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Abstract— Although magnetic resonance (MR) tagging
has been shown to be a useful tool in myocardial mo-
tion quantification, its clinical utilization is limited as cur-
rent available methods generally either lack computational
speed or require extensive user intervention. Recently, the
harmonic phase imaging (HARP) technique has been pro-
posed to look at the phase information of the tagged images
[1], [2]. HARP imaging promises to overcome the limita-
tions of existing methods in terms of both computational
speed and automation. Motivated by this work, we present
mathematical analysis providing a signal processing per-
spective on the HARP technique. This new perspective
provides a clearer understanding of how tags can be accu-
rately tracked using highly-filtered data.

Keywords— MR tagging, phase image, myocardial mo-
tion, Fourier Spectrum, band-pass filtering, sampling

I. Introduction

MR tagging is a powerful, non-invasive method to quan-
tify myocardial wall motion and identify abnormalities in-
dicative of regional ischemia. Tags are temporary markers
created by spatially encoded saturation planes whose de-
formations follow the motion in the underlying tissue [3],
[4]. After administration of tags with spatially selective
rf pulses, the deformation is observed through a sequence
of images acquired over the cardiac cycle. Fig.1.(a) is a
planar tagged image acquired at end-diastole right after
the administration of tags and Fig.1.(b) is acquired near
end-systole showing the deformation of tags. Both images
have been cropped to display a region of interest (ROI)
around the heart for better visualization purposes.

Although creating tagged images is a simple process,
extracting the tag deformation within the myocardium is
a serious challenge, especially considering the fact that
tags are only couple pixels wide. At each image, one has
to trace myocardial contours to detect the end points as
well as the deformed tags within the myocardium. The
complex motion of the heart makes it difficult to utilize a
parametric characterization of the tag deformation. Be-
cause of short scan times, tagged images are often poor
quality, suffering from low signal-to-noise ratio (SNR).
Furthermore, T1 recovery of the tagged tissue eliminates
the use of simple intensity based methods. Despite all
these problems, there are numerous successful approaches
in the literature. Tag profile fitting [5] and correlation
methods [6] have been successfully implemented. Unfor-
tunately, such methods are computationally intensive, re-
quiring long processing times.

There are several approaches that look into the Fourier
content of the tagged images to address the long compu-
tation time problem [1], [7]. Especially, the HARP imag-
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Fig. 1. Planar tagged image at (a) end-diastole, and (b) end-systole

ing technique appears to be very promising as a clinical
tool in terms of speed and minimal user intervention [1],
[2]. In HARP imaging, spatial modulation of magnetiza-
tion (SPAMM) tagging is defined as a modulation process.
Hence, the discrete Fourier Transform (DFT) of a tagged
image has spectral peaks at integer multiples of the tag-
ging frequency. Bandpass filtering the proper peak results
in an image in the spatial domain whose phase values give
the tag deformation.

In this paper, we present a mathematical analysis of the
tag deformation from a signal processing perspective, and
validate the results of the HARP imaging. Our main con-
tribution to the literature is the introduction of tagging
as a sampling process. We believe that analyzing tagging
from a signal processing perspective will initiate the in-
troduction of new methods to the tag analysis problem.
Furthermore, a mathematical derivation of the phase val-
ues for the tag points is given in this work.

II. Methodology

From a signal processing perspective, tagging can be
defined as a sampling process such that tagged image is
simply the difference of the original image and its sampled
version at the tag locations. Hence, the tagged image can
be expressed as:

o(x, y, t) = u(x, y, t)− u(x, y, t)tag(x, y, t) (1)

where
o(x, y, t) : tagged image
u(x, y, t) : untagged image

tag(x, y, t) : tag pattern

In signal processing, a train of impulse function lines is
called the shah function (III(x, y)). In an N ×N image,
the horizontally placed planar tag pattern with a tag sepa-
ration of T (t) can be represented in terms of shah function
as follows:
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tag(x, y, t) = III(
y

T (t)
) =

b N
T (t) c∑
n=0

δ(y − nT (t)) (2)

t is the time, x and y are the spatial dimensions satisfying:

0 ≤ x ≤ N − 1 0 ≤ y ≤ N − 1

Tag separation, T (t), is defined as a function of time be-
cause its value will change for the non-stationary parts of
the tag pattern (i.e. within myocardium). The two di-
mensional (2D) DFT of Eq.1 in spatial domain gives [8]:

O(u, v, t) = U(u, v, t)− 1
N

U(u, v, t)⊗N Tag(u, v, t) (3)

where 0 ≤ u ≤ N − 1 and 0 ≤ v ≤ N − 1. ⊗N is the
circular convolution operator with period N . The DFT
of a shah function is an impulse train (comb function) [9].
Hence, Tag(u, v, t) is given by:

Tag(u, v, t) = T (t)III

(
vT (t)

N

)
δ(u)

= T (t)

b N
T (0) c∑

k=0

δ

(
u, v − k

N

T (t)

)
(4)

From Eq.4 and Eq.3, O(u, v, t) then becomes:

O(u, v, t) = U(u, v, t)− T (t)
N

b N
T (0) c∑

k=0

U

(
u, v − k

N

T (t)

)
(5)

Eq.5 reveals an interesting property of tagged images:

Property 1: The Fourier spectrum of the tagged image
has replications of the untagged image’s Fourier spectrum
separated by N

T (t) pixels from each other.

It is important to note that although the Fourier spec-
trum of the tag pattern is a comb function at the time
of administration, it’s not exactly true for the rest of the
frames because of the tag deformation in time. Fortu-
nately, tags do not deform significantly from their initial
position, thus their local frequency won’t change much.
Furthermore, tag pattern is applied to the whole imaging
volume. Stationary tags dominates the pattern and forces
it to closely follow the behavior of a shah function.

Fig.2.(a) is the natural logarithm of the Fourier spec-
trum of the image in Fig.1.(b) in which T (0) = 10 pixels.
The DC component is shifted to the center of the image
and natural logarithm is taken to compress the dynamic
range for display purposes. The goal is to find tag(x, y, t)
and extract the tag deformation. Therefore we are inter-
ested in finding T (t). Bandpass filtering the first spectral
peak as shown in Fig.2.(a) gives:

H(u, v, t) =
{

O(u,v,t) (u,v) ≤ passband
0 elsewhere (6)

(a) (b)

(c) (d)

Fig. 2. (a) Fourier spectrum of Fig.1.(a) and the band-pass filter
on the first spectral peak. (b) Unwrapped phase magnitude of the
IDFT of the first spectral peak in (a). (c) magnitude of the IDFT
of the first spectral peak in (a). (d) Detected tag locations

The inverse DFT of H(u, v, t) is a complex image. Apply-
ing a circular bandpass filter as in Fig.2.(a) corresponds
to convolving the image with a jinc function in spatial
domain. Hence, the jinc function acts as an averaging fil-
ter on the image and creates a significant blurring in the
magnitude image as shown in Fig.2.(c). h(x, y, t) can be
expressed as:

h(x, y, t) = −T (t)
N

jinc (r(T (t))⊗N

[
u(x, y, t)e

j2π(N)
NT (t) y

]

(7)
with its phase given by:

6 (h(x, y, t) =
2π

T (t)
y + π (8)

The π in Eq.(8) comes from the minus sign, as −1 = ejπ.
One would expect to have the tag locations close to integer
multiples of tagging period T (t). Hence, replacing the y
with kT (t), in Eq. 8, the argument of the phase values of
tag patterns can be approximated as:

arg( 6 (h(x, y, t)) ≈
(

2π

T (t)
kT (t) + π

)
mod (2π)

≈ π (9)

The argument of the phase is defined between [−π, π).
Because of the tag deformation and the convolution with
the jinc function, the argument of the phase values at tag
locations might change sign and jump between −π and
π. The absolute value is taken to solve this problem. Be-
cause the spectral peaks on each side of the DC component
are anti-symmetric, only one of the first spectral peaks is
band-pass filtered to eliminate phase cancellation. Either
of the first spectral peaks can be band-pass filtered as the
magnitude of the phase information is used. Detected tags
are displayed together with the tagged image in Fig.2.(d).
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III. Results

A. Computer Simulations

A synthetic image with a tag separation of ten pixels is
created. Fig.3.(a) shows the computer generated phantom
prior to deformation. Sinusoidal deformations (4T ) are
applied to the image to obtain Fig.3.(b):

4T =
T (0)

2
sin(φ) 0 ≤ φ ≤ π (10)

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 3. (a) Non-deformed tag image. (b) Deformed tag image. (c)
Fourier spectrum of the non-deformed tag image. (d) Fourier spec-
trum of the deformed tag image. (e) Unwrapped phase magnitude
of the IDFT of the first spectral peak in (d). (f) magnitude of the
IDFT of the first spectral peak in (d). (g) Corresponding tag points
detected from the phase image. (h) Tagged image and the detected
tags added together.

(a) (b)

(c) (d)

Fig. 4. (a) Grid tagging. (b) Fourier spectrum of the image with
the corresponding bandpass filters. (c) Phase images obtained from
the inverse Fourier Transform of the bandpass filtered spectral peaks
added together (d) Tag locations displayed on top of the heart

Fig.3.(c) and (d) are the corresponding Fourier spectra
of these images, respectively. A bandpass filter is applied
to the deformed tag spectrum to extract the first spectral
peak. The IDFT of this peak is a complex image. The
phase map of this complex image is displayed in Fig.3.(e).
The agreement between the tag deformation and the phase
map can be seen clearly in this image. The magnitude of
the IDFT of this peak is shown in Fig.3.(f). As expected
from Eq.7, a blur in the magnitude image is observed be-
cause of the convolution with the jinc function. Morpho-
logical closing followed by a simple thresholding is applied
to the image in Fig.3.(b) to segment the region of interest
and this mask is applied to the tag detected tag points
that are extracted from the phase image using a simple
thresholding as shown in Fig.3.(g). Detected tag points
are added on top of the image in Fig.3.(f) to demonstrate
the effectiveness of the method in Fig.3.(h).

B. Grid Tagging

One of the advantages of the method is that it can be
easily applied to two dimensional (grid) tagging. Separat-
ing the grid type tags into two orthogonal components us-
ing the Fourier Spectrum is first proposed by Zhang et al.
[10]. Mathematically, rotation in spatial domain results in
an equivalent rotation in the Fourier domain. Therefore,
grid tagging is simply another extra step of 90◦ rotation
plus tagging of the already tagged image. This will create
the corresponding spectral peaks in orthogonal directions.

Fig.4.(a) and (b) present a grid tagged image and its
corresponding Fourier spectrum, respectively. The user-
defined bandpass filters are are also shown for the first
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spectral peaks in each tagging direction. Fig.4.(c) shows
the resulting phase image by adding the two phase images
obtained from the IDFT of the corresponding bandpass
filtered spectral peaks. One can see the grid pattern in
the phase image indicating the agreement of phase values
and the tag deformation. From these two phase images tag
patterns are extracted using a simple thresholding around
π
10 neighborhood of π radians. Thresholded images are
combined with a logical OR operation. Epicardial con-
tour is manually traced in the image and applied as a
mask to remove the detected tag patterns outside the re-
gion of interest. Resulting image is added on top of the
original image as shown in Fig.4.(d) to display the agree-
ment between the detected and actual tag locations.

IV. Discussion

One of the issues in the method is the proper bandpass
filter selection. Currently, the user is asked to define the
band-pass filter by drawing a circular or polygonal region
of interest on the Fourier spectrum of the image. Apply-
ing a Gaussian roll off as done in [1] and [7] would re-
duce the ringing artifact. Another improvement would be
automating the filter selection process. A simple thresh-
olding in the Fourier Spectrum image would give us the
peak locations and then the bandpass filter can be easily
defined without user intervention according to Property 1.
Currently, the same filter is used for the whole image set.
However the DC component of the Fourier spectrum gets
larger in time because of the T1 recovery of the underly-
ing tagged tissue and might interfere with the band-pass
filtered peak. An adaptive scheme can be easily imple-
mented to update the extend of the bandpass filter to
eliminate this potential problem. However the drawback
of this approach is that reducing the extend of the region
also means limiting the ability to detect deformed tags as
deformations result in deviations from the center of the
band-pass filter region.

Tag tracking is completed under a minute right now
including the bandpass filter selection for a set of 30 im-
ages with 256×256 dimensions on a Ultra Sparc 400 MHz
processor.

The run time would reduce five to ten seconds once the
user intervention at the filter selection is eliminated. The
algorithm can further be speeded up by parallelizing the
process as the tag tracking is performed independently for
each frame.

Our emphasis is now on developing a fully automated
tag analysis program using this phase information as the
tag tracking module.The goal is to complete the myocar-
dial contour segmentation and data analysis under 4 min-
utes to keep the whole process under 5 minutes to make
it useful in clinical setting.
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