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Abstmct——The bldomam equatlons represent the most com-

L plete- descnptlon of cardiac electrical actrvrty However, the’

equations prove computationally burdefisoine:as the resulting

- system of- equatlons has two entries per spatial node. ‘This..
. paper examines the computational performance. obtained by . -

’ decouplmg the bldomam equations into two- separate systems

" of equations, an e]hptlc equation for the extracellular poten- -

", tial, and a parabolic equatlon for the transiiembraiie voltage.
.Each set of equations was solved on different grids with differ-

ent time steps: For the. ellrptrc problem, the performances of

direct and iterative solvers were compared. For the parabolic

_equation, the mterconnected cable method (ICCM) was com- -

" pared to the finite element method (FEM). Results were
obtamed by snmulatmg activity 'in a 3D slab of cardiac tis-'
" sue whose ionic currents were described by modified Beeler-

- - Reuter equations. - It: Was -found ‘that :the elliptic equation
" solution dominated the calculation. Reducmg ‘the ﬁ‘equency~_,‘-
‘of solution and/or halvmg the spitial resolution ‘resulted in"

considerable speed up while mamtammg ‘a resasonable error.
Direct solvers were faster by a factor of 2-3 and the ICCM
was about twice as fast in solving the parabolic: equation as

'.tlons soaled lmearly ‘with the’ number of nodes.-

Keywords-— computer modelmg, bxdomam, cardlac, ﬁmte'.,

element method

I INTRODUCTION

LECTRICAL shocks- are the onh known’ therapy for-

hearts in’ ﬁbn]latlon Without intervention, death w111

. quickly result. The mechamsms underlying electrlca.l deﬁb—'
rillation, however still remain elusive:. Electnca.l mapping

of the cardiac. electncal activity- dunng the delivery of de-
fibrillatory shocks is hindered by the thh shock strength,

. while optical mapping techmques are limited to surface mea- -
- surements. Modeling is therefore needed to lielp resolve the -

events during defibrillation in the 3D volume of the heart.
The bidomain representation of cardiac tissue is the most
complete description of cardiac electrical activity[t]. It de-

scribes ‘both the intracellular and extracellular potentlal.
fields, linking them through membrane behavior. It has pre-

dicted the appearance of shock-mduced ‘virtual electrodes(2]
which were later confirmed experlmentally[3] The bidomain
equatlons are computatlonalh expenswe as they require two

unknowns. for each spatial node, resultmg in large matri--
ces which consume much memory a.nd reqmre long solutlon_

times.

Besides this mherent computatlonal burden in solvmg the

bidomain equations, simulating defibrillation in the heart is
" also an intrinsically large problem. A piece of tissue large

- enough to support fibrillation must be modeled, on the order .

of centimeters, and because of the length constants involved,
it must be discretized on the order of hundreds of microm-

eters. Furthermore, the kinetics of the sodium gate impose

¥:Y tlme step on the order of chroseconds whlle the Wmdow
of observation to deterniine the outcome of a shock is'on -
‘the order of hundreds of milliseconds. Thus, both. spatlal -

and temporal consrderatrons contrrbute to the size. of the

problem
,‘Many techniques are avallable to solve the rea.ctxon-

drffusmn _equations describing. cardiac electrical ~activity.
The InterConnected Cable Method (ICCM){4], [3] is a com- -

putatlona]ly efficient method that has. been used in.mon-

- odomain” simulations of thrée dimerisional ‘catdiac ‘tissue
- with fiber rotation(6]. It is-based on decomposing the tissue
‘into a set of cables which may follow arbitrary tra_]ectorles .
“but, bv itdelf, is not suitable for solving the bldomam eqlia- -

“tioiis. The finité ‘element method (FEM) allows modeling
‘of complex geometry ‘and has been used to solve bidoniain
" problems on a whole rabbit. heart7], but is more computa—

compared to thé FEM. Both the elliptic and- paraholrc equa-‘. " tionally- demandln“ than the ICCM. -

- This ‘study examiries several techmques to mcrease the
computatlona.l efficiency of solvmg the bldomam equatrons
Benefits to be ga.med from recasting the bidaaii equatrons

. into decoupled elliptic and hyperbolic problems are exam-
-+ ined. - With. the problems’ isolated, each is solved ‘with dif- -

ferent time steps and-on dlfferent meshes in order to reduce -
computational demand. By comparing results with the fully

_ coupled bidomain solution, the simulation par'ameters which

maximize computatlona.l speed whlle ma.mtammg sufﬁc1ent :
accuracy are. determmed R . A
’ L anons

A. Gove rning Equations

The basic bidomain equatlons[l] reldte the mtra.cellula.r
potentlal 1, to the extracellular potentra] ¢c, throuoh the

transmembra.ne current densrty In:

A\ U,.V(}s;_ /3I Itrjans (1)
'v.&év@:—-ﬂl + Tians — L (2

o OV ’
=Cng +Lion (3)

where &; and d. are reepecnvelv the mtracellular and extra-
cellular eonductivity tensors, 3 is the surface to- volume ra-
tio of the cardiac cells, T;ns is the transmembrane current
stimulus, I, is an extracellular current stimulus, C,; is the
capacitance per ‘unit area, Vi, is the transmembrane volt-
-age which is defined as ¢; — ¢, and L;on is the current den-
sity flowing through the ionic channels. The Beeler-Reuter -
Drouhard-Roberge model modified to handle large voltages
was used as the ionic- model[8] in this study. This formula-

tion will be referred to as the coupled set of equations since
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the mtracellular and extra.cellular potentlals are sohed si- - -

_ multaneouslv

. By adding Eqn. 1 and Eqn 2 and usmg the deﬁmtlon of
* Vim, the equations can be cast in a slightly deferent form. W

' wrth Vin and ¢, as the mdependent va.rrables
V. (@ +oe)V¢e = _v. 5V, - I,, ' (4)
. V O',Vl =>"‘-‘-V . 5iV¢e + ,BIm e Itrans

Equatxons 4 and 5 are decoupled and solved sequentlallv' .

as an elliptic problem (Eqn. 4) and a- parabohc problem

*(Eqn. 5). Since the two systems ar¢ now independent of -
each other, they can be solved wrth different time steps and .
This: formulatron will be a

" at different spatial resolutionis.
referred to as the decoupled system.
If either the extracellular electric field can be 1gnored or,

- the ratios of the longitudinal'to transverse'conductivities in -

" ‘the intracellular’ and extracellula.r domains" are equal the
bidomain equations can be replaced w1th ‘the monodomam
equation. Thisis Eqn. 5 with the mtracellular conductivity
. tensor. replaced by the the monodomain conductivity ten-

SOT,. ;- which is-a function’ of the bxdomam conductmty :

‘ '-tensors[Q] am —o,(a,+ae) ae o

V ‘B.. Solutzon Methods

To solve the fully coupled system (Eqn 51 and 2) the E
..FEM was used based on a Galerkin formulation. In matnx: -
notation with a time step of At the resultant drscretrzed

system is gnen by v
e - KM nM d)i"'l L
. Kl ¢t+-l ,=

< I ]w{r,u

and K is the FEM stiffness matrix. - Both matrices were
" computed using linear tetrahédral elements’ with the sub-
- script on K denoting whether the matrix was created-using
6i(3) or de(e). Superscripts refer to the time step.

. To solve the elliptic- equa.tlon of ‘the: decoupled s»stem
: (Eqn 4) .an FEM approach was a]so used

| (7)

where the subscrlpt of the strﬁ"ness matrix denotes tha.t the
sum of the conductivity tensors was used. = - '

Ki+e¢e lv Mlt .

. To solve the parabolic’ problem of the decoupled sy stem' .

(Eqn. 5), two differént schemes ‘were used, ICCM and FEM.
The ICCM solution utilized a semi-implicit time mtegramon
on a one-dimensional linear grid to solve the particular so-
lution[4]. The FEM solution utlhzed a forward Euler time
: mtegratmn o - :
Vit =vh 4o (M“K (vho + 2) = ity ) ®

®

r:.::"-l) ©

where K= ,BC,,./At M is. the FEM lumped Aass matnx :

-
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.Frg 1 Gnds used for drﬁerent solunon methods All gnds represent

_the same space They are shown in 2D for clanty

C' Grid Genemtzon
Gnd generatlon began bv constructmg an IC‘CM gnd as.
has been described prev10usly[5] (see Figure 1).-Cables were

laid in sheets spaced 100 pm apart. Within each sheet, ca- |
bies were parallel and all ran in the i direction. The doma.m

spanned by the- cables was a rl,:,ht—ant,led hexahedron Ca—.’ o
-'bles were then d1scretlzed into 100 ‘pm long. segments w1th :
" . each’ segment connected to.a segment in a neighboring ca-

. . ble through a gap Junctlon that was represented by a ﬁxed
. resrstance L :
Two drﬂ’erent FEM meshes were constructed from the ca-

bles, a fine. mesh and a coarse mesh.- To_construct. the- fine -

'three—dlmensmnal FEM mesh, the centers of the cable seg-

ments were used as nodes from whlch to construct ﬁrst—order
tetrahedrons. To' construct ‘the coarse FEM mesh, every -

- other point in’ every other cable of every other layer was

used resulting in & mesh that was approximately one-eighth
the. size of the ﬁner mesh The conductmty tensors'in. the
tetrahedral elements were deﬁned by the cable dn-ectlons in .
the ICCM model. o e
The effect of usmg a coarse mesh for the elhptlc equa-
tion and & fine mesh for the parabohc equa.tron was tested.
Once 2 solution was obtamed for. ¢, on the coarse mesh,

. interpolation was:used. to assign. potential values at the fine

mesh nodes which 3 were used in‘the solutlon of the parabohc
equatron v : . }

D. Matm: Solvers

- To solve the coupled set of equatxons a.nd the elhptlc equa— -
" tion, both. iterative and direct methods were used. While

direct methods are generally faster -when' repeatedly solv-

: mg the same system: of equations, they’ ‘Tequire much: more

memory since performing a-decomposition on a sparse ma-

trix preserves matrix ba.ndmdth but fills in the zero entries

between bands[lO] One must therefore: use iterative meth- -

-ods on large problems where performmg a matrix decompo—
sition would exceed computer:memory. The direct method
. used here was an SGI (Mountain View, CA) supplied LDLT -

decomposmon, where L is a lower-triangular matrix and D
is'a diagonal matrix. After the decomposition, the system
was solved by forward and backward substitutions. ‘A cus-




tom coded conjugate gradient method vnth an Incomplete

Cholesky decomposition precondmoner was used as- the it-

erative solver([11].

. All simulations were performed on an SGI Origin 2100
computer which had 350 MHz MIPS R12000 processors and

4 gigabytes of memory. Times given for 51mulat10ns are CPU

times for a smgle PrOCessor.

III. RESuLTS
A. Salutzon Methods

The CPU time taken to simulate 25 ms of actmty in

“a rectangular 3D block of cardiac tissue with zero flux
boundary conditions was measured. “The block measured
1.6x0.6 x 0.11 (r x y X ) cm and was composed of 108,031

intracellular nodes. Activity was initiated in one corner of .

the block by applying a 2 ms suprathr&hbld transmembrane
stimulus. The activity propagated out with an ellipsoidal
wavefront which reached the z and y edges at approximately

25 ms. The CPU time to perform the simulation is given in - . |

Table I for the various methods. AtZ/AtF refers to the ratio

of the time step used for the elliptic equation solve over the -

time step used-for the pa.rabohc equa.tlon solve. -Parabolic

solves were always performed with & time step of 10 us.

Thus, ¢, was not nécessarily updated as frequently as v,
The value of oo’ corresponds to solving the m'onodomaih
-equation. Fine and Coarse refer to the discretization of the

tive refers to solving the elliptic equation on a ﬁne gnd using
the conjugate gradxent method '

- TABLE 1 )
CPU TIME 'ro SIMULATE 25 Ms FOR \Amous Ms'rnons

Method ]fAtb/AtP J Fine LCoarse_] Iteratwe :

1 3989.67 - | 941.20 | 8517.56

2 2270.54 | 796.63 | 5909.88

iICCM 4 | 1396.46 | 629.02 4115.56

o 10 {1 878.25 - | 602.41 2761.32
o0 -398.42 - i S

1 286844 | 1171.68 | 1007134

2 2515.26 970.92 7111.40

FEM 4 1643.83. | 884.71 5018.22

10 1123.82 819.91 3404. 27

I ] 75788 |- - ‘
Coupled |f - | 1348957 | - 65867 97

Solving the coupled equation was much slower than solv-
ing the decoupled system. The ICCM method was ap-
proximately -twice. as fast as the FEM method in solving
the parabolic problem.. ‘An iterative solver was slightly
more than twice as slow to solve the elliptic problem at
a At /AtP of one and became three times as slow when
AtE /AP was ten. This was due to the larger change in

¢, when computed less often, thereby requiring more itera-

tions for convergence. Increasing AtZ/AtP from one to ten
-increased the average number of iterations per elliptic solve
from 52 to 94. : : R »
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‘Fxg 2. Time spent in the parabolic solution for a 25 ms long sim-

ulation as a function of problem size. The size of the problem
was increased by increasing the number of layers (#layers) or by
increasing the size of each layer (layer size). ’

The elliptic solve was the most ‘costly part of the solution.

Reducing the number of timeés that the elliptic equation is

solved (increasing AtF/AtP) or reducing the size of the el-
liptic problem (using a coarse grid) greatly decreased the
simulation time. Monodomain solutlons were obwouslv the

‘the qmck%t- ‘
FEM grid on which the elliptic equation was solved. - ltera- '

B. Pmblem Szze

* The dependence of snmulatlon time on problem size was

-next ascertained. The problem size was varied in two dif-

ferent manners. The first manner was to increase the z di-

" mension which simply increased the number of layers'i in the

block. This resulted in an increase in the number of nodes
while preserving the bandwidth of any matrices. The second
method involved scaling the size of each layer in the z and
y directions by the same factor while keeping the number

~ of layers constant. This. method resulted in matrices whose
bandwidth increased with the scaling factor: The effect of

problem size was'broken down into the effect on the time of
the parabolic solution (Fig. 2) and the éffect on the time of
the elliptical solution for a coarse gird (Fig: 3).

The ICCM method was about twice as fast as the FEM
method in solving the parabolic equation. - The ICCM
method scaled linearly with problem size, regardless of how
the problem size was increased. The curves for the ICCM

- method were on top of each other since bandmdth isnot a

consideration for this method. .
The FEM showed a linear increase in CPU time with
problem size. At the smaller sizes, the manner in which the

" problem was increased in size did not affect the computation

time. However, for very large problems, more than 200,000
nodes, increasing the layer size caused 2 larger increase in
computation time compa.red to an increase in the number
of layers.

The effect of i mcreasmg the problem size for the ellipti-
cal problem was similar to the one obtained for the FEM
parabolic solve. The manner in which the size was increased
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Fig. 3 Tlme spent so]vmg the e]hphc equatmn ina srmu]atmn of 25 as.

a function of problem size. The ‘number of nodes in the model was

increased by either increasing the number of layers in the model :

or b\y mcreasmg the size of each layer

‘was ouly.sighiﬁcant ‘fvor very -1a‘:gé proble‘ms_. S
IV DISCUSSION v

Thrs paper a.na.lyzed the: tlme to compute a s1mu1at10n us-

ing the bidomain model for various methods and techniques. - ‘

Solving the decoupled system of the bidomain equations is - ‘and DMF- 970975 4 an d NIH Grant HL 63 195.

'_ computationally advantageous. . By splitting the problem
into two, each part can be solved independently. This split-
‘ting leads to two smaller problems whose total work is less

_than that Tequired to solve the coupled system. - Further- -
" more, there is a large savings in memory since the matnces -

to be constructed are much smaller. -

In sphttmg the bidomain equations mto two parts, it was
found that the elliptic equation was much more costly to .

solve than the parabolic equation. . Thus, computatronal'

speed was increased by a combmatron of solving the elliptic "

problem on a grid with coarser discretization or by solving
this_equation less often than the pa.rabohc equation.: Us-

ing a coarse grid had .a similar speedup to decreasing the

frequency at which the elliptic equation was solved to one
tenth. Performing- the elliptic solve at less than this fre-

quency lead to large errors in computation. Comblmng a

coarse grid with periodic e]hptrcal solves only increased the
performance marginally beyond a AtE JALF value of 4.
The ICCM was found to be about twice as fast as the
FEM for solving the parabolic portlon of the bidoimain prob-
- lem. - However, when the elliptic portion and jonic compu-
tation are factored into the problem, the savings in compu-

‘tation time between using the FEM and' ICCM reduces to -

about 30%. Also, this savings of 30% will diminish if a more

- detailed ionic model is used. The ionic model used here was
very simple, only having seven state variables, while recent_
" models have over 20[12). The added complexity in-setting .

_up the problem to utilize both an ICCM grid and FEM grid
may not be justified.for an increase in performance of only

10%.

" The direct solver for the eHiptic elliptic u'as 2-3 times
faster than the iterative solver. It is therefore only reason-
able_to use the iterative solver if meémory is an issue¢ and

. the decomposed matrix does not fit into memory. A decom-
" -posed sparse matrix can have 10-20 times as many nonzero

entries as the original matrix due to fill in. This an addi-

 tional reason to solve the elliptic equation on a coarse FEM

grid since memory for an LDET decomposrtron will be re-
duced by a factor of erght .

V. CONCLUSIONS :
Decouphng the bidomain equatrons into an elhptlc a.nd’

- parabolic’ equation: offer computatronal advantag% which .

can be’ escplorted to solve much larger problems in much less
time. “The elliptic problem was computatronallv more ex- -

"pensive as well as requiring more memory CPU times were
- greatly reduced by solving it on & coarser spatral grid and at

fewer instances in time while keeping errors within- reason-
able bounds. For solving the parabolic problem, the ICCM

" was apprommately twice as fast as the FEM. Die to the -

sparsity of the problem, both the elhptrc and pa.rabohc prob- .
lems scaled hnearly w1th problem size. Fmally, for problems

- which fit into- memory, “direct methods are two to three times

faster than 1terat1ve methods
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