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1. INTRODUCTION 

Lattice materials are porous materials consisting of periodic cells or non- 
periodic cells. The cells are composed of rods, or shells, or solid structures. 
The size of cell is usually small with respect to the size of the body filled 
with the lattice materials. The lattice materials with simple microstructures 
are characterized by a single length scale, for instance. Lattice Block Ma- 
terials which are developed by JAMCORP corporation. The hierarchic lat- 
tice materials have hierarchic multi-scale microstructures. In either case, we 
deal with a multi-scale problem. The lattice materials can offer significantly 
higher strength-to-weight and stiffness-to-weight ratio than their base materi- 
als and have obvious advantages in engineering applications. Besides heteroge- 
neous materials[17, 28, 30, 33], lattice models are used in many other applica- 
tions such as porous media[12, 16, 33], fracture models[31], crystal physics[21], 
biophysics[20]. For a survey of some applications, we refer to [30, 32]. 

Various mechanical models for the lattice problems with periodic and non- 
periodic structures have been studied. There are papers addressing these prob- 
lems, especially in the mechanics, material science, and physics literatures. For 
mathematical theory which is related to the problem of the lattice materials 
we refer to the book [8] and her various papers, e.g. [7, 9, 10]. Various math- 
ematical aspects of lattice problems have been studied. Problems of periodic 
lattices in entire spaces and numerical methods are analyzed based on Greens 
function and Fourier transform [3, 21, 22, 23, 24]. A combination of homoge- 
nization and multigrid method on unstructured mesh is applied to problems of 
non-periodic lattices [6, 14]. The recovery method has been developed recently 
for problems of bounded lattice [4], which convert discrete lattice equations to 
a finite element discretization of a continuous partial differential equation. 

The results of these papers are mostly for problems of periodic lattices in 
entire spaces R*^, but not for problems of unstructured lattices on unbounded 
and bounded domains with prescribed boundary conditions. In addition, the 
scale of cells in these papers is assumed so small that asymptotic arguments 
such as homogenization can be utilized. Further, most papers only address 
the problems in presence of absolute terms in the equations so that the cor- 
responding bilinear form satisfies the inf-sup condition on a pair of discrete 
Sobolev spaces. In practical applications, these assumptions may not be valid. 
If the scale of cells may not extremely small, then the homogenization will not 
give us satisfactory solution of lattice problems. In particular, the absolute 
terms do not exist in applications, it is a pure mathematical hypothesis for 
the convenience in mathematical analysis. For problems without such abso- 
lute terms we need to develop new mathematical approaches for problem of 
unstructured lattices. 

This final progress report summarizes the progresses of our research in the 
period 1999-2002, including many results which are original and have not been 
published yet. In the past three years, we started with problems of periodic 
lattices in entire spaces, and then focused on the mathematical framework 
for problems of unstructured lattice in unbounded domains without absolute 



terms. The Fourier transform is a very powerful tool for study of problems of 
lattices with periodic structure and for design of effective numerical methods 
such as generalized p-version of finite element methods [25, 26], even for those 
on bounded and unbounded domains with boundary layers. But it is not valid 
for unstructured lattices. The new approach is to establish the equivalence 
between the problems of lattices and partial differential equations (not homog- 
enized equations), and the equivalence between grid functions and continuous 
functions. With help of such equivalences we can establish various embedding 
results among discrete function spaces which lead to the existence and unique- 
ness of solution of lattice problems, also it will results in an effective algorithm 
via the numerical solution of the corresponding partial differential equations, 
e.g. multigrid method. The problems we presented are of truss type which re- 
sult in systems of difference equations with infinite number of unknowns. Such 
lattice problems are addressed in discrete energy space or Sobolev spaces over 
lattices. The mathematical framework we have established and mathematical 
foundation we have laid down for the problems of unstructured trusses can be 
applied to or generalized to problems with complicated microstructures such as 
plates and shells, or three dimensional solid structures and many non-periodic 
lattice problems. 

The report is organized as the follows. In Section 2, we address problems 
of periodic trusses in entire spaces R**, d = 1,2,3. The problem is setup with 
various important concepts such as connectivity and rigidity. With Fourier 
transformation the equivalence between a discrete problem and a semi-discrete 
problem is established, and a representation formula of solution of truss prob- 
lem is derived, at the end of this section, two lattice problems are analyzed 
in the theoretical framework. In next section we present the major progresses 
of research on the problems of unstructured trusses without absolute terms in 
entire spaces. The extension of grid functions to continuous functions over R** 
is defined by a linear interpolation is explicitly constructed, which leads to an 
embedding of the energy space into weighted L^ spaces. The existence and 
uniqueness of the solution are proved for problem without absolute terms in 
one, two and three dimensions by different way. In Section 4 a boundary value 
problem of unstructured trusses in half spaces R^ is analyzed. A sufficient 
condition on the external force / is derived, under which the existence and 
uniqueness of solution of the boundary value problem is proved. At last we 
conclude with current and future research directions on problems of lattices, 
mathematical models and computational methods. In two appendices, the so- 
lution of Possion equation in entire spaces R"*, d = 2,3 and the boundary value 
problem in half spaces R'', d = 2,3 are discussed in modified function spaces, 
which are parallel to the problems of lattices in entire and half spaces, some 
embedding results are essential to the existence of the solution of such lattice 
problems. 



2. PERIODIC LATTICES IN ENTIRE SPACES 

2.1. General setting of periodic in entire spaces R** 

Lattices are comprised of cells and nodes. Let Q be a master cell in R** 
with unit size, which is an interval in one dimension, and is a polygon in 
two dimensions, and is an polyhedron in three dimensions. The master cell is 
extended periodically in entire space by an integer translation: 

d 

Qm = {y^ R% = a; +J]mit«,a; eQ},me Z". (2.1) 
i=l 

where Z = {0, ±1, ±2,...} denotes the set of all integers, and t^^^ is a unit 
vector in Xi axis. There is a set KQ of nodes {x'^'^^jl^^ in the master cell Q, 
and a set Km is the integer translation of KQ by 

d 

Km = {rr^"*'") = x'^"^ + J]mit«,a;(") G KQ],me Z\ (2.2) 

Note that the indices K of nodes in each cell Qm are the same although the 
locations of these points in different cells are different. Hence we denote the 
set of indices {1,2,..., q} by /C. Without losing generality, we assume that 
the cells Qm's and sets /sT^'s are mutually disjoint, namely, 

QnnQm = ^,Knr\Km = 0,ny^m,n,me Z"^. 

The lattices shown in Fig.2.1 and 2.2 are two typical examples with Q = 
[0,1), K = {1,2} and Q = [0,1)^, )C = {1}, respectively 

E, E2   ' E, E2 E, Ej 

(a) A lattice 

x'"        x'^> 

j^^m^ 

(b) Master cell Q furnished with springs 

Fig. 2.1 A periodic lattice in R^ 

We now further specify the connectivity of lattices. By b('"''''"''^\we denote 
an elastic rod connecting the nodes x^™'"^ and x^'^'^^ with intersect area A and 
length 6("»''<^'"'-^). By £'('''"''^) we denote the Young's modules of the elastic rod 
J3(/c,n,A) PQJ. ^YiQ sake of simplicity, we will omit cell index m whenever m = 0. 
For instance, we write x^'^''^^ = x^*^^ , b^"'**'"'^) = b^'''"'^), etc. We assume that 

(C.l) Each node is connected to others by the rods,at least one node and at 
most M nodes; 

(C.2) Any two nodes x^""'") and x^'^'^^ are linked by the shortest chain Lm,K,nX- 
^{m,K)   _  ^(ni.Ai)   _^  j.{n2M)   _^  ^(nsM)   ^   . . .   _>  ^ins,Xs)   =  ^(n,X)   g^^h  that 



xint,Xt) ig connected to x^'^'+^'^*+^\ 1 < i < s - 1, and 

|^(m,K) _ 3;(n>A)| <;      V^     \^int+i,Xt+i) _ ^.Cm.At)! ^     |^(m,K) _ r(.in,X)\ 

l<t<s-l 

where 77 is independent of m, n, K and A; 

(C.3) The length of rods are uniformly bounded i.e. for any x^"*'"^ and x^"^'^^ 
which are connected, there holds 

To effectively describe the connectivity of the lattice, we introduce S„ and 
BK,X 

B^ = {(n, X)eZ'^x}C such that x^^^"^ and x^"'^) are connected }     (2.3a) 

and 
B^^x = {neZ^ such that (n. A) G B„}. (2.3ft) 

/777 /777 

(a) A lattice (b) Master cell Q furnished with springs 

Fig. 2.2 A periodic lattice in R^ 

BK, and J3K,AJ based on the connectivity of the nodes x^"''*) in the cell Qo, can 
be periodically generalized to sets B^^^ and B'^^1 for all m G 2^'* by the integer 
translation. Due to the periodicity , it is easy to verify that 

n e 5«,A if and only if - n G Bx,^ (2.4) 

and 

We further assume that lattices are rigid in the sense that if the new config- 
urations of all cells resulted from a continuous transformation, which remains 
the lengthes of all rods fixed, are congruent to the original ones. A cell is rigid 
if the new configuration of the cell resulted from a continuous transformation, 
which remains the lengthes of all rods of the cell unchanged, are congruent to 
the original one. These difinitons of rigidity are based on the graph theory and 
coincide with those of [1]. Obviously, a lattice is rgid if all cells of the lattice 



are rigid, but a rigid lattice may have some non-rigid cells. For instance, a cell 
consisting of triangles in two dimensions and tetrahedrons in three dimensions 
for which each edge is an elastic rod, is rigid, a lattice which is composed of 
such cells is referred as a triangular or tetrahedral lattice. Of course, a rigid 
lattice may not be triangular or tetrahedral. For the various definition of rigid- 
ity in general and verification of rigidity for a lattice or a truss system, which 
is not trivial, we refer to [2] and also to [1, 11, 27, 30]. 

A lattice is characterize by the local structure /C, the global and periodical 
translation on Z^, and the connectivity B^,. We now denote the lattice with 
the above structures by ^ = Q{K,, Z^, B^)- 

2.2. A Truss Problem on Periodic Lattice 

Let u = {um)mez'i and Um = {um,K)K&K be a grid functions on Q and K,, re- 
spectively, and each Um,K is a vector {u^,^, '^m,K.^ • • •) ^m,«;)^ w^*^ s-components. 
In one dimension, s = d = 1, and Um,K denotes the displacement for elastic 
rods or the temperature of heat problems at the node x^'^''^\ In two and three 
dimensions, s = 1 when Um,K denotes the temperature. For the elastic prob- 
lem, s > d. If the connections of rods are non-rigid, then s = d, and M^.K 

denotes the displacement at the node x^'^''^\ If the connection of rods are 
rigid, then s = d{d + l)/2 for rf = 2,3, and Um,K. denotes the displacement 
and rotation at the node x^'^''^\ We furnish the rods with springs in the axis 
directions at each node with Hook's coefficients denoted by diagonal matrices 
Qim,K.) = c^K')^rn e Z^, K e K. We assume that the ratio of the length of rods 
and the intersect area A of rods >> 1. For the convenience to characterize the 
nature of our methodology, we will focus on the case that s=d , namely, the 
rods join with hinges, and the bending is not considered here. 

If external forces exert on the rods at the nodes, denoted by / = (/m) = 
ifm,K){m,K)ezdx)C, we have the equilibrium equation 

-     X^     p(K.n,A)    {Um+n,X " ^m./t) ^(„) _   ,        \lmG Z^ MKGK, 

(n,A)eB„ I ' 
(2.6) 

with 
EKn,A) ^ ^^(..n.A) ^ , 1\ .  ^,       ,1 (2.7a) 

|3;(n,A) _2.(«;)|     |a;(n,A) _ ^.(K) | '^ ^ 

which is a matrix for s = d > 1 and a scalar quantity ^£'(«'"''^) for s = 1,1 < 
rf < 3, and 

C^-^) = diag{C[^\C[^\...,Cf),     Cf > 0. (2.76) 

Similarly, C^*^) is a matrix for s = rf > 1 and a scalar quantity C^^^ for 
s = l,l<rf<3. 

Let H^{Q) and L^{G) be the Sobolev spaces over the lattice Q with the 
norms 



and 

where |M|Hi(e) is the semi-norm, 

^WIHG) = \u\li(g) + hWmg) (2.9a) 

2 _   V^ Y^     V^        \Um+n,X      ^m,(t| /« Q, \ 

The corresponding variational problem is defined as 

B{u,v) = F{v) (2.10) 

with the bilinear form on H^{G) x H^{g) 

('"m+n,X Vm,K)    v       /CWM y       U 

(2.11a) 

and the linear functional on H^ (G) 

nv)=   J2J2<frn,.,Vm,.), (2.116) 
meZ'^ KeK 

where {x, y) = ^2^=1 ^jVj i^ ^^^ inner product of two vectors in R**, and |a;|^ = 
(a;, a;). 

The energy of the elastic rods is 

G{u) = B{U, u) =    Zlm^z^ Z/Ke/c{X/(n,A)€B« 2 ^"^ "'"'     |a;("i+n,A) _ ^.(m,^) I' 

U(m+n,A) _ ;c(m,/c)|/ ^ ^'^     "™'«' ""^.^/J- 

The energy space denoted by E(Q) is the family of all grid functions M on ^ 
with finite energy G{u), and ||M||£;(e)= G(«)^/^ is referred as the energy norm 
of M. 

Proposition 2.1   If a lattice Q is rigid, then 

EV^r    V~^     /-^(/cn.A)   (^m+n,A ~ ^m,/t) (^m+n.A ~ Mm.w)   v  _ Q       /2 -|^2) 

if and only if M is a rigid body motion. 

Proof The proof is technical, we refer to [2]. 

Triangular and tetrahedral lattices are rigid, but a rigd lattice may not be 
triangular or tetrahedral. It can be proved that the lattice shown in Fig. 2.3 
is rigid, but is not of triangular type. The lattice shown in Fig. 2.4 is neither 
rigid and nor of triangular type. 



)^ 
<^ ^ ^ ^ Cy ̂  v; 

(^2 / 2 ̂  2 A^ 
^A ^ 2 ̂  2 A^ ^x ^ 2 ̂  2 A^ 
^A A A A A A^ 

Fig. 2.3 A rigid and non-triangular lattice in R^ 

(a) A non-rigid lattice 

(b) A non-rigid body motion on a non-rigid lattice 

Fig. 2.4 A non-rigid lattice in R^ 

Lemma 2.2 The bilinear form B on H^{Q) x H'^{Q) given in (2.10) is contin- 
uous, and it is coercive if C^") > 0 for all KEK,. 

Proof. Note that 

|a:(M)_a;(K)|   [a;(n,A)_^M| = (^«^^i'^^^^2,• • •,cosd,) {cosOucosO^,...,cosO,) 
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where Ot is the angle between the rod b^"-"''^) and the a;^-axis. We have imme- 
diately 

\B{u,v)\<C\\u\\H^^g)\\v\\Hr^g) 

with 
C = Max{     max     ^£;(«'"'^),    max    #}. 

Hence, the bilinear form B is continuous.  Since C^") > 0 for all K, e fC, we 
have 

Here and hereafter "=" means equivalent with constants independent of major 
subjects, e.g. the functions u. For s = 1, there holds 

|2;(m+n,A) _ ^(m,K)|' [^.(m+njA) _ ^(m,K)|' 

j p(K,n,A) 

_ A£^^"'"'^^ I ,2 .    , I    12 
-  |a;(m+n,A) _a.(m,K)|2l"'"+".^ ~ "'"'«l    - ^ll"lifi(e) 

with rfi = min„eB.,x,/c,A6x;^^^'''"'^^- For s = d > 1, 

\ |T.(m+n,A)   T.(m,re)l' |/j.(m+n,A)  ^jC"*'*^)! 
4 Tr{K,n,X) 

|^^(m+n,A) _ a;(m,«),«^^„^, _ ^^_„)|2 (2.13) 
Ij.(m+n,A)  2;("*i''-) K 

where rfi = min„e;c,(n,A)eB« A^^"'"'^^cosVK,n,A- By the rigidity assumption, u 
will be a rotation if di = 0, which is not in L^{Q). Hence, di > 0 for « e H^{Q), 
and 

B{U,U)   >  dllul'^jj^g)  + d2\\u\\l2^g)   >  rf||w||^l(g) 

with ^2 = inini<^<d,Kex; w    > 0. and d = mm{di,^2}- ^ 

Theorem 2.3 Suppose that C^") ^ 0 for all K e JC. Then, for any / G 
(i?^(^))~^ the variational equation (2.7) has a unique solution u G H^iG), 
and 

IMRHG) <C\\f\\(m(g))-i. 
In particular, if / G L'^{G), there holds 

IkllffMe) < C||/|U2(5). (2.14) 

Proof. The theorem follows from the previous lemmas and Lax-Milgram 
Theorem. □ 

Remark 2.1 The condition that C^") > 0 for all /c G /C can be weakened to 
Cf^' ^ 0, the energy norm ||M||£;(0) is equivalent to the norm ||M||HI(£;) due to the 
connectivity assumption [2]. If C^ = 0, Theorem 2.2 can not stand because 
the energy space E{Q) is not equivalent to H'^{Q) and it is not embedded in 
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L^{Q). Because of the importance of lattice problems without absolute terms 
(i.e. Cf^' = 0) in applications we shall elaborate it in Section 3 and 4. 

The relation between the solution of the equilibrium equation (2.6) and the 
solution of the variational equation (2.10) is given in next Theorem. 

Theorem 2.4 If M e H^iQ) is the solution of the variational equation (2.10), 
then it satisfies the equilibrium equation (2.6). Vice versa, If M € H^{G) solves 
the equilibrium equation (2.6), it satisfies the variational equation (2.10). 

Proof. We first prove that the solution u of the equilibrium equation (2.6) 
satisfies the variation equation (2.10). For v G H'^{G), multiplying (2.6) with 
Vm,k and summarizing with respect to m and K, we have 

The above sums exist since u,v e H^{Q)- Letting m + n = m' and n = -n', 
we get 

Ey^     V~^   /-p(K,n,X)     ^m+n,A ~ ^m./t         ^"i,« \ 
meZ'^       /  j      /  j   \                 |2;(m+n,A) _ 2;(»"^«)| ' |2;(w+n,A) _ 2;("I,K;)|' 

K,A€ACneBK,;^ 

/T?(K,-n,A)  
|j.(m',A) _ 2.(m'+n',K)|' |2;(m',A) _ ^(r m'eZd      2-^       Z-/     ^ U(m',A) _ ^(m'+n',K)|' U(m',A) _ ^(m'+n',K)|' 

K,Aex; -n'eB^^x 

Due to the properties (2.4) and (2.5) 

g(K;,-n',A)        _       •gj(A,n',K;) 

there hold 

m'&Z<i     l^K,XeK 2^-n'eB^^x ^ |a;{m',A) _ j.(Tn'+n',K) I' |^(m',A) _ ^(m'+n',K) I' 

EV^ V /■p(X.n'.K)     '^rn',X ~ Um'+n',K        ^m'+n',/t s 
m'€Z^     2^K,X€K 2^n'eBx,K ^ \xi">-''^) — xC'"'+"''«) I ' b("*''-^) — 2;(m'+"'>«) I' 

(2.15) 
Which leads to the (2.10) immediately. 

We now show that the variational solution u e H^{Q) solves the equilibrium 
equation (2.10). Let v e H^iG) be such that Vm,K = 0 for all K 6 /C except 



'^m+n,! 

12 

K= 1. Then the variational equation leads to 

2-^   Z-j  ^2 |2;(m+n,l) _2;(m,/t)|' U(m+n,l) _2;(m,«)|' 

Z^   2-^  ^2 |a;(TO+n,A) _ 2.(m,l) I' U(m+n,A) _ 3.(m,l) I' 
me2<^ AGX; neBi.A ' '    ' 

Selecting Vm,K such that Vm,K = 0 for all K G /C,m G Z except t;^,i, Due to 
(2.15), we obtain 

AeB«neBA,A ' '    ' 

+     {C^^^Urh^i, Vrh,l) = {fm,l,Vm,l) 

which implies 

Z^    '^ U(m+n,A)_2.(m,l)|2 ^'^     "'"'I       •''"'1 

Similarly, there holds for any m £ Z^ 

Z^    Z^   ^ U(m+n,A) _a;(m,l)|2 ^'^     ""»'!       •'™'l' 

Actually, the above argument can be carried for any K £ JC. Thus, we have 
the equation (2.6). □ 

2.3 Fourier transform for lattice problems 

For grid functions u on the periodic lattice Q in entire spaces, we introduce 
the Fourier transform 

J^{u) = Yl «me'<"^'*> = u{t) (2.16a) 

which is a linear functional over the space C^^i^^) = {u £ C°°{I^)\u{t) is a 
27r-periodic function }, where /'^ = (-7r,7r)''. u{t) is a complex-valued vector 
function, (^^(t))^^^:) and each M„(t) has s components ui{t), 1 < i < s, and 

u,{t) = Y^ Um,J^"'''>,     V« e /C. (2.166) 
meZ'^ 

The inverse Fourier transform is defined as 

J^-\u) = ium)mez<^ (2.17a) 

for any «(t) G C~^(/'*), and 

M^ = (27r)-'^ /" M(t)e-*<'"'*>dt (2.176) 
7/d 
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For lattice problems we are interested in some of specific spaces over Q, 
e.g. L'^iQ), then T{u) e L'^{I'^), which has a stronger topology than the linear 
functional on the space C^^ (/'*). In particular, we are interested in the Fourier 
transform on the spaces Ll{Q),u >0 with the norm 

Lemma 2.5 The Fourier transform realizes isomorphism: L'^{Q) ^ L'^{I'^) and 
I'liO) ^ Hp^ril^)^ where Hpg^{I^) is the subspace of 27r- periodic functions in 
H-'il'^), and 

Ming) = C^^r'Ml^ii^), (2.18a) 

MlliG) = IMUK^Y (2-186) 

Proof. It is easy to verify that 

iifi|il=(,-) = X E E E i<i^*= £ E E E i-^,'''^-"P* 
= i^^r E E E \<f = (2^)ikiii^(a) 

meZ'^ iieKo<e<s 

which implies an isomorphism : L^{Q) ^ L?'{I^) and (2.18a). For u{t) € 
Hper{I^) with integer v>^, there holds 

D"M(t) = \\{imtY'u{t) 
e^i 

for any a = {ai,a2,...,cud) with |Q;| = X)i<i<d^j ^ ^' which leads to 

Pii^^(/'^) - E (1+i^r)i«-i' = ii^iiiK^)- 

For non-integer u > 0, H^^^{I^) is defined as an interpolation space, and (2.18b) 
stands for non-integer v as well. □ 

We now apply Fourier transform to the variational problem (2.10).   We 
introduce a bilinear form B and a linear functional F, namely, 

and 

F{v) = Y,i Cf^^Mt- (2.20) 

Then we have the following lemma. 
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Lemma 2.6 Let u,v e H^iG) and / e L'^{Q), and let u, v, f be their Fourier 
transform, respectively. Then there hold 

B{u,v) = i2Tr)-'^ B{u,v) (2.21a) 

and 
F{v) = {27r)-'^F{v). (2.216) 

Proof. For v = Y^mez" Vme'<'^''> and / = Y.mez^ fme'<"'''>, there holds 

KeK ^^^ KeK ''^'^ n,meZd 

=    (27r)'^E E   < /m,«'^m,« > • 

This leads to (2.21). Similarly we have 

E / (C(«)M«,0Orft = (27r)''E E (C^"^«m,K,^m,.). (2.22) 
K^K ^^^ Keic mez<i 

It is easy to see that 

■ K.eK {n,X)eBK 

l/T3,.(/c,n,A)   "^   {Um,\e'^^  
|ar;(n,A) _2;(K)| 

/•               1     /',,     ,pi<(m-n),t> _ ,,       -,i<m,t>N 

KgJC (n,A)GB„ meZ'' 

U(n,A) _ ^.(K) I / 
m'ez^ ' ' 

— /    \^     V^       V^   -*■ /Tp(K,n,A) (^m+n,A ~ ^m.re)    (^m+n,A ~ '^m,/t) v   ,. 

— 1,2^   2^     2^2^ |a;("'^)-a;(«)|   '   |a;("'^) - a;Wr 
"'^   KGX; (n,A)eB« me2<* ' ' ' 

— C2   "1'*  \^  V^     V^      ^ /-piK^n^X)   (^m+n,A ~ ^m./c) (t'm+n.A ~ '^m,/t)    ^ 
~     \   ")      /  j   /  j      /  j      2^                  |2;(m+n,A) _ 2;(w,«;)| ' |2;(»w+'^iA) _ ;;f;(m,K)|'■ 

rnGZ"* KeK (n,A)eB« ' '    ' 

which together with (2.22) yields (2.21). D 

In order to properly define a variational problem over I^ x KQ,we need to 
introduce new function spaces. Let L'^{KQ) and H^{KQ) be the spaces of grid 
functions on KQ with the following norms 

K.eK K€K \<l<s 

and 
12 

I   II     Il2 
\m\H^{KQ)=2^     2^      Mn.A)_-,(.)|2+II^WQ)- 

Kex;(n,A)eB« ' ' 

L^ [I'^,H^{KQ)) and L^ {I^,L?{KQ)) are spaces furnished with the norms : 
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and 

Lemma 2.7 If / € H^{g), then f{t) € L^ (/^ if'CifQ)), / = 0,1, and 

\\my(i<i,H'iK^)) = c^^nfh'iG) 

Proof. The assertion follows easily from the definition of the spaces. D 

Remark ;g.^The functions u — u{t) in the space H\I'^), / = 0,1 are vector func- 
tions with sq components, and the functions u = u{t,x^'^^) in L^ {I^,L?{KQ)) 

are those defined on a semi-discrete domain I'^ x KQ with s components. Ob- 
viously, the space L^ {l^) coincides with the space L^ {1^,1?{KQ)), and 

But the space H^{I'^) is totally different from the space L^ {I^,H'^{KQ)). 

The latter is related to the connectivity B^, and the former is not. Further- 
more, the space H^{I^) is an isomorphism of the space L\{Q), and the space 
L? (I^,H^{KQ)) is an isomorphism of the space H^{G) according to Lemma 
2.6. 

The bilinear form B in (2.20) and linear functional F in (2.21) are defined 
on L2 (/^ H'iKq)) x L^ (/'*, H'{KQ)) and L^ (l'^, H\KQ)), respectively. The 
energy space E — E (l'^ x KQ) is defined as one equivalent to L^ [l'^, H^{KQ)) 

if C(K) ^ 0, with an energy norm 

We are now able to precisely address the variational problem over the domain 
I'^ X KQ. 

Theorem 2.8 Let B and F be the bilinear form and linear functional on 
L2 {ld,H\KQ)) X L2 [id^H^KQ)) and L^ {I^,H\KQ)), given in (2.19) and 

(2.20), respectively. If / G L^ {I\L'^{KQ)) and C(«) ^ 0,V/c E K, then the 
variational problem 

B {u, v) = Fiv), yv E L^ (I\ H\KQ)) (2.24) 

has a unique solution u e L^ (/**, H^{KQ)), and 

\ML^{IC^,HHKQ)) ^ <^ll/ll(L2(/d,L2(i^Q)))- (2-25) 

Remark 2.3 Combining Theorem 2.8 with Theorem 2.3 and Lemma 2.6, we 
have that the equivalence between the problem (2.10) and the problem (2.24), 
i.e. the equation (2.24) has a unique solution M e L^ [I'^,H^(KQ)) and the 
estimate (2.25) holds for / e (/^ L'^{KQ)) if and only if the problem (2.10) has 
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a unique solution u € H^iG) and the estimate (2.14) holds for / - T~^{f) e 
L^{g), and u = T-\u). 

Applying Fourier transform to the equilibrium Equations (2.6) leads to an 
equilibrium equations over I'^ x Kg 

-    E   E<"-*'l^£SF^ + C<"'fi. = /«.V'<€K. (2.26) 

Then we have a theorem indicating the relation between the solution of (2.24) 
and the solution of (2.26). 

Theorem 2.9 If w G L^ {l^, H^{KQ)) is the solution of the variational equa- 
tion (2.24) with f e L"^ [I'^,L^{KQ)), then it satisfies the equilibrium equa- 
tion (2.26). Vice versa, ii u e L^ {I^,H^{KQ)) solves the equilibrium equa- 

tion (2.26) with f £ L^ [1^,1"^(Kg)), then it satisfies the variational equation 
(2.24). 

Proof. The proof is analogous to that for Theorem 2.3. D 

2.4 Presentation Formula of Solutions 

The equation (2.26) gives a system of linear equations 

a{t)uit) = m (2.27) 

where u = (w^,MJ • • • '"^) > and UK = {u\,...u^^) ,K e IC. u and / are vectors 
with sq components, and <T is a block matrix 

Each of block a^x is a s x s matrix. It follows from (2.26) that 

(TK,K=  XI  (1 - e-^<"'*>) E^'^'"'") + C(''\ (2.28a) 
n€B, KK 

0-„,A = -   Y^   g-i<n,t>E(«,n,A)_ (2.286) 

Lemma 2.10 The matrix cr has following properties : 

(1) <T is a Hermitian matrix and Hermitian block matrix; 

(2) a^x{-t) = (TxAtV for A, K G X:, and <T{-t) = (r{tf; 

(3) a{t) is a positive definite matrix for all t e I*^ li C^'^^ ^ 0 for K e /C; 

. (4) If C^") = 0, a{t) is a semi-positive definite matrix for all i G /"^ and is 
a positive definite matrix for all t e I^ for all t e I^ except i = 0. 

Proof 
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(l)It follows from (2.28b) and (2.4) - (2.5) that for K / A 

^ _     _   y^   g-i<n,t>-g(K,n,A) _ _    V~^   gi<-n,t>-g(K,n,A) 

n€B^x ' neBx,K 

—    _    y^    gJ<m,t>-g(K,-m,A) _ _    y^    gi<m,t>g(A,m,K) _ ^ 

TneBx,K meBx,K 

For /c = A, we shall write 
Bft,K - B~^ U Bj« 

where 
^«K = {n = (ni,n2.. .n^) e B«« | n^ > 0,1 < / < d} 

-SK« = {n = (ni, ns • • • n^) e B„„ | n^ < 0,1 < / < d} 

Due to the definition (2.3) of BK,X, 0 ^ B«;,«, which implies i2+„ n R~,^ =p. By 
the property (2.4), n e B^,^ if and only if -n G B~„. Therefore 

o-^^, = €('=)+4 5] sin^^y ^E^"'"''') (2.29) 
neBt,K 

cr^^K. is a real matrix. Thus we have shown that a is Hermitian block matrix. 
Note that C^*^) and E^"'"'^) are symmetric matrices, which implies the (T is a 
Hermitian matrix as well. 

(2) For A 71^ K, by the properties (2.4) and 
(_f\     _ _ V^ p-i<n-t>j?{K,n,X) _ _ V^ -i<-n,t>-p^{K,n,\) 

(TKM   f')   —     Z^neB^^x ^ rj -     2^-neBx,^ ^ ^ 

It is trivial by (2.29) that <T„,K(t) = <T„,«(-t), VK e K. Since each block <TA,«(t) 
is symmetric, we have <T(—f) = <T(t)^. 

(3) Let h{t) = (b{t)\ G L^{I'^,H^{KQ), and let b e J^-i (^6(t)). Then, by 

Lemma 2.6, b G H^iQ), and 

f {a{t)b{t),b{t))dt = B{b,b) 

meZ^ neKq {n,X)eBK 

+ J2{C^'"^bm+^^bm+.) > di\b\l,^g^+d2\\b\\l2^g) 
KEK 

where di and ^2 are given in (2.13). Note that 

\\b?mig)= [ m\UKq)dt, ||ft||i.(,) = / \m\\lHKc,)dt, 
Jjd Jjd 

which implies that 

j^{amt)Mt))dt > d,j^^ m%HKq)dt + d2J^^ \m\\hiKq)dt. 
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and that for almost every t E I^ 

{a{t)b{t):b{t)) > rfiiKopHMi^Q)+^2ii6(i)iii2(^^) > d2\m\\i.^^^y 

with ^2 > 0. Note that cr{t) is a Hermitian matrix and analytic in t. Hence 
(T{t) is positive definite for all t E I'^. 

If C^*^) = 0 for all KEK, there holds 

Ht)6(t),6(t))>di|6(t)||x(^^)>0. 

cr{t) is semi-positive definite for all t G I^. By [?], det(<T(t)) = 0 if and only if 
i = 0, which implies that o-(t) is positive definite if i 7^ 0. □ 

In terms of o-~^(t),we now can derive a representation formula of the solution 
the lattice problem. 

Theorem 2.11 If C^ ^ 0 for K € K; and / G L'^{g), the solution of the 
lattice problem (2.6) can be represented by 

u = T-^((T-\t)f{t)^ (2.30a) 

where / = .F(/) £ L'^{I'^), with 

u^ = {2n)-'^ [ a-\t)f{t)e-'<'^''>dt (2.306) 

and 

Proof. Since <T(t) is positive definite for all t e 7*^ if C^'^) ^ 0, 

is the solution of the equation (2.26). By Theorem 2.8, it solves the variational 
equation (2.24), and 

\ML^(l'i,HHKQ))  ^ ^ll/llL2(/d,L2(ii:Q))- 

Let u = J^~^ («(*))• Then u G H^iG) and solves the equation (2.6), and 

<    C'll/llL2(/^L2(irp))- 

D 

If C(") = 0 for all K e JC, then for any b £ E(KQ) Since (T(t) is a positive 
definite matrix for t e I^ and t 7^ 0, a-~^{t) exists for alH / 0 and 

uit) = a-\t)m. 
o-~^{t) is singular at the origin, and u{t) has pole at t = 0 in general if f{t) G 
L^(/'')(i.e. / G L'^iG)- Therefore, the integral in (2.30) may diverge due to the 
singularity at the origin. To make the integral converge, we have to impose 
additional conditions on f{t) which are able to absorb the singualrity of cr at 
the origin.  For instnace, / G Hp^^ (/'') with f > 1 and vanishing at t = 0, 
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which is equivalent to / € Ll(Q) with u >1 and X^^^^d Yl^eK /".« ~ ^- Based 
on the analysis on the lattice probloems without absolute terms in next section, 
the following theorem on the existence and uniquness solution and validation 
of the representation formula can be proved. 

Theorem 2.12 If / G Ll{g) with i/ > 1 for rf = 2 and z/ = 1 for d = 1,3, 
^^'^ J2m€Zd J^KeK fn,K = 0, then the lattice problem (2.6) with C^"^ = 0 has 
solution, which can be representd by the formula (2.30) and 

hhHg) = \\:F-' {critr'm) yrio) < C||/|k.^^(,.) - WfWLUg). 

2.5 Two Examples Of Lattice Problems 

We will analyze two concrete lattice problems. One is one-dimensional, and 
another is two-dimensional. Although the structures of these two problems 
are simple, the analysis we carry out here can be generalized to other lattice 
problems. 

A lattice problem in one dimension 

Suppose elastic rode of two different materials with half-unit length and in- 
tersection area A are connected by hinges at nodes, shown in Fig. 2.1. The 
master cell Q = [0,1), containing two nodes X^'^\K G IC — {1,2}. The nodes 
in cells Qm iov m e Z are denoted by X^"''''\K= 1,2. Let A^ = {x^'^^''\m G 
Z,K = 1,2} denote the global mesh containing all nodes. Suppose that the 
rods are furnished with springs at each node. By Ei and E2 we denote the 
Young's modulus of the rode, and by 4Ci and 4C2, the Hook's constant of the 
springs, respectively. A lattice Q denotes such a structure, connectivity and 
periodic translation. 

Equilibrium Equation 

Let Uj and 4/j denotes the displacement of the rods and external force at the 
nodes Xj, we have the following equilibrium equations 

-A{Ei{Um,2 - Ujn,l) + £^2(Mm,l " «m-l,2)} + CiUm,l     = /m,l 
-A{E2{Um+l,l - Um,2) + Ei{Um,2 " Um,l)} + C2Mm,2     = fm,2 

Variational Equation 

The corresponding variational equation 

B{u,v) = F(v). 

where u, v and / are functions defined on Q, with the bilinear form 

B{U, V) =    J2mezi'^rn,2 " Um,l)AEi{Vm,2 " Mm,l) + C'lU^.l^m,! 
+    Y^m€z('^rn+l,l " Um,2)AE2{Vm+l,l " Vm,2) + C2Um,2Vm,2 

(2.31) 

and the linear functional 

■meZ 3=1,2 
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The energy space E{Q) contains functions on Q with finite energy E{u), 

E{U) = IB{U, U) =     I J2meZ AEi iUm,2 - Um,lf + Ci<,i 

The spaces H^{Q) and L^{G) are furnished with the norms 

meZ 

and 

Il«lli2(g) = XI l«m,lP + |«m,2p. 
meZ 

Hence, the energy norm ||M||£;(e) = E{uyi'^ is equivalent to the norm of the 
space H^{Q) if C\-\- C2 7^ 0, and equivalent to the semi-norm of the space 
H\G)iiCi + C2 = Q. 

Fourier transform 

For / = /(m), m £ Z,we introduce the Fourier transform 

^(/) = />) = ^f{m)e'^\te I = (-7r,7r) 
n 

which realizes an isomorphism between L'^{Q) and L^{I), and between Ll{Q) 
and HYI), where the space Ll{Q) is defined as a weighted space with a weighted 
Z/^-norm 

mez 

The inverse Fourier transform gives / = J^~^{f) with 

f{m) = ^lj{t)e-'"^'dt 

Applying the Fourier transform to the equations (2.31), we obtain 

A{Ei + E2)ui - AiEi + E2e'')u2 + CiUi   = /i 
-A{Ei + E2e-'^)ui + A{Ei + ^2)^2 + C2W2   = h 

The corresponding matrix 

(2.32) 

a{t) _ f   En 
- \ -E2 

—E\2 

21    -E'22 

with En = A{Ei + E2) + Ci, £^22 = A{Ei + E2) + C2, E12 = ^(£^1 + ^26^*) and 
£'21 = A{Ei + £^2e~'*). o-(t) is a Hermit matrix, and 

det(o-) = AA^EiE2sinH/2 + A(Ci + C2){Ei + £^2) + C'iC2. 

Obviously, if Ci + C2 > 0, <T(t) is positive definite for t G /, (T~^{t) exists, 

_i/.N _      1      ( E02   E21 \ 

^^^ ~ detia) \ Ei2   Eo, ) ' 

Representation Formula 
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If Ci + C2 > 0, the solution of equation (2.32) can be given by 

Therefore, the solution of the problem (2.31) can be represented as 

1<£<2 

with 
^hlit)     = det{im^02,   02,2(t) = detiim^Ol, 
*^1.2(i)     = det(i(t))^21,   (l>2,l{t) = det(^(i))^ll- 

If Ci = C2 = 0, <T(t) is positive definite for t e / except t = 0, and has a 
pole of order 2 at t = 0. If \f{t)\ = 0(|t|") with a > 1/2 near the origin, then 
u has a pole of order 1 at t = 0. Hence u ^ L^{I, L^{KQ)), but 

{a{t)u,u) = {ar-'{t)fj)< 00 

which implies that ||M||£;(£;) < 00 if / G LKG) and Y!,mezJ2Keicfm,K - 0. 
Hence the problem (2.31) with Ci = C2 = 0" has a unique solution in E{G) up 
to a constant. The argument above based on Fourier transform can be utilized 
for periodic lattice problems in entire spaces without absolute terms [?, 15], 
and leads to a result coinciding with Theorem 2.16. 

A lattice problem in two dimensions 

Suppose elastic rods with intersection area A and unit length are connected 
by hinges at nodes Xkj = {k,j) E Z"^, periodically, shown in Fig. 2.2. The 
master cell Q = [0,1)^, in which there is only one node x^^\ and the index set 
JC = {1}. The mash M = Um={k,j)ez^x^"^'^^ = U(k,j)ez^Xkj = li(k,j)ez^{k,j)- 
We will use Xk,j to denote the nodes in stead of x^'^'^\ Suppose that the 
rods are furnished with springs at each node. By E and C = diag{C,C), 
we denote the Young's modulus of the rods, and the Hook's constant of the 
springs, respectively. A lattice Q in two dimensions denotes such a structure, 
connectivity and periodicity. 

Equilibrium Equation 
Let Uk,j = (u^kj, Mfcj) and fkj = (/^j, 4^) be the displacement vector and ex- 
ternal force vector at the node Xk,j = {k,j). We have the following Equilibrium 
equation 

AE(-Ai«g. + Ai«2,,.)   +'^AE E.=i,2(-Ai2«g + Ai2«£ij-i) 
,(1) ^ fW 
^^j     •"''^ .- ... (2.33) 

A£;(-A2<] + A2<J_i)   ^AE E.=i,2(-Ai2<J- + ^12U^lj-l) 

where 

Variational Equation 
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The corresponding variational equation is 

B{u,v) = F{v) 

where the linear functional F and the bilinear form B are defined as      ^ 

and 
B{u, v)   = Eik,j)ez^ {AiUk,jfEAiVk,j + {A2Uk,jfBA2Vk,j 

mAi2Uk,jfE*Ai2Uk,j + CuljVkj 

where E = AEI and E* = AEhh^, X is an identity 2x2 matrix, and b is a 
vector = (cosj, sin|)^. 

Fourier Transform 

We introduce the Fourier transform for functions / = {fk,j, i^d) ^ ^^} 

Hf) = m =     E    /fcje'^'*^^'*^^ i = (*!' *2) e i-TT, 7r)2 

which leads to an equation in matrix form 

(T{t)u{t) = fit) (2.34) 

where 

<r{t) =(''''   ""'') 

an   = AE{Asin^'-^ + V2sm'^^-^) + C 
ai2   =a2i = -V2AEsin''^i^ 
(722   =^^(4sm2| + V2sm2^^) + C 

a{t) is a real and symmetric matrix, and 

det{a) =   A2E2(16sm2|-sm2| + 4^/2sm2i4^(sm2| + sm^k)) 
+2yl£;C(2sm2k + 2sm2| + v^sm^^^) + C\ 

If C > 0, the matrix cr"^(2;) is analytic in a strip T,s = {z : \Imz\ < 6} with 
5 > 0, and cr{t) is positive definite for t G (-■TT, TT)^, and 

with 

"'^^^ " dei(<T) V 
(722       —Cr21 

-Cri2       (Tu 

Representation Formula 

If C > 0, then a{t) is positive definite, then we a solution of the equation 
(2.34) 

{u('\t),u('\t)r = a-\t)iP{t),P\t)r. 
Then solution of the equation (2.33) can be represented as 

(uW,«(2))T    = T-HcT-\t){f('\t)J('\t)r) 

= ^-HEi<.<2 M^Ht), Ei<.<2 h,ePit)r- 
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with 
^lAt) =^^{AE{Asin''i + V2sin'i^)+C), 
0i,2W =<l>2,i{t) = ^)V2AEsin'^^, 

^2,2it) = l^)iAE{isin''i + V2sin'^) + C). 

If C = 0, (T{t) is positive definite for t e P except i = 0 and has a pole 
of order 2 at t = 0. If \f{t)\ = 0{\t\°') with a > 0 near the origin, then the 
equation (2.34) has a solution u{t) 0 P{I, L'^{KQ)), and has a pole of order 1 
at t = 0. It can be shown that 

{<T{t)u{t), uit)) = {a-\t)f{t), m < oo 

which implies that \\u\\E{g) < oo if / € L?(^) and Xlme22 Z)«ex; fm,K = 0 and 
that the problem (2.33) with C = 0 has a unique solution in E{Q) up to a 
constant. This coincides with Theorem 2.16 

3. UNSTRUCTURED LATTICES IN ENTIRE SPACES 

3.1 Non-periodic lattices in entire spaces 

A lattices ^ in R*^, d = 1,2,3 is called unstructured if it is not periodic or 
quasi-periodic. It is comprised of countable number of nodes distributed in 
entire spaces, which are connected by elastic rods. Let K = {xk, k E Af = 
{1,2. ...}} denote the set of nodes, and let b^'''^) be elastic rod connecting the 
nodes Xk and xi with the Young's modules £'(*^'^) and intersect area A. The 
distribution and connection of the nodes can be periodic or non-periodic. The 
assumptions on the connectivity and rigidity for periodic lattices in previous 
section should remain the same, but given in the non-periodic setting. The 
assumption on connectivity is now decribed as follows: 

(CM) Each node is connected to others by the rods,at least one node and at 
most M nodes. 

(C".2) The length of rods are uniformly bounded from below by 6i and from 
above by b2, i.e. for any Xk and X£ which are connected, there holds 

h < \xk - xe\ < 62- 

(C".3) Any two nodes Xk and xe, k,£ E Af are linked by a chain Lk/. x[' — 
Xk -^ xp^^ -> xf'^^ -)■••• -^ x'^y^ = xe such that a;f'^^ is connected to 

S+?,l <t<s-l, and X. 

\xk -xe\<    '^    |a;J+f - a;f'^^1 < vl^k - xe\. 
l<t<s-l 

There may be several chains connecting the nodes Xk and xe, Lk/ denotes 
always the shortest one. In particular, s = 1 if a;fc and Xi are connected. 

To describe effectively the connection of the nodes, we introduce a set of 
indices 

)Ck = {^ ^ Af\x£ is connected to Xk} 
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which together with the assumption (C.1)-(C.3) gives the connectivity of a 
lattice. The nodes {xk, k e Af} and the connectivity of the nodes uniquely 
characterize the structure of a lattice denoted by ^ = Q{K, K,k). 

For sake of convenience, we partition the entire space R'' into cells Qm, m = 
{mi,m2,.. .,mci) G Z"^ such that they are disjointed and Hmez-^Qm = R-''- 
Here Z = {0, ±1, ±2...} as in Section 2_. Qm is an interval in R^ a polygon 
in R^, and a polyhedron in R^. Qm H Qn is avertex, or an edge, or a face, 
or empty set for any n,m e Af,n y^ m, where Qm denotes the closure of Qm- 
Furthermore, a partition of R** is assumed to satisfy 

(Q.l) Vertices of Qm are nodes of Q, and edges of Qm are elastic rods; 

(Q.2) Every node must be a vertex of a cell, or is located on an edge of a cell, 
or in interior of a cell, and each node is shared by at most rig cells; 

(Q.3) The diameter of cells is uniformly bounded, 

dq < diag{Qm) < dq; 

(Q.4) The number Qm of nodes in each Qm is uniformly bounded by q; 

(Q.5) Each node in a cell is connected to at least one node in the same cell; 

(Q.6) Each cell is rigid. According to [1], there is a sufficient condition for the 
rigidity nof a cell, 

em > dqm-d{d+l)/2 

where e^ be the number of rods in the cell Qm, which leads to rigidity of 
lattices. 

We may introduce a local number (m, K), K, € Mm = {1)2,..., Qm} for the 
node Xk in the cell Qm such that Xk = x^"^''^^ and \xk\^ = \m\^ = Yli<i<d I'^jP- 
The connection of nodes can described locally described by 

B^ = {(n, A) I a;("+'"'^) is connected to x^"''''^. 

Proposition 3.1. If Xk = x^'^''^^ and X£ = x^'^''^^ are in the same cell Qm, the 

number of nodes on the chain Lk/ is not more than ^-^. 

Proof. Due to (C".3), there is a chain Lk,e linking the nodes Xk and xi : o;^ ^ = 
^k -^ xle -> xl^ ->• > Xk^f = Xi. By (C.2),(C.3),and (Q.3), there holds 

sh<    Y.   \xfn-^f''\<nW-Xi\<rjdQ, 
l<t<s-\ 

which leads to the assertion of the proposition. D 

Let Uk = {ul, «|,..., w|)^ be a vector function on the nodes {xk, k G A/"}. As 
in previous section, we shall deal with the problems with s = lforl<d<3 
and the truss problems with non-rigid joint in one, two and three dimensions 
for which s = d = 1,2,3. We furnish the rods with springs in the axis directions 
at each node with Hook's coefficients denoted by diagonal matrices C*, A; G A/". 
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We assume that the ratio of the length of the rods and the intersect area A of 
rods >> 1. 

If external forces exert on the rods at the nodes Xk, denoted hy f = {fk,k e 
Af}, we have an equilibrium equation for the elastic rod problem 

where 

and 
\xe-Xk\'^ Ixi-Xkl"^ 

2               V^         2 

keJ^ 

and 
o                         2                           o 

where ! u jji{^) is the semi-norm, 

C'' = dm^(Cf,C|,...,C%    C^ > 0,1 <l<d. 

Let -ff^(^) and L^{Q) be the discrete Sobolev spaces with the norms 

(3.2) 

(3.3a) 

(3.36) 

Similarly, the corresponding variational equation can be derived 

B{u, v) = F{v)yv e H\g) (3.4) 

where 

B{%v) = 5] Ij] l(EMfi^.fi::^> + (CV,».>|       (3.5a) 

is a bilinear form on H'^{G) x H^{Q), and 

fceA/" 

is a linear functional on H^{Q)- 

The energy of the lattice Q is defined as 

Giu) = Biu,u) = ^{Y: ^(E^^'^^i^ffy, i^f^) + (C^«.,«.)}   (3-6) 
fcg^ eeic, ^ 1^^    ^*l   1^^    ^*=l 

The energy space denoted by E{<d) is the family of all grid functions M on ^ 
with finite energy G{u) defined in (3.6), and Giuf-I"^ is referred as the energy 
norm ||M||£;(e)- The assumption (Q.6) leads to the rigidity of lattices, and 

if and only if M is a rigid body motion. 



26 

At the node Xk = x^"*'**), we may write Uk = Um,K, C*= = C^"*'''), fk = fm,^, 
etc. Due to the disjointedness of cells, we have the following proposition which 
allows us to write the norms either in global numbering or in local numbering. 

Proposition 3.2 For u e L'^{G), v e H^{Q) and w G E{g), there hold, 
respectively, 

i*w) = EE E 
and 

\\w\ 2 — l^^ V V /■p(k.e)    '^n,X      Wm,K Wn,X      Wm,K    v 
E{g)     — 2 l^m^M l^K^Mm 2^{n,X)e!C^ \^ M'^^) - a;(»n,«) I' b(".-^) - 2;(m,K) I' 

As analogue of the Theorem 2.3, we have the existenc and uniqueness for 
the non-structured lattice problems (3.1). 

Theorem 3.3 The variational form B on H^{G) x H'^iG) given in (3.6) is 
continuous and coercive if C*' ^ 0 in the sense that there exists a node Xk„ = 
j.im,Km) jjj ga^gjj f.Qi\ g^ch that C*''" ^ 0, and the problem (3.1) has a unique 
solution u G H'^iG). 

Proof The proof is analogous to that for periodic lattice problem (2.6). For 
the detail in the non-periodic setting, we refer to [?]. 

3.3 Problems Without Absolute Terms 

The proof for the existence and uniqueness of solutions for non-periodic 
lattices with absolute terms is similar to those for periodic lattices which we 
have invetigated intensively. We should concentrate on the problem of non- 
periodic lattices without absolute terms in this section for which the Fourier 
transform can not be used. Fourier transform is an extremely powerful tool for 
periodic lattices with and without absolute terms. It is worth to pointing out 
that in practical applications, problems of structured or unstructured lattices 
are associated with no absolute term, i.e. C^*') = 0 for all k E M. We need to 
develop a new approach for analysis of non-periodic lattices without absolute 
terms,which is extremely important practically and theoretically 

We seek u e E{G) such that 

B{u,v) = F{v)\/veE{G) (3.8) 

where 

Bin, v) = Ty: liE^^''^^^^^, T^^^^) (3.9a) 

and 
Fiv) = {f,v)g = '£{fk,Vk). (3.96) 

keJ\r 
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For the problem (3.8), the energy space E{Q) does not coincide the H^{G), 
and E{G) is not embedded in L^{Q)- Actually, the "energy norm" ||w||£;(e) is 
equivalent to the semi-norm |M|Hi(e)- Consequently, the solution of the lattice 
problem is not unique and may not exist in H^{Q). Hence we have to modify 
the space H^{Q), such that the solution exists uniquely in modified space 
H^{G) with the norm equivalent to semi-norm of H^{G)- 

The modification of the spaces and the equivalence of the norms for one 
dimension is different from those for two and three dimensions. We shall 
address them separately. To this end, we define a weighted space Lli^{G) for 
all dimensions with the norm 

= Emes^ J:.,J,^ (1 + \m\r ^og^^i^ + H) \um,.f        ^ •    ^ 

where u and a are real numbers. We shall write LIQ{G) = L'^{G),LIQ{G) = 
LliG). Obviously, Ll,iG) 2 L\G) liv.a < 0, and Ll,{G) C L\G) iiv,a> 0. 

3.3.1 Problems without absolute terms in one dimension 

Lemma 3.4 liv E E{G), and VQ = 0, then 

MLUIS) < C\v\HHgy (3.11) 

Proof. Due to the proposition 3.2, we shall use local numbering for the nodes. 
First, suppose that x^'^''^^ and x^'^'^^ in the cell Qm are always connected for 
any K G N'm with K^I. Then 

I        |2 / I        P 

Y!imeZ SKGJV™ Y^r^     ~     ^ I ^'"^•^ EK€K y^rn^K, " Vm,l)   + J^meZ -^ _(_'^2 

(3.12) 

If there are some K € Afm such that x^"*'") and x^"^'^^ are not connected, 
there always exists by (C".3) a chain Lm,i,m,K ■ x^""'^^ = x^""''^'^ -^ 2;("2>>2) ^ 
^{ns,Xs) — 3;("i,«)^ and due to Proposition 3.1 

m^Z meZ KeM'm (n,A)eB^ 

(3.13) 
Hence, (3.12) holds for the cases that x^'^''^^ and x^'^'^^ are connected or not 
connected. 

Let Wjn = Vm,i- It is suflftcient to show that 

oo     I        |2 00 

m=l m=l 
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We assume that VQ = ^0,1 = Wo = 0. We have by Cauchy inequality 

00      I        |2 
\Wm\ 

+ rrr 
< 

< 

00 - / m \ ■^ 

m=l \J=1 / 

00 - / m \    / m 

m=l \j=l /      \j=:l 

where e G (0,1), arbitrary. Note that 

which implies that 

00 1_B- JW 

m=l m=l j=l m=l 
00 m 

m=j 
'. 1 + m2 

For i < 1, there holds 

m=] m=j J 

which leads to (3.14). Therefore, there holds 

00     I |2 00 
EPm.l      ^ n\~^ I |2 

m=l fra=:l 

Similarly, it is true for m < 0. Therefore we have 

\Vm,l' Eif^^^EKi-^-Mi'- (3.15) 
mez mez 

Note that Vm,i and Um-1,1 may be connected or not connected, the argument 
for (3.13) can be carried once more here. Hence, we have 

^ \Vm,l - Vm-l,lf < C ^   ^       Y^      \Vm+n,X-Vm,Kf <C\v\%i^g^, 

mez K€Afm (n,A)eB™ mez 

D which together with (3.12) and (3.15) leads to (3.11). 

Theorem 3.5 If / G Ll{G) and Y^keM fk = 0> then for any v e E{g) it holds 
that 

\{f,v)g\ = ^fkVk 

keM" 

< 4f\\Ll{g)\v\HHg) (3.16) 
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Proof.  Note that L^{Q) C Lj{Q) and the sum Ylk^f/fk exists.  By Lemma 
3.4 we have 

\{Mg\ = '^fkVk 
k&M 

J^ fk {Vk - Vo) 
keM 

1/2   / , ,2\ 1/2 

<   C'll/llLf(e)I^Ui(e)- 
D 

We introduce the space H^{G) with the norm 

ll«llFi(6) = {ll«lliij(e) +1^1^1(5)}    ' 

and a quotient space 

with norm 

where Vr is the set of all constant functions on Q, which is a subspace of Hi(^). 
Then, by Lemma 3.4 , 

hUng) - Mm{g) = IklU(e)- 
In the framework of the space H^iG) and H^{G) we are addressing the 

existence and uniqueness of the solution of the problem (3.8) with d—1. 

Theorem 3.6 If / e Lf(a) and EiteAr/fc = 0' t^^n the problem (3.8) with 
d=l has a solution u € E{Q), and 

\u\mig) < CWfWLiigy (3.17) 

The solution is unique up to a constant. 

Proof. Due to the equivalence between |w|Hi(e) and ||M 11^^1(5) 

\B{U,V)\     <     C\u\H^^g)\v\H^g) 

<   Ch\\H^(g)\HH{g) 

and 

By Theorem 3.5, it holds that 

By Lax-Milgram Theorem, the variational problem has a unique solution u G 
H\g), and 

hUng) < c\\f\\q(G), 
which implies (3.17) and the uniqueness of the solution in E{Q) up to a con- 
stant. 



30 

3.3.2 Problems without absolute terms in two dimensions 

With suitable spaces Lla{Q) and H'^{Q) we are able to address properly the 
problem (3.8) without absolute term in two dimensions. The next theorem is 
essential to the existence and uniqueness of solutions. 

Theorem 3.7 If / e L\i{Q), and Y^keM h = 0> then for any v € E{G), 

l(/,^)d<C||/|U?,,(a)l^k(e) (3.18) 

with constant C independent of / and v. 

The theorem is parallel to Theorem 3.6 for one dimension, but the proof for 
two dimensions needs some embedding results for functions in R^, which is 
contained in Appendix A. In order to use these results, we have to extend by 
linear interpolation grid functions on Q to whole space R^. 

Let Km be a set of nodes which are located in Qm where Qm is the closure 
of the cell Qm- Obviously, a;^™''') G Km for all K, £ JC, and some nodes a;('^'")_in 
neighboring cells are included as well. Let K^, K^^ and K^ be subsets of Km 
for nodes at vertices, on edges (not including vertices) and in the interior of 
Qm, respectively. Then Km = Kl^LiK^UK^,. 

By Tm = {ti,i = 1,2, ...,r} , we denote a triangular partition of Qm 
satisfying the following conditions: 

{T.l)Vrrr, = ^m, where ¥%„ denote a set of all vertices of the partition 7^; 

(T.2) The partition is regular, i.e. U n tj for iy^jisa. vertex, or a whole edge, 
or empty. 

(a) Initial Partition T (b) Partition T^' (c) Partition T„2='^, 

Fig. 3.1 Triangular partition of cell Qm 

The construction of such a partition can be started with an initial partition 
72 ofQm for which (T.2) holds and Vro = K^, shown in Fig. 3.1(a). For the 
partition 7^ there may be some nodes in the interior of triangles Us. If a node 
^(n,K) g j^i^ jg jj^ ^Yie interior of U, we divide ti into three smaller triangles by 
connecting a;^"'") to four vertices of U, shown in Fig. 3.1(b). Repeating the 
process for each node in the interiors of all simplices, we have a partition 7^ 
of Qm for which (T.2) holds and no node a;^"'") G Km is located in the interiors 
of all triangles. Note that nodes x^"''''^ ^ -^m ^ K^ may be located on an edge 
of ti in the partition 7^. Suppose there are I nodes are on an (open)edge of a 
triangle ti, we divide the triangle ti into / + 1 smaller triangles by connecting 
these / nodes and the vertex opposite to the edge, shown in Fig.  3.1(c).  If 
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this edge is shared by a pair of triangles U and tj, we divide each of these two 
triangles into I +1 smaller triangles. Applying this process to each edge of the 
triangles will results in a triangular partition Tm satisfying (T.l) and (T.2). 

The triangular partition Tm of the cell Qm can be individually carried out, 
a combination of the triangular partitions Tm for all m e Z"^ forms a partition 
T of R^, and Vf = Limez^Km = ^keJ^^k where V7- is the set of all vertices of 
r. 

Based on such a partition T, we can extend a grid function M on ^ to a 
function u{x) for a; € R^ by a linear interpolation. Let (l)i{x) be a linear 
function in U such that (^j(a;^"'''^) = «„,« at all vertices of tj, and let ■0m(2^) be 
a piecewise linear function in Qm such that tjjmi^) = <f>i{x) IT^ U,! < i < T. 
Then, there holds 

Let u{x) — tpmi.^) in Qm for all m e Z"^.   Then, u{x) is continuous and 
piecewise linear function in R^, and 

\^\]iHR^)<CY.   E        E       K,.-ui,x?. (3.19) 

Note that if the vertices a;("'") and ar^''-^^ of U in Qm are not connected, due 
to (C".2) and Proposition 3.1, they are linked by the shortest chain Ln,K,i,x '■ 
^(ni.Ai) _ ^in,K) _^ 2.(n2,A2)... _^ ^-K.A^) _ ^a,A) ^^^]^ ^ uniformly bounded, 

where the node a;^"'"'^^^ is connected to the node x^'^^+^'^^+^'> for 1 < j < s - 1. 
Hence, there holds 

\Un,K - M^AI < C*     E     l""j'^i ~ «ni+i,Aj+i I 
i<i<s-i 

which with (3.19) implies that 

\u\m(R2) ^ C' E   E     E    !'"'"■« ~ ^n+m,x\^- (3.20) 
me22 KeA/'m (n,A)eB™ 

Theorem 3.8 Let M be a grid function on the lattice Q, and let u be the 
extension of M by a linear interpolation, described as above. Then |w|ffi(e) — 
|M|ffi(R2), and ||M||L2^(a) — ||W||L2_^(R2), i.e. there are two positive constants 0% 
and C2 independent of u and u such that 

Ci\u\H^g) < |M|jyl(R2) < C2\u\Hi(g) (3.21) 

and 

ClWuhl^^g) < ||M|U2_,(R2) < C2||M|U2_,(g) (3.22) 
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Proof. Since u{x) is a piecewise linear function interpolating the grid function 
u at each node x^'^''^\ and for x G Qm, 

(1 + a;2)''log2'^(l + \x\) ^ (1 + \m\''Y log^'il + \m\), 

it holds that 

ll^(^)lliB,.(Qn.) =   E  (i + HYiog^'^(i + H)K.p 

which implies (3.22). 

The second inequality of (3.21) follows from (3.20). It suffices to show the 
first inequality of (3.16). Suppose that x^"*'") and 3;^"+'"''^) are connected. If 
^{m,K) g^j^(j ^(n+m,A) ^^^ jj^ ^^le Cell Qm, it is easy to see that 

\Um,K - Un+m,x\ < C\ljJrn\m{Qm)- (3-23) 

We next consider two connected nodes x^'^''^^ and x^'^^'^'^^ which are located 
in different cells Qm and Qn- Let QnjA < j < -^ be a sequence of cells with 
Qm = Qm and Qnj = Qn such that Q^^. is neighboring to Qnj+i- Due to the 
assumption (C".3), J is uniformly bounded. Select a common vertex x^^j'^^^ of 
the cell Qnj and Quj+iA <j<J — ^- Therefore, we have 

|'^m,K "~ '^n+m,x\     S Pm,K ~ ''^ni,Ai | + \'^m+n,X ~ '^nj,Xj\ 
(3.24) 

Since x^'^^''^^^ and x^^-'+^'-'^J+i) are in the same cell Qnj+i, we have for 1 < j < 
J-2 

\Unj,Xj - UnJ+^^J+^ \ < CH^nj+i \m{Qn^+,), {3.25a) 

Similarly, there hold 

\Um,K - «ni,Ai| < C\lpm\HHQm)^ (3.256) 

and 
\Um+n,X - Unj_,,Xj_, \ < C\^pn\H^Qn)■ (3.25c) 

A combination of (3.24) and (3.25) leads to 

\Um,K - Un+m,x\ < C   ^   I^Uj Iff!(«„.)• (3.26) 

i<J<J 

The first inequality of (3.21) follows easily from (3.23) and (3.26). D 

Lemma 3.9 For u G H^{Q) there exists a constant a such that 

11^ - «lliii,_i(G) ^ C\u\Hi{g) (3.27) 

Proof Let u{x) be the extension described above and a — f^u{x)dx where 
T = {xeR'^\\x\ = 2}. By Theorem A.l there holds 

\u- af dx+       ."21  idx < C|w|^i(R2) 
Js Jsc \x\^log^\x\ ^   ' 
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where 5 = {a; G R^ | |a;| < 2}, 5^= = R^ \ 5. This estimation and Theorem 3.8 
lead to (3.27). □ 

We are now able to prove Theorem 3.7. 

Proof of Theorem 3.7 Let v{x) be the extension of v, and a = J^v{x)dx 
where T = {a; G R^ | |a;| = 2}. Since YlkeJ^ fk = 0, we have by Theorem 3.8 
and Lemma 3.9 

\{f,v)g\   =   \{f,v-a)g\ 
< C'll/llLf,i(e)lk-«llL?.,__,(e) 

< C'll/IL?,i(e)P-«lliii,_i(R2) 

<     C\\f\\Ll^^g)\v\Hiig). 

D 

We are able to address the existence and uniqueness of the solution of the 
problem (3.1) with d = 2 in the energy space E(Q). 

Theorem 3.10 If / G L?,i(^) and EfeeA^/fc = 0' *hen the problem (3.1) with 
d = 2 has a solution u G E{Q), and the 

HH^G) < C||/|U?,(e)- (3.28) 
The solution is unique in E{G) up to a constant for s = 1 and a rigid body 
motion for s = d = 2. 

Proof By the property of the bilinear form B 

\B{u,v)\   <   C\\u\\Eig)\\v\\Eig) 

and 
B{U,U) = ||M|||(e), 

B is continuous. Due to Theorem 3.7, / G Lj^iiQ) with YlkeMfk = 0 defines 
a linear functional on £'(^), and 

F{v) = \{f,v)g\ < C\\f\y_^_^^g)\v\H^ig) < C\\f\\r.l^^_^^g)\\v\\Eig). 

If a function with zero strain energy is regarded as "zero" in E{Q), the energy 
space E{Q) is a Hilbert space. By Lax-Milgram Theorem, there exists a unique 
solution u e E{Q) such that 

hhig) < C||/llL?,(a). 

Hence (3.23) holds. Owing to the rigidity of the lattices, a function with 
zero energy is a constant for s = 1 and a rigid body motion for s = d = 2. 
Therefore, the solution of the problem (3.8) in two dimensions is unique up to 
a constant for s = 1 or a rigid motion for s = d = 2. D 

3.3.3 Lattice problems without absolute terms in three dimensions 
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For the existence and uniqueness of solutions on lattice G in R^, we have to 
establish the extension of grid functions on three dimensional lattice Q to whole 
space R^. 

As in two dimensions, let Qm be the closure of Qm, and let Km be a set of all 
nodes in Qm- By K^, K^, K^ and K^, we denote the subsets of Km for nodes 
at vertices, on the edges (not including the vertices), on fax:es (not including 
nodes on the edges and at vertices), and in the interior of Qm, respectively. 

By T = {ti,l < i < T} we denote a tetrahedral partition of Qm satisfying 
the conditions : 

(T.3) Vrrr, = Km, where VVm denotes a set of all vertices of the partition T; 

(T.4) ti n tj for i^ j is a. vertex, or an edge of U, or a face of U, or empty. 

(a) Initial partition 1^ of cell Q^with 6 simplices 

(b) Partition of a simplex 
t. with a node in the interior 

(c) Partition of simplex 
t. with nodes on a face F, 

Fig. 3.2 Tetrahedral partition Tm of cell Qr. 

Each ti is a simplex with faces Fij,l < j < 4. Theconstruction of such a 
partition can be started with an initial partition 7^ of Qm such that (T.4) hold 
and Vfo = Km, shown in Fig. 3.2(a). For the partition 7^ there may be some 
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nodes in the interior of simplices Us. If a node x^"'''^^ e K^^ is in the interior of 
ti, we divide U into four smaller simplices by connecting x^"'") to four vertices 
oiti, shown in Fig. 3.2(b). Repeating the process for each node in the interiors 
of all simplices, we have a partition 7^ of Qm for which (T.4) holds and no 
node x^'^''^^ e K^ is located in the interiors of all simplices. Note that nodes 
^(n,K) ^ K^u K^U K^ may be located on the closure of faces of tiS in the 
partition T^. Suppose there are several nodes are on Fy which is the closure of 
Fij. According to the triangular partition of a cell in two dimensions, described 
in previous subsection, there is a triangular partition Tp^. = {n,! < I < L} 
of Fij such that (T.l) and (T.2) are satisfied. Connecting the vertices of the 
partition Tp^ and the vertex opposite to the face Fij, we divide this simplex 
ti into several smaller simplices. If Fij is shared by a pair of simplices, the 
division can be done in each of them. Carrying this division on each face of 
simplices ti and each simplex in the partition 7^, we will obtain a desired 
partition Tm satisfying (T.3) and (T.4). A combination of the partitions?^ 
for all m e Z^ form a tetrahedral partition T of R^ and Vr = Ufnez^^m, 
where V7- is the set of all vertices of T. 

As in two dimension, based on such a tetrahedral partition T oiB?, we can 
extend a grid function u defined on three dimensional lattice ^ to a function 
u{x) for X e B? hy a. linear interpolation. Let (j)i{x) be a linear function 
in ti which interpolates u at the vertices of tj, and let il^mi^) = (l>i{x) ior 
X e ti,l < i <T, which is a piecewise linear and continuous function in Qm, 
and 

L, „.     12 

1^: 2 
m miQm) -    ^   2-j            Z^            a;(n,K) _ x{l,X) 2 

^ ^ Y.    H    ""'- - "''^ '• 

Let u{x) = ipm{x) for x G Qm,'m G Z^.   Then, u{x) is a continuous and 
piecewise linear function in R^, and 

i«iHi(ii3) <cJ2^    Yl   !""'«~ "''^1'- 

Note that vertices of a simplex ti may not be connected. Arguing as in two 
dimensions for (3.15), we have 

m€Z^ KeK (n,A)eB„ 

The arguments for the equivalence between norms of u and its extension 
u{x) in two dimensions can be carried out in the three dimensions. Hence we 
have the following theorem which is parallel to Theorem 3.8. 

Theorem 3.11 Let M be a grid function on a lattice Q, and let u be the exten- 
sion of M by linear interpolation, described as above. Then, |w|Hi(e) — |W|HI(R3) 
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and |w|i,2^(e) — |«|L2_^(B3), i.e. there are two positive constants independent of 
u and u such that 

Cl\u\Hi(g) < |M|ifi(R3) < C2|«|H1(6) (3.29) 

and 
Ci\u\L2^^(^g) < \U\LI,^(RB) < C2|M|L2,,(e)- (3-30) 

Lemma 3.12 For v G £{'8) there exists a constant a such that 

11^ - «IUii(a) ^ C\v\Hi{g) (3.26) 

Proof. Let v be the extension of v described above, and let 

a= \im-r—     v{r,e,(l))dS. 
r^°° p| Js 

where S is the unit sphere centered at the origin. By Lemma A. 10 the above 
hmit exists. Due to Theorem 3.11 and Lemma A.12, we have 

\\v-o^\\L2rg)<C [   l^^^^da;<c/   \Vv\''dx < C\v\mig). 
JR3      f 7R3 

D 

Theorem 3.13 If / G L?(^), and Y^keJ^fk = 0, then for any v G E{g), 

\{f,v)o\ 
k£Ar 

< C\\f\\Llig)\v\HHg) (3-31) 

Proof. Let v be the extension of v, and let 

a= lim —- / v{r,e,<j))dS. 

as in previous lemma. Then by Cauchy inequality and Lemma 3.5 and Lemma 
3.9 

\{f,v)g\   =   \{f,v-a)g\<C\\f\y^^g)\\v-a\y_^^g) 

< C\\f\\L2^g)\\v - Q!||L2_^(^3) < C\\f\\q^g)\v\HliR3) 

< C\\f\\L2^g)\v\m{g). 

D 
and due to lemma 2.1, its (energy) norm is equivalent to the semi-norm of 

H'^iG). Note that Vr = span{ei,Ti+3,1 < ^ < 3} for s = d = 3, and Vr = Vc 
denotes the set of constant functions on ^ for s = 1, which are defined in 
(2.16). 

Theorem 3.14 If / G Ll{g) and EfceAr/fc = 0' t^en the problem (3.8) with 
d = 3 has a solution u G E{Q), and the 

\u\mis) < C\\f\\Li,igy (3-3) 

The solution is unique in E{Q) up to a constant for s = 1 and a rigid body 
motion for s = d = 3. 
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Proof. It is shown that 

\Biu,v)\<C\\u\\Eig)\\v\\Eig) 

and 

By Theorem 3.13, / G Lf(^) with J2keJ^fk = 0 defines a linear functional 
over E{Q), and 

|i^(^)l = \{Mg\ < C\\f\\Liig)\v\HHg) << C^||/lUf(e)l|t^b(e)- 

Let functions with zero energy be regarded as a "zero" element in the energy 
space E{Q), then E{Q) is a Hilbert space. By Lax-Milgram Theorem, there 
exists a solution u E E{Q) such that 

HHHG) = \MEiG) < C\\f\\Ll,ig)- . 

By the rigidity of the lattices and Proposition 2.1, a function with zero energy 
is a constant grid function for s = 1 and a rigid body motion for s = d = 3 on 
G. Therefore the solution of the problem (3.8) is unique up to a constant for 
s = 1 and a rigid body motion for s = d = 3. □ 

4. UNSTRUCTURED LATTICES IN HALF SPACES 

4.1 Setting of unstructured lattices in half spaces R^ 

For a lattice ^ in a upper-half space R^ — {x= {x', Xd) G R** | a;^ > 0}, the 
conditions (C".1)-(C".3) on connectivity and the assumption on the rigidity are 
valid. The notations in previous section will be adopted here. In addition we 
need to precisely characterize unique features of lattices in an half space Let 
Ti = {x = {x', Xd) e R'^ I rcd = 0} be the hyperplane. For d = 2,V2 is the 
real line and it is consisting of rods and nodes. For d = 3, r2 is the xy — X2 
plane and is consisting of polygons for which each edge is a rod and these 
polygons are faces of the polyhedral cells. By K^ we denote the subset of K 
in which nodes are on the hyperplane F^, and K^ = K\K^. K^ is referred as 
the boundary Tg of the lattice Q By J\f^ we denote the subset of M such that 
Xk e K^ for k € A/■^ and N^=M\M\ 

By K^ we denote a subset of Km in which the nodes are on the hyperplane 
Yd, and K^ = Km\K^- Further, we denote the subset ofAfm by Af^ for the 
indices of nodes in K^ and Af^= J\fm\Afm- We may set m^ = 0 for those 
cells Qm,me Z^ connected to F^. Therefore, K^ and A/"^ are not empty for 
m e Zf, rud = 0, and K^ = Km and /C^ = JCm for all m G Z^, rrid > 0. 

4.2. Boundary Value Problems We consider the boundary value problem 

_ V E(^-^) f"^ ~ "f, + Cuk = h, yk e Af (4.1a) 

with boundary condition 

Uk = 0 for A; G A/"* (4.16) 
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(a) A unstructured lattice in half space R^ 

^(■n.3) 

-  X        x' 

(b) An interior cell 

Fig. 4.1 An unstructured lattice in half space R' '+ 

where 

and 

T 

\xe-Xk\^ \xe-Xk\^ 

C" = diagiCt Cl ...,Cll     C^ > 0,1 <l<d. 

Let H'^iG) and L^{G) be the discrete Sobolev spaces with the norms 

\h(g) 

and 

keAfo 

|2 _ U,|2 

where |M|ifi(e) is the semi-norm, 

U.|2 

By //^o (^), we denote the subspace of H'^iG)-, in which functions vanish at the 
boundary Tg = K^. 

The corresponding variational equation 

5(M, V) = F{v), Mv G Hl{g) (4.4) 

are associated with 

B(.,.)= E {^<1E<-.^.^> + <C%,„.>)       (4.5.) 

is a bilinear form on Hl{Q) x Hl{g), and 
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is a linear functional on HQ{Q). 

The energy of the lattice Q is defined as 

GW = B(„,„)= 5:{^<iE<'.'>^,^> + (CV,«.>}  (4.6) 

As analogue of the Theorem 3.3 for unstructured lattice problem, we have 
the existence and uniqueness for the boundary value problems (4.1). 

Theorem 4.1 If C*^ ^ 0 in the sense that there exists a node xt^ = a;^'"'''™) 
in each cell such that C^^™ 7^ 0, the problem (3.1) has a unique solution u G 
Hl{Q). 

4.3 Problems Without Absolute Terms 

There is no essential difference to address the existence and uniqueness of 
solution for problem (3.6) in entire spaces and the boundary value problem 
(4.1) in half spaces if the problems associated with absolute terms. We should 
focus the treatment for problem without absolute terms in half space, which 
is essentially different from those for the problem in entire space. Without 
the absolute term the boundary value problem is to find di u £ EQ{Q) = {v £ 
E{Q) I V = OonTg} such that 

B{u, v) = F{v), Vu € Eo{Q) (4.7) 

where 6 is a bilinear form on Eo{Q) x Eo{G), 

B(„..)=5:E4E(M.^^,^1^) (4.8a) 
ke^f°ieK, ^ 1^^     ^*l   1^^     ^^=1 

and F is a linear functional on Eo{G), 

F{v) = {f,v)g = J2{fk,^k). (4.96) 
ke^/' 

For the problem (4.7), the energy space E{Q) does not coincide the H'^{Q), 
and E{Q) is not embedded in L^(^). The "energy norm" ||M||B(£;) is equivalent 
to the semi-norm of H^{Q)- Due to Lemma 2.1 and the boundary condition 
(4.1b) we have the uniqueness of the solution in EQ{Q). 

Theorem 4.2 If M € EQ{Q) is a solution of the problem (4.1) over the lattice 
Q which satisfies the rigidity assumption, then it is unique. 

Proof If there is another solution v € EQ{Q), then ||w - f ||£;(R,<i) = 0. Since 
the lattice Q is rigid under the assumption, by Lemma 2.1, u - v is a rigid 
body motion. Since {u - v) \rg= 0, hence u = v. □ 

The theorem tells the space EQ{Q) is a normed space and the energy norm 
is a norm for the space EQ{Q). For the existence of the solution, we need to 
find a weighted space in which function / is linear functional over EQ{Q). TO 
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this end, we introduce a weighted space Ll{G) with the norm 

ll«lliB(.)= E (i + I^M^'^kP 

with a real number i/, where Xk,d is the d-th coordinate of the node Xk which is 
the distance form the node Xk to the hyperplane r^. We shall write Ll{Q) = 
L'^iG). Further, we need to modify the H^{G) by introducing the space H^{Q) 
with the norm 

ll«lki(6) = {ll«lliii(e) + l«lHMe)|     • 
and the space 

^o(^) = {« e H\g) I Um,. = 0 on Vg} 

To prove Eo{g) C L'^-i{G), which is essential for the existence of solution, we 
have to extend the grid functions on Q to continuous functions in R^ by the 
linear interpolation in one, two and three dimensions. For d=l,ue Eo{Q) is 
extended to u such that 

u{xk) = Uk for keJ^. (4.10) 

For d = 2,3 the extension of u based on the triangular partition has been 
described in previous section, can be carried out here, and (4.10) holds at 
every node of G for all dimension. Arguing as in proof of Theorem 3.8, we 
have the equivalence of norms of u and u{x). 

Theorem 4.3 Let u be a grid function on the lattice G, and let u be the 
extension of w by a linear interpolation, described as above. Then |«|ffi(£;) — 
|M|ffi(R2)) and ||w||i,2^(£;) = ||M|U2^(R2), i.e. there are two positive constants Ci 
and C2 independent of u and u such that 

CI|M|HI(£;) < |«Ui(R2) < C2K|Hi(e) (4.11) 

and 
Ci||M||i2,^(0) < ||M||L2,,(R2) < C2||M|U2_^(e) (4.12) 

The equivalence between norms of u and its extension tileads to a desired 
embedding lemma. 

Lemma 4.4 Eo(G) C L?.i(^),and for u G Eo{G), there holds 

\\u\\j,i^^g) < C\u\H^ig) (4.12) 

with C independent of u. 

Proof Let u{x) be the extension of M by a linear interpolation described above. 
Due to Theorem 4.3, u{x) G Eo{Rl). By Lemma B.l, 

ll^lliii(iip ^ ^l^lmiRlY 

which together with Theorem 4.3 imply (4.12) immediately. □ 

The following lemma indicates that the energy norm ||«||B(e) is a norm of 
the energy space Eo{G)- 
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Lemma 4.5 The space Eo{Q) is equivalent to the space ^o(^)' ^^'^ ^^^ u e 
EoiG) there holds 

hhis) = ||«|lHi(e) = HHHS). (4.13) 
n 

Lemma 4.6 If / G LjiQ), then for any v G £;o(^) there holds 

K/,^)I<C||/|U2(,)||^||^(,). (4.14) 

Proof By Schwarz inequality, there holds 

\{Lv)\ < C\\f\\q^s)MLUg). 
Due to Lemma 4.4-4.5 we have 

l(/,^)l < C\\fUiig)\v\H^ig) < C||/|L2(e)||t;|U(a). 
n 

The above lemmas lead to the existence and uniqueness of solution for the 
problem (4.7). 

Theorem 4.7 For / e Ll{Q), the problem (4.7) for d = 1,2,3 has a unique 
solution u G EQ{Q), and 

MEiG) < C\\fh2^gy (4.15) 

Proof Due to Lemma 4.5, we have for u,v e Eo{Q) 

\B{u,v)\   <   C\u\m(g)\v\m{g) 

<   C'll«bi(e)ll^bi(a) 
and 

B{u,u) = \u\%r^g^>D\\u\\%,^gy 

By Lemma 4.6, / defines a linear functional F{v) on Eo{Q), and for v e Eo{Q) 

\F{v)\ = \{f,v)\ < C\\f\y_^^g)\\v\\Eig) < C||/|Ui,(e)lkbi(g). 

By Lax-Milgram Theorem, there exists a unique solution u G ^o(^) ^^^^ ^^^^ 

hU^ig) < C\\f\\LU(g) 
which with Lemma 4.6 leads to the assertion of the theorem. □ 

Remark 4.I The boundary F^ can be a very general curve, and the function 
x^ = <j){x') is required to be a piecewise continuous function and allow to 
approach 00 as |a;'| -^ cx), e.g. X2 = xl for d = 2. The weight (1 + x^y may 
be modified to (1 + d{xYY where d{x) is the distance from x to the boundary 
F^, for the details of such a modification we refer to [2]. 

CONCLUSION 

The lemmas and theorems in previous sections indicates that a mathematical 
framework for problems of unbounded lattices has been established. In this 
framework we are able to prove the existence and uniqueness of solution for the 
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problems of unstructured lattice in entire and half spaces. This is a significant 
progress in research of lattice problems. 

We have derived the appropriate function spaces which the data / (e.g. 
external force) belongs to, and proved the existence of solutions for the lattice 
problems without absolute terms in entire and half spaces if the date / is 
given in these function spaces. The function spaces and approaches to prove 
the existence theorems are quite different in one,two and three dimension. 
Meanwhile, because of the Dirichlet boundary condition for lattice problems 
without absolute terms in half spaces, the function spaces and approaches to 
prove the existence theorems are the same or very similar in one, two and 
three dimension. This reflects the fundamental differences between problems 
without boundary and the boundary value problems. The results reported 
here and in forth coming papers could be further extended and generalized 
as indicated in various remarks and comments in previous sections. Although 
the theorems are proved for truss problems, it can be utilized or generalized to 
problems of general lattices such as plates shells, and three dimensional solid. 

Based on the progresses we have made in the past years, our research on 
lattices should be further carried on. The focus of the research at next stage 
will be the analysis of complicated models and design of effective computation. 
A direct extension of our research results is the investigation on the existence 
and uniqueness of solutions for general lattice problems without absolute terms 
in unbounded domains, associate with various structures such as plate, shell 
and 3-dimensional solid. This is an important issue and has been an not- well- 
unanswered problems for last 2 decades. The extension of grid functions by 
a linear interpolation for rigid and non-triangular or non-tetrahedral lattices 
implies an effective numerical approach for unstructured lattices, i.e. multigrid 
method. To this end we shall define partial differential equations(PDE) asso- 
ciate with boundary conditions or no boundary conditions, which is equivalent 
to corresponding lattice problems. This equivalent PDE is not homogenized 
one because homogenization is not applicable to the unstructured lattice, and 
can be solved on fine and coarse grids. The discretization of the PDE on the 
grid of lattices is the original problem of lattice. The approach has been inves- 
tigated for unstructured lattices in bounded domains [4], it could be carried 
for unbounded lattices. 

If the scale of cells of lattices is very small, we have to deal with a multi-scale 
problem which is one of the most popular topics of modeling and computing in 
modern applied and computational mathematics and engineering. The frame- 
work we have built for the problem without absolute terms will help us to 
analyze various aspects of such multi-scale problems. 
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APPENDIX A 

In this appendix we will address the existence and uniqueness of solution of 
the Dirichlet problem of Laplace equation in R'', d = 2,3. We are interested in 
this problem because it is similar to the problem (3.1) of unstructured lattices 
in entire spaces without absolute term. In particular, some embedding results 
play a key role for proving the existence and uniqueness of solution for such 
lattice problems. We seek a solution u e H(R^) of the variational problem : 

B{u, v) = F{v) yv e H{R'^) (A.la) 

with 

and 

B{u,v)= [  Vu- Vvdx, u,ve H{R'^) (A.lb) 

F{v) = [  fvdx, V G H{n^) (A.lc) 

where d = 2,3, and 

H{B.') = {u\u£ Hl,jR'), |M|ffi(R.) < oo} 

Here |«|Fi(Rd) is the semi-norm of the Sobolev space H^(R^) involving only 
the first derivatives. 

A.l In two dimensions 

Let H^ (B?) be a closure of C°° functions with the norm 

where (r, 6) are the polar coordinates, the disc 5 = {re G R^|r = |2;| < 2} and 
S'' = B?\ S. By Ll^ (B?) we denote a weighted space with the norm 

ll^lli^ (R2)= / \ufdx+ [ IwlVlog^Vda;. (A.S) 

Ho(B?) = <ue H(R^) I  f uds^oA 

Then we have 

We further introduce 

and 

Hr{S') = \u\ [ iVwI^da; <a,u |r= o| 

where F = dS, and we define a quotient space 

§[\B?) = H\R^)/Po [AAa) 

with the norm 
||«|| .       = inf \\u - a||Hi(R2) (AAb) 
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where PQ is the set of all real numbers. Since PQ C H^iH^), the quotient space 
is well defined. For the existence and uniqueness of the solution of the problem 
(A.l) with d = 2, we need to establish the equivalence between ||«|| -^   ^  and 

|M|ffi(R-') ^"^ *° ^^^"^ ^^^^ -^(^) ^^ (A.lc) defines a linear functional over 

Theorem A.lIfueHo (R^), then 

/ H'dx + [ -i}^dx <C [   \Vu\^dx (A.5) 
Js Js- r^ log r JR2 

with constant C independent of u. 
Theorem A.l is a major theorem in this section, we need several lemmas to 
prove it. 

Lemma A.2 Let u{t) be a function on (0, oo) satisfying w(2) = 0 and 

r \du\ 
I'dtl 

tdt < oo. 

Then 
r°°   IMP P°° 

J2   tlogH A 

Proof. Due to Theorem 1.14 of [29] 

/•oo fOO 

/    \u\'^wdt <CL 

du 
It vdt (A.6) 

\du 
vdt 

where w = ^j^, v = t and CL = sup2<t<oo Flit), with 

Note that 

and 

FL{t) = ( f   wdtj' ( I  v-^dt 

it   ^ *~ J2    tlog^t "logt 

/  v-'^dt= /  -dt = logt-log2. 
J2 J2  t 

Then 

F,(t) = >g^^"g'<lfor2<t<oo, 

and (A.6) follows immediately. 

Lemma A.3 liueHr (5^), then 

[    J^l'   dx <C f iVufdx {A.7) 
Jsc r^ log r Jsc 



46 

Proof. Note that u{r, 9) |r=2= 0, which implies by Lemma A.2 that 

poo 1 roo 

/     \u\'^—^dr < C I 
J2 r\og r J2 

\du 
dr 

rdr 

with constant C independent of 9. Integrating with respect to 9 from 0 to 27r 
we have (A.6). 

Lemma A.4 Let u G H'^{S), where H'^{S) is a usual Sobolev space on a 
bounded domain S. Then the following norm 

^ 1 
2^ 2 

||NI|H1(5) = |HH1(5)+|/"^^|    [ (^-^^ 

is equivalent to the norm, ||W||HI(S)- 

Proof. Obviously |||w|||ffi(s) is a norm to H'^{S). Note that 

|2 

\juds\   < cJ^H'^ds < C\\u\\^i^^^ < CMmis) 

which implies 

\\\U\\\HHS) < Ci\\u\\m(s)- 

We need to show that 

||w|Ui(5) <C'2|||W|||H1(5)- 

If it is false, there exists a sequence Uj  e H^{S),j = 1,2,...  such that 

||WJ||FI(5) = 1' ^^^ 
|2 

/. 
\UJ\\\HHS) = WJIHHS) + \I uds\  -4 0 as i ^ cx) 

Since H^{S) CC L'^{S), there exists a subsequence denoted by Uj again, which 
is a Cauchy sequence in L'^{S). Since |wj|jy2(5) -> 0 as ji -)■ 00, {MJ}°1I is a 
Cauchy sequence in H^{S) as well. Hence limj^ooUj = «o in H'^i^)- This 
implies that D°'UQ = limj^oo-D^itj = 0 for lal = 1. Therefore UQ is a constant 
in 5". Note that 

/ {uj -uo)ds   <C     {uj - uof ds < C\\uj - WO||HI(5) ->■ 0 as j -^ 00, 

which leads to 

/ Uods = lim / Ujds = 0. 
Jr i-^°° J 

Hence MQ = 0 in S.   It contradicts the fact that ||wo||i?i(5)  = linaj_,.oo 
||Mj||ffi(5) ~ •'■• Thus the lemma is proved. 

Lemma A.5 If u e HQ (B?) , u has the Fourier series on F: 

M(2, 9) = ^2^k cos k9 + bk sin k9 
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and 
00 

fc=l 

Proof. Since Jp uds = 0, the coefficient ao = 0, and 
oo 

C/(2, ^) = ^ (ttfe cos A;^ + 6fc sin k9). 

Then by the trace theorem we have 
00 

Yl ("fe + €}k^ ll«llHi/2(r) < C\\u\\l^^s) 
k=l 

by Lemma A.4 

< C\\\u\\\lr^s) = C\u\l.^s) < C|«||i(R2). 

We now prove Theorem A.l. 

Proof of Theorem A.l. For u e. Ho (R^) we can find a harmonic function 
Ml such that {u - Ui) |r = 0 and /^^ |VMI|^ dx < oo. Let U2 = u - Ui. Then 
«2 £ Ho {S"^), and by Lemma A.3 

/ Kl'  ,^2   ^^ < C / |VM2NX (A9) 75c r^log r Jso 
Since MI(2, ^) = u{2,9),ui has a Fourier series on F 

00 

ui{2,6) = Y, iflk cos ^^ + ^fc s^^ ^^) 
A;=l 

with Co = 0. Because Wi is harmonic in S'^, 
00 /n\ k 

Ml (r, ^) = Y, i^k cos A;^ + bk sin /s^) ( - j 
fe=i ^''^ 

and 
rdr /. ^ "^ />00 

00 

< cJ2{4 + bl)k 
fe=i 

by Lemma A.5 

Note that M2 |r= 0 and AMI = 0 in S'^, which implies that 

/   VMIV«2<^2; = / U2-;r-ds — /   M2AMida: = 0. 
Js'^ Jr     on Jsc 

Hence 
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which together with (A.9) - (A.IO) leads to 

\u\l2_^ _^(5.)     <     C f ||Ml||i2_^^^(5o) + ||M2|li2_^_^(sc)) 

<    C(lHlri(5) + l«2|i:(5^)) (^-11) 

We next shall show that 

\\U\\LHS) < C\U\HHS) (^-12) 

Let vi be harmonic in 5 and t;i|r = u\r, and let V2 = u- Vi. Since V2\T — 0, 
by Lemma A.4 

Since V\ is harmonic and Jp V\ds — Jp uds = 0 

k 

vi {r, 0) = ^ (ttfe cos k9 + bk sin ^^) f ^ ) 
A;=l 

and 
oo 

\vi\h^s)<cY.{4 + bl)k<C\u\l^^sy (A-U) 
k=l 

Since Vi is harmonic and V2 vanishes on F, we have, by the argument above 
for wi and W2, that 

which together with (A. 13) - (A. 14) leads to (A. 12) immediately. A combina- 
tion of (A.ll) and (A.12) yields (A.5). 

Corollary A.6 The norm ||W||^I(R2) is equivalent to |«|ffi(R2), and the spaces 

H^{B?) and ^(R^) are equivalent. 

Remark A.l. The weight function w{x) = 1 in 5, and w{x) = r~^log~^r in 
S''. S'^ excludes the origin and unit circle. We may select others weight, e.g., 
w{x) = (1 + r^y^ log~^(2 + r) for all x G R^. It is essential for the selection 
of the weight that 

\w\ = O (|a;|"^log~^ |a;|) for large \x\. 

Also S can be selected to any bounded domain with Lipschitz boundary, and 
it is not necessary to be the disk centered at the origin and with radius 2. 

Theorem A.7 If / G Lf^ (R^), and /j^^ fdx = 0, then for any u G i? (R^) 

<^II/IL?,,(R2)I^|HI(R^) (A15) 

with constant C independent of u. 

I   fvdx 
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Proof. LetvGH (R^), and let a = J^ vds. Then {v - a) & H° (R^), and 

/   fvdx    =     /   f{v — a)dx 

<     l|/|L?,,(R2)lk-a||Lii,_i(R2) 

by Theorem A.l 

Theorem A.8 If / G L? ^ (R^) and /j^2 fdx = 0, then the problem (A.l) with 
d = 2 has a solution u E H (R^), and 

\u\m(n^) < C||/||i2^^(R2). (A.IG) 

The solution is unique up to a constant. 

Proof. Due to Corollary A.6 we have 

and 

\B{U,V)\ < |w|ffl(R2)|w|Hl(R2) < C'll^ll = ,„,Jl^bi(ii) 

\B{u,u)\ = \u\%i^^,^ = \\u\\\ 

By Lemma A. 2 there holds 

\F{V)\      <      C||/|U2^(R2)|t;|ffl(R2) 

By Lax-Milgram lemma there exist a unique solution u e H^ (R^) such that 

which together with Corollary A.6 leads to the assertion of the theorem. 

Corollary A.9. If / e LIQ (B?) with i^ > 1 the problem (A.15) has a unique 
solution in H (R^) up to a constant, and 

||M||ff(R2)   <  C'||/||jr2_^(R2). 

A.2 In three dimensions 

In three dimension we shall deal with the existence and uniqueness of the 
solution of variational problem (A.l) in the way different from the approach 
in two dimensions, e.g. we will not introduce the quotient spaces. 

Let 

u{r) = ^ J u{r,e,(l>)dS = --- IJ I\{r,e,(j>)sined9d^ (A17) 

where S denotes the unit sphere, and (r, 0,4>) are the spheric coordinates. 

Lemma A.IO If u € H{R?), then limr-Kx, u{r) = A exists. 
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Proof. For r > 1, 

Let rj,j = 1,2,... be an arbitrary sequence with linij^oo ''j = oo. For rj > Vi 
we have 

< c 

1   1^^/^ 
<      C [ 1 |w|ffl(R3) 

Si     rj 

This implies that {«(ry)}^i is a Cauchy sequence and that u{rj) converges 
to the same limit A for all sequence {rj}J^i with limj^oo'^j = oo. Therefore, 
linv-^oo w(r) exists, and limr_>oo u{r) = A. 

Lemma A.ll Let u{r) be given in (A.17) and A = limr-,.00 w(r). Then 
poo fOO 

/    \u{r) - A\^dr < C       |«'(r)|Vdr < C|W|HI(R3) (A18) 
Jo Jo 

Proof Let w{r) = u{r) - A. Then \imr^oow{r) = 0. By Hardy inequality 330 
[19], we have 

/»00 /"OO 

/    \w{r)\'^dr<C        |t/;'(r-)|Vdr 
Jo Jo 

which is the first inequality of (A. 18), The second one follows from 

rii'wiv*<r/i*^(;iM|,.«5. 
Jo Jo    Js        c''' 

D 

Theorem A.12 If |M|HI(R3) < 00, then there exist a constant a such that 

/   \l^dx <cf   \Vu\'dx. 
JR^      r^ JR^ 

Proof.Let a = A = limr_).oo u(r). Then 

For the first term on the right hand side of (A. 19), we have by Lemma A.ll 

For the second term we write 

u{r, 9, <p) - u{r) - ^T / ("(^' ^' <^) " «(^' ^'' <^')) sinO' dO' d(t>' 
\^\ Js 
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and 

u{r, e, <t>) - w(r, e', <t>') = u{r, 9,0) - ^(r, 9', (j>) + «(r, 9', ^) - u{r, 9', (j>'). 

Note that 

\u{T,9A)-u{r,9\<f>)f   =   \[ 
JB' 

du{r,T,(j))     2 

Jo 
which implies 

1^ |n(r, 9, <t>) - u{r, 9', c^)\'dS < j^ |^^^^^|^d5 

and 

/R3 

Similarly, it can be shown that 

/   Hr,e'A)-u(r,e',n\ ^ ^ f  \Vu?^.. (A.21) 
JRS r^ JB.3 

A combination of (A.19)-(A.22) leads to (A.18). □ 

Theorem A.13 If / G Lf (R^), and J^s fdx = 0, then for any v G H^B?), 

\ f   fvdx\ < C\\fh.^^S)\v\l,^^sy (A23) 

Here and thereafter DR denote a ball centered at the origin with radius R, and 

\\f\\%im = fj^ + r')\f\'dx. 

Proof. Since J^s fdx = 0 

/    fvdx = /   f{v — A)dx 
JB? J-R? 

with A = limr->oo T^ fs ^(^J ^) 4')dS. By Lemma A.ll, 

I ^3 fvdx\   < C {/^31/1^(1 + r')dxf" {^3 JT^^dx^ 

<C'll/llLf(R3)h|Fi(R3). 

xl/2 

D 

The next theorem addresses the existence and uniqueness of the solution of 
the variational equation (A.l) with rf = 3 in the case that /j^3 fdx = 0. 

Theorem A. 14 If/ e L\{B?), and Jj^s fdx = 0, then the variational problem 
(A.l) with d = 3 has a solution u G H{B?), 

|M|HI(R3)<C||/|U2(R3), (A24) 

and the solution is unique up to a constant. 
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'I 

Proof. It is easy to see that for u,v G H{K^) 

\B{u,v)\   <   C|«|Hi(R3)|t;|ffi(R3), 

\B{U,U)\    =    |W|H1(R3) 

and by Theorem A.ll, / is a linear functional on H{R^), and 

fvdx\ < C\\f\\Ll(RS)\v\]il(n^y 
/R3 

If functions v in ff(R^) with I^Hi^j^s) = 0 is regarded as a "zero" element, 
then the space iir^(R^) is a Hilbert space with ||w||ff(R3) = |w|ffi(R3). By Lax- 
Milgram Theorem, there exist a unique solution u G i?(R^), and 

ll«llff(R3)   < C'I|/||L2(R3)- 

which leads to the assertion of the theorem. □ 

In three dimensions we noticed that there are functions UQ G H{B?) satisfies 
the equation 

-AMO = /o- 

with /j^3 fodx 7^ 0, and Uo{x) = 0{-r—^ as |a;| -^ oo. For example, 

Wo = < 

3r^ 

IGTT 
in A 

— ( )    m Df 

and 

/ = -AMO = < 
—    mDi 
An 

0       inDf 

where Di is a unit ball and D{ = B?\Di. Note that f^s fodx = 1 and /o has 
compact support Di, and |MO|FI(R3) < oo. Hence in the case that /j^s fdx y^ 0 
we seek a weak solution u = CQUQ + we H{R^) such that w satisfies the 
variational equation : 

B{w, v)= [ if- cofo)vdx yv G HiR^) (A.25) 
JR3 

with Co = f^afdx. Since z = [f - Cofo) G L?(R^) and f^azdx = 0, by 
Theorem A. 13, w exists, and 

\MH(K^) < C|kllz,f(R3) < C{\Co\ + ||/||L2(R3)). 

Therefore we have a corollary on the existence and uniqueness of the solution 
for variational equation (A.l) in three dimensions. 
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Corollary A.15 If / 6 Li(R^), and J^sfdx = CQ 7^ 0, then there exists a 
solution u e H(R^) such that u = CQUQ + w, where w e H(R^) is the solution 
of the variational equation (A.25), 

|«|ffl(R3)   < C(i|/|L2(R3) + I    /     fdx\). 

and the solution is unique up to a constant. 
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APPENDIX B 

In this appendix we will address the existence and uniqueness of solution 
of the Dirichlet problem of Laplace equation in half space or in domains of 
half-space type. We are interested in this problem because it is similar to 
the problem (3.1) of unbounded lattices with boundary condition and without 
absolute term. In particular, an embedding result contained in Lemma A.l 
play a key role for proving the existence and uniqueness of solution for such 
lattice problems. 

Let R^ = {x = {x', Xd) e Bf' \ Xd > Q] be the upper half space, and let 
Yd = {x= {x',Xd) eR^\xd = Q} be its boundary. By H^{RX) we denote the 
Sobolev space over R%, and we introduce the energy space : 

E{Ri) = [u\uE HlcaiiK)' HnHRi) < ^} 

where \u\Hi{Rd) is the semi-norm of the Sobolev space H^{R^) involving only 

the first derivatives. E{Rl) and H^{R^) are not equivalent, and the energy 
norm |M|£;(jRd) is equal to the semi-norm |«|Hi(Kd^). By Eo{R^) we denote the 

subspace of E{R^) in which functions vanish on F^. 
We now address the existence and uniqueness of the solution of the varia- 

tional problem : seek u E Eo{R^),d -2,3 such that 

B{u,v) = F{v), \/veEo{Ri) (5.1a) 

with 

B(u,v)= [   Vu• Vvdx, u,vE Eo{Ri) {B.lb) 
JR% 

F{v) = [   fvdx, V e EQ{R^) (B.lc) 

where Eo{R%) = {u e E{R%) | M = 0 on r^}, Vd = {x = {x',Xd) £R^\xd = 
0} is the hyperplane, and 

E{R%) = [u\uE Hl,jRi), |M|HX(ii|) < oo} 

Here \u\jji(^jid^ is the semi-norm of the Sobolev space H'^{R^) involving only the 

first derivatives, and R^ = {x = {x', Xd) e R*^ \ Xd > 0} is the upper-half space. 
E{R'l) is called the energy space with energy norm |M|£;(ijd) = B{u, vY^"^ which 

is equivalent to the semi-norm |M 1^1(71'^ )• •£'o(-R+) is its sub space of functions 
vanishing at the boundary Td, which is not equivalent to the Sobolev H^{R^), 
and is not embedded in L^(i?^). Therefore, the problem (3.1) may have no 
solution in Eo{R^), e.g. if / G L'^{R^). Hence we have to find a space for 
/ which has stronger topology than L^(i?^) for existence of solutions for the 
problem (B.l). To this end, we introduce a weighted space Ll{R^) furnished 
with a norm 

M%(Ri)= [    H'il + xlYdx (5.2) 

and 
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We further modify the H^{R^) by introducing the space H^{Rl) with its norm 

M\%iR^^) = \MluiRi) + MIHK)- ^^-^^ 
and the space H^{Ri) = {H\Ri) \u = Oon Ta}. 

We are interested in such a problem because it is parallel to the problem (4.1) 
of unbounded lattices without absolute term, and a embedding result contained 
in Lemma B.l play a key role for proving the existence and uniqueness of 
solution for such lattice problems. 

Lemma B.l Eo{Ri) C Lt^iRi), and for u G Eo{Ri) 

with constant C independent of u. 

Proof For u £ £'o(-R+), there holds 

(x) = U{x', Xd) =   / 
Jo 

u[x] = u[x\Xd) = I     ———at 
dt 

Selecting a cr G (0,1), we have by Schwarz inequality 

< C j;' t-dt J^' \^^^i^\H-dt (-B.5) 

= Cxl-'^i:'\^^\'t''dt 
which leads to 

(B.6) 

Note that 

_        nOO,du{x',t).2        ,roo     X^ dxMt 
-   Jo   I     9t     l*U*   i + ^f^-i)^* (^7) 

<   Cf-\^^\H<^{frx-,^-'^dxd)dt 

= cj-\?^\'dt. 
Combining (B.5)-(B.7) we have 

ll"lliii(iet) ^ C\u\Hi(^Rd_) = C\\u\\E(Rd^y 

D 
As a consequence of Lemma B.l, we have the following corollary which 

indicates that the space Eo{R^) is a normed space and the energy norm is a 
norm of the space Eo{R^), which is equivalent to the norm of H^{R^). 
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Corollary B.2   The space Eo{G) is equivalent to the space HQ{R^), and 
||u||£:(e) is a norm of the space Eo{R^). For u € Eo{R^), there holds 

h\\E(R%) - HmiRi) = lkllffi(R|)- (B.S) 

Lemma B.S If / G Ll{R'l), then for any v e EQ{RI), there holds 

Proof By Schwarz inequality, there holds 

which together with (B.4) and (B.S) leads to (B.9) immediately. □ 

We now are able to address the existence and uniqueness of solution for the 
problem (B.l) in the framework of the space HQ{R^). 

Theorem B.4 For / G Ll{R^), the problem (B.l) has a unique solution 
u e Eo{Rl), and 

Mmi) < cmiLiiRiy (B.io) 

Proof By Corollary B.2, there hold for u,v E £^o(i?+) 

\B{u,v)\ < C\\u\\E(Rd.)\\v\\E(Rd^) < C||M||^i(;jd_)||t;bi(;j|) 

and 
B{U,U) =  ||w|||(;jd)  > D\\u\\fji^jid.y 

Due to Lemma B.S, / G -^i(-R+) defines a linear functional on £'o(jR+), and 

\F{v)\ < C||/|L2(^.)||i;|U(;i.) < C7||/|L2(^.^)|kbi(«.). 

By Lax-Milgram Theorem, the variational problem (B.l) has a unique solution 
u G H^{Ri), and 

l|w||ffi(K|) < C\\f\\Li(g)- 

Corollary B.2 implies the existence and uniqueness of the solution in Eo{R^) 
for the problem (B.l), and (B.IO) follows from (B.S). 
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