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Abstr•ct-The bidomain equations represent the most corn- a time step on the order of microseconds while the window
plete description of cardiac electrical activity. However, the Of observation to determine the outcome of a shock is on

equationslprove computationally burdensone as the resulting the order of hundreds of milliseconds. Thus, both. spatial
system of equations has two entries per spatial node. This
paper examines the computational performance obtained by and temporal considerations contribute to the. size of the
decoupling the bidomain equations into tw6 separate systems problem.
of equations, an elliptic equation for the extracellular poten- Many techniques are available to solve the reaction-
tial, and a parabolic equation for the.transmembrarie voltage.
Each set of equations was solved on different grids with differ- diffusion equations describing. cardiac electrical activitv.
ent time steps. For the elliptic problemrthe performances of The InterConnected CableMethod (ICCM)[4). [5]. is a corn-
direct and iterative solv-ers were ýompwed. 'For the parabolic putationally efficient method that has* beenn used in mon-
equation, the interconnected cable method (ICCM) was corn- dodmain simulations of three dimensional cardiac tissue
pared to the finite element method (FEM). Results were

obtained -by simulating activity in a 3D slab of cardiac tis- with fiber rotation[6]. It is-based on decomposing the tissue
sue whose ionic currents were described by modified Beeler- into a. set of cables which may follow arbitrary trajectories,
Reuter equations., It: was -found that 'the elliptic' equation butby it~eif, i not suftable for selvin• the-bidomain equ-
solution dominated the calculation. Reducing the frequency,
of solution and/or halving the spatial resolution'resulted in" •ions- The nite element method (F•hM) alows modelng
considerable sp;6'tifp whileimaintaining a rea% iable error of. complex geometry and has-been Used to solve bidomain

Direct solvers were faster by a faictor of 2-3 and the ICCM problems on a whole rabbit heart[7], but is more computa-
was about twice as fast in solving the parabolic equation as ti
compared to the FEM. Both the elliptic and. parabolic equa- onallydemandingthantheCM
tions scaled linearly with the number of nodes. " This studyexamines several techniques to iners the

K'eypords- computer. modeing, bidomain,. cardiac, finite computational efficiency of solving the bidomain equations.

element method Benefits to be gained from recasting the bidonai equations
into decoupled elliptic and- hyperbolic problems are exam-

I. INTRODUCTION ined. With the problems isolated, each is solved with dif-
]•'•ECTICA shoks re he oly now theapyforferent time steps and on different meshes in order to reduce

LECTRICAL shocks are the only know ther on apy f or computational demiand. By comparing results with the -fullyEJ hearts in fibrillation. Without intervention, death willfereptatime sep and on different meshes i to reduce
coupled bidomain solution, the simulation parameters whichquickly result. the mechanisms u maximize computational speed while maintaining SUfficient

rillation, however, still remain elusive. Electrical miapping accuracy are.determined.
of the cardiac. electrical activity during..the delivery of de-
fibrillatory shocks is hindered by the high shock strength, II. .METHODS

while optical mapping techniques are limited to surface mea- A. Governin'g E uations

surements. Modeling is therefore needed to help resolve the
events during defibrillation in the 3D volume of the heart. The basic bidomain equations[1] relate the intracellular

The bidomain representation of cardiac tissue is the most potential, 0i, to. the extracellular potential, 0,, through the

complete description of cardiac electrical activity[1]. It de- transmembrane current density, I.:

scribes both the intracellulat and extracellular potential V-fi~ =I- Itrans (1)
fields, linking them through membrane behavior. It has Pre-_
dicted the appearance of shock-induced virtual electrodes[2] I.. + Ijr..- 4,

which were later confirmed experimentally[3]: The bidomain I.= C. - + Ii. (3)
equations are computationally expensive as they require two &m
unknowns for each spatial node, resulting in large matri- where 6:4 and ffe are respectively the intracellular and extra-
ces which consume much memory and require long solution cellular conductivity tensors, is the surface to volume ra-
times. . tio of the cardiac cells, 1trans is. the transmembrane current

Besides this inherent computational burden in solving the stimulus, Ie is an extracellular current stimulus, C. is the

bidomain equations, simulating defibrillation in the heart is capacitance per unit area, Vm is the transmembrane volt-
also an intrinsically large problem. A piece of tissue large age which is defined as i - 0,, and Iin is the current den-
enough to support fibrillation must be modeled, on the order , sity flowing through the ionic channels. The Beeler-Reuter
of centimeters, and because of the length constants involved, Drouhard-Roberge model modified to handle large voltages.
it must be discretized on the order of hundreds of microm- was used as the ionic model[8] in this study. This formula-
eters. Furthermore, the kinetics of the sodium gate impose tion will be referred to as the coupled set of equations since
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the intracellular and extracellular potentials are solved si- ICCM Fine FEM Coarse FEM
nmultaneouslv. 'i...

By adding Eqn. 1 and Eqn. 2 and using the definition of ",.x\ \ .\.

Vm, the equations can be cast. in a slightly- different form Vv'
with Vm and e as the independent variables. \

V.(ci+ =e) V -v. ,VVm 1 (4) " \

V . V1,m =7 -V dv. ie + 1.m -tr8a -(5) -, ,

Equations 4'and 5 are decoupled and solved sequentially , I A 1 " 4 4
as an elliptic problem (Eqn. 4) and a parabolic problem
(Eqn. 5). Since the two systems are now independent of .
each other, they can be solved with different time steps and Fig. 1. Grids used for different solution methods.. All grids represent

at different spatial'. resolutions. This formulation will be the same spare. They are shown in 2D forclarity.
referred to as the decotipled system-

If either the extracellular electric field can be ignored, or, c. Grid Generation
the ratios of the longitudinal:to transverse conductivities in
the intracellular and extracellular domains'are equal, the Grid generation began by constructing an ICCM grid as
bidomain equations can be replaced with the monodomain has been described previously[5] (see Figure 1). :Cables were
equation. This is Eqn. 5 with the intracellular conductivity laid in sheets spaced 100 pim apart. Within each sheet, ca-
tensor, replaced by the the monodomain conductivity ten- bles were parallel and-all ran in the y direction. The dmain
* sor, &m ,which is a function of the bidomain conductivity spanned by the cables was a right-angled hexahedron. Ca-

tensors[9], 0m = o-•&,-(di.+oie)'... bles were then discretized into 100 pm long segments with
each segment connected to a segment in a neighboring ca-

B. Solution Methods ble through a: gap junction that-was represented by' a fixed
resistance.

To solve -the fully coupled system (Eqn.'s 1 and 2) the. Two different FEM meshes were constructe from theca-
FEM was used based. on a Galerkin formulation In matrix bles, a fine mesh and a coarse mesh. To construct the -fine,
notation with a time step of At, the resultant discretized three-dimensional FEM mesh, the centers of thecable seg-
system isgiven by ... ments were used as nodes from which to construct first-order

tetrahedrons, To construct the coarse FEM mesh, every
[Ke- M KM ] [4b+1 . . other point in' every other cable of every other layer was

M Ki-M - ].M used resulting in a mesh that was.approximately one-eighth
M(.[ rnl 4ton 'it -itrsl the size of the finer mesh. .The conductivity. tenisors in theion.- .t rAns] ý (6) tetrahedral elements were definedWb) the cable directions in

(k Io J~ Ii I rans the ICCM model.

where K• /3Cm!At, M is the FEM lumped mass matrix The effect of using a coarse mesh for the, e qua-
and K is the FEM stiffness matrix. Both matrices were tionand a fine mesh for the parabolic equation was tested.
computed using linear tetrahedral elements with the sub- Once a solution was obtained for 4), on the coarse mesh,
script on .K denoting whether the matrix was created-using interpolation was; used to assign potential values at the fine
&i or dr.(e). Superscripts refer to the time step. mesh nodes which Were used in the solution of the parabolic

To solve the elliptic equation of. the decoupled system equation. ' .
(Eqn. 4), an FEM approach was also used: 1 SD, Matrix Solvers - •

Ki+ete -kim- Mi e. ('7) To solve the coupled set of equations and the elliptic equa-
tion, both iterative and direct methods were used. While

where the subscript of the stiffness matrix denotes that the direct methods are generally faster when repeatedly solv-
sum of the .conductivity tensors was used. ing the same system of equations,' they: require much more

To solve the parabolic 'problem of the decoupled system memory.since performing a decomposition on a sparse ma-
(Eqn. 5), two different schemes 'were used, ICCM and FEM. trix preserves matrix bandwidth but fills in the zero entries
The ICCM solution utilized a semi-implicit time integration between bands[10]. One must .therefore use iterative meth-
on a one-dimensional linear grid to solve the particular so- ods on large problems where performing a matrix decompo-
lution[4]. The FEM solution 'utilized a forward Euler time sition would exceed computer:memory. The direct method
integration: ' ' used here was an SGI (Mountain View, CA) supplied LDLT

decomposition, where Lis a lower triangular matrix and D

vt.+ =Vti (M-'Kiv + -,iL + iit) (8) iadagnlmtx.After the dcmoionthe sse
was solved by forward and backward substitutions, A cus-



tom coded conjugate gradient method-with an Incomplete 3000, - ,

Cholesky decomposition preconditioner was used as the it-
erative solver[Ill. 250-

All simulations were performed on an SGI Origin 2100 ..- 9 -#ayers
computer which had 350 M-Hz MIPS R12000 processors and ,2ooo- u-u layer size FEM
4 gigabytes of memory. Times given for simulations are CPU 7

times for a single processor. E 15isOoL

III. REsuLTS O
IL 1000-

A. Solution Methods

The CPU time taken to simulate 25 ms of activity in s00-

a rectangular 3D block of cardiac tissue with zero flux .
boundary conditions was measured. The block measured 00 . 500k
1.6 x 0.6 x 0.11 (x x y x z) cm andi was composed of 108,031 Number ofo0 3 0kes

intracellular nodes. Activity was initiated in one corner of
the block by applying a 2 ms suprathreshold transmembrane Fig. 2. Time spent in the parabolic solution for a 25 ms long sim-
stimulus. The activity propagated out with an ellipsoidal ulation as a function of problem size. The size of the problem

wavefront which reached the x and y edges at approximately wa increased by increasing the number of layers (#layers) or by

25 ms. The CPU time to perform the simulation is given in
Table I for the various methods. AtE/AtP refers to the ratio
of the time step used for the elliptic equation solve over the The elliptic solve was the most costly part of the solution.
time step used for the parabolic equation solve. Parabolic Reducing the number of times that the elliptic equation is
solves were always performed with a time step of 10 ps. solved (increasing AtE/AtP) or reducing the size of the el-
Thus, 46 was not necessarily updated as frequently as vm. liptic problem (using a coarse grid) greatly decreased the
The value of co corresponds to solving the monodomain simulation time. Monodomain solutions were obviously the

Sequation. Fine and Coarse refer to the discretization of the quickest-
FEM grid on which the elliptic equation was solved. Itera-
tive refers to solving the elliptic equation on a fine grid using B. Problem Size

the conjugate gradient method. The dependence of simulation time on problem size was

next ascertained. The problem size was varied in two dif-
TABLATE ]ferent manners. The first manner was to increase the z di-CPU TIME TO . TE25 MS FOR VAROUS M ODS. mension which simply increased the number of layers in the

Method__ _/_AT• Fine oarse Itrtblock. This resulted in an increase in the number of nodes

Method AtE/At. Fin Cwoarse Iterative While preserving the bandwidth of any matrices. The second

1 3989.67 941.20 8517.56 method involved scaling the size of each layer in the x and
2 2270.54 796.63 5909.88 y directions by the same factor while keeping the number

ICCM 4 1396.46 629.02 4115.56 of layers constant. This method resulted in matrices whose
10 878.25 602.41 2761.32 bandwidth increased with the scaling factor. The effect of
0c 398.42 - - problem size was broken down into the effect on the time of
1 4868.44 1171.68 10071.34 the parabolic solution (Fig. 2) and the effect on the time of
2 2515.26 979.92 7111.40 the elliptical solution for a coarse gird (Fig. 3).

FEM 4 1643.83 884.71 5018.22 The ICCM method was about twice as fast as the FEM
10 1123.82 819.91 3404.27 method in solving the parabolic equation. The ICCM
00 757.88 - - method scaled linearly with problem size, regardless of how

Coupled - 13489.57 _ . 65867.97 the problem size was increased. The curves for the ICCM

method were on top of each other since bandwidth is not a
Solving the coupled equation was much slower than solv- consideration for this method.

ing the decoupled system. The ICCM method was ap- The FEM showed a linear increase in CPU time with
proximately twice as fast as the FEM method in solving problem size. At the smaller sizes, the manner in which the
the parabolic problem. An iterative solver was slightly problem was increased in size did not affect the computation
more than twice as slow to solve the elliptic problem at time. However, for very large problems, more than 200,000
a AtE"/AtP'of one and became three times as slow when nodes, increasing the layer size caused a larger increase in
AtE/AtP was ten. This was due to the larger change in computation time compared to an increase in the number

0, when computed less often, thereby requiring more itera- of layers.
tions for convergence. Increasing AtE/AtP from one to ten The effect of increasing the problem size for the ellipti-
increased the average number of iterations per elliptic solve cal problem was similar to the one obtained for the FEM
from 52 to 94. parabolic solve. The manner in which the size was increased



1000 _ The direct solver for the elliptic elliptic was 2-3 times
- faster than the iterative solver. It is therefore only reason-

able to use the iterative solver if memory is an issue and
0- -e #layers -.- the decomposed matrix does not fit into memory A decom-

- layer sz-posed sparse matrix can have 10720 times as many nonzero

60- - + entries as the original matrix due to fill in. This an addi-
E •" tional reason to solve the elliptic equation on a coarse FEM
- grid since memory for an LDLT decomposition will be re-fl 400 ". •4 -L 4' duced by a factor of eight.

V. CONCLUSIONS
200

2-0 Decoupling the bidomain equations into an elliptic: and
parabolic equation offer computational advantages which

10k 20k 30 k 40k 50 k 60k can be exploited to solve much larger problems in much less
Number of nodes time. The elliptic problem was computationally more ex-

pensive as well as requiring more memory. CPU times were
Fig. 3. Time spent solving the elliptic equation in a simulation of 25 as greatly reduced by solving it on a coarser spatial grid and at

a function of problem size. The number of nodes in the model was
increased by either increasing the number of layers in the model
or by increasing the size of each layer. able bounds. For solving the parabolic problem, the ICCM

was approximately twice as fast as the FEM. Due to the
sparsity of the problem, both the elliptic and parabolic prob-

was only significant for very large problems. lems scaled linearly with problem size. Finally, for problems
which fit into memory, direct methods are two to three times

IV. DISCUSSION faster than iterative methods.
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