on a single processor as: 

)(1 ∑⋅++⋅=
n

HWSWserial tttIR σ  (12) 

The overhead for an RC system consists of the FPGA configuration time and data 
transfer time.  The configuration time for the FPGA(s) is (n-r) x tconfig, where r is the 
number of hardware tasks not requiring a new configuration.  The time to transfer data to 
and from the RC unit is (n-d) x tdata, where d is the number of hardware tasks not 
requiring a new data set. 
 
The speedup, SRC, is defined as the ratio of the run time on a single processor to the run 
time on the RC node: 

Using equation (13) we can investigate the impact of load imbalance and various 
overhead issues on the algorithm performance by varying β, tconfig, tdata, tRC_work, r, d, and 
n. 
 

High Performance Reconfigurable Computing Multi-Node 
Analysis 
Now that we have a model for a single RC node and an understanding of the basic HPC 
issues involved in a set of distributed nodes, we will turn our focus to expanding the 
model for multi-node analysis.  An example of the HPRC architecture was shown in 
Figure 1.  For now, we will not consider the optional configurable interconnection 
network between the RC units in our modeling analysis. 
 
We will again start our performance model analysis using a synchronous iterative 
algorithm this time running on a platform consisting of multiple RC nodes.  The 
restriction of synchronous iterative algorithms will allow us to investigate the 
communication and synchronization that occurs among nodes between iterations.  We 
will begin our model by restricting our network to a dedicated homogeneous system 
where there is no background load (i.e. all nodes are identical, same processor and same 
RC system configuration). 
 
Again, we will assume we have a segment of an application having I iterations that will 
execute on parallel nodes with hardware acceleration.  Additionally, we will assume that 
all iterations are roughly the same as is shown in Figure 3.  Software tasks can be 
distributed across computing nodes in parallel and hardware tasks are distributed to the 
RC unit(s) at each individual node. 
 
For a synchronous iterative algorithm, the time to complete an iteration is equal to the 
time for the last task to complete on the slowest node whether it be hardware or software.  
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For each iteration of the algorithm, there are some calculations which cannot be executed 
in parallel or accelerated in hardware and are denoted tmaster_serial,i.  There are other serial 
operations required by the RC hardware and they are denoted tnode_serial,i.  Other overhead 
processes that must occur such as synchronization and exchange of data are denoted t 

master_overhead,i and tnode_overhead,i for the host and RC systems respectively.  The time to 
complete the tasks executing in parallel on the processor and RC unit are tSW,i,k and 
tHW,i,j,k. respectively.  For I iterations of the algorithm where n is the number of hardware 
tasks at node k and m is the number of processing nodes, the runtime, RP, can be 
represented as [35]: 
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Figure 3.  Flow of Synchronous Iterative Algorithm for Multi Node Analysis 

 
Again, to make the math analysis cleaner, we will make a couple of reasonable 
assumptions.  First, we will assume that each iteration requires roughly the same amount 
of computation thus we can remove the reference to individual iterations in equation (14).  
Second, we will also assume that each node has the same hardware tasks and 
configuration making the configuration overhead for each node the same.  Third, we will 
model each term as a random variable and use their expected values.  Thus we define t 

master_serial and tnode_serial as the expected value of t master_serial,i and tnode_serial,i.  Similarly, we 
define t master_overhead and tnode_overhead as the expected value of t master_overhead,i and 
tnode_overhead,i.  The mean time required for the completion of the RC hardware/software 
tasks is represented by the expected value of the maximum tRC,k (1<k<m).  Finally, 
assuming that the random variables are each independent and identically distributed (iid), 
the run time can then be expressed as: 
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As discussed in section 0, we can rewrite the total work at node k in terms of the average 
task completion time rather than the maximum (see equation (9)).  Again assuming the 
random variables are iid, from equation (9) we can express the total work across all m 
nodes in the HPRC platform as: 
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As discussed earlier for RC systems, when tasks are divided a load imbalance exists.  We 
will represent the RC load imbalance at a particular node k as βk.  Additionally, there 
exists an application load imbalance across all of the nodes of the HPRC platform.  We 
will represent this node-to-node load imbalance as α.  We will assume the host node 
application load imbalance α and RC system load imbalance βk are independent.  
Additionally, we will assume that the RC system load imbalance at any node is 
independent of the others.  The completion time can then be expressed as the average task 
completion time within an iteration multiplied by the load imbalance factors (which 
together have a multiplicative effect): 
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Combining equations (16) and (17) we can rewrite the maximum task completion time as, 
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Note that if the RC load is perfectly balanced or if the algorithm runs entirely in software 
(n=0), βk is the ideal value of 1.  As the RC load imbalance becomes worse, βk increases.  
Similarly, if the node-to-node load is perfectly balanced or if the algorithm runs entirely 
on a single node, m=1, α is the ideal value of 1 and the model reduces to the model for a 
single RC node as in equation (11).  Finally, as the node to node imbalance becomes 
worse, α increases. 
 
Noting that the total work measured in time for a software-only solution is not equivalent 
to the total work measured in time on an HPRC platform solution, we introduce an 
acceleration factor σk to account for the difference at each node k.  Given the total work 
that will be completed in hardware and software on an HPRC platform, we can represent 
the software only run time on a single processor as: 

∑ ∑
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The overhead for the HPRC platform consists of the FPGA configuration and data 
transfers as discussed in section 0 and the synchronization between the nodes.  We will 
model the time required for synchronization as a logarithmic growth with the number of 
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nodes [35].  The speedup, SP, for the HPRC platform is defined as the ratio of the run 
time on a single processor to the run time on m RC nodes: 

Using equation (20) we can investigate the impact of load imbalance and various other 
overhead issues on the algorithm performance by varying σk, α, βk, tsynch, tconfig, tdata, m, 
and n.  
 

High Performance Reconfigurable Computing 
Development Hardware 
There are two HPRC clusters that are available for developing and validation of the 
model.  The Air Force Research Laboratory in Rome, NY is assembling a “heterogeneous 
HPC” which is a cluster of four Pentium nodes populated with Firebird boards.  Future 
plans include expanding to more nodes.  The HPRC cluster at UT consists of eight 
Pentium III nodes populated with Pilchard boards.  The Pilchard boards include a Xilinx 
Virtex 1000E FPGA with approximately one million gate capacity.  Each Pilchard board 
is placed in a DIMM slot to exploit the memory bus speeds, thus providing significantly 
faster communications than that achieved by PCI-based RC boards.  Other available 
hardware for parameter measurements includes a cluster of Sun workstations, Wildforce, 
Firebird and SLAAC RC boards.  The Air Force Research Lab is also acquiring a large 
HPRC platform with approximately 50 nodes, each with FPGAs boasting a total capacity 
of over 10 million gates.  The nodes are to be interconnected via Myrinet, thus the Air 
Force will have a large HPRC platform with half a billion gate capacity.   

Reconfigurable Computing Model 
Developing a cost metric should be straightforward based on the processors, FPGAs, 
memory, and interconnect under consideration.  A cost function can be developed 
relating execution time or speedup as determined from the proposed model to the cost of 
the system.  Similarly a power metric cost function could be developed relating execution 
time determined from the proposed model to the total power used by the system. 
 
We have made basic model parameter measurements using a sample application for the 
Wildforce board as a benchmark.  To validate the execution time prediction of the model, 
the benchmark measurements are used with the developed model to predict the runtime 
for three of the CHAMPION demos.  The details of the demo applications will be 
discussed in a later section.  From the benchmark, we have determined the model 
parameters as shown in Table 2.  The configuration values for CPE0 and PE1 are 
significantly different because they are two different Xilinx devices and we therefore 
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account for them separately in the model calculations.  For this application the only part 
of the algorithm considered as serial is the board configuration and setup.  There is only 
one iteration therefore I is one.  The remaining unknowns are the values for the total 
work and the application load imbalance.  
 

Table 2.  Model Parameters for Wildforce from Benchmark Application 
 CPE0 PE1 HW Data Setup (tsw) Serial 

Average 
in usec 

535275 257232.8 1250.52 33282.08 68892.34 40750.46

 

The total work can be determined from the amount of work completed by the software 
task plus the amount completed by the hardware task.  This can be represented in terms 
of the number of events multiplied by the execution time per event: 

exeswexehweworkRC ttNt ___ +⋅=  (21) 

Where Ne is the total number of events and tsw_exe is thw_exe are the software and hardware 
execution times per event respectively.  In this particular application, the software and 
hardware tasks do not overlap so the application load imbalance, β, would be the 
maximum worst-case value of (n+1) or 2 in this case. 
 
Using the denominator of equation (13), we can use the model to predict the runtime of 
the CHAMPION demo algorithms.  The average runtime of fifty trials on the Wildforce 
RC system is shown in Table 3 and Figure 5 along with the model predictions.  The 
number following the algorithm name indicates the input data size.  The value 128 
indicates an input data set of 128x128 and similarly the value 256 indicates a 256x256 
input data set. 
 
One possible candidate for the error in the model prediction is our measurement 
techniques for the model parameters.  We believe that the measurements have enough 
accuracy and the only problem could be in the overhead introduced by the probes 
contributing to the over estimation of the runtime. 
 
Another possible error contributor is the model methodology and assumptions.  Being the 
first pass at modeling the performance of an RC system, the representation for the total 
work and application workload balance may be inaccurate.  More studies of different 
algorithms and systems will be required to make a final determination on the accuracy of 
this representation. 
 
Finally, issues not represented in the model may be contributing to the error.  System 
issues such as caching, optimum data packet size, and other optimization techniques used 
in operating systems and possibly the RC board API will need to be investigated. 
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HW Tasks vs. Speedup
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(a) Vary number of RC units 
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(b) Vary RC configuration time 
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(c) Vary amount of total work 

Figure 4.  Speedup Curves: a) Vary number of RC units, b) Vary configuration time, and 
c) Vary total work 
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Table 3.  Runtime Predictions and Measurements (time in seconds) 
  model 

prediction 
average 

hipass_128 0.911342 1.313353 
hipass_256 1.773769 1.907098 
START_128 5.166674 4.597426 
START_256 6.175542 6.121883 
START20_128 6.702268 8.134971 
START20_256 7.741632 8.855299 
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Figure 5.  Comparison of RC Model Prediction with Measurement Results 

 

High Performance Reconfigurable Computing Model 
Again we will use the measured values from the Wildforce and Firebird experiments for 
the RC parameters.  Figure 6 (a) and (b) show the speedup curves for various βk values 
and number of nodes for an increasing workload (x-axis).  The serial and configuration 
overhead are held constant at 0.2usec and 0.01usec per FPGA respectively.  In figure (a) 
each node has one RC unit per node, and we plot speedup for increasing work for various 
load imbalance and node configurations.  In figure (b) each node has two RC units per 
node, and again we plot speedup for increasing work for various load imbalance and node 
configurations.  As seen in both figures, the speedup improves with increasing workload 
for lower βk values.  As βk increases however, the speedup obtained is impacted by the 
load imbalance not only between nodes but also between processors and RC hardware.  
Thus, for a higher βk value, higher node systems and/or those with more FPGAs per unit 
are more severely impacted by the load imbalance.  In figure (c) we show the speedup for 
three load imbalance values with the amount of total work fixed as the number of nodes 
in the system increases.  Each node has one hardware task. 
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(a) One RC unit per node (6, 11, and 16 nodes) 
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(b) Two RC units per node (6, 11, and 16 nodes) 
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(c) Fixed work, One RC unit per node 

Figure 6. Speedup Curves: a) Vary work for one FPGA per RC unit and b) Vary work for 
two FPGAs per RC unit and c) Increasing number of nodes (one RC unit per node) work 

fixed 
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Model Applications 
An obvious use of the proposed modeling framework is the performance evaluation of 
potential application mappings.  With the proposed model, a variety of architectural 
configurations can be studied and compared without actually implementing them on the 
real system.  The proposed model for the HPRC platform can also serve as the foundation 
for other task scheduling and load balancing cad tools.  Another performance related use 
of the model, specifically the RC portion of the model, is as a method to classify the 
computing capability of an RC node which could be useful in the NetSolve [30] and 
SinRG [41] programs at the University of Tennessee. 
 
Other interesting analysis problems possible with the proposed modeling framework are 
tradeoff studies of power, size, cost, network bandwidth, etc.  For a given application, 
cost functions can be minimized for a fixed power budget or physical size for instance.  
The significance of this capability may be lost in traditional HPC environments, but in 
embedded systems where designs are often constrained by size and battery power, these 
issues are extremely important. 
 
Given this model for execution time in an RC system we can begin to discuss the 
determination of a cost function for power.  To determine a rough estimate of the system 
power, we must determine the power used by the processor and by the RC unit(s).  
Assuming our processor does not operate in sleep mode (i.e. the power consumption is 
constant with time) we can determine the total power consumption by the processor 
based on the execution time from the model and power information from the processor’s 
literature.  Determining the total power consumption for the RC unit(s) is somewhat more 
complicated.  Power consumption in FPGAs is dependent on the speed and size of the 
design.  The FPGA literature should provide some guidelines for determining power 
consumption based on the number of gates or logic blocks used in the design and the 
speed of the design.  Once these factors are know, the total power for the RC unit(s) can 
be calculated using the execution time from the model.  Finally, the total power 
consumption for the RC system is simply the sum of the total power consumed by the 
processor and the RC unit(s). 
 
From the model equations and power parameters for the processors and reconfigurable 
devices, developing a cost function relating execution time to power consumed should be 
straightforward based on the configuration of the HPRC platform under consideration.  
The function can then be optimized for any of the architecture choices such as number of 
nodes or size of FPGA for example.  A similar cost function could be developed relating 
execution time from the proposed model to the total cost of the system. 
 
The modeling framework for the HPRC architecture is also applicable to the growing 
field of Systems on a Chip (SoC).  Many parallels can be drawn between the issues 
encountered in SoC design and the architectural questions for HPRC.  SoC is a self-
contained electronic system residing on a single piece of silicon as shown in Figure 7.  It 
is likely to contain a processor or controller, multiple-memory modules, analog or mixed 
signal circuitry, a system bus structure, hard and soft IP cores, and reconfigurable logic.  
With all of these different types of design styles to contend with, it is imperative that the 
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chip designer have a deep understanding, not only of the functionality of the different 
subsystems, but also of the complex interactions between the subsystems.  SoC design 
requires front-end planning and feedback on system performance parameters at all stages 
of the design cycle.  A modeling framework such as proposed for the HPRC architecture 
could provide this performance feedback to the designer.  SoC processors and memory 
modules are very similar to the nodes in an HPRC system and both architectures can also 
incorporate reconfigurable units.  Also, both architectures have a communication 
backbone in the form of a system bus or some sort of network.  They are not only 
architecturally similar but also share some of the same design methodologies such as 
hardware/software codesign.  With all these similarities, successful development of a 
framework for the HPRC architecture would also be an advantage for the SoC 
community. 
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Figure 7.  SoC Architecture Example 

 
Initial analysis and parameter measurements have been conducted and the first editions of 
the RC and HPRC models have been developed.  The parameter measurements for the 
RC platform need to be expanded to include tests for determining the load balancing 
parameters.  Future experiments include parameter and validation measurements for the 
multi node environment.  Models to predict the RC and application load imbalance 
factors are currently under development using the load balancing results from Peterson’s 
work as a guide [35].  Also, cost functions for power and total cost of the system need to 
be fully modeled and verified.  As the HPRC platform applications are developed and 
studied, the use of the model for scheduling and load balancing will be demonstrated as a 
manual exercise. 
 
Efficiency is a common metric for HPC performance but is not easily transformed into 
the RC domain.  We gave a preliminary analysis of the concept of efficiency in RC 
systems but more investigation and thought will be given to this concept as well as 
applying it to the HPRC platform.  One idea currently being explored is the concept of an 
effective processor quantity that can be applied to the FPGA.  If we can determine the 
effective processing capability or Peff for a given FPGA in an RC system, the efficiency 
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concept from the HPC domain will more directly apply.  A review of the work by Dehon 
[8] may be helpful in developing this quantity. 
 

HPRC Application Examples 
In order to evaluate the effectiveness of HPRC for accelerating applications, validate the 
performance modeling work for HPRC, and to investigate programming tools, languages, 
and computational models, a variety of application examples for HPRC have been 
developed. 
 
Hyperspectral methods for deriving information about the Earth's resources using 
airborne or space-based sensors yield information about the electromagnetic fields that 
are reflected or emitted from the Earth's surface, and in particular, from the spatial, 
spectral, and temporal variations of those electromagnetic fields. Chemistry-based 
responses which are the primary basis for discrimination of the land cover types in the 
visible and near infrared portions of the spectrum are determined from the data acquired 
simultaneously in multiple windows of the electromagnetic spectrum. In contrast to 
airborne and space-based multispectral sensors, which acquire data in a few (<10) broad 
channels, hyperspectral sensors can now acquire data in hundreds of windows, each less 
than 10 nanometers in width. Because many land cover types have only subtle differences 
in their characteristic responses, this potentially provides greatly improved 
characterization of the unique spectral characteristics of each, and therefore increases the 
classification accuracy required for the detailed mapping of species from remotely sensed 
data. 
 
Many image classification problems are characterized by a large number of inputs and 
moderately large number of classes that can be assigned to any input. Two popular 
simplifications have been considered for such problems:(i) feature extraction, where the 
input space is projected into a smaller feature space, thereby reducing the dimensionality 
and associated computation required, and (ii) modular learning, where a number of 
classifiers, each focusing on a specific aspect of the problem are learned instead of a 
single classifier. Several methods for feature extraction and modular learning have been 
proposed in the computational intelligence community. 
 
Prediction of land cover types from airborne/space borne sensors is an important 
classification problem in remote sensing. Due to advances in sensor technology, it is now 
possible to acquire hyper spectral data simultaneously in more than 100 bands, each of 
which measures the integrated response of a target over a narrow window of the 
electromagnetic spectrum. The bands are ordered by their wavelengths and spectrally 
adjacent bands are generally statistically correlated with target dependent groups of 
bands. 
 
Using such high dimensional data for classification of land cover potentially improves 
discrimination between classes but dramatically increases problems with parameter 
estimation and storage and management of the extremely large datasets. 
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To explore the potential for using HPRC to accelerate hyperspectral imaging tasks, we 
investigate a clustering algorithm called “k-means clustering” and its efficient 
implementation using HPC scalable architectures. This algorithm has its origin in the 
data-mining field. It is utilized for classification purposes and to discover anomalies and 
patterns in both small and large data sets. There exist many different variants of k-means 
clustering, most of which are variants adapted for special purpose environments 
[10,11,19,20,42,47]. With the growth of data collected on operational and transactional 
data, the field of data mining has become increasingly important. The growth of data has 
been accelerated with the commercialization of the Internet and the increased use of 
personal computer. In this environment collection of individual metrics is relatively 
cheap and unobtrusive to the user. Companies who have been collecting vast amount of 
data on consumer habits are now confronted with the dilemma of what to do with all the 
data. This is where k-means clustering becomes useful. It provides a remedy tailored to 
this problem and reveals patterns that otherwise are obfuscated and not otherwise 
discernible. In short, it can be said that k-means clustering is a common solution to the 
segmentation of multi-dimensional data. However, these large amounts of data sets 
require large computational capacity. The nature of this problem is ideally implemented 
on a High performance computing architectural node. 
 
We now consider the k-means clustering algorithm. Given a set of N pixels, each 
composed of S spectral channels, and represented as a point in S-dimensional Euclidean 
space we partition the pixels into K clusters with the property that pixels in the same 
cluster are spectrally similar. The k-means clustering algorithms (there are several 
variants) provide an iterative scheme that operates over a fixed number (K) of clusters, 
while attempting to simultaneously optimize center locations and pixels assignments. 
 
From an initial sampling, the algorithm loops over all the data points, and reassigns each 
to the cluster whose center is closest. After the pass through the data, the cluster centers 
are recomputed. Each iteration reduces the total within-class variance for the clustering, 
so it is guaranteed that after enough iterations, the algorithm will converge, and further 
passes will not reassign points.   
 
For experimental and initial validation purposes, ten data points (pixels) with 2 
dimensions have been considered for classification into 3 classes. The results obtained so 
far are preliminary, but the framework for continued research has been set up. These 
results are obtained from small algorithmic transformation. Points are assigned to the 
cluster centers to which they are the closest; for the minimum-variance criterion, 
“closest” is defined in terms of the distance. Consider a point x and cluster center c where 
“i” indexes the spectral components of each. The Euclidean distance is defined: 

|| x-c ||2   = ∑ | xi – ci |2 

Other distance measures can also be used; for instance, the general family of p-metrics 
(for which the Euclidean distance is a special case p = 2) is given by  

|| x-c ||p   = ∑ | xi – ci |p 
In our case we use p = 1 to find the Manhattan distance. The Euclidean distance has 
several advantages. For one, the distance is rotationally invariant. Furthermore, 
minimizing the Euclidean distance minimizes the within-class variance. On the other 
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hand, the Euclidean distance is more expensive to implement in hardware since it 
involves multiplication operations when compared to the Manhattan distance. 
 
Preliminary results for k-means clustering indicate that speedups can be obtained using 
HPRC platforms, but additional research remains to complete the performance modeling, 
comparisons of performance on different RC and HPRC architectures, and to evaluate 
various scaling issues. 
 

Image Segmentation 
Segmentation is considered to be the first step in image analysis. The purpose of image 
segmentation is to subdivide an image into meaningful non-overlapping regions, which 
would be used for further analysis. The purpose of image segmentation is to decompose 
the image into parts that are meaningful with respect to a particular application. It is 
hoped that the regions obtained correspond to the physical parts or objects of a scene (3-
D) represented by the image (2-D). One of the main purposes of image segmentation is to 
be used in Automatic Target Recognition (ATR) applications. 
 
There are many segmentation algorithms available. The algorithm that is presented here 
is an image segmentation algorithm written in MATLAB by Dr.Allen Tannenbaum. The 
purpose of the segmentation algorithm is to segment Synthetic Aperture Radar (SAR) 
images. The SAR images are part of the public data set provided jointly by DARPA and 
Wright Laboratory as part of the Moving and Stationary Target Acquisition and 
Recognition (MSTAR) program. These are images of various military and synthetic 
targets taken from an airborne platform at various angles. 
 
The program was designed to segment an image (specifically an image generated by a 
Synthetic Aperture Radar system) into different classes based on local statistics. The 
algorithm filters the image to get rid of small grain noise. Then it divides the features of 
the image into 3 different classifications: trees, grass, and shadows. It defines trees as 
having high mean and high variance, grass as having medium mean and high variance, 
and shadows as low mean and low variance. It will generate a new image with each pixel 
value replaced by the class number the algorithm determined that pixel to be drawn from. 
It replaces each pixel of the image with a classification code (1,2, or 3) indicating if it 
belongs to a tree, grass, or a shadow. This process produces a newly segmented image.  
 
The data set for the project is taken from MSTAR data set. The Center for Imaging 
Science has been provided with this series of one-foot IPR synthetic aperture radar (SAR) 
images. This data was collected using the Sandia National Laboratories Twin Otter SAR 
sensor payload operating at X band. There are seventeen total image sets, with each set 
containing data for a particular target imaged at a particular depression angle. Each set 
contains data for hundreds of degrees of target aspect pose for that target at that angle of 
depression.  
 
To support related research at the Oak Ridge National Laboratory, another application 
chosen for investigating the feasibility of using HPRC is “Digital Holographic 
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Reconstruction” to support semiconductor manufacturing. The “core” of this application 
is the FFT algorithm. It is an algorithm that is typically time-consuming even on fast 
computers.  The FFT algorithm is being considered for different applications and for 
different research purposes.  First, we are considering FFT performance on FPGAs, 
parallel processors, and HPRC platforms to compare the performance of each.  Second, 
we are using the FFT algorithm to assess the effectiveness of design capture tools 
followed by the flow to map the algorithm to running executables on HPRC platforms.   
 
Discrete-event simulation is an important application for the development, integration, 
validation, and assessment of systems.  For electronic systems, as much as 70% of design 
time is spent in verification, and simulation represents the most commonly used 
technique.  The Air Force’s emerging Joint Battlespace Infosphere development depends 
on JBISim to help in understanding the tradeoffs to be made in developing the most 
effective deployment.  We are addressing discrete-event simulation with HPRC by 
exploiting the well-known parallel and distributed discrete-event simulation technology 
for the processing nodes, combined with customized acceleration of aspects of the 
simulation computation using FPGAs.  For example, pseudo-random number generation 
according to specific probability distributions can be sped up, as can simulation execution 
units, state saving, GVT calculation, and fossil collection, communications support, and 
event queue support.  We have developed a preliminary implementation of Petri net 
simulation using FPGAs, with a potential execution of 100MHz or higher.  The Petri net 
simulator has hardware implementations to determine which transitions are enabled, 
selection circuitry to choose which transition fires based on a probability distribution, 
firing circuitry to consume and produce tokens as transitions fire, and other simulation 
infrastructure.  Ongoing work with simulation will address design automation, parallel 
processing issues for very large simulations, and circuitry to better collect statistics and 
state.  This preliminary work shows the promise for using HPRC to accelerate 
simulations. 
 

Conclusions and Future Work 
High Performance Reconfigurable Computing promises to provide significant 
performance improvements for a variety of applications.  The coarse-grained parallelism 
that is traditionally exploited with parallel supercomputing/HPC platforms can be 
similarly used with HPRC.  In addition, the fine-grained parallelism that reconfigurable 
computing devices (such as FPGAs) can effectively exploit provides additional 
performance benefit.  Unfortunately, programming HPRC platforms faces the software 
development challenges of parallel and distributed programs combined with the need for 
hardware design expertise.  We presented research focused on improving the 
programming infrastructure by developing an accurate performance model to help in 
understanding performance bottlenecks and in system optimization, assessing the best 
design tools and their effectiveness in capturing algorithms and ease in mapping to HPRC 
platforms, considering the most appropriate computational models for applications on 
HPRC, communications issues between the various reconfigurable logic and processing 
elements, and evaluating these consideration in the context of demonstration applications. 
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The preliminary performance modeling results are quite promising, with great potential 
for helping in developing or tuning applications on HPRC.  We have completed initial 
work on model support for characterizing the hardware performance, communications 
costs, application load imbalance, background load imbalance, and effect of 
heterogeneous processing elements.  Some validation work has been completed, and a 
number of applications are being completed to complete the validation work.  Based on 
the results of these validation efforts, the model will be refined as needed.  In addition, 
the application of this model to support application development will be pursued. 
 
Preliminary work has begun on a representation of the communications capabilities of 
HPRC platforms, applications requirements, and a means of mapping the applications 
requirements to the HPRC platform.  This work is still in its early stages, but looks quite 
promising as a theoretic framework for design automation on HPRC.  It will also be used 
to extend the performance modeling work in progress.  This approach uses a graph theory 
to describe the system and problem, and graph algorithms to help in the partitioning, 
mapping, and scheduling. 
 
A number of applications have been developed using RC elements that help us to better 
understand the most appropriate techniques for using FPGAs.  Similarly, a host of 
parallel and distributed applications have been developed and their performance 
characterized.  Little has been done to characterize HPRC application needs or their 
performance.  Our work with signal and image processing, graph theoretic algorithms, 
Boolean satisfiability, and simulation has helped to better understand design and 
performance issues and tradeoffs.  We have discussed some of the techniques that are 
most appropriate for effectively employing HPRC platforms, but additional work needs 
to be performed to create a theoretic framework in which to discuss these issues.  This 
framework is the subject of future work. 
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Appendix A: Firebird Host Source Code 
 

/**************************************************************************** 

 *                      Annapolis Micro Systems Inc.                        * 

 *                         190 Admiral Cochrane                             * 

 *                              Suite 130                                   * 

 *                         Annapolis, MD  21401                             * 

 ****************************************************************************/ 

 

/**************************************************************************** 

 *  File       :  satsolve.c    (from intr_ex.c) 

 *  Project    :  SATSolve 

 *  Description:  Boolean Satisfy solver 

 *  Author     :  Melissa C. Smith 

 *  Date       :  08/05/02 

 ****************************************************************************/ 

#include <stdlib.h> 

#include <stdio.h> 

#include <string.h> 

#include <time.h> 

#include <ctype.h> 

 

#include "ws.h" 

#include "ws_shared.h" 

#include "satsolve.h" 

#ifdef _C2WILD_ 

#include "ws_c2wild.h" 

#endif 

 

/**************************************************************************** 

 * Function:  sat_ws_run 

 * Description:     SAT solver 

 * Arguments: 

 *   WS_Board          Slot or board number to access. 

 *   dPEMask           PeMask to test. 

 *   WS_Cfg            Configuration Information. 

 * Returns: 

 *   WS_SUCCESS     upon successful completion. 

 ****************************************************************************/ 

WS_RetCode 

sat_ws_run(DWORD WS_Board, DWORD dPEMask, WS_PhysicalBoardConfig *WS_Cfg) 

{ 
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  WS_RetCode 

    rc = WS_SUCCESS; 

 

  DWORD 

    Reset, 

    Data, 

    pIntMask, 

    dPE_Num, 

    ValidIntrMask, 

    IntToReset = 0x0, 

    WildStar_IntStatus[3]; 

 

  time_t 

    start, 

    finish; 

 

  Reset = 1; 

  Data = 1; 

  ValidIntrMask = 0x0; 

  WildStar_IntStatus[0] = 0x6; 

  WildStar_IntStatus[1] = 0x4; 

  WildStar_IntStatus[2] = 0x0; 

 

  /******************************************* 

  **              Reset the PE              ** 

  ********************************************/ 

  for ( dPE_Num = WS_PE0; dPE_Num <= WS_PE2; dPE_Num++ ) 

  { 

    if ( BitTst( dPEMask,dPE_Num ) ) 

    { 

      printf( "  Resetting PE[%d] ... ", dPE_Num ); 

      rc = WS_WritePeReg( WS_Board, dPE_Num, INTR_RESET_BASE, 1, &Reset ); 

      CHECK_SUCCESS(rc); 

      IntToReset = IntToReset | PENUM_TO_MASK(dPE_Num); 

#ifdef _C2WILD_ 

      WS_Debug_Sleep(100); 

#endif 

      printf( "DONE\n" ); 

    } 

  } 

 

  /******************************************* 
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  **       Clear all pending interrupts     ** 

  ********************************************/ 

  rc = WS_ResetInterrupt( WS_Board, IntToReset ); 

  CHECK_SUCCESS(rc); 

 

  printf ( "\n"); 

 

  /********************************************* 

  **                                          ** 

  **  Test Pulsing of the interrupt lines     ** 

  **                                          ** 

  *********************************************/ 

  Data = 1; 

  printf( "PHASE 1: Pulse Interrupt Lines.\n" ); 

  for ( dPE_Num = WS_PE0; dPE_Num <= WS_PE2; dPE_Num++ ) 

  { 

    if ( BitTst( dPEMask, dPE_Num ) ) 

    { 

 

      ValidIntrMask = ((1 << dPE_Num) | ValidIntrMask); 

 

      printf( "  Setting and verifing interrupts on PE[%d] ... ", dPE_Num ); 

      /* Pulse Interrupt Line */ 

      rc = WS_WritePeReg( WS_Board, dPE_Num, INTR_PULSE_BASE, 1, &Data ); 

      CHECK_SUCCESS(rc); 

      rc = WS_ReadPeReg( WS_Board, dPE_Num, INTR_PULSE_BASE, 1, &Data ); 

      CHECK_SUCCESS(rc); 

 

      time(&start); 

      do 

      { 

        time(&finish); 

        if ( difftime(finish, start) >= (double)INTR_TIMEOUT_VALUE  ) 

        { 

          printf( "Failed to receive interrupt from PE[%d]\n", dPE_Num ); 

          rc = WS_FAILED_TO_RECEIVE_INTERRUPT; 

          return(rc); 

        } 

        else 

        { 

          /* Verify Interrupt Was received */ 

          rc = WS_QueryInterruptStatus( WS_Board, &pIntMask ); 

          CHECK_SUCCESS(rc); 
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        } 

      }while (( rc == WS_SUCCESS) && ( pIntMask != ValidIntrMask )); 

 

      printf( "Success\n"); 

    } 

  } 

 

  /********************************************* 

  **                                          ** 

  **     Clear all interrupts & Verify no     ** 

  **         interrupts are pending           ** 

  **                                          ** 

  *********************************************/ 

  printf( "\n"); 

  printf( "Clearing and verifing interrupts ... "); 

  for ( dPE_Num = WS_PE0; dPE_Num <= WS_PE2; dPE_Num++ ) 

  { 

    if ( BitTst( dPEMask, dPE_Num ) ) 

    { 

 

      rc = WS_ResetInterrupt( WS_Board, PENUM_TO_MASK(dPE_Num) ); 

      CHECK_SUCCESS(rc); 

 

      /* Verify there are no interrupts pending */ 

      rc = WS_QueryInterruptStatus( WS_Board, &pIntMask ); 

      CHECK_SUCCESS(rc); 

 

      if ( dPEMask == WS_PE1_MASK ) 

      { 

        if ( pIntMask != 0x0 ) 

        { 

          printf( "Interrupt not cleared on PE[%d]\n", dPE_Num ); 

          rc = WS_FAILED_TO_RECEIVE_INTERRUPT; 

          return(rc); 

        } 

      } 

      else 

      { 

        if ( pIntMask != WildStar_IntStatus[dPE_Num]) 

        { 

          printf( "Interrupt not cleared on PE[%d]\n", dPE_Num ); 

          rc = WS_FAILED_TO_RECEIVE_INTERRUPT; 

          return(rc); 
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        } 

      } 

    } 

  } 

  printf( "Done.\n" ); 

  printf( "\n"); 

 

  /********************************************* 

  **                                          ** 

  **     Test Query interrupt status API      ** 

  **                                          ** 

  *********************************************/ 

  Data = 0x1; 

  ValidIntrMask = 0x0; 

  printf( "PHASE 2: Test WS_WaitOnInterrupt API.\n" ); 

 

  for ( dPE_Num = WS_PE0; dPE_Num <= WS_PE2; dPE_Num++ ) 

  { 

    if ( BitTst( dPEMask, dPE_Num ) ) 

    { 

 

      printf( "  Testing PE[%d]\n", dPE_Num ); 

 

      /* Start counter */ 

      printf( "    Starting Counter ...      " ); 

      rc = WS_WritePeReg( WS_Board, dPE_Num, INTR_COUNTER_BASE, 1, &Data ); 

      CHECK_SUCCESS(rc); 

      printf( "Done\n" ); 

 

      printf( "    Waiting for interrupt ... " ); 

      rc = WS_WaitOnInterrupt ( WS_Board, PENUM_TO_MASK(dPE_Num), &pIntMask, 
INTR_TIMEOUT_VALUE ); 

      CHECK_SUCCESS(rc); 

      printf( "Done\n" ); 

 

      printf( "    Verifying Mask ...        " ); 

      /* Verify only the newest interrupt is in the mask returned from the 
WS_WaitOnInterrupt call */ 

      if ( pIntMask != ( 1 << dPE_Num )) 

      { 

        printf( " Interrupt Mask Incorrect\n"); 

        printf( "  Expected 0x%02x   Received 0x%02x \n", 1 << dPE_Num, pIntMask 
); 

        rc = ERROR_TEST_FAILED; 
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        return(rc); 

      } 

 

      /* Verify all interrupts are still there because we have not cleared them 
*/ 

      rc = WS_QueryInterruptStatus( WS_Board, &pIntMask ); 

      CHECK_SUCCESS(rc); 

 

      ValidIntrMask = ((1 << dPE_Num) | ValidIntrMask); 

      if ( pIntMask != ValidIntrMask ) 

      { 

        printf( " Cumulative Interrupt Mask Incorrect\n"); 

        printf( "  Expected 0x%02x   Received 0x%02x \n", ValidIntrMask, 
pIntMask ); 

        rc = ERROR_TEST_FAILED; 

        return(rc); 

      } 

      printf( "Done\n" ); 

      printf( "\n"); 

    } 

  } 

 

  /******************************************* 

  **   Reset the PE  to clear PE's request  ** 

  ********************************************/ 

  for ( dPE_Num = WS_PE0; dPE_Num <= WS_PE2; dPE_Num++ ) 

  { 

    if ( BitTst( dPEMask,dPE_Num ) ) 

    { 

      Reset = 0x1; 

      printf( "  Resetting PE[%d] ... ", dPE_Num ); 

      rc = WS_WritePeReg( WS_Board, dPE_Num, INTR_RESET_BASE, 1, &Reset ); 

      CHECK_SUCCESS(rc); 

      printf( "DONE\n" ); 

    } 

  } 

 

  /******************************************* 

  **       Clear all pending interrupts     ** 

  ********************************************/ 

  rc = WS_ResetInterrupt( WS_Board, IntToReset ); 

  CHECK_SUCCESS(rc); 

 

  return (rc); 
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} 

 

/**************************************************************************** 

 * Function:  sat_fb_run 

 * Description:     Sat solver 

 * Arguments: 

 *   WS_Board          Slot or board number to access. 

 *   dPEMask           PeMask to test. 

 *   WS_Cfg            Configuration Information. 

 * Returns: 

 *   WS_SUCCESS     upon successful completion. 

 ****************************************************************************/ 

WS_RetCode 

sat_fb_run(DWORD WS_Board, DWORD dPEMask, WS_PhysicalBoardConfig *WS_Cfg) 

{ 

  WS_RetCode 

    rc = WS_SUCCESS; 

 

  DWORD 

    pIntMask, 

    dPE_Num, 

    ValidIntrMask, 

    IntToReset = 0x0, 

    WildStar_IntStatus[3]; 

 

  DWORD 

    Reset, 

    Data; 

 

  time_t 

    start, 

    finish; 

 

  Reset = 1; 

  Data = 1; 

  ValidIntrMask = 0x0; 

  WildStar_IntStatus[0] = 0x6; 

  WildStar_IntStatus[1] = 0x4; 

  WildStar_IntStatus[2] = 0x0; 

  dPE_Num = WS_PE0; 

 

  /******************************************* 

  **              Reset the PE              ** 
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  ********************************************/ 

  printf( "  Resetting PE[%d] ... ", dPE_Num ); 

  rc = WS_WritePeReg( WS_Board, WS_PE0, INTR_RESET_BASE<<1, 1, &Reset ); 

  CHECK_SUCCESS(rc); 

  IntToReset = IntToReset | PENUM_TO_MASK(dPE_Num); 

#ifdef _C2WILD_ 

  WS_Debug_Sleep(100); 

#endif 

  printf( "DONE\n" ); 

 

  /******************************************* 

  **       Clear all pending interrupts     ** 

  ********************************************/ 

  rc = WS_ResetInterrupt( WS_Board, IntToReset ); 

  CHECK_SUCCESS(rc); 

 

  printf ( "\n"); 

 

  /********************************************* 

  **                                          ** 

  **  Test Pulsing of the interrupt lines     ** 

  **                                          ** 

  *********************************************/ 

  Data = 1; 

  printf( "PHASE 1: Pulse Interrupt Lines.\n" ); 

 

  ValidIntrMask = ((1 << dPE_Num) | ValidIntrMask); 

 

  printf( "  Setting and verifing interrupts on PE[%d] ... ", dPE_Num ); 

  /* Pulse Interrupt Line */ 

  rc = WS_WritePeReg( WS_Board, dPE_Num, INTR_PULSE_BASE<<1, 1, &Data ); 

  CHECK_SUCCESS(rc); 

  rc = WS_ReadPeReg( WS_Board, dPE_Num, INTR_PULSE_BASE<<1, 1, &Data ); 

  CHECK_SUCCESS(rc); 

 

  time(&start); 

  do 

  { 

    time(&finish); 

    if ( difftime(finish, start) >= (double)INTR_TIMEOUT_VALUE  ) 

    { 

      printf( "Failed to receive interrupt from PE[%d]\n", dPE_Num ); 

      rc = WS_FAILED_TO_RECEIVE_INTERRUPT; 
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      return(rc); 

    } 

    else 

    { 

      /* Verify Interrupt Was received */ 

      rc = WS_QueryInterruptStatus( WS_Board, &pIntMask ); 

      CHECK_SUCCESS(rc); 

    } 

  }while (( rc == WS_SUCCESS) && ( pIntMask != ValidIntrMask )); 

 

  printf( "Success\n"); 

 

  /********************************************* 

  **                                          ** 

  **     Clear all interrupts & Verify no     ** 

  **         interrupts are pending           ** 

  **                                          ** 

  *********************************************/ 

  printf( "\n"); 

  printf( "Clearing and verifing interrupts ... "); 

 

  rc = WS_ResetInterrupt( WS_Board, PENUM_TO_MASK(dPE_Num) ); 

  CHECK_SUCCESS(rc); 

 

  /* Verify there are no interrupts pending */ 

  rc = WS_QueryInterruptStatus( WS_Board, &pIntMask ); 

  CHECK_SUCCESS(rc); 

 

  if ( pIntMask != 0x0 ) 

  { 

    printf( "Interrupt not cleared on PE[%d]\n", dPE_Num ); 

    rc = WS_FAILED_TO_RECEIVE_INTERRUPT; 

    return(rc); 

  } 

  printf( "Done.\n" ); 

  printf( "\n"); 

 

  /********************************************* 

  **                                          ** 

  **     Test Query interrupt status API      ** 

  **                                          ** 

  *********************************************/ 

  Data = 0x1; 
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  ValidIntrMask = 0x0; 

  printf( "PHASE 2: Test WS_WaitOnInterrupt API.\n" ); 

 

  printf( "  Testing PE[%d]\n", dPE_Num ); 

 

  /* Start counter */ 

  printf( "    Starting Counter ...      " ); 

  rc = WS_WritePeReg( WS_Board, dPE_Num, INTR_COUNTER_BASE<<1, 1, &Data ); 

  CHECK_SUCCESS(rc); 

  printf( "Done\n" ); 

 

  printf( "    Waiting for interrupt ... " ); 

  rc = WS_WaitOnInterrupt ( WS_Board, PENUM_TO_MASK(dPE_Num), &pIntMask, 
INTR_TIMEOUT_VALUE ); 

  CHECK_SUCCESS(rc); 

  printf( "Done\n" ); 

 

  printf( "    Verifying Mask ...        " ); 

  /* Verify only the newest interrupt is in the mask returned from the 
WS_WaitOnInterrupt call */ 

  if ( pIntMask != ( 1 << dPE_Num )) 

  { 

    printf( " Interrupt Mask Incorrect\n"); 

    printf( "  Expected 0x%02x   Received 0x%02x \n", 1 << dPE_Num, pIntMask ); 

    rc = ERROR_TEST_FAILED; 

    return(rc); 

  } 

 

  /* Verify all interrupts are still there because we have not cleared them */ 

  rc = WS_QueryInterruptStatus( WS_Board, &pIntMask ); 

  CHECK_SUCCESS(rc); 

 

  ValidIntrMask = ((1 << dPE_Num) | ValidIntrMask); 

  if ( pIntMask != ValidIntrMask ) 

  { 

    printf( " Cumulative Interrupt Mask Incorrect\n"); 

    printf( "  Expected 0x%02x   Received 0x%02x \n", ValidIntrMask, pIntMask ); 

    rc = ERROR_TEST_FAILED; 

    return(rc); 

  } 

  printf( "Done\n" ); 

  printf( "\n"); 

 

  /******************************************* 
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  **   Reset the PE  to clear PE's request  ** 

  ********************************************/ 

  Reset = 0x1; 

  printf( "  Resetting PE[%d] ... ", dPE_Num ); 

  rc = WS_WritePeReg( WS_Board, dPE_Num, INTR_RESET_BASE<<1, 1, &Reset ); 

  CHECK_SUCCESS(rc); 

  printf( "DONE\n" ); 

 

 

  /******************************************* 

  **       Clear all pending interrupts     ** 

  ********************************************/ 

  rc = WS_ResetInterrupt( WS_Board, IntToReset ); 

  CHECK_SUCCESS(rc); 

 

  return (rc); 

} 

 

/***************************************************************************** 

 * Function:        satsolve_Startup 

 * Description:     Initializes the WILDSTAR board. 

 * Arguments: 

 *   WS_Board          Slot or board number to access. 

 *   dMaxIterations    Maximum number of iterations. 

 *   dLocalBusSpeed    Local Address Bus Speed. 

 *   dPEMask           PeMask to test. 

 *  *WS_Cfg            Configuration Information. 

 * Returns: 

 *   WS_SUCCESS     upon successful completion, or 

 *   rc             Return code of failure. 

 ****************************************************************************/ 

WS_RetCode 

satsolve_startup(DWORD WS_Board, DWORD dMaxIterations, DWORD dLocalBusSpeed, 
DWORD dPEMask, WS_PhysicalBoardConfig *WS_Cfg) 

{ 

  WS_RetCode 

    rc = WS_SUCCESS; 

 

  char 

    PathName[MAX_PATH], 

    cAppend[4], 

    cPEName[7]; 

 

#if defined(WSCPU_MVME2604) || defined(WSCPU_I960) 
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  USHORT 

    iLevel, 

    iVector; 

 

  /************************************************************** 

   **                                                          ** 

   **        Get the VME interrupt level/vector                ** 

   **                                                          ** 

   **************************************************************/ 

  rc = WS_GetVmeInterruptVector( WS_Board, &iLevel, &iVector ); 

  printf("  Current VME interrupt level/vector: %d/0x%x\n", iLevel, iVector ); 

  CHECK_RC(rc); 

 

  /************************************************************** 

   **                                                          ** 

   **        Set the VME interrupt level/vector                ** 

   **                                                          ** 

   **************************************************************/ 

  if ( iVector == 0xFE ) 

  { 

    iVector = WS_DEFAULT_INTR_VECTOR; 

  } 

  printf("  Set VME interrupt level/vector: %d/0x%x\n", WS_DEFAULT_INTR_LEVEL, 
iVector ); 

  rc = WS_SetVmeInterruptVector( WS_Board, 

                                 WS_DEFAULT_INTR_LEVEL, 

                                 iVector ); 

  CHECK_RC(rc); 

#endif 

 

  if ( WS_Cfg->BaseInfo.BaseBoardType == WS_FIREBIRD_PMC ) 

  { 

    if (IS_FIREBIRD_PMC_WSDP(WS_Cfg)) /* Card is a Firebird_WSDP */ 

    { 

      sprintf ( cAppend, "_ws"); 

    } 

    else if (IS_FIREBIRD_PMC_GLINK(WS_Cfg)) /* Card is a Firebird_GLink */ 

    { 

      sprintf ( cAppend, "_gl"); 

    } 

  } 

  else if ( WS_Cfg->BaseInfo.BaseBoardType == WS_FIREBIRD_PCI ) 

  { 
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    cAppend[0] = '\0'; 

  } 

  else 

  { 

    if ( dLocalBusSpeed <= 0x3) 

    { 

      sprintf ( cAppend, "_33" ); 

    } 

    else 

    { 

      sprintf ( cAppend, "_66" ); 

    } 

  } 

 

  /************************************************************** 

  **                      Set MClk clock                       ** 

  ***************************************************************/ 

  rc = WS_MClkSetConfig ( WS_Board, PROG_OSCILLATOR, 30.0, 1 ); 

  CHECK_SUCCESS(rc); 

  printf( "Successfully Set MCLK to [%2.1f]\n", 30.0 ); 

 

#ifdef _C2WILD_ 

  return(rc); 

#endif 

 

  /*************************************************************** 

   **                        Program PE0                        ** 

   ***************************************************************/ 

  if ( BitTst( dPEMask,WS_PE0) ) 

  { 

    sprintf ( cPEName, "pe0%s", cAppend ); 

    rc = GetPeImagePath( WS_BASEBOARD, WS_PE_DEVICE_ID, WS_PE0, WS_Cfg, cPEName, 
PathName ); 

    CHECK_SUCCESS(rc); 

 

    printf("Programming PE0 with file %s ...", PathName); 

    rc = ProgramPeFromFile( WS_Board, WS_PE0, PathName ); 

    CHECK_SUCCESS(rc); 

 

    printf ( "Successful\n\n" ); 

  } 

 

  /*************************************************************** 

   **                        Program PE1                        ** 
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   ***************************************************************/ 

  if ( BitTst( dPEMask,WS_PE1) ) 

  { 

    sprintf ( cPEName, "pex%s", cAppend ); 

    rc = GetPeImagePath( WS_BASEBOARD, WS_PE_DEVICE_ID, WS_PE1, WS_Cfg, cPEName, 
PathName ); 

    CHECK_SUCCESS(rc); 

 

    printf("Programming PE1 with file %s ...", PathName); 

    rc = ProgramPeFromFile( WS_Board, WS_PE1, PathName ); 

    CHECK_SUCCESS(rc); 

 

    printf ( "Successful\n\n" ); 

  } 

 

  /*************************************************************** 

   **                        Program PE2                        ** 

   ***************************************************************/ 

  if ( BitTst( dPEMask,WS_PE2) ) 

  { 

    sprintf ( cPEName, "pex%s", cAppend ); 

    rc = GetPeImagePath( WS_BASEBOARD, WS_PE_DEVICE_ID, WS_PE2, WS_Cfg, cPEName, 
PathName ); 

    CHECK_SUCCESS(rc); 

 

    printf("Programming PE2 with file %s ...", PathName); 

    rc = ProgramPeFromFile( WS_Board, WS_PE2, PathName ); 

    CHECK_SUCCESS(rc); 

 

    printf ( "Successful\n\n" ); 

  } 

  return (rc); 

} 

 

/***************************************************************************** 

 * Function:        satsolve_Shutdown 

 * Description:     Loads "safe" PE images to put the board in a know state. 

 * Arguments: 

 *   WS_Board          Slot or board number to access. 

 *   dPEMask           PeMask to test. 

 *  *WS_Cfg            Configuration Information. 

 * Returns: 

 *   WS_SUCCESS     upon successful completion, or 

 *   rc             Return code of failure. 
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 ****************************************************************************/ 

WS_RetCode 

satsolve_shutdown(DWORD WS_Board, DWORD dPEMask, WS_PhysicalBoardConfig *WS_Cfg) 

{ 

  WS_RetCode 

    rc = WS_SUCCESS; 

 

  printf ( "\nDeProgramming:\n"); 

 

  /*************************************************************** 

   **                       DeProgram PE0                       ** 

   ***************************************************************/ 

  if ( BitTst( dPEMask,WS_PE0) ) 

  { 

    printf ( "\tWS_PE0 ... "); 

    rc = WS_DeProgramPe( WS_Board, WS_PE0_MASK); 

    CHECK_SUCCESS(rc); 

 

    printf ( "Successful\n\n" ); 

  } 

 

  /*************************************************************** 

   **                       DeProgram PE1                       ** 

   ***************************************************************/ 

  if ( BitTst( dPEMask,WS_PE1) ) 

  { 

    printf ( "\tWS_PE1 ... "); 

    rc = WS_DeProgramPe( WS_Board, WS_PE1_MASK); 

    CHECK_SUCCESS(rc); 

 

    printf ( "Successful\n\n" ); 

  } 

 

  /*************************************************************** 

   **                       DeProgram PE2                       ** 

   ***************************************************************/ 

  if ( BitTst( dPEMask,WS_PE2) ) 

  { 

    printf ( "\tWS_PE2 ... "); 

    rc = WS_DeProgramPe( WS_Board, WS_PE2_MASK); 

    CHECK_SUCCESS(rc); 

 

    printf ( "Successful\n\n" ); 
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  } 

 

    return (rc); 

} 

/*************************************************************************** 

 * Function:  satsolve_ex 

 * Description:     SAT Solver with Interrupt test 

 * Arguments: 

 *   WS_Board          Slot or board number to access. 

 *   dPEMask           PeMask to test. 

 * Returns: 

 *   WS_SUCCESS     upon successful completion. 

 ****************************************************************************/ 

WS_RetCode 

satsolve_ex(DWORD WS_Board, DWORD dMaxIterations, DWORD dLocalBusSpeed, DWORD 
dPEMask) 

{ 

  WS_RetCode 

    rc = WS_SUCCESS; 

 

  DWORD 

    i, 

    dSuccess, 

    dFailure, 

    dIteration, 

    pVersion[4], 

    pdVersion[8]; 

 

  static WS_PhysicalBoardConfig 

    WS_Cfg; 

 

  dSuccess = 0; 

  dFailure = 0; 

 

  /*************************************************************** 

   **            Get board configuration information            ** 

   ***************************************************************/ 

  rc = WS_GetPhysicalConfig( WS_Board, &WS_Cfg ); 

  CHECK_SUCCESS(rc); 

 

  if ( WS_Cfg.BaseInfo.BaseBoardType == WS_STARFIRE ) 

  { 

    dPEMask = dPEMask & 0x2; 

  } 
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  else if (( WS_Cfg.BaseInfo.BaseBoardType == WS_WILDSTAR_PCI ) || 

           ( WS_Cfg.BaseInfo.BaseBoardType == WS_WILDSTAR_VME ) || 

           ( WS_Cfg.BaseInfo.BaseBoardType == WS_WILDSTAR_PCI_E ) || 

           ( WS_Cfg.BaseInfo.BaseBoardType == WS_WILDSTAR_VME_E )) 

  { 

    dPEMask = dPEMask & 0x7; 

  } 

  else if (( WS_Cfg.BaseInfo.BaseBoardType == WS_FIREBIRD_PCI ) || 

           ( WS_Cfg.BaseInfo.BaseBoardType == WS_FIREBIRD_PMC )) 

  { 

    dPEMask = dPEMask & 0x1; 

  } 

 

#ifdef _C2WILD_ 

  WS_Debug_Sleep(200); 

#endif 

 

  /*************************************************************** 

   **            Display configuration information              ** 

   ***************************************************************/ 

#ifndef _C2WILD_ 

  rc = DisplayConfiguration( WS_Board, &WS_Cfg ); 

  CHECK_SUCCESS(rc); 

#endif 

 

  /*************************************************************** 

   **              Setup clocks and program pe(s)               ** 

   ***************************************************************/ 

  rc = satsolve_startup(WS_Board, dMaxIterations, dLocalBusSpeed, dPEMask, 
&WS_Cfg); 

  CHECK_SUCCESS(rc); 

 

  printf( "Example setup successful\n\n" ); 

 

#ifdef _C2WILD_ 

  WS_Debug_Sleep(200); 

#endif 

  /*************************************************************** 

   **            Display information about the test             ** 

   ***************************************************************/ 

  printf("[Version Info]\n\n" ); 

 

  rc=WS_DisplayIntensity( WS_Board, Level_2 ); 

  CHECK_SUCCESS(rc); 
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  rc = WS_UpdateDisplay( WS_Board, "INTR" ); 

  CHECK_SUCCESS(rc); 

 

  if (( WS_Cfg.BaseInfo.BaseBoardType == WS_FIREBIRD_PCI ) || 

      ( WS_Cfg.BaseInfo.BaseBoardType == WS_FIREBIRD_PMC )) 

  { 

    rc = WS_ReadPeReg(WS_Board, WS_PE0, (INTR_VERSION_BASE<<1), 8, pdVersion); 

    for ( i = 0; i <= 3;i++ ) 

      pVersion[i] = pdVersion[2*i]; 

  } 

  else 

  { 

    rc = WS_ReadPeReg(WS_Board, WS_PE1, INTR_VERSION_BASE, 4, pVersion); 

  } 

  CHECK_SUCCESS(rc); 

 

  printf("Version Register\n"); 

  printf("  VHDL Version        : %d.%d\n", 

          (pVersion[VHDL_VERSION_INDEX] >> VHDL_MAJOR_VERSION_SHIFT) & 
VERSION_MASK, 

          (pVersion[VHDL_VERSION_INDEX] >> VHDL_MINOR_VERSION_SHIFT) & 
VERSION_MASK); 

  if (pVersion[VHDL_VERSION_INDEX] & IO_VHDL_MASK) /*Print IO VHDL version only 
if needed*/ 

  { 

    printf("  IO VHDL Version     : %d.%d\n", 

          (pVersion[VHDL_VERSION_INDEX] >> IO_VHDL_MAJOR_VERSION_SHIFT) & 
VERSION_MASK, 

          (pVersion[VHDL_VERSION_INDEX] >> IO_VHDL_MINOR_VERSION_SHIFT) & 
VERSION_MASK); 

  } 

  printf("  ModelTech Version   : %d.%d%-2X\n", 

          (pVersion[MTECH_VERSION_INDEX] >> MAJOR_VERSION_SHIFT) & VERSION_MASK, 

          (pVersion[MTECH_VERSION_INDEX] >> MINOR_VERSION_SHIFT) & VERSION_MASK, 

          (pVersion[MTECH_VERSION_INDEX] >> REV_VERSION_SHIFT) & VERSION_MASK); 

  printf("  Synpilfy Version    : %d.%d.%d\n", 

          (pVersion[SYN_VERSION_INDEX] >> MAJOR_VERSION_SHIFT) & VERSION_MASK, 

          (pVersion[SYN_VERSION_INDEX] >> MINOR_VERSION_SHIFT) & VERSION_MASK, 

          (pVersion[SYN_VERSION_INDEX] >> REV_VERSION_SHIFT)   & VERSION_MASK); 

  printf("  Xilinx Version      : %d.%di SP %d\n\n", 

          (pVersion[XIL_VERSION_INDEX] >> MAJOR_VERSION_SHIFT) & VERSION_MASK, 

          (pVersion[XIL_VERSION_INDEX] >> MINOR_VERSION_SHIFT) & VERSION_MASK, 

          (pVersion[XIL_VERSION_INDEX] >> REV_VERSION_SHIFT)   & VERSION_MASK); 
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  printf("[SATsolve_ex]\n\n" ); 

 

  /*************************************************************** 

   **             Run the test                                  ** 

   ***************************************************************/ 

  for ( dIteration = 1; dIteration <= dMaxIterations; dIteration ++ ) 

  { 

    printf ( "Iteration [%d] of [%d]\n", dIteration , dMaxIterations); 

    if (( WS_Cfg.BaseInfo.BaseBoardType == WS_FIREBIRD_PCI ) || 

        ( WS_Cfg.BaseInfo.BaseBoardType == WS_FIREBIRD_PMC )) 

    { 

      rc = sat_fb_run(WS_Board, dPEMask, &WS_Cfg); 

   // test interrupt with feedback 

    } 

    else 

    { 

      rc = sat_ws_run(WS_Board, dPEMask, &WS_Cfg); 

   // enable SATsolver and wait for interrupt 

    } 

    if ( rc == WS_SUCCESS) 

    { 

      dSuccess++; 

    } 

    else 

    { 

      dFailure++; 

    } 

    printf ("\n\t**** Successful[%d]  Failures[%d] ****\n", dSuccess, dFailure); 

  } 

 

  /*************************************************************** 

   **             Leave the board in a known state              ** 

   ***************************************************************/ 

  rc = satsolve_shutdown(WS_Board, dPEMask, &WS_Cfg); 

  CHECK_SUCCESS(rc); 

 

  printf( "Example shutdown successful\n\n" ); 

 

  return (rc); 

} 

/**************************************************************************** 

 *                                   Main                                   * 

 ****************************************************************************/ 
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#if defined(WSCPU_MVME2604) || defined(WSCPU_I960) 

WS_RetCode intr_ex( DWORD WS_Board, DWORD dLocalBusSpeed ) 

{ 

#else 

int 

main( int  argc, char *argv [] ) 

{ 

  int 

    argi; 

 

  DWORD 

    WS_Board = DEFAULT_BOARD, 

    dLocalBusSpeed = DEFAULT_LOCAL_BUS_SPEED; 

#endif 

 

  WS_RetCode 

    rc = WS_SUCCESS; 

 

  DWORD 

    dMaxIterations, 

    dPEMask; 

 

  const char * help_string = 

    "Usage: intr_ex <list of options>\n" 

    "   Options:\n" 

    "      -I <Iterations>  Set the number of iterations.    ( default = 1 )\n" 

    "      -M <Mask>       Set the mask of the PE to test.  ( default = 0x7 )\n" 

    "      -L <Speed>      Set the Local LAD Bus Speed.     ( default = 33 )\n" 

    "      -b <Board>     Set the Wildstar(tm) Board Number. ( default = 0 )\n"; 

 

  dMaxIterations = DEFAULT_ITERATIONS; 

  dPEMask = DEFAULT_PEMASK; 

 

#if !defined(WSCPU_MVME2604) && !defined(WSCPU_I960) 

  for ( argi = 1; argi < argc; argi++ ) 

  { 

    if ( argv [ argi ][ 0 ] == '-' ) 

    { 

      switch ( toupper( argv [ argi ] [ 1 ]) ) 

      { 

      case 'B':  /* Set the Wildstar(tm) Board Number */ 

        argi++; 

        if (argi < argc) 
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        { 

            WS_Board = strtoul( argv [ argi ], NULL, 16 ); 

            printf("Setting Board Number to %x\n", WS_Board ); 

          } 

          else 

          { 

            printf( "  Warning:  Invalid Board Number!\n"); 

            return(0); 

          } 

          if ( ( WS_Board < 0) || ( WS_Board > WS_MAX_BOARDS ) ) 

          { 

            printf( "  Warning:  Invalid Board/Slot Number!\n"); 

            printf ( "%s\n\n", help_string ); 

            return(0); 

          } 

          break; 

 

        case 'I': /* Select number of Loops */ 

           argi++; 

           if (argi < argc) 

           { 

             dMaxIterations = atoi( argv [ argi ] ); 

           } 

           else 

           { 

             printf( "  Warning:  Invalid loop option\n" ); 

             printf ( "%s\n\n", help_string ); 

             return(0); 

           } 

           break; 

 

        case 'M': /* Set the PE mask */ 

          argi++; 

          if (argi < argc) 

          { 

            dPEMask = strtoul( argv [ argi ], NULL, 0 ); 

            printf( "Setting the PE Mask to %d.\n", dPEMask); 

          } 

          else 

          { 

            dPEMask = 0x7; 

            printf("Warning:  Invalid PE Mask ( Setting PEMask to %X )\n", 0x7); 

          } 
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          break; 

 

        case 'L': /* Set Local Address/Data bus speed */ 

          argi++; 

          if (argi < argc) 

          { 

            dLocalBusSpeed = strtoul( argv [ argi ], NULL, 10 ); 

          } 

          break; 

 

        default: 

          printf ( "  Unknown option: \"%s\"\n", argv [ argi ] ); 

          printf ( "%s\n\n", help_string ); 

          return(0); 

      } 

    } 

  } 

#endif 

 

  if ( dLocalBusSpeed == 66 ) 

  { 

     dLocalBusSpeed = WS_66MHZ_LADBUS_FLAG | WS_SHARED_FLAG; 

  } 

  else if ( dLocalBusSpeed == 33 ) 

  { 

     dLocalBusSpeed = WS_33MHZ_LADBUS_FLAG | WS_SHARED_FLAG; 

  } 

  else 

  { 

     printf( "Invalid Bus Speed option\n" ); 

     printf ( "%s\n\n", help_string ); 

     return(0); 

  } 

 

 /****************************************************** 

  **            Open the board for testing            ** 

  ******************************************************/ 

  rc = WS_Open( WS_Board, dLocalBusSpeed ); 

  CHECK_SUCCESS(rc); 

 

 

 /****************************************************** 

  **                 Run example                      ** 
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  ******************************************************/ 

  rc = satsolve_ex(WS_Board, dMaxIterations, dLocalBusSpeed, dPEMask); 

  CHECK_SUCCESS(rc); 

 

 /****************************************************** 

  **                 Close the board                  ** 

  ******************************************************/ 

  rc = WS_Close( WS_Board ); 

  CHECK_SUCCESS(rc); 

 

  return(0); 

} 
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Appendix B: MATLAB Makefile Code 
 

Matlab inherently does not support parallelism due to corporate decisions. But a lot of 
effort has been put into parallelizing Matlab codes at various levels of abstraction.  
 
There are mainly 4 approaches to providing parallel functionalities to Matlab:  

1. Provide communication routines (MPI/PVM) in Matlab.  

2. Provide routines to split up work among multiple Matlab sessions. 

3. Provide parallel backend to Matlab.  

4. Compile Matlab scripts into native parallel code. 

Our approach to exploit parallelism and to support RC APIs is to provide communication 
routines (MPI/PVM) in Matlab with the help of Matlab’s External API interface.  
 
Matlab inherently cannot support parallelism due to its basic architectural constraints. 
Hence by using the external API interface of Matlab, candidate portions of application 
code can be run in languages like C and Fortran which can very well take exploit the 
potential advantage of HPC and RC architectures. To exploit parallelism, MPI and PVM 
libraries are used in conjunction with C/C++ code for candidate portions of Matlab Code. 
 
 There are two approaches to consider in this, both having its pros and cons. 

1. To use Matlab as the Master application that controls and manages the rest of 
the code and provide capability for C/C++ functions to be called from within 
Matlab Applications which in turn can exploit the parallelism by invoking the 
parallel libraries like MPI/PVM. It can also map the code down to the FPGAs 
for achieving higher performance by using RC boards. 

 
2. The other is to keep the controllability and manageability in C/C++ code, 

which acts as a Master program invoking Matlab Engine. Again the C/C++ 
code can also map the candidate application code down to the FPGAs and also 
in turn use the MPI/PVM libraries to exploit parallelism.  
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Fig 2. Framework A, Using Mailab Applicalion 
as a masicr invokim* C/C++ code. 
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Fig 3. Framework B, Using C/C++ as a master code 
inv'il'in'' Mallab PnuiTu^ routines. 
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C subroutines can be called from MATLAB as if they were built-in functions. MATLAB 
callable C programs are referred to as MEX-files. MEX-files are dynamically linked 
subroutines that the MATLAB interpreter can automatically load and execute. The use of 
Mex files has several advantages like using the large pre-existing C programs that can be 
called from MATLAB without having to be rewritten as M-files and also bottleneck 
computations (usually for-loops) that do not run fast enough in MATLAB can be recoded 
in C for efficiency. 
 

 
 

Figure 4 is a basic structure and a flow chart from Matlab External API interface 
documentation explaining the method to use Mex files. 

 
 
 
C MEX-files are built by using the mex script to compile your C source code with 
additional calls to API routines. The PVM/MPI libraries used need to be linked.  
 
The source code for a MEX-file consists of two distinct parts: 
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• A computational routine that contains the code for performing the computations 
that you want implemented in the MEX-file. Computations can be numerical 
computations as well as inputting and outputting data.  

• A gateway routine that interfaces the computational routine with MATLAB by 
the entry point mexFunction and its parameters prhs, nrhs, plhs, nlhs, where prhs 
is an array of right-hand input arguments, nrhs is the number of right-hand input 
arguments, plhs is an array of left-hand output arguments, and nlhs is the number 
of left-hand output arguments. The gateway calls the computational routine as a 
subroutine. 

 
The following demo C Program from Matlab documentation clarifies this approach. 
Example C Program: 
 
/*================================================================= 
 * 
 * YPRIME.C Sample .MEX file corresponding to YPRIME.M 
 *         Solves simple 3 body orbit problem  
 * 
 * The calling syntax is: 
 * 
 *  [yp] = yprime(t, y) 
 * 
 *  You may also want to look at the corresponding M-code, yprime.m. 
 * 
 * This is a MEX-file for MATLAB.   
 * Copyright 1984-2000 The MathWorks, Inc. 
 * 
 *=================================================================*/ 
/* $Revision: 1.10 $ */ 
#include <math.h> 
#include "mex.h" 
 
/* Input Arguments */ 
#define T_IN prhs[0] 
#define Y_IN prhs[1] 
 
 
/* Output Arguments */ 
#define YP_OUT plhs[0] 
 
#if !defined(MAX) 
#define MAX(A, B) ((A) > (B) ? (A) : (B)) 
#endif 
 
#if !defined(MIN) 
#define MIN(A, B) ((A) < (B) ? (A) : (B)) 
#endif 
 
#define PI 3.14159265 
 
static double mu = 1/82.45; 
static double mus = 1 - 1/82.45; 
 
static void yprime( 
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     double yp[], 
     double *t, 
      double y[] 
     ) 
{ 
    double r1,r2; 
     
    r1 = sqrt((y[0]+mu)*(y[0]+mu) + y[2]*y[2]);  
    r2 = sqrt((y[0]-mus)*(y[0]-mus) + y[2]*y[2]); 
 
    /* Print warning if dividing by zero. */     
    if (r1 == 0.0 || r2 == 0.0 ){ 
 mexWarnMsgTxt("Division by zero!\n"); 
    } 
     
    yp[0] = y[1]; 
    yp[1] = 2*y[3]+y[0]-mus*(y[0]+mu)/(r1*r1*r1)-mu*(y[0]-
mus)/(r2*r2*r2); 
    yp[2] = y[3]; 
    yp[3] = -2*y[1] + y[2] - mus*y[2]/(r1*r1*r1) - mu*y[2]/(r2*r2*r2); 
    return; 
} 
 
void mexFunction( int nlhs, mxArray *plhs[],  
    int nrhs, const mxArray*prhs[] ) 
      
{  
    double *yp;  
    double *t,*y;  
    unsigned int m,n;  
     
    /* Check for proper number of arguments */ 
     
    if (nrhs != 2) {  
 mexErrMsgTxt("Two input arguments required.");  
    } else if (nlhs > 1) { 
 mexErrMsgTxt("Too many output arguments.");  
    }  
     
    /* Check the dimensions of Y.  Y can be 4 X 1 or 1 X 4. */  
     
    m = mxGetM(Y_IN);  
    n = mxGetN(Y_IN); 
    if (!mxIsDouble(Y_IN) || mxIsComplex(Y_IN) ||  
 (MAX(m,n) != 4) || (MIN(m,n) != 1)) {  
 mexErrMsgTxt("YPRIME requires that Y be a 4 x 1 vector.");  
    }  
     
    /* Create a matrix for the return argument */  
    YP_OUT = mxCreateDoubleMatrix(m, n, mxREAL);  
     
    /* Assign pointers to the various parameters */  
    yp = mxGetPr(YP_OUT); 
     
    t = mxGetPr(T_IN);  
    y = mxGetPr(Y_IN); 
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    /* Do the actual computations in a subroutine */ 
    yprime(yp,t,y);  
    return;   
} 
 
 
At the MATLAB prompt, type: 
 

mex yprime.c 
 
This uses the system compiler to create the MEX-file called yprime with the appropriate 
extension for your system. 
 
You can now call yprime as if it were an M-function from within Matlab GUI command 
prompt. 
 

Matlab prompt> yprime(1,1:4) 
ans = 2.0000 8.9685 4.0000 -1.0947 

 
To change the default compiler one can use mex –setup command and specify the 
specific options file.  
 

How To Call Matlab Functions from C Programs:  
Here we can use C/C++ as our Master program and invoke Matlab Engine routines for 
computations efficient in Matlab. We can map the candidate code down to FPGAs on the 
reconfigurable board and also exploit parallelism using MPI/PVM library routines. Some 
advantages of this approach are: 
 

• One can invoke multiple sessions of Matlab on various nodes in a cluster of 
computers and call Matlab library routines, for example, to invert an array or to 
compute an FFT from your own program. When employed in this manner, 
MATLAB is a powerful and programmable mathematical subroutine library. 

 
• Build an entire system for a specific task, for example, radar signature analysis or 

gas chromatography, where the front end (GUI) is programmed in C and the back 
end (analysis) is programmed in MATLAB, thereby shortening development time 
and getting higher performance by using a client server architectural approach and 
keeping the GUI on client machine running Matlab server on a separate node(s). 

 
The MATLAB engine operates by running in the background as a separate process from 
your own program, which facilitates above approaches. 
 
The following C program shows how to use Matlab Engine Functions: 
 
/* This program invokes the Matlab Engine using engOpen function and then */ 
/* runs Matlab functions. In short t uses C as a master program which then*/  
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/* calls a Matlab function imacor.m which performs the operation of cross  */ 
/*  correlation of  two images.  */    
 
#include <stdio.h>  
#include "engine.h" 
#define BUFSIZE  25000 
 
main() 
{ 
        Engine *ep; 
        char buffer[BUFSIZE]; 
        int d; 
         
        /************ starting matlab engine **********/ 
         
        ep=engOpen("\0");    /* start the Matlab Engine. */ 
        if (!(ep)) { 
                fprintf(stderr, "\nCan't start MATLAB engine\n"); 
                return EXIT_FAILURE; 
        } /* end if */ 
         

        engOutputBuffer(ep,buffer,25000);   

/* to store the Matlab outputs appearing on the Matlab GUI screen.        */ 

 
        d=engEvalString(ep,"imacor");    /* calling Matlab function imacor.m */ 
         
        printf("Press Return to continue\n\n"); 
        fgetc(stdin); 
        engClose(ep); /* close Matlab engine  */ 
} 
 
% File: imacor.m 
% performs image correlation of 2 images ‘image1.tiff’ and ‘image2.tiff’ 
 
function imacor() 
 
% reading in 1-D data from files. 
x1 = double(imread ('image1.tiff','tif')); 
x22 = double(imread ('image2.tiff','tif')); 
 
x2 = flipud(fliplr(x22)); 
sze1=size(x1); 
sze2=size(x2); 
 
r= sze1(1)+sze2(1)-1; 
c= sze1(2)+sze2(2)-1; 
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% FFT of the data sets obtained from the images 
x1f=fft2(x1,r,c); 
x2f=fft2(x2,r,c); 
 
xf=x1f.*x2f; 
 
% Inverse FFT of the final data set to get the image data in the Time domain 
x=ifft2(xf); 
 
% plotting the output. 
imagesc(abs(x)); 
 
# This Makefile compiles C programs which uses PVM libraries and also invokes 
Matlab Engine. The Makefile will work only for SUN4SOL2 platform. 

# Users will need to customize it in accordance to their programs. This is a 
general Makefile which uses names file1.c and file2.c. The users will 

# have to modify the file1 and file2 below and write their own file names in 
their place. Be sure not to write them as yourfile.c and instead omit .c  

# and just write yourfile. Please feel free to edit the file as you require and 
suit your purpose. 

# the clean part doesn't seem to work as yet. Need to look into it.  

CC = cc 

file1 = yourfile1 

file2 = yourfile2 

MATLAB = /mnt/sw/matlab6.1 

INCLUDES = -I$(MATLAB)/extern/include -I$(MATLAB)/simulink/include -
DMATLAB_MEX_FILE -I$(MATLAB)/extern/include -I$(PVM_ROOT)/include -DSYSVBFUNC -
DSYSVSTR -DNOGETDTBLSIZ -DSYSVSIGNAL  -DNOWAIT3 -DRSHCOMMAND=\"/usr/bin/rsh\"   

CFLAGS = $(INCLUDES) -dalign -xlibmieee -Xc -D__EXTENSIONS__ -g   

LIBDIR = /usr/local/pvm3/lib/$(PVM_ARCH) 

LIBS = -L$(MATLAB)/extern/lib/sol2 -leng -lmx -lm -L$(PVM_ROOT)/lib/$(PVM_ARCH) 
-lgpvm3 -lpvm3 -lnsl -lsocket $(LIBDIR)/libpvm3.a $(LIBDIR)/libgpvm3.a 
$(LIBDIR)/libpvmtrc.a 

 

$(file1) $(file2): $(file1).o $(file2).o mexversion.o 

 $(CC) -g -o $(file2) $(file2).o mexversion.o $(LIBS) 

 $(CC) -g -o $(file1) $(file1).o mexversion.o $(LIBS) 

mexversion.o: mexversion.c  

 $(CC) -c $(CFLAGS) mexversion.c 

$(file2).o: $(file2).c 

 $(CC) -c $(CFLAGS) $(file2).c 

$(file1).o: $(file1).c 

 $(CC) -c $(CFLAGS) $(file1).c 

clean: 

 /usr/bin/rm -f *.o 


