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ABSTRACT 
 
 
 

 This study investigated a (IR) face recognition system using an uncooled IR cam-

era. A computer-based image collection set-up was designed and used to create a small 

database of 420 facial images, from 14 volunteers. Manual and automated facial image 

cropping routines were implemented. Two linear approaches (PCA and LDA) for the 

dataset dimension reduction and classification were implemented and their resulting clas-

sification performances compared. Results show that the best PCA-based average classi-

fication performance is equal to 92.22% while the LDA-based classification performance 

is equal to 99.40%. These results successfully show that an uncooled IR camera may be 

used to discriminate between individual subjects obtained from a small database collected 

under a very controlled environment. 
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EXECUTIVE SUMMARY 
 

This study investigated a (IR) face recognition system using an uncooled IR cam-

era. A computer-based image collection set-up was designed and used to collect a data-

base. The database has 420 facial images, from 14 volunteers (13 adult males and 1 adult 

female) with 30 pictures per person. All subjects are without glasses. Three different fa-

cial expression sets were collected: first, the individuals wore a neutral expression. The 

second set was constituted of the same subjects with a “smiling” expression. The third set 

was collected with same individuals pronouncing the vowel “u”. Study variables were 

reduced by using a controlled environment with the same background for each picture, 

with the person-camera distance fixed, and by restricting the pictures to frontal facial im-

ages while allowing a vertical and horizontal angle freedom of 10o.  

The uncooled infrared camera used for imaging has 160 x 120 pixels. Manual and 

automated facial image cropping routines were implemented with a fixed size of 60 x 45 

pixels. Two linear approaches, (a) Principal Component Analysis (PCA) and (b) Linear 

Discriminant Analysis (LDA) for the dataset dimension reduction and classification were 

implemented and their resulting classification performances compared. A minimum dis-

tance classifier was selected to evaluate the classification performances. The overall sys-

tem performance was evaluated with a cross-validation scheme using 60% of the pictures 

for training and 40% of the pictures for testing, with 1,000 repetitions. 

Results show that the best PCA-based overall classification performance 

(92.22%) is obtained when selecting the top 40 eigenvectors, while excluding the first 

three top eigenvectors. The LDA-based approach performed better, with an overall classi-

fication performance equal to 99.40%, as expected from the scheme definition. Results 

obtained in this study successfully show that an uncooled IR camera may be useful to 

discriminate between individual subjects obtained from a small database collected under 

a very controlled environment.  
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I. INTRODUCTION 

Infrared (IR) imaging offers advantages over visible imagery, the main one is its 

invariance to changes due to illumination because the generated images do not depend on 

reflected light but on radiations produced by the body. The best IR image resolution is 

produced using cooled camera equipment, where liquid nitrogen is used to reduce the 

temperature of the sensors. IR face recognition using cooled IR imagery has been used 

for several years; however, the high associated equipment cost has slowed down its use 

significantly. However, recent technological developments have resulted in uncooled IR 

camera set-ups with resolution approaching that of uncooled cameras at a fraction of the 

cost. This study investigates the design of a (IR) face recognition system using an un-

cooled IR camera.  

First, Chapter II describes the applications of biometrics to everyday life. Chapter 

III presents infrared imaging concepts and the hardware set-up selected in our study to 

conduct the experiments. We also describe in this Chapter the image grabbing procedure 

and the nomenclature selected for the database collection. Chapter IV presents the overall 

face recognition algorithms implemented for this stud. First, we describe two face-

extracting algorithms, which allow isolating the image face-only portions. Next, we pre-

sent the two dimension reduction schemes considered in this work, Principal Component 

Analysis (PCA)-based and the Linear Discriminant Analysis (LDA). The minimum dis-

tance classifier approach followed to make class decisions. Chapter V presents the recog-

nition performances obtained on our database and discusses the cross-validation approach 

implemented to estimate the performance. Conclusions and recommendations for future 

study are presented in Chapter VI. Finally, all code implemented during the study is in-

cluded in the Appendix. 
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II. BIOMETRICS 

This section presents the basic human biometrics used today, each with their ad-

vantages and drawbacks.  

 

A. INTRODUCTION  

The September 11th terrorist attack clearly demonstrated that security in a broad 

spectrum of areas needs to be intensified and that the positive identification of individuals 

is highly desirable in many instances. For example, identification can prevent the unau-

thorized access to confidential information or physical facilities and can help prevent ter-

rorism and crime. 

Biometrics, can certainly increase the probabilities of positive identification by 

using physical and behavioral characteristics to identify persons or verify identities. Some 

of the physical and behavioral characteristics used in biometrics are the following:  

• Physical Characteristics: chemical composition of body odor; facial features 

and infrared thermal emissions; features of the retina and iris; fingerprints; 

hand geometry; wrist and hand veins. 

• Behavioral Characteristics: handwritten signature; keystrokes dynamics and 

voiceprint. 

3

Despite widespread media coverage of biometrics since the September 11th terrorist at-

tacks, a national survey conducted by SEARCH, the National Consortium for Justice In-

formation and Statistics, showed that only half of the general public is aware of such 

technologies.  A public opinion poll was conducted between September 18th and 30th, 

2001, shortly after the terrorist attack and again between August 15th and 18th, 2002. Ac-

cording to these surveys, public support for using biometrics for anti-terrorism measures 

or crime prevention declined from 86% in 2001 to 80% in 2002 [1]. In addition, it is in-

teresting to note that these facts indicate that biometric identification systems remain rela-

tively unknown, yet are generally supported. However, the U.S. Congress has recently 

passed several laws that are likely to make biometrics far more common. These laws are 



only likely to be the inception of an inevitable trend to employ Biometrics for the pub-

lic’s safety. For example:   

• The USA Patriot Act, passed in November 2001, requires the Federal Gov-

ernment to develop technology standards for verifying visa applicants identiti-

ties to ensure that a specific individual has not received a visa under a differ-

ent name;  

• The Enhanced Border Security and Visa Entry Reform Act, which President 

Bush signed in May 2002, requires that visas and other travel documents in-

clude biometric identifiers by October 26, 2004; 

• The Aviation and Transportation Security Act, signed in November 2001, au-

thorizes the use of biometrics or other technologies to verify identities of those 

entering secure airport areas [2].  

 

Furthermore, additional funding is being allocated to develop technologies and 

policies focused on combating cyberterrorism. For example, the Defense Department 

awarded Carnegie Mellon University a five-year, $35.5 million grant in that area in Sep-

tember 2002. According to Praddeep Khosla, director of the Center for Computer and 

Communications Security, the research will focus on four key areas, one of which being 

computer secured access, and biometrics-based secured access to various devices, and 

public and private facilities [3]. 

The International Biometric Association estimates that sales in the biometric in-

dustry reached $170 million in 2001, a 70% increase over the previous year. Furthermore, 

it also predicts that sales will rise to $1 billion in 2004 [4]. According to findings from 

the international market consulting company, Frost & Sullivan, the total biometric market 

is projected to reach $2.05 billion in 2006 [5]. 

Biometrics usually attempt to solve two problems, identification and verification. 

Identification is the capability to properly identify a person from all those whose biomet-

ric measurements have been previously collected and stored in a database. Verification is 

authenticating a person’s identity by comparing the biometrics stored on a database. 

4



Some biometric properties are desirable but are not completely attainable with to-

day’s technology. There are biometrics that attain completely some but not all properties. 

Note that some very accurate biometrics may not be acceptable, which reduces their 

range of applications. Conversely, some less accurate biometrics may be used as they are 

easier to implement and are more widely accepted. For example, a gym academy could 

use a biometric system to restrict its access. It is possible to use a lower performing bio-

metrics that is more acceptable for such an application, where granting incorrect access 

has limited consequences. However, such a system would not likely be employed in 

places that require a more controlled access such as nuclear power plants. 

 

B. BIOMETRICS PROPERTIES 

Any human physiological or behavioral characteristic can be used in biometrics, 

provided it has the following desirable properties:  

• Universality: all individuals requiring identification or verification must have 

their specific biometric characteristic measured; 

• Uniqueness: no two persons can possess identical biometric characteristics; 

• Permanence: the characteristic must be invariant with time; 

• Collectability: the characteristic can be measured quantitatively.  

Other requirements are also important, such as:  

• Performance: refers to how accurately the biometric data can be identified or 

verified; 

• Acceptability: indicates to what extent people are willing to accept the intru-

siveness of the biometric system without feeling their privacy or personal 

freedoms are being breached; 

• Circumvention: refers to how easily the biometrics system can be deceived. 
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C. BIOMETRIC TYPES 

Biometrics most commonly studied are the face, fingerprint, hand geometry, iris, 

retinal pattern, signature, voiceprint and thermograms. Note, however, that no single 

biometric is universal. For example, some individual may have a finger skin too dry to 

gather fingerprints, as may be the case for a hairdresser routinely working with harsh 

chemicals [4]. Other individuals may be mute or amputees.  The most common biomet-

rics are described as follows: 

 

1. Voice 

The voice is a unique human characteristic. However, it is usually degraded in 

quality by microphone, communication channel or analog digital converters used to col-

lect and to transmit information. However, voice acquisition schemes are non-intrusive 

and many companies, including Bell Canada and Visa International, have tested voice-

print technology. Visa could eventually use this technology to identify credit card holders 

by having them speak into their PCs microphones to verify online purchases. 

Visa has been testing the software Vocent’s Voice Secure from Vocent Solutions 

Inc. of Mountain View, California. Its initial usage has been used solely within the firm, 

but the company is also considering the idea of deploying the software as a customer-

facing application next year [6]. 

Bell Canada selected Nuance Verifier 3.0 voice authentication software as a secu-

rity solution for the Speech Enabled Field Access System. This voiceprint authentication 

technology allows 5,000 Bell Canada technicians to access the dispatch system, and up-

date customer installation and repair orders securely from any telephone [7]. 

However, voiceprints have their own limitations as reproductions of a recorded 

voice can circumvent a voice authentication system for a remote unattended application. 

In such cases, additional security may be obtained by varying the spoken sentence.  
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2. Face 

The face is the most acceptable biometrics because it is one of the most common 

methods of identification, which humans use daily. Furthermore, the method for acquir-

ing samples for verification is non-intrusive. However, developing face recognition tech-

niques that can allow for the effects of aging, facial expressions, slight variations in imag-

ing and photographing variations in the facial pose is quite challenging. A facial-

recognition system tested in 2002 at a Palm Beach airport in Florida illustrates the sys-

tem’s limitations. The system failed to match airport employs with their digital photos 

53% of the time [8]. Nevertheless, in March 2002 the U.S. Army announced that its mili-

tary police officers have successfully tested facial-recognition technology to aid them in 

their duties. The cornerstone of this mobile security system is an eyeglass-mounted wear-

able camera and display device. 

According to Mark Chandler, a physical scientist at the Army’s Soldier Systems 

Center in Natick, Massachusetts, the Army’s development of this mobile facial recogni-

tion system has been a four-year, $12 million effort. The U.S. Army intends to integrate it 

with other technologies, and the U.S. Navy is investigating its applications to control ac-

cess to flight lines [9]. 

 

3. Fingerprint 

Fingerprints are believed to be unique to each person (and each finger). As a re-

sult, fingerprinting is one of the most mature biometric technologies used in forensic sci-

ence worldwide.  Fingerprint images are captured, typically, in one of two ways, by scan-

ning an inked impression of a finger or by using a live-scan fingerprint scanner [10]. 

The FBI inaugurated a fully operational Integrated Automated Fingerprint Identi-

fication System (IAFIS) in 1999 with development and implementation costs around 

$640 million. The IAFIS has its roots in the 1960s and 1970s when the FBI began inves-

tigating the feasibility of automating the fingerprint identification process [11,12]. This 

system compares fingerprints against those contained in its vast database and can respond 

within two hours. In the past, this process often took weeks to complete using a semi-

7



automated system.  In addition to criminal checks, the FBI also processes many civil fin-

gerprint submissions. The FBI receives an average of 50,000 fingerprint submissions 

each business day, where half on those submissions are criminal and half are civil. Note 

that civil submissions are those for which law requires an FBI fingerprint check, such as 

for teachers, child care providers, security guards and other such positions of trust. The 

IAFIS now provides responses to civil submissions within 24 hours, while such requests 

response times exceeded 100 days before. In addition, fingerprint recognition systems 

have also been employed for everyday applications, such as for personal computers, gro-

cery stores, etc. For example, customers have the option to pay for their purchases by 

placing their fingers on a payment terminal at the checkout register at three Kroger stores 

in College Station, Texas and West Seattle Triftway [13]. The Children’s Hospital Inc. in 

Columbus, Ohio, uses fingerprint technology to authenticate doctors who order tests and 

prescribe drugs [14]. 

Semiconductor makers have developed chips that can read a fingerprint and verify 

a specific user identity. For example, chips made by STMicroelectronics (called the 

Touch Chip) and Veridicom have already been installed on laptops from MicronPC LLC, 

Samsung Corp., NEC Corp. and Acer Inc. [15].  

 

4. Thermograms 

A thermogram measures the temperature of the body’s surface, and as a result, the 

face thermogram may be used as a biometric. Prokoski, a researcher from Mikos Ltd., 

showed that the temperature pattern on the facial skin is due primarily to the pattern of 

superficial blood vessels, which are those under the skin but above bone and muscle [16].  

Vessels transport warm blood throughout the body and heat the skin. As a result, the skin 

that is directly above a blood vessel is on the average 0.1oC warmer than the adjacent 

skin. The typical human face displays an apparent temperature range of about 8oC. 

The complexity of the resulting 3.1 miles (five kilometers) of bloods vessel in the 

head and face assures that each person’s vascular arrangement is irreproducible and 

hence unique. Amazingly, studies have shown that even identical twins have different 

thermogram features [16]. Furthermore, studies have shown that the skin temperature ex-
8



hibits several periodic fluctuations and that the mechanisms and physiological basis un-

derlying these fluctuations are not yet well understood. Additionally experiments indicate 

that personality and emotional state are factors that contribute to these fluctuations [17, 

18].  

 

5. Retinal Scan 

The retinal vasculature is rich in structure and is supposed to be a characteristic of 

each individual and each eye.  It is claimed to be the most secure biometrics since it is not 

easy to alter or replicate. However, many people are suspicious of retinal scans owing to 

the fact that retinal vasculature can reveal some medical conditions such as hypertension. 

This fact presently stands in the way of public acceptance of retinal scan based-

biometrics.  

 

6. Iris              

The visual texture of the human iris is determined during the embryonic develop-

ment and is posited to be unique for each person and each eye [10]. Unlike retinal scans, 

which require close contacts with the scanner, iris-based recognition has been reported to 

be successful at distances of up to 18 inches (46 cm) [19]. However, iris scan systems 

may be disrupted by contact lenses [20]. 

Iridian Technologies Inc., produces the IrisAcess 2200 system, which detects an 

individual approaching the imager and then captures an iris image once the person’s eye 

is from three to 10 inches from the mirror on the unit. This image is digitally processed 

into a 512-byte IrisCode template [21]. 

The Pentagon tested iris recognition technology at its Athletic Club, as club 

members may voluntarily sign up to test the system, which involves capturing data from 

a member’s identification card and iris features. In addition, Canada customs will begin 

using iris scanners to speed air travelers through the country’s busiest airports in the near 

future. Kiosks equipped with iris-recognition devices in eight of Canada’s busiest interna-

9



tional airports will allow some Canadian travelers to cross customs checkpoint in 30 sec-

onds or less by confirming their identities with quick iris scans [22]. 

 

7. Ear 

Studies have shown that the shape of the ear and the structure of the pinna carti-

laginous tissue are distinctive.  In addition, there is supporting evidence indicating that 

ears are probably unique to each individual. A. Iannarelli first developed an antropomet-

ric ear-based biometric identification technique in 1949.  This method is based on 12 

measurements of the ear structure. However, this method is not well suited for “machine 

vision” implementations due to the difficulties of locating the anatomical point that 

serves as the origin of the measurement system [19]. Although this research is not yet 

conclusive, studies have also indicated that identical twins have different ear structures 

(even though they may look similar). [19]. 

 

8. Gait 

Gait refers to the peculiar way one walks and, while it is not claimed to be abso-

lutely unique to each individual, it is sufficiently characteristic to allow for identity au-

thentication. Naturally, gait is a behavioral biometric and may not stay invariant espe-

cially over a long period of time, due to large fluctuations of body weight, major injuries 

involving the joints or cerebral disorders or inebriety. Typically, gait features are derived 

from analyzing video-sequence footage of a person walking and encompass several char-

acteristic movements of each articulate joint. 

Gait recognition research has largely been motivated by Johansson’s experiment 

and the ability of humans to perceive motion from Moving Light Displays (MLDs). In 

these experiments, human subjects were able to recognize the type of movement of a per-

son by observing the 2D motion pattern generated by light bulbs attached to the person. 

Similar experiments, later showed evidence that the identity of a familiar person, as well 

as the gender of the person might be recognized from MLDs [23]. 
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9. Keystroke Dynamics 

This behavioral biometrics is also not expected to be unique to each individual, 

but it may offer sufficient discriminatory information to permit for identity authentica-

tion. Keystroke dynamic features are based on time durations between the keystrokes. 

Some variants of identity authentication use features based on inter-key delays as well as 

dwell times—namely, how long a person holds down a key. 

 

10. DNA 

DNA (Deoxyribonucleic Acid) is mostly used in forensics for identification and is 

believed to be unique for each person (except for identical twins who have identical DNA 

patterns). Three issues limit the utility of this biometric for other applications [10]:  

• Contamination and Sensitivity: it is easy to steal a DNA sample for a fraudu-

lent or criminal purpose; 

• Automatic Real-time Identification Issues: presently, the technology for ge-

netic matching for online identification is lacking. Most of the human DNA is 

identical for the entire human species and only some relatively small numbers 

of specific locations on DNA, called polymorphic loci, exhibit individual 

variations. These variations are manifested either in the number of repetitions 

of a block of base sequences or in the minor non-functional perturbations of 

the base sequence. The processes involved in DNA-based personal identifica-

tion determine if two DNA samples originate from the same individual based 

on the distinctive signature at one or more polymorphic loci. The major com-

ponents of these processes now exist in the form of chemical methods requir-

ing an expert’s skills. 

• Privacy Issues: information about susceptibilities of a person to certain dis-

eases could be gained from the DNA pattern, and there is a significant concern 

that the unintended abuse of genetic code information may result in discrimi-

nation, such as in hiring practices. 

11



11. Signature 

The way a person signs his or her name is known to be a characteristic of that in-

dividual. However, signatures are not a foolproof behavioral biometric as they evolve 

over a period of time and are influenced by physical and emotional conditions. Although 

experts can discriminate between genuine and forged signatures, modeling the invariance 

in the signatures and automatic signature recognition process are challenging. Two ap-

proaches to signature verification exist, static and dynamic. In the static signature verifi-

cation, only geometric features of the signature are used for authentication. In dynamic 

signature verification, the signature dynamic features such as acceleration, velocity, and 

trajectory profiles are also employed.  

A related, and remarkable, technology is authentication based on the characteris-

tics of the sound produced during a signature. These acoustic emissions are claimed to be 

a characteristic of each individual [10]. 

 

12. Odor 

It is commonly known that body odors serve several functions including commu-

nication, attracting mates, assertion of territorial right, and protection from a predator. 

Humans produce an identifiable odor that is characteristic of their unique chemical com-

position. A component of the odor emitted by human (or any animal) is distinctive to a 

particular individual. Despite the rare use of this technology in biometrics, there are many 

commercial electronic “noses” and software that can recognize odors under development. 

Generally, these common applications are in food and beverage processing, environ-

mental monitoring, medical diagnostic, and fragrance development [24, 25].  

The artificial nose manufactured by SMart Nose Inc., uses mass spectrometry to 

identify volatile organic components ranging from liquid to solid samples. The instru-

ment is fully automated and operates in two modes: a survey mode for the setup of new 

applications, and a multiple channel mode for the specific and/or sensitive analyses in the 

day-to-day use. The system uses the algorithm based on the Principal Component Analy-

sis (PCA) or Discriminant Function Analysis (DFA) [24]. 
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13. Hand and Finger Geometry 

Some features related to a human hand such as finger length are relatively invari-

ant and peculiar (although not unique) to each individual [10]. Hand geometry readers 

have been the dominant biometric technology for access control and time and attendance 

applications in 2001, as reported by Frost & Sullivan’s World Biometric Report 2002 

[26]. Since 1991, HandReaders from IR Recognition Systems, have produced more than 

100 million biometric verifications, with more than 50,000 produced on high volume 

days at the San Francisco International Airport. HandReaders span the entire airport, se-

curing more that 180 doors and verifying the identity of more than 18,000 employees.  

Over 70,000 HandReaders are installed throughout the world in a wide variety of 

applications. The 1996 Olympic games used HandReaders to protect access to the Olym-

pic Village, where more than 65,000 people were enrolled and over 1 million transactions 

were handled in 28 days [26]. 

 

D. COMPARISON AMONG BIOMETRICS 

Biometrics may be compared in relation to their desirable properties. Table 1 pro-

vides a comparison of biometrics technologies. 
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Table 1.   Biometric Technologies Comparison. The data was obtained from  [10]. 
Biometrics Universality Uniqueness Permanence Collectability Performance Acceptability Circumvention 

 
Face High Low Medium High Low High Low 

Fingerprint Medium High High Medium High Medium High 

Hand 
Geometry 

Medium Medium Medium High Medium Medium Medium 

Keystrokes Low Low Low Medium Low Medium Medium 

Hand Vein Medium Medium Medium Medium Medium Medium High 

Iris High High High Medium High Low High 

Retinal Scan High High Medium Low High Low High 

Signature Low Low Low High Low High Low 

Voice Print Medium Low Low Medium Low High Low 

Face Ther-
mograms 

High High Low High Medium High High 

Odor High High High Low Low Medium Low 

DNA High High High Low High Low Low 

Gait Medium Low Low High Low High Medium 

Ear Medium Medium High Medium Medium High Medium 

 

 This Chapter provided an overview of the use of biometrics today with their own 

advantages and drawbacks. Next, we discuss the main concepts behind infrared imaging.   
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III. INFRARED IMAGING  

This chapter presents the infrared imaging system used. First, we address relation-

ships between the temperature of a source and the infrared radiation. Second, we present 

the camera and physical set-up used to obtain the images.  

 

A.  INFRARED SPECTRUM 

The astronomer Sir William Herschel (1738 – 1822) was the first to detect infra-

red (IR) radiation in 1800.  IR radiation covers 0.7 to 1000 µm in the electromagnetic 

spectrum. According with Hecht, the IR spectrum is subdivided into four regions: the 

near IR (0.78 – 3 µm), the intermediate IR (3 – 6 µm), the far IR (6 – 15 µm) and the ex-

treme IR (15 – 1000 µm) [27].   

 

B. BLACKBODY 

A blackbody is a perfect radiator. It radiates more power from a surface area in a 

wavelength interval than any body can radiate at a given temperature. No surface that is 

in thermodynamic equilibrium can radiate more power, unless it contains fluorescent or 

radioactive materials. 

The expression for the blackbody emission was first formally derived by Planck 

in 1900.  The exitance for a blackbody, M(λ,T), considering the irradiation in a hemi-

sphere in front of the source, is given by [28]: 

 

( )
2

2 5 /

watt 2,
cm µm [ 1]hc kT

hcM T
e λ

πλ
λ

 
= ⋅ − 

,                            (3.1) 
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where h = 6.625x10-34 Watts s⋅ 2 is the Plank’s constant, k 23 -11.38 10 Watts s K−= × ⋅ ⋅ is 

the Boltzman’s constant,  c = 3x108 m/s is the speed of light, and T is the temperature in 

Kelvin. M(λ,T) is usually expressed in Watt ⋅ cm-2 ⋅ µm. Figure 1  plots the exitance as a 

function of the wavelength, for three different temperatures near room temperature 

(300K).  
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Figure 1.   Blackbody exitance. 

 

The Wien displacement law defines the wavelength that corresponds to the peak 

of the exitance at each temperature. This can be obtained by computing the partial deriva-

tive, with respect to wavelength, of the exitance and setting it equal to zero, expressed as: 

( , ) 0M Tλ
λ

∂
=

∂
,                                                  (3.2) 
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which leads to max 2898 µm K,Tλ = ⋅ where maxλ  is the wavelength where the exitance peak 

occurs at the temperature T. The maximum exitance occurs at λ  = 9.66 µm for a black-

body source at T = 300 K (room temperature), while the maximum exitance occurs at λ  

= 9.35 µm for a blackbody source at T = 310 K (human body temperature). 



The total blackbody exitance is obtained by integrating the exitance expression 

over a finite spectral region, which leads to: 

2

1

( , )M M d
λ

λ

λ λ= Τ∫ ,                                                  (3.3) 

where λ1 and λ2 are the smallest and largest wavelengths of the finite spectral region of 

interest. 

 The total exitance from a blackbody at temperature T is the integral over all wave-

lengths values, and is given by: 

0

( ) ( , )M T M T dλ λ
∞

= ∫ ,                                              (3.4) 

which leads to M(T) = σeT4, where σe is the Stefan-Boltzmann constant which has an ap-

proximate value of 5.67x10-12 watt/(cm2 ⋅ K4). 

  

C. EMISSIVITY 

The previous section presented the equation of the blackbody exitance. Recall that 

the blackbody is a perfect radiator as it radiates the maximum power from a surface area 

in a wavelength interval. So, it also represents an upper bound for the overall exitance of 

a source.  

The ratio between the exitance of a real source and the exitance of a blackbody is 

defined as the emissivity ε, which is a function of the wavelength λ and the absolute tem-

perature T. It is a dimensionless quantity smaller than 1 and defined as: 

( , )( , )
( , )

source

blackbody

M
M

λε λ
λ

Τ
Τ =

Τ
.                                        (3.5) 

Note that a blackbody source has an emissivity ε equal to 1 for all wavelengths, 

while a graybody source has an emissivity less than 1 for all wavelengths.  
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Human skin emissions can be approximated by a graybody source with ε equal to 

0.98 in the wavelength range between 3 and 14 µm [29].  For a typical person, tempera-

ture across the face varies about 8oC [16]. Since this variation is much smaller than the 

average absolute temperature (Tav) of the face (310 K), the variation of the exitance 

across the face can be taken expressed as:  

34 e avM T Tσ∆ ∆ .                                             (3.6) 

For example, the face exitance changes by approximately 1% when the face tem-

perature changes by 1%. 

 

D. INFRARED IMAGES 

 1. IR Camera  

The uncooled IR camera selected for this study is a IR-160 model produced by In-

frared Solutions, Inc., where the primary reason for using an uncooled camera was to re-

duce the overall system cost. This uncooled camera is sensitive to electromagnetic radia-

tion in the wavelength range from 8 µm to 14 µm. It has a 160 x 120 pixel microbolome-

ter array to obtain the images at a 30 Hz frame rate that can be displayed on a NTSC 

standard monitor, or may be transmitted serially using 8 bits per pixel via RS-232. Mi-

crobolometers operate on the principle that temperature changes produced by the ab-

sorbed radiation produce changes in the material resistance [28].  As a final result, an 

electrical signal proportional to the change in the electrical resistance is obtained. The 

bolometer temperature coefficient depends on the sensor material and the amount of re-

sistance change produced by a temperature change. The relation between the temperature 

and the resistance may be approximated by the linear equation: 

0 (1 )dR R Tα= + ∆ ,                                           (3.7) 

where α is the temperature coefficient of the detector material, Ro is the resistance at the 

base temperature and ∆Td is the change in the detector temperature.  The camera has a 

germanium lens that allows for manual focusing of the image. In addition, it is possible to 

adjust the image brightness and contrast and to select a specific palette scheme. Selec-
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tions are saved in non-volatile memory and the camera initiates with the same setting the 

next time it is turned on. The palette scheme used in our study is linear, which allows us 

to adjust the gray color displayed automatically. In addition, it sets the output image pixel 

that corresponds to the image pixel with the highest and lowest intensity to white and 

black, respectively. The camera is remotely controlled using the program HyperTerminal 

from Windows and its focus is manually adjusted for each picture until the best setting is 

achieved. In our work, all images were digitized using eight bits per pixel and contained 

one face only. The noise equivalent difference temperature (NEDT) of the camera is 

about 60 mK. The transmission time per frame using the RS-232 interface is about 6 sec-

onds. 

 

2. Image Acquisition 

The image acquisition scheme is illustrated in Figures 2 and 3. There were nine 

numbered points marked on the walls. Numbers vary from 1 to 9, as depicted in Figure 3. 

Each volunteer was asked to rotate his or her head in the direction of the numbers. An 

additional picture was taken by asking volunteers to look at a random place within the 

square formed by the extreme marked points. All volunteers were adults (13 males and 1 

female), all males were clean-shaven except for 1 subject with a mustache. For each vol-

unteer three sets of images with different expressions were obtained. Each set contained 

10 images, resulting in 420 images. A sample of the images obtained is shown in Figure 

4. 
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Figure 2.   Image acquisition (lateral view). 
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Figure 3.   Image acquisition (fro
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Figure 4.   Sample of the images obtained. 

 
 
 
 
3. Image Nomenclature Convention 

The images obtained were stored in .pgm format using the following nomencla-

ture: xx-yy-zz.pgm, where xx is the person number, yy represents the visual direction that 

the person should be looking at and zz is the section number.  

The range of parameters selected for this study is: 

• [1–6,8,9,11–16] for xx, 

• [1–10] for yy, 

• [1,5,6] for zz. 

The section number (zz) was defined as follows: 

1- for a neutral expression and no glasses. 
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5- for  a “smiling” expression and no glasses. 

6- for a vowel “u” pronouncing expression and no glasses. 

For example, 2-5-5.pmg refers to subject number 2, looking at visual direction 5, 

with a “smiling” expression and no glasses. 

This Chapter presented the infrared imaging concepts, the setup used to collect 

the images and the image nomenclature convention. Next chapter discusses the classifica-

tion schemes investigated. 
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IV. FACE RECOGNITION 

Automatic face recognition is a procedure for associating a face to an identity. We 

may say that a face is recognized when its image matches reasonably well the face image 

of someone whose identity we know. This procedure may be divided in three sequential 

steps: a) Image acquisition; b) Face detection and segregation; and  c) Face classification, 

as shown in Figure 5.  

 

Figure 5.   Automatic face recognition procedure block diagram. 

 

A. FACE DETECTION AND IMAGE SEGMENTATION 

IR images were collected with the IR-160 camera, as described in Chapter II. 

First, the images were cropped to isolate face-only portions to minimize the potential im-

pact due to different backgrounds. Next, the resulting cropped images were used in the 

training and testing phases of the automatic recognition system. Two methods for crop-

ping were used, manual cropping and automatic cropping. These methods are described 

next. 

 

1. Manual Face Detection and Segmentation 

 In this work, the face contained in each picture was detected by visual inspection 

and manually cropped using a rectangle of 60 vertical by 45 horizontal pixels. The size of 

this rectangle was obtained by trial and error so that it included most of the facial features 

of each subject, leaving very little visible background. Faces were cropped just above the 

chin and above the eyebrows. Next, each cropped image was saved in .bmp format using 

the same nomenclature as the image it was obtained from, except that an “-a” was ap-
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pended to the file name, such as 2-3-4-a.pgm for example. A sample cropped image is 

shown in Figure 6 below. 

 

Figure 6.   Cropped IR image. 

 

2. Automatic Face Detection and Segmentation 

An automated face detection and cropping routine was also implemented to de-

crease the manual processing time.  It operated in two steps:  

• First, images are vertically cropped using a basic edge detection scheme. 

• Second, a fine search on the resulting image is conducted to extract the 

face-only portion of the image.  

 

a. Face Edge Location  

Face edge location is conducted in the following three steps. First, a “dif-

ference” image is generated by subtracting a shifted copy of the image from the original 

image, resulting in an “edge enhanced” image, as shown in Figures 7 and 8 below. Pixel 

values obtained for row 60 of the difference image are plotted in Figure 9, which shows 

that vertical left and right edges may be easily located by extracting the indices corre-

sponding to the maximum (~40) and minimum (~117) values respectively. The overall 

vertical left and right face edges are established by selecting the smallest left edge index 

and the largest right edge index out of three rows selected in the image. The resulting 

cropped image is the original image cropped on the right and left edges of the face, as 

illustrated in Figure 10. 
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Figure 7.   Infrared image.  
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Figure 8.   Difference image obtained from Figure 7. 
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Figure 9.   Row number 60 pixel values obtained from Figure 8. 
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Figure 10.   Automatically cropped image. 

 

b. Face Locating Procedure 

At this stage we still need to further crop the top and bottom portions of 

the cropped image to isolate the face-only section and remove any left-over background. 

Turk and Pentland proposed a procedure to extract exact face location contained in an 

image [30]. Their algorithm uses the Principal Component Analysis (PCA) approach, 

which is explained in further details in the next section, and considers the Euclidian dis-

tance as a measure of the “closeness” of two images. Basically, their procedure divides 

the image into sub-images, projects them using PCA into a predefined “face space” and 

uses the fact that “face-only” sub-images are closer to the face space than non “face-

only” subimages are. The procedure is described next.  

First, we extract sub-images  Γ  from an image I and subtract the mean 

image of the whole database Ψ, as the mean does not contain any useful information for 

this task. The resulting mean centered sub-images are called φ.  Next, the mean-centered 

sub-images are projected onto the face space, which leads to their associated sub-images 

φf.  At that point, we use the Euclidian distance to evaluate how close each sub-image is 

from its projection onto the face space and select as the “face-only” sub-image that which 

leads to the minimum distance ε2 out of all sub-images extracted from that image. Note 

that this method is computationally expensive.  However, we can obtain the face map di-

rectly from the original image without explicitly applying the projection operation, as 

shown in [30, Eq. 15]. The distance expression ε2 can be shown to be equal to:  
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= Γ Γ − Γ ⊗ Ψ + Ψ Ψ − Γ ⊗ − Ψ ⊗∑        (4.1) 

where Γ is the subimage,  is the correlation operation, Ψ  is the mean image of the 

whole database used for the system design and u

⊗

i are the eigenvectors of the covariance 

matrix used to create the face space, as defined in the PCA section later. The computation 

of the face map involves only the computation of L+1 correlation terms over the input 

image, and the computation of ( , ) ( , )t x y x yΓΓ . Computing the expression 

( , ) ( , )t x y x yΓ Γ is obtained by squaring the input image I(x,y) and summing the squared 

values contained in each subimage. This procedure was implemented in MATLAB and 

the code is included in the Appendix.  

 

B. FACE CLASSIFICATION 

Classification aims to assign an identity to an input facial image by comparing it 

to pre-stored facial images. A direct image-by-image comparison would be extremely 

computationally expensive. Therefore, a dimension reduction process, which reduces the 

search time and memory required to store all subjects, is very desirable. Note that an im-

age may be considered as a vector of dimension equal to the number of pixels in the im-

age by reshaping the image as a vector. For example, consider a 60 by 45 pixels image, 

which contains a total of 2,700 pixels. As a result, the image vector produced by this im-

age is of length 2,700. In addition, pixels are likely to be correlated. As a result, a dimen-

sion reduction scheme is likely to reduce computational load and storage requirements 

without degrading discrimination performances. In this work, we consider two linear pro-

jection approaches which allow us to significantly reduce the problem dimension: the Ei-

genface approach, based on the Principal Component Analysis (PCA) concept, and the 

Fisherface approach, based on the PCA and Fisher Linear Discriminant (FLD) concepts. 
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1. Principal Component Analysis (PCA) 

a. Definition 

PCA is a linear projection scheme that reduces the dimensionality of a 

data set while retaining as much variance present in the data as possible. As a result, the 

PCA scheme is best matched for compression applications, but has also been applied with 

success to classification problems, although one cannot insure the components kept are 

those best suited for discrimination purposes [31]. 

Initially, let us consider the problem of representing N d-dimensional 

samples, image vectors {x1, x2, …, xN} by a single vector x0. To be more specific, sup-

pose that we want to find a vector x0 such that the sum of the squared distances between 

x0 and the various xk, k = 1…,N, is as small as possible. Let us define a cost function 

J0(x0) that must be minimized as:  

2
0 00

1
( )

n

k
k

J x x x
=

= −∑ .                                    (4.2) 

Next, we will show that the solution to this problem is given by x0=m, 

where m is the dataset sample mean, 

1
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m
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First, let us rewrite J0(x0) as follows, 
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Note that the above expression is minimized when x0=m, since the second 

term in the summation is independent of x0.  

Next, let us consider e to be a unit vector in the direction of the line run-

ning through the sample mean.  The equation of the line can be written as: 

x m ae= + ,                                                 (4.5) 

where the scalar a (which can take any real value) corresponds to the distance of any 

point x from the mean m. At this stage, we can find an “optimal” set of coefficients ak’s, 

if we represent xk by m+ake, by minimizing the following cost function: 

2 2
1 1 2

1 1

2 22
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Recognizing that ||e|| is equal to 1, partially differentiating with respect to ak and setting 

the derivative to zero, leads to: 

(t
kka e x m)= − .                                          (4.7)     

Geometrically, this result means that least-square solution may be obtained by projecting 

the vector xk on the line in the direction of e that passes through the sample mean m. 

Next let us consider the problem of finding the best direction e for the line 

of interest. Let us define the total scatter matrix S as: 

1
( )(

n
t

k k
k

S x m x m
=

= − −∑ ) .                                 (4.8) 

Replacing the Equation (4.7) into Equation (4.6) leads to: 
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Naturally, the vector e that minimizes J1 also maximizes etSe. The solution 

to this problem must satisfy the equation: 

Se eλ= .                                                              (4.10) 

This means that the vector e that minimizes J1(e) is an eigenvector of the scatter matrix. 

As a result, maximizing the expression etSe is obtained by selecting for e the eigenvector 

of S associated with the largest eigenvalue. In other words, we project the data onto a line 

running through the sample mean in the direction of the eigenvector of the scatter matrix 

having the largest eigenvalue to find the best one-dimensional projection of the data. 

Figure 11 presents a two-class, two-dimensional problem where we wish 

to reduce the data dimension from two to one. Class 1 and 2 are represented by stars and 

circles respectively. The direction that provides the best one-dimensional PCA represen-

tation of the data is the line included in Figure11. Note that class discrimination is pre-

served as the projected stars and circles onto the line do not overlap. 
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Figure 11.   PCA Example. The line represents the projection direction in which the data 

should be projected to obtain the best representation in one dimension.  

Recall that PCA was initially designed for compression applications, and 

that the projection directions are not optimized to preserve class separability. Figure 12 

shows an example in which the projection direction that best represents the data does not 

preserve class discrimination when projecting a two-dimensional dataset with two classes 

onto a one-dimensional space (a line).  In this example, the projected stars and circles 

overlap, and it is no longer possible to separate the two classes. 
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Figure 12.   Data Points and PCA projection. The line provides the best projection direction to 

represent the data set.  

The above result can be extended from a one-dimensional projection to a 

p-dimensional projection. 
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The cost function becomes 

2 2

1 1 1 1

( ) (
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i k i kp ki ki
k i k i

J m a e x a e x m
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= + − = − −∑ ∑ ∑ ∑ ) .    (4.12) 

This function is minimized when the vectors e1, e2,…ep are the p scatter 

matrix eigenvectors associated with the p largest eigenvalues. Note that these eigenvec-

tors are orthonormal as the scatter matrix is real and symmetric, and they form a basis set 

used to represent any feature vector x. The coefficients ak are the projections of x in that 

basis and are called principal components.  
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The PCA scheme may be implemented in a matrix form, as follows: 

Each image contained in the training set is reshaped as a column vector 

with dimension q, and the data matrix A is defined as the concatenation of all image vec-

tors columnwise, resulting in a matrix of dimension q  (in our case 2700). Next, the mean 

image of the training set is subtracted from each image resulting in a matrix X. The data 

covariance matrix S is defined as: 

S = XXt.                                                        (4.13) 

Recall that the d eigenvectors of S corresponding to the largest eigenval-

ues minimize the cost function ( )J ⋅  previously defined. Further, note that the matrix S 

has dimension 2700 in our case, which is very large. Computing the eigenvectors of S = 

XXt may be significantly decreased by computing them in terms of the eigenvectors of 

XtX with the snapshot method which is described next.    

 

b. Snapshot Method 

The singular value decomposition theorem states that any K x N matrix 

can be decomposed and written as the product of three matrices [32] 

*TX U V= Σ ,                                                 (4.14) 

where U is the K x K unitary left singular vectors matrix, containing the singular vectors 

columnwise, V is the N x N unitary right singular vectors matrix, and  is the K x N di-

agonal matrix of  nonnegative real singular values.  The correlation matrix XX

Σ
t can be 

expressed as: 

( )( ) ( )t t T t t t t t tXX U V V U U V V U U= Σ Σ = Σ Σ = ΣΣ U

t

.       (4.15)  

By analogy the product XtX can be expressed as: 

t tX X V V= Σ Σ .                                                (4.16) 

Equation (4.15) shows that the matrix U contains the eigenvectors of XXt 

and the eigenvalues of XXt are diagonal elements of the matrix tΣΣ , by analogy Equation 
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(4.16) shows that the matrix V contains the eigenvectors of XtX and that the eigenvalues 

of XtX are diagonal elements of the matrix tΣ Σ .  

V U

U X=

ty w=

Next, let us consider the product XV, 

tX V V U= Σ = Σ ,                                        (4.17) 

where the last step follows because V is unitary. Note that the only useful eigenvectors 

for our application are those associated with non-zero eigenvalues. Therefore  we define 

as the inverse of the portion of 1−Σ Σ  which contains the non-zero diagonal elements of 

 only. Therefore, the eigenvectors associated with non-zero eigenvalues are defined: Σ

1V −Σ .                                                (4.18) 

 

2. Linear Discriminant Analysis (LDA) 

LDA is an approach designed to reduce a dataset dimensionality while maximiz-

ing class separation. As a result, the LDA scheme is optimized for classification prob-

lems, where the goal is to preserve class discriminative information [31].  

Let us consider initially the case of finding one line that best discriminates the 

projections of a two-class d-dimensional dataset and later we will generalize the equation 

to a c classes problem.  

Assume that we have a set of n d-dimensional samples x1, x2, …xn, where n1 sam-

ples are in subset (i.e., class) C1, and n2 samples are in subset (i.e., class) C2. If we form a 

linear combination of the components of x we obtain: 

x ,                                                       (4.19) 

and a corresponding set y1, y2,…,yn divided in two subsets Y1 and Y2. 

Geometrically, if ||w|| is equal to one, each yi is the projection of the correspond-

ing xi onto a line in the direction of w.  Note that the magnitude of w is of no real signifi-

cance because it merely scales y. A measure of the separation between the projected 

points is the difference of the sample means. 
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Let us define mi the d-dimensional sample mean as follows: 

1

i

i
x Xi

m
n ∈

= x∑ ,                                              (4.20) 

where ni is the number of elements on the set Xi. 

The sample mean for the projected points is given by 

1 1
i

i i

t t
i

y Y x Di i

q y w x w
n n∈ ∈

= = =∑ ∑ m .                             (4.21) 

Note that  q (above) is simply the projection of mi on w. 

The distance between the projected means is given by: 

1 21 2 (tq q w m m− = − ) .                                     (4.22)  

The above distance may be varied by scaling the vector w. Thus, a good measure 

of separation for the projected data requires the definition of this distance with respect to 

some measure of the standard deviations for each class. 

We can define the scatter for projected samples by: 

( )2 2(
i

i
y Y

L y
∈

= −∑ )iq  .                                     (4.23)                              

The Fisher Linear discriminant employs the linear transformation w such that the cost 

function: 

( ) ( )

2

1 2
2

1 2

( )
q q

J w
L L

−
=

−
2 ,                                     (4.24) 

is maximized. The direction w maximizing ( )J ⋅  leads to the best separation between the 

two projected sets. To obtain ( )J ⋅  as a function of w, we define the scatter matrices Si 

and Sw by: 

( )(
i

t
ii

x X
S x m x m

∈

= − − )i∑ ,                                 (4.25) 

and  
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1WS S S2= + .                                                (4.26) 

Rewriting Li from Equation (4.23), the scatter from the projected data, we have: 

( )2 2( ) ( )( )

. (4.27)
i i

t t t t
i i ii

x X x X

t
i

L w x w m w x m x m w

w S w
∈ ∈

= − = − −

=

∑ ∑
 

Therefore the sum of these scatter matrices can be written 

( ) ( )2 2

1 2
t

WL L w S+ = w .                                    (4.28) 

Similarly, the separations of the projected means is given by: 

( ) ( ) ( )( )
22

1 2 1 2 1 21 2

, (4.29)

tt t t

t
B

q q w m w m w m m m m w

w S w

− = − = − −

=
 

where 1 2 1 2( )( t
BS m m m m= − − ) .                                                                                  (4.30) 

Sw is the within-class scatter matrix. It is symmetric and positive definite, and it is 

usually nonsingular if n>d. Likewise, SB is called the between-class scatter matrix. It is 

also symmetric and positive definite, and has rank one  because it is defined as the outer 

product of two vectors. In particular, for any w, Sbw lies in the direction of m1 − m2. 

The cost function can be expressed  in terms of S( )J ⋅ B and SW   as: 

( )
t

B
t

w

w S wJ w
w S w

= .                                                   (4.31) 

Therefore,  the vector w that maximizes ( )J ⋅  must satisfy B WS w S wλ= , which is a gen-

eralized eigenvalues problem. This generalized eigenvalue problem may be reformulated 

as conventional eigenvalue problem when SW is nonsingular, writing 

1
W BS S w wλ− = .                                                    (4.32) 
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In our particular case, it is unnecessary to solve for the eigenvalues and eigenvec-

tors of  due to the fact that 1
W BS S−

BS w  is always in the direction of m1 − m2. As a result, 

vector w that optimizes  is given by: ( )J ⋅

( )1
1 2Ww S m m−= − .                                                (4.33) 

As an example consider the two-dimensional two-class data points shown in Fig-

ure 13, where we are interested in the one-dimensional projection which preserves the 

class separation. The vector w that maximizes the discriminant between the two classes 

(stars and circles) is the vertical line which shows the projected data can still be discrimi-

nated on the line.  
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Figure 13.   Data points and LDA. The line provides the best projection direction to discrimi-

nate the data sets. 
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The linear discriminant can be extended to a c-class problem.  The natural gener-

alization involves c 1 discriminant functions. Thus, the projection is from a d-

dimensional space to a (c 1) dimensional space, where it is assumed that . 

−

− d c≥

The within-class scatter matrix for the c-class problem is defined as: 

1

c

W
i

S
=

= iS∑ ,                                                (4.34) 

where, 

( )(
i

t
ii

x X
S x m x m

∈

= − − )i∑                                     (4.35) 

and  

i

i
x X

m
∈

= x∑ .                                                   (4.36) 

The proper generalization for SB is not quite so obvious. Suppose that we define a 

total mean vector m and a total scatter matrix ST by: 

1

ix all X
m

n ∈
= x∑ ,                                                (4.37) 

and 

( )( t
T

x
S x m x= − − )m∑ .                                    (4.38) 

Then it follows that 

1

1 1

1

( )( )

( )( ) ( )( )

( )( ) . (4.39)

i

i i

c
t

i i i iT
i x X

c c
t t

i i i i
i x X i x X

c
t

i iW i
i

S x m m m x m m m

x m x m m m m m

S n m m m m

= ∈

= ∈ = ∈

=

= − + − − + −

= − − + − −

= + − −

∑ ∑

∑ ∑ ∑ ∑

∑

 

The second term in Equation (3.39) is the general between-class scatter matrix, so 

that the total scatter is the sum of the within-class scatter and the between-class scatter. 
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The projection from a d-dimensional space to a ( c 1− ) dimensional space is ac-

complished by discriminant functions as: 1c − t
iiy w= x  ,  i = 1,…, . Note that the 

parameters y

1c −

i may be viewed as the components of a vector y and the weight vectors wi 

may be viewed as the columns of a d-by-c matrix W. In such a case the projection opera-

tion can be rewritten as a single matrix equation: 

ty W x= .                                                (4.40) 

Thus, the samples x1, … , xn project to a corresponding set of samples y1,…,yn 

which can be described by their own mean vectors and scatter matrices. 

Let us define. 

1

i
i

y Yi

q
n ∈

= y∑ ,                                            (4.41) 

1

iy allY
q

n ∈

= y∑ ,                                             (4.42)                  

1
( )(

i

c
t

W i
i y Y

L y q y
= ∈

= − −∑∑ )
i

q ,                                 (4.43) 

and  

1
( )(

c
t

B i i i
i

L n q q q q
=

= − −∑ ) .                                 (4.44)  

It can be proved [31] that  

t
W WL W S W= ,                                            (4.45) 

and 

t
B BL W S W=  .                                            (4.46) 

At this point, we seek is a transformation matrix W that in some sense maximizes 

the ratio of the between-class scatter to the within-class scatter. A simple scalar measure 

of the scatter is the determinant of the scatter matrix. Recall that the determinant is the 
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product of the eigenvalues and, hence, is the product of the “variances” in the principal 

direction. 

Using this measure, we obtain the cost function: 

( )
t

B B

t
W W

L W S W
J W

L W S W
= = .                                (4.47) 

The columns of an optimal W, i.e., defined as maximizing the cost function ( )J ⋅ , 

corresponds to the largest eigenvalues of the generalized eigenproblem: 

iB i WS w S wiλ= .                                         (4.48) 

Note that the within-class scatter matrix SW is always singular in the face recogni-

tion problem. This singularity constraint is due to the fact that the rank of SW is at 

most , where N is the number of images, c is the number of classes and the number 

of images is smaller than the number of pixel in each image n. 

N c−

In order to overcome this complication of a singular SW, an alternate cost function 

proposed by Belhumeur, Hespanha and Kriegman [33] was used in this work. This 

method, called Fisherface, avoids the singularity problem by projecting the image set to a 

lower dimensional space so that the resulting within-class scatter matrix Sw is nonsingu-

lar. The dimension reduction is achieved by using PCA to reduce the feature space di-

mension to , where N it the total number of images used on the training set, and 

then applying the standard LDA to further reduce the dimension to 

N c−

1c − .  

 

3. Minimum Distance Classifier 

Once projection directions are computed from the training set, class-specific cen-

troids are obtained by computing the average values of the projected data for each class. 

Next the testing images are projected using the projection directions defined for the train-

ing set, and the distance between this projected vector and each class centroids is com-

puted. The classification decision is obtained by selecting the class that is the closest in 

norm to the projected testing image. 
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This Chapter presented the two linear dimension reduction schemes implemented, 

the snapshot method implemented to reduce the computational cost associated with the 

PCA-based algorithms, and described the minimum distance classifier implemented in 

this study. Next Chapter presents the classification results obtained with our IR database. 
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V. RESULTS 

PCA and LDA-based face recognition system classification performances are es-

timated using a cross-validation variant to take into account the relatively small size of 

the database (420 images corresponding to 14 individuals with 30 images each were gen-

erated and used in the results). 

 

A. CROSS VALIDATION 

Cross-validation is a statistical scheme designed to estimate generalization errors 

based on "resampling".  It is quite useful when dealing with small databases as it aver-

ages classification performances over multiple testing subsets  [34]. The basic k-fold 

cross-validation implementation divides the dataset into k disjoint sets, where training is 

conducted with k  datasets and tested with the remaining set. The process is repeated k 

times, where each time the selected testing set is different, and the overall classification 

performance is obtained as the mean of all performances found.  

1−

In this work, we consider a cross-validation variant, where the data available is 

separated in two disjoint sets, the training and the validation set, as shown in Figure 14. 

The training set containing 60% of the pictures available is used to obtain the projection 

directions and class centroids. The validation set contains the remaining 40% of the pic-

tures available and is used to test the system performance. This data split and classifica-

tion estimation process is repeated 1000 times, while the number of images per subject is 

kept constant for all subjects, and the overall classification performance is computed as 

the mean of all repetitions.  
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Figure 14.   Block diagrams illustrating the cross validation procedure. 

 
B. PCA RESULTS 

 In addition to the basic PCA-based implementations, we also considered the im-

pact of removing the first few eigenvector contributions, as is done successfully in visible 

imagery classification to make the recognition algorithms more robust to illumination 

changes [33].  

Several PCA-based variants were investigated: 

• PCA100: PCA scheme using the first top 100 eigenvectors for projection 

directions (i.e., the eigenvectors associated with the 100 largest eigenval-

ues); 

• PCA40: PCA scheme using the first top 40 eigenvectors for projection di-

rections; 

• PCA40W1: PCA scheme using the first 40 eigenvectors, after removing 

the top first eigenvector;  

• PCA40W2: PCA scheme using the first 40 eigenvectors, after removing 

the top two eigenvectors;  

• PCA40W3: PCA scheme using the first 40 eigenvectors, after removing 

the top three eigenvectors; 

• PCA40W4: PCA scheme using the first 40 eigenvectors, after removing 

the top four eigenvectors; 
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• PCA40W5: PCA scheme using the first 40 eigenvectors, after removing 

the top five eigenvectors. 

The maximum number of PCA-based projection directions is related to the di-

mension of the data used, but some projection directions may be disregarded because the 

corresponding eigenvalues associated are close to zero. It can be shown that the maxi-

mum number of PCA-based projection directions associated with non-zero eigenvalues is 

equal to the size of the dataset when the database size is smaller than the data dimension. 

In our work the maximum number of PCA-based projection directions is 2700, and the 

number of PCA-based projection directions associated with non-zero eigenvalues is 256 

(that is, equal to 60% of 420). The number of “useful” PCA-based projection direction 

was found experimentally to be equal 100. Note that we defined a projection direction 

(i.e., eigenvector) as “useful” when the associated eigenvalue is at least equal to 0.1% of 

the largest value. Figure 15 plots the overall classification performance when a combina-

tion of datasets #1 and #6 were used as the training set, and dataset #5 was selected for 

testing. Figure 15 shows that the best classification performance that can be achieved 

with the data used in this study is obtained with the top thirty-one eigenvectors (leading 

to an error rate of 26.5%). Note however, that this result is for one training/testing split 

combination.  Similar behavior was observed for other combinations. Therefore, we se-

lected the top 40 eigenvectors to insure the best obtainable classification performances 

for all training/testing sets combinations used for the cross-validation implementation. 

The cross-validation implementation uses 1000 repetitions, where the datasets are 

kept identical for all methods used in each case. Classification error histograms for all 

schemes are shown in Figures 16 to 24. Figure 25 illustrates the LDA classification 

scheme robustness, as explained further below. Table 2 lists the mean classification error 

rate in percent for each subject considering the 1000 repetitions.  
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Figure 17.   Direct classification error rate histogram in %; cross-validation implemented.  
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Figure 18.   PCA100 error rate histogram in %; cross validation implemented. 
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Figure 19.   PCA40 error rate histogram in %; cross validation implemented. 
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Figure 20.   PCA40W1 error rate histogram in % with first eigenvector removed; cross valida-

tion implemented. 
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Figure 21.   PCA40W2 error rate histogram in % with first two eigenvectors removed; cross 

validation implemented. 
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Figure 22.   PCA40W3 error rate histogram in % with first three eigenvector removed; cross 

validation implemented. 
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Figure 23.   PCA40W4 error rate histogram in % with first four eigenvector removed; cross 

validation implemented. 
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Figure 24.   PCA40W5 error rate histogram in % with the first five eigenvectors removed; 

cross validation implemented. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 25.   LDA scheme; Minimum/Mean/Maximum class distances from testing set subject 

#1 to all training set class-specific centroids; training set: datasets #1 and #5; test-

ing set: dataset #6.  

Error Rate (%)

Person  

D
is

-

0
100
200
300
400
500
600
700
800
900

1000

1 2 3 4 5 6 8 9 11 12 13 14 15 16

51



 

Table 2.   Error rate (%) per class. 
Class 

 
1             2 3 4 5 6 8 9 11 12 13 14 15 16 Mean  

Error  
Rate (%) 

Method           

Direct 
42.62 36.08 11.08 14.07 0.01 16.01 11.93 0.01 10.05 3.34 75.72 3.29 0.19 2.76 16.22

PCA100 
42.65 36.09 11.18 14.17 0.01 16.13 11.97 0.01 10.15 3.34 75.79 3.29 0.20 2.80 16.27

PCA40 
42.97 36.25 11.93 14.75 0.01 16.63 12.10 0.01 10.99 3.38 75.88 3.33 0.30 3.58 16.58

PCA40W1 
19.87 7.93 26.23 0.00 30.37 11.39 22.45 0.00 8.68 3.93 30.49 0.08 9.65 5.02 12.58

PCA40W2 
15.12 11.24 13.03 0.00 30.03 12.85 23.06 0.04 10.53 3.32 33.84 0.76 6.39 3.69 11.71

PCA40W3 
15.11 9.06 7.51 0.00 17.40 3.21 15.98 0.04 5.11 3.93 24.31 0.26 1.99 5.08 7.78

PCA40W4 
22.18 10.00 22.52 0.00 11.40 5.08 14.93 3.11 3.92 4.78 32.56 0.54 0.05 11.13 10.16

PCA40W5 
23.52 12.72 33.63 0.07 22.39 8.60 20.59 21.48 6.30 10.57 21.21 3.08 0.48 13.16 14.13

LDA 
2.50 0.00 1.91 0.00 0.03 1.75 0.30 0.02 0.50 0.00 0.83 0.00 0.12 0.50 0.60
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The following comments can be made: 

1. Figure 16 shows the results for the LDA scheme, it provides an overall average 

classification error rate equal to 0.62%. On 36% of the repetitions there were 

no classifications errors and on 35% of the simulations there was 1 classifica-

tion error. 

2. Figure 17 shows the results for the direct classification without the use of di-

mension reduction. On Figures 18 and 19 are depicted the results for the 

PCA100 and PCA40 schemes. From these figures we verify that there were no 

degradation on the system performance as we reduce the dimension of the data 

before applying the minimal distance classifier. 

3. From Figures 20, 21 and 22 we verify that the mean error rate decreases as we 

remove the first top three eigenvectors. From Figures 23 and 24 we verify that 

the mean error rate increases if we eliminate further top eigenvectors. The best 

PCA-based scheme was the PCAW3 that has an overall classification error rate 

equal to 7.78%. 

4. Figure 25 illustrates the LDA-based classification performance robustness by 

plotting the distances between one image of test subject #1 to all 16 training set 

centroids, when datasets #1 and #5 are selected for training and dataset #6 is 

used for testing. The bar plot shows minimum, maximum and average dis-

tances from test subject #1 to any class-specific centroid.  Note that the dis-

tance from test subject #1 to the class #1 centroid is significantly smaller than 

it is to any other class centroid, indicating the class-specific clusters are well 

separated as far as the test subject is considered, which makes the classification 

decision easy to make. Similar behavior can be observed for all other test sub-

jects in this testing set. 

5. The LDA-based classification performance was evaluated by removing the   

largest eigenvector but this step did not result in any improvement. 

6.  Table 2 shows the performance of each classification method for each set of 

images (i.e., each “class” of images). The results show the sensitivity of each 
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class of images to the classification method. For example, some classes showed 

improvement with the removal of the top eigenvector; others did not. From the 

right column of the table, we see that the LDA method had the lowest mean er-

ror rate. The PCA40W3 had the lowest mean error rate of all of the PCA-based 

methods. 

 

 

This Chapter presented the face recognition classification performances obtained 

with the two dimension reduction approaches considered in this study. Results show that 

best performances are obtained with the Linear Discriminant implementation, as expected 

from its definition that is best matched for classification.  Results also show that the 

PCA-based implementation benefits from removing the top three eigenvectors, pointing 

out the fact that there are still brightness issues which need to be addressed when dealing 

with IR imagery. 
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VI. CONCLUSIONS 

This study investigated a (IR) face recognition system using an uncooled IR cam-

era. A computer-based image collection set-up was designed and used to collect a small 

database. The small database has 420 facial images, from 14 volunteers (13 adult males 

and 1 adult female) with 30 pictures per person. All subjects are without glasses. Three 

different facial expression sets were collected; first, the individuals wore a neutral ex-

pression. The second set was constituted of the same subjects with a “smiling” expres-

sion. The third set was collected with individuals pronouncing the vowel “u”. Study vari-

ables were reduced by using a controlled environment with the same background for each 

picture, with the person-camera distance fixed, and by restricting the pictures to frontal 

facial images while allowing a vertical and horizontal angle freedom of 10o.  

Manual and automated facial image cropping routines were implemented, as de-

scribed earlier in Chapter IV. The cropping format was a simple rectangle of fixed size 

equal to 60 by 45 pixels. Two linear approaches for the dataset dimension reduction and 

classification were implemented and their resulting classification performances com-

pared, PCA-based and LDA approaches. A minimum distance classifier was selected to 

evaluate the classification performances. The overall system performance was evaluated 

with a cross-validation scheme using 60% of the pictures for training and 40% of the pic-

tures for testing, with 1,000 repetitions. 

Results show that the best PCA-based overall classification performance 

(92.22%) is obtained when selecting the top 40 eigenvectors, while excluding the first 

three top eigenvectors. The LDA-based approach performed better, with an overall classi-

fication performance equal to 99.40%, as expected from the scheme definition.  

Results obtained in this study successfully demonstrate that an uncooled IR cam-

era may discriminate between individual subjects obtained from a small database col-

lected under a very controlled environment. The database needs to be extended and more 

sophisticated image normalization investigated to take into account facial images taken at 

different distances and/or resolutions.  In addition, this study considered two linear pro-
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jections only.  More sophisticated nonlinear implementations are expected to improve the 

classification performance when dealing with a larger database. 
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APPENDIX 

This appendix contains all MATLAB-based software implemented for this study. 

Images may be loaded into MATLAB individually or in batch mode: 

• Individual loading is done with the routine: readpgm8.m. 

• Batch loading is done with the routine: LoadImage.m, where the operator 

selects the range of images to be loaded in batch mode.  

Images may be loaded, cropped and saved back into .bmp format with user-

specified names in batch mode using the function: 

• CropFaceAuto.m (calls the automated face location code described be-

low). 

Automated face location extraction code is implemented with the functions:  

• locatehead.m which vertically crops the image around the head, 

•  facemapini.m which computes the three initial face map parameters (by 

calling the routine ProjectPCA.m described below), 

• facemapA.m which computes the range of possible sub-images contained 

in the image provided as an input, and leads to the best extracted face (by 

calling the routine ProjectPCA.m described below), FFT implementation. 

• facemap.m which duplicates the functions facemapini.m and facemapA.m, 

without fft implementation (much slower) 

Manual face location extraction is implemented with the functions: 

• cropimage.m which loads the requested image in MATLAB, calls the 

function cropface.m which returns the cropped image, where the cropped 

is done manually by the operator. 

PCA-based dimension reduction schemes is implemented with the function: 

• pca.m which returns the specified number of projection directions. 
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The LDA-based dimension reduction scheme is implemented with the functions: 

• pca.m which is first applied to address the singularity issue discussed ear-

lier in Chapter IV, 

• fld.m which returns projection directions which best discriminate the data. 

Class-specific centroid computation is implemented with the function: 

• meanclass.m which takes the projection direction information obtained 

with pca.m or fld.m and computes the centroids of each class selected by 

the operator. 

Classification performance is computed with the function: 

• classify.m which uses as inputs either the projection direction information 

or the  images, compares to the class-specific centroids, and returns a class 

decision. 

Cross-validation results are implemented with the two functions: 

• CrossValidateConstant.m that generates the error rate histograms for a 

60% training/40% testing data split, where the number of images per class 

is kept constant. (Results provided in Chapter V use this routine). 

• CrossValidate.m that generates the error rate histograms for 60% training 

40% testing data split, where the number of images per class is selected 

randomly and is NOT kept constant. 

 

Working routines: 

• ProjectPCA.m loads a set of user-specified cropped images, computes the 

PCA-based projection directions, save all relevant information in the file 

face.dat.  This routine also computes the error rate as a function of the 

number of eigenvectors, as shown in Figure 15, Chapter V. 

• sortem.m sorts the eigenvector matrix by decreasing eigenvalue value. 
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• InfraredTotalExitance.m generates the total black body exitance for user-

specified wavelength and temperature ranges, used to plot Figure 1, Chap-

ter III. 

• distance.m computes the distances between two matrices on a column-by-

column basis. 

• projectLDA.m loads cropped image in MATLAB, applies the LDA dimen-

sion reduction scheme for a user-specified dataset (training/testing split is 

user-specified), investigates further dimension reduction, and returns the 

classification performance. Also offers the option to load the original im-

ages. 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% function [W,m,Amean,EVA]=pca(A,n)  
% This function computes the pca(Principal Component Analysis) of the data contained  
% in the array A.  
% input:  A (k x n) contains the data in each column, k = dimension of data vector 
%                                                                                   n = number of data samples 
% output: W contain n eigenvectors, one in each column 
%             m- fraction of the variance in n eigenvectors 
%             Amean - mean of the data contained in A in a column 
%            Ad - data less the mean Amean, all the data in columns 
%            EVA contain the eigenvalues corresponding to the eigenvectors of W on the 
%            diagonal 
% Obs. The eigenvectors associated with the eigenvalues smaller that 1/1000 of the  
% largest eigenvalue are eliminated 
% Diogo C. Pereira 1LT BRAF   
% 07/26/02 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [W,m,Amean,Ad,EVA]=pca(A,n); 
[Adimk,Adimn]=size(A); 
if (nargin==1) 
     n=Adimn; 
end 
if (n>Adimn) 
    n=Adimn; 
end 
% Amean is the mean of A using the columns as elements 
Amean=mean(A,2);                         
% Ad is the difference between A and Amean 
Ad=A-Amean*ones(1,Adimn); 
%eigenvectors (columns of Vectors) and eigenvalues (diag of Values) 
[EVE,EVA] = eig(Ad'*Ad); 
% obtain index of eigenvalues greater than (0.001 times greater eigenvalue) 
[I]=find(EVA>(0.001*max(max(EVA)))); 
EVAC=zeros(size(EVA)); 
EVAC(I)=EVA(I);  %EVAC (Eigenvalue Conditioned) will have only values greater 
than a minimum value otherwise the value is set to zero 
% Obtain n eigenvectors  
   %EVAINV is the matrix containing the inverse of the eigenvalues on the diagonal, it 
contains zero if the eigenvalue was zero 
   % and the inverse of the eigenvalue if the element was larger than zero 
   EVAINV=zeros(Adimn); % EVAIN has size n x n since n is the maximum number of 
eigenvalues 
   EVAINV(I)=1./(sqrt(EVA(I))); 
   U=A*EVE*EVAINV; 
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%Sort the vectors/values according with the absolute value of the eigenvalue EVAC and 
eliminates the columns corresponding 
% to zero eigenvalues  
[W,EVA]=sortem(U, EVAC); 
if (n>size(W,2)) 
    n=size(W,2); 
end 
W=W(:,1:n); 
temp=diag(EVA); 
m=sum(temp(1:n))/sum(temp); 
return 
------------------------------------------------------------------------------------------------------------ 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% function [W,D]=fld(A,C) 
% This function computes the Linear Discriminant W that maximizes 
% the ratio |Wt x SB x W|/|Wt x SW x W|  where SW is the within class  
% scatter matrix, and SB is the between class scatter matrix 
%       
% input: A- data matrix, containing data in columns 
%            C-row array containing numbers representing the classes of  
%            the elements in A 
% output: W- weight matrix contains the vectors in columns 
%              D - matrix containing the eigenvalues on the diagonal 
% last modified: 08/19/2002 
% Diogo Pereira  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [W,D]=fld(A,C); 
MeanG=mean(A,2);%MeanG is the general mean of the data in A 
Ad=A-MeanG*ones(1,size(A,2)); %Ad is matrix A minus the mean of A 
ST=Ad*Ad';% ST is the total scatter matrix 
clear Ad 
Nclass=0; %Nclass counts the number of classes on A 
%Compute the variance within all the classes %%%%%%%%%%%%%%%%%%% 
SW=zeros(size(A,1)); %SW is the within class scatter matrix 
while size(C,2)>0, 
    w=C(1,1); 
    [I]=find(C==w); 
    MeanClass=mean(A(:,I),2); 
    Ad=A(:,I)- MeanClass*ones(1,size(A(:,I),2)); 
    SW=SW+Ad*Ad'; %adds the within class scatter matrix of each class 
    A(:,I)=[]; %eliminates the data already used 
    C(I)=[];   %eliminates the number corresponding to the class from C vector 
    Nclass=Nclass+1; 
end 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
N=min(size(A,1), Nclass-1);%N will be the minimum between the dimension of the data 
and Nclass-1 
[W,EVA]=eigs(SB,SW,N); 
%Set to zero the eigenvalues not equal to a finite value 
[I]=find(isfinite(EVA)==1); %Obtain the index of the eigenvalues that are finite 
EVAC=zeros(size(EVA));  
EVAC(I)=EVA(I); 
EVA=EVAC;%EVA will contain just the eigenvalues that are finite 
% obtain index of eigenvalues greater than 0.001 times greater eigenvalue 
[I]=find(abs(EVA)>(0.001*max(max(abs(EVA))))); 
EVAC=zeros(size(EVA)); 
EVAC(I)=EVA(I);  %EVAC will have only values greater than a minimum value other-
wise the value is set to zero 
[W,D]=sortem(W,EVAC);% order and eliminates eigenvector corresponding to zero ei-
genvalue 
% this part normalizes W so that the norm of each column will be one 
NW=ones(size(W,1),1)*sqrt(sum((W.^2),1));  
W=W./NW; 
return 
------------------------------------------------------------------------------------------------------------ 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% CrossValidateConstant 
% This programs test the 2 schemes using cross validation 6 training/4 testing 
% The number of elements in each class is left constant 
% Diogo Pereira 
% 12/14/2002 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
clear all; 
close all; 
% Load the images %%%%%%%%%%%%%%%%%%%%%% 
A=[];  % A contains images in columns 
T=[];  % T contains the class number of each picture 
Crop='a'; 
N_pictures=10; % number of pictures for each person number 
epct=0; % accumulator of the number of errors per class 
epct100=0; 
epct40=0; 
epct40W1=0; 
epct40W2=0; 
epct40W3=0; 
epct40W4=0; 
epct40W5=0; 
epctLDA=0; 
Person=[1 2 3 4 5 6 8 9 11 12 13 14 15 16]; % Person numbers contained on the files 
Section=1; 
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[A,T]=LoadImage(A,T,Person, N_pictures,Section,Crop); 
Section=5; 
[A,T]=LoadImage(A,T,Person, N_pictures,Section,Crop); 
Section=6; 
[A,T]=LoadImage(A,T,Person, N_pictures,Section,Crop); 
% Obtain the samples to be used on the testing and remove it from the training images 
% A will contain the training images 
% B will contain the testing images 
% T is the class number of the images on A 
% TB is the class number of the images on B 
Atemp=A; 
Ttemp=T; 
N_trials=300; 
N_samples=4*14*3; % we are using 6/4 cross validation 
 
for j=1:N_trials 
   A=Atemp; 
   T=Ttemp; 
   N_Person=14; 
   B=[]; 
  TB=[]; 
  Remove=[]; 
  % Generates testing and training sets 
  for i=1:(N_Person*3)  % i goes from 1 to the total number of pictures 
     f=randperm(10); 
     L1=(i-1)*10+1; 
     L2=i*10; 
     A(:,L1:L2)=A(:,(i-1)*10+f); % mix the samples in each class 
     T(:,L1:L2)=T(:,(i-1)*10+f); % adjust the class numbers 
     IndSamples=[L1 L1+1 L1+2 L1+3];  
     B=[B A(:,IndSamples)]; 
     TB=[TB T(:,IndSamples)]; 
     Remove=[Remove IndSamples]; 
 end 
 A(:,Remove)=[]; 
 T(:,Remove)=[]; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% PCA 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Compute the pca of the training images A  
 [W,m,Amean,Ad]=pca(A); 
 % Compute the projection matrix P 
 P=W'*(Ad); 
  %%%% used to do cross validation directly without pca or lda 
 PD=A; 
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 %AmeanD=mean(A,2); 
 PD=A-Amean*ones(1,size(A,2)); 
  % Compute the centroid of each class contained in Person 
 C=meanclass(P,T,Person); 
 CD=meanclass(PD,T,Person); 
 %C(1,:)=[]; 
  % Using the testing images B 
 Ad=B-Amean*ones(1,size(B,2)); 
 % Compute the projection matrix P 
 P=W'*(Ad); 
 %P(1,:)=[]; 
 % Classify the testing images 
 dmin=100000000; 
  % classifying the images directly 
 PD=Ad; 
 [D]=classify(PD,CD,dmin); 
 NZD=find(D~=0); 
 D(NZD)=Person(D(NZD)); 
 error=TB-D; 
 n_errorDirect(j)=sum((error~=0),2); 
 %computes the number of errors per class 
 errornz=(error~=0); 
 epc=reshape(errornz,4,42); 
 epcp1=epc(:,1:14); 
 epcp2=epc(:,15:28); 
 epcp3=epc(:,29:42); 
 epc=[epcp1;epcp2;epcp3]; 
 epc=sum(epc,1); 
 epct=epct+epc; 
 % limiting the size to Neig=number of eigenvectors 
 % using 100 eigenvectors 
 Neig=100; 
 Neig=min(Neig,length(C)); 
 Temp1=P(1:Neig,:); 
 Temp2=C(1:Neig,:); 
 [D]=classify(Temp1,Temp2,dmin); 
 NZD=find(D~=0); 
 D(NZD)=Person(D(NZD)); 
 error=TB-D; 
 n_errorPCA100(j)=sum((error~=0),2); 
 %computes the number of errors per class 
 errornz=(error~=0); 
 epc=reshape(errornz,4,42); 
 epcp1=epc(:,1:14); 
 epcp2=epc(:,15:28); 
 epcp3=epc(:,29:42); 
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 epc=[epcp1;epcp2;epcp3]; 
 epc=sum(epc,1); 
 epct100=epct100+epc; 
 %using 40 eigenvectors 
 Neig=40; 
 Temp1=P(1:Neig,:); 
 Temp2=C(1:Neig,:); 
 [D]=classify(Temp1,Temp2,dmin); 
 NZD=find(D~=0); 
 D(NZD)=Person(D(NZD)); 
 %TB 
 %D40=D 
 error=TB-D; 
 n_errorPCA40(j)=sum((error~=0),2); 
 %computes the number of errors per class 
 errornz=(error~=0); 
 epc=reshape(errornz,4,42); 
 epcp1=epc(:,1:14); 
 epcp2=epc(:,15:28); 
 epcp3=epc(:,29:42); 
 epc=[epcp1;epcp2;epcp3]; 
 epc=sum(epc,1); 
 epct40=epct40+epc; 
 %using 40 eigenvectors without the first one 
 Neig=40; 
 Temp1=P(2:Neig+1,:); 
 Temp2=C(2:Neig+1,:); 
 [D]=classify(Temp1,Temp2,dmin); 
 NZD=find(D~=0); 
 D(NZD)=Person(D(NZD)); 
 error=TB-D; 
 n_errorPCA40W1(j)=sum((error~=0),2); 
 %computes the number of errors per class 
 errornz=(error~=0); 
 epc=reshape(errornz,4,42); 
 epcp1=epc(:,1:14); 
 epcp2=epc(:,15:28); 
 epcp3=epc(:,29:42); 
 epc=[epcp1;epcp2;epcp3]; 
 epc=sum(epc,1); 
 epct40W1=epct40W1+epc; 
 %using 40 eigenvectors without the first two eigenvectors 
 Neig=40; 
 Temp1=P(3:Neig+2,:); 
 Temp2=C(3:Neig+2,:); 
 [D]=classify(Temp1,Temp2,dmin); 
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 NZD=find(D~=0); 
 D(NZD)=Person(D(NZD)); 
 error=TB-D; 
 n_errorPCA40W2(j)=sum((error~=0),2); 
 %computes the number of errors per class 
 errornz=(error~=0); 
 epc=reshape(errornz,4,42); 
 epcp1=epc(:,1:14); 
 epcp2=epc(:,15:28); 
 epcp3=epc(:,29:42); 
 epc=[epcp1;epcp2;epcp3]; 
 epc=sum(epc,1); 
 epct40W2=epct40W2+epc; 
 %using 40 eigenvectors without the first three eigenvectors 
 Neig=40; 
 Temp1=P(4:Neig+3,:); 
 Temp2=C(4:Neig+3,:); 
 [D]=classify(Temp1,Temp2,dmin); 
 NZD=find(D~=0); 
 D(NZD)=Person(D(NZD)); 
 error=TB-D; 
 n_errorPCA40W3(j)=sum((error~=0),2); 
 %computes the number of errors per class 
 errornz=(error~=0); 
 epc=reshape(errornz,4,42); 
 epcp1=epc(:,1:14); 
 epcp2=epc(:,15:28); 
 epcp3=epc(:,29:42); 
 epc=[epcp1;epcp2;epcp3]; 
 epc=sum(epc,1); 
 epct40W3=epct40W3+epc; 
 %using 40 eigenvectors without the first four eigenvectors 
 Neig=40; 
 Temp1=P(5:Neig+4,:); 
 Temp2=C(5:Neig+4,:); 
 [D]=classify(Temp1,Temp2,dmin); 
 NZD=find(D~=0); 
 D(NZD)=Person(D(NZD)); 
 error=TB-D; 
 n_errorPCA40W4(j)=sum((error~=0),2); 
 %computes the number of errors per class 
 errornz=(error~=0); 
 epc=reshape(errornz,4,42); 
 epcp1=epc(:,1:14); 
 epcp2=epc(:,15:28); 
 epcp3=epc(:,29:42); 
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 epc=[epcp1;epcp2;epcp3]; 
 epc=sum(epc,1); 
 epct40W4=epct40W4+epc; 
 %using 40 eigenvectors without the first five eigenvectors 
 Neig=40; 
 Temp1=P(6:Neig+5,:); 
 Temp2=C(6:Neig+5,:); 
 [D]=classify(Temp1,Temp2,dmin); 
 NZD=find(D~=0); 
 D(NZD)=Person(D(NZD)); 
 error=TB-D; 
 %D40W5=D 
 n_errorPCA40W5(j)=sum((error~=0),2); 
 %computes the number of errors per class 
 errornz=(error~=0); 
 epc=reshape(errornz,4,42); 
 epcp1=epc(:,1:14); 
 epcp2=epc(:,15:28); 
 epcp3=epc(:,29:42); 
 epc=[epcp1;epcp2;epcp3]; 
 epc=sum(epc,1); 
 epct40W5=epct40W5+epc; 
%%%%%%%%%%%%%%%%%%%%% 
 % LDA 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Compute the pca of the training images   
 temp=(N_pictures-1)*length(Person); 
 [W,m,Amean,Ad,EVA]=pca(A,temp); % This reduces the dimension to N-c = 36 - 6=30 
the best result was with 29 
 % Compute the projection matrix P 
 P=W'*(Ad); 
%   P(1,:)=[]; 
 % Compute the projection matrix P obtained with the FLD(Fisher Linear Discriminant) 
 [Wopt,D]=fld(P,T); 
 P=Wopt'*P; 
 % Computing the centroid of each class 
 C=meanclass(P,T,Person); 
 % Using the testing data 
 Ad=B-Amean*ones(1,size(B,2)); 
 P=W'*(Ad); 
%P(1,:)=[]; 
 P=Wopt'*P; 
 % Classify the testing images 
 dmin=100000000; 
 [D]=classify(P,C,dmin); 
 NZD=find(D~=0); 
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 D(NZD)=Person(D(NZD)); 
 error=TB-D; 
 n_errorLDA(j)=sum((error~=0),2); 
 %computes the number of errors per class 
 errornz=(error~=0); 
 epc=reshape(errornz,4,42); 
 epcp1=epc(:,1:14); 
 epcp2=epc(:,15:28); 
 epcp3=epc(:,29:42); 
 epc=[epcp1;epcp2;epcp3]; 
 epc=sum(epc,1); 
 epctLDA=epctLDA+epc; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
end 
h=figure; 
L1=min(n_errorDirect); 
L2=max(n_errorDirect); 
temp1=linspace(0,L2,L2+1); 
N1=hist(n_errorDirect,temp1); 
plot(temp1/N_samples*100,N1/N_trials*100,'bd-'); 
title('Histogram of the number of errors'); 
xlabel('Percentage of errors'); 
ylabel('Percentage of the simulations'); 
grid; 
saveas(h,'CrossValidationDirect6_4.fig'); 
h=figure; 
L1=min(n_errorPCA100); 
L2=max(n_errorPCA100); 
temp1=linspace(0,L2,L2+1); 
N1=hist(n_errorPCA100,temp1); 
plot(temp1/N_samples*100,N1/N_trials*100,'bd-'); 
title('Histogram of the number of errors'); 
xlabel('Percentage of errors'); 
ylabel('Percentage of the simulations'); 
grid; 
saveas(h,'CrossValidation100eig_6_4.fig'); 
h=figure; 
L1=min(n_errorPCA40); 
L2=max(n_errorPCA40); 
temp1=linspace(0,L2,L2+1); 
N1=hist(n_errorPCA40,temp1); 
plot(temp1/N_samples*100,N1/N_trials*100,'bd-'); 
title('Histogram of the number of errors'); 
xlabel('Percentage of errors'); 
ylabel('Percentage of the simulations'); 
grid; 
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saveas(h,'CrossValidation40eig_6_4.fig'); 
h=figure; 
L1=min(n_errorPCA40W1); 
L2=max(n_errorPCA40W1); 
temp1=linspace(0,L2,L2+1); 
N1=hist(n_errorPCA40W1,temp1); 
plot(temp1/N_samples*100,N1/N_trials*100,'bd-'); 
title('Histogram of the number of errors'); 
xlabel('Percentage of errors'); 
ylabel('Percentage of the simulations'); 
grid; 
saveas(h,'CrossValidation40W1eig_6_4.fig'); 
h=figure; 
L1=min(n_errorPCA40W2); 
L2=max(n_errorPCA40W2); 
temp1=linspace(0,L2,L2+1); 
N1=hist(n_errorPCA40W2,temp1); 
plot(temp1/N_samples*100,N1/N_trials*100,'bd-'); 
title('Histogram of the number of errors'); 
xlabel('Percentage of errors'); 
ylabel('Percentage of the simulations'); 
grid; 
saveas(h,'CrossValidation40W2eig_6_4.fig'); 
h=figure; 
L1=min(n_errorPCA40W3); 
L2=max(n_errorPCA40W3); 
temp1=linspace(0,L2,L2+1); 
N1=hist(n_errorPCA40W3,temp1); 
plot(temp1/N_samples*100,N1/N_trials*100,'bd-'); 
title('Histogram of the number of errors'); 
xlabel('Percentage of errors'); 
ylabel('Percentage of the simulations'); 
grid; 
saveas(h,'CrossValidation40W3eig_6_4.fig'); 
h=figure; 
L1=min(n_errorPCA40W4); 
L2=max(n_errorPCA40W4); 
temp1=linspace(0,L2,L2+1); 
N1=hist(n_errorPCA40W4,temp1); 
plot(temp1/N_samples*100,N1/N_trials*100,'bd-'); 
title('Histogram of the number of errors'); 
xlabel('Percentage of errors'); 
ylabel('Percentage of the simulations'); 
grid; 
saveas(h,'CrossValidation40W4eig_6_4.fig'); 
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h=figure; 
L1=min(n_errorPCA40W5); 
L2=max(n_errorPCA40W5); 
temp1=linspace(0,L2,L2+1); 
N1=hist(n_errorPCA40W5,temp1); 
plot(temp1/N_samples*100,N1/N_trials*100,'bd-'); 
title('Histogram of the number of errors'); 
xlabel('Percentage of errors'); 
ylabel('Percentage of the simulations'); 
grid; 
saveas(h,'CrossValidation40W5eig_6_4.fig'); 
% hold on 
h=figure; 
L1=min(n_errorLDA); 
L2=max(n_errorLDA); 
temp2=linspace(0,L2,L2+1); 
N2=hist(n_errorLDA,temp2); 
plot(temp2/N_samples*100,N2/N_trials*100,'rd-'); 
title('Histogram of the number of errors'); 
xlabel('Percentage of errors'); 
ylabel('Percentage of the simulations'); 
grid; 
saveas(h,'CrossValidationLDA_6_4.fig'); 
% saving the error per class 
ns=((N_samples/14)*N_trials)/100;  
epct=epct/ns; 
epct100=epct100/ns; 
epct40=epct40/ns; 
epct40W1=epct40W1/ns; 
epct40W2=epct40W2/ns; 
epct40W3=epct40W3/ns; 
epct40W4=epct40W4/ns; 
epct40W5=epct40W5/ns; 
epctLDA=epctLDA/ns; 
M=[Person;epct;epct100;epct40;epct40W1;epct40W2;epct40W3;epct40W4;epct40W5;ep
ctLDA]; 
filename='ErrorPerClass6_4perc'; 
wk1write(filename,M,4,2); 
ns=100/((N_samples/14)*N_trials); 
epct=epct/ns; 
epct100=epct100/ns; 
epct40=epct40/ns; 
epct40W1=epct40W1/ns; 
epct40W2=epct40W2/ns; 
epct40W3=epct40W3/ns; 
epct40W4=epct40W4/ns; 

70



epct40W5=epct40W5/ns; 
epctLDA=epctLDA/ns; 
M=[Person;epct;epct100;epct40;epct40W1;epct40W2;epct40W3;epct40W4;epct40W5;ep
ctLDA]; 
filename='ErrorPerClass6_4abs'; 
wk1write(filename,M,4,2); 
 
----------------------------------------------------------------------------------------------------------- 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% LocateClassify 
% this routine locates a face and classify it according with the PCA method 
% 
% input:  name of the file containing the image 
%         W eigenvectors, H high of the image on the database, C centroids of the classes 
%         Amean mean of the data used to obtain the eigenvectors 
% output: number of the class the object was classified to 
% Obs.: You need to run the program ProjectPCA and ProjectLDA first to obtain  
% the files faces and faces2 
% Diogo Pereira 
% last update: 10/09/2002 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
close all 
clc 
% obtaining the name of the image  
name=input('Type the name of the file ->','s'); 
T=3; 
B=readpgm8(name); % read pgm files 
[HI,WI]=size(B);% obtaining the size of the image 
% displays the image%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
figure('Units','pixels','Position',[100 100 WI HI]); 
imagesc(B) 
set(gca,'Units','pixels','Position',[0 0 WI HI]); 
colormap(gray) 
pause(.8) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
disp(['Locating the face, wait...']) 
% Locates and obtains the face%%%%%%%%%%%%%%%%%%%%%%%%%% 
B=locatehead(B); %locates the head 
B=double(B); 
load faces W H Amean C  
load faces2 W2 C2 
[m,n]=size(W); 
WI=m/H;  
F=facemap(W,H,Amean,B); % returns F the facemap 
[M,I]=min(F); 
[N,yini]=min(M); 
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xini=I(yini); 
face=B(xini:(xini+H-1),yini:(yini+WI-1)); % obtain the face on the image 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% displays the face image%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
figure('Units','pixels','Position',[400 100 WI H]);  
imagesc(face) 
set(gca,'Units','pixels','Position',[0 0 WI H]); 
colormap(gray) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% classify the face image%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
face=reshape(face,WI*H,1); 
face=face-Amean; 
%classify using the PCA scheme 
PB=W'*face; 
dmin=100000000; 
kmax=size(PB,1); 
k=kmax; 
D=classify(PB(1:k,:),C(1:k,:),dmin); 
disp(['You belongs to class ',num2str(D),' using the PCA classification scheme']) 
%classify using the LDA scheme 
PC=(W2)'*face; 
dmin=100000000; 
kmax=size(PC,1); 
k=kmax; 
D=classify(PC(1:k,:),C2(1:k,:),dmin); 
disp(['You belongs to class ',num2str(D),' using the LDA classification scheme']) 
------------------------------------------------------------------------------------------------------------ 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Function [A,T]=LoadImage(A,T,Person, N_pictures,Section);  
% This function loads images to the matrix A 
% input: A - matrix containing images on each column, may be empty 
%        T - row containing the class number of each picture, may be empty 
%        N_pictures - number of pictures in each person number 
%        Section - photo section number 
%        Crop- letter indicating the crop section 
% Diogo Pereira 
% 12/14/2002 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [B,T]=LoadImage(A,T,Person, N_pictures,Section,Crop); 
N_class=length(Person); 
for i=1:N_class 
   for j=1:N_pictures 
       im_num1= num2str(Person(i));  
       im_num2= num2str(j);   
       s=num2str(Section); 
       img_name = strcat(im_num1,'-',im_num2,'-',s,'-',Crop); 
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        img= imread(img_name,'bmp'); 
       [dim1,dim2] = size(img); 
       x=reshape(img,dim1*dim2,1); 
       A=[A x];  % A contains one image in each row 
       T=[T Person(i)];% T contains the class of each image 
   end 
end 
clear x; 
B=double(A); 
Return 
------------------------------------------------------------------------------------------------------------ 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% function [C]=meanclass(A,T) 
% this function computes the mean of the coordinates of pictures of each class 
% input : A - matrix containing the coordinates of each picture   
%             in columns 
%         T - vector containing the class number of each picture 
%         P - vector containing the class numbers that we want to obtain the mean 
% output: C - matrix containing the mean of the coordinates of the 
%             pictures of each class contained in T 
% Diogo Pereira  11/13/02 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function [C]=meanclass(A,T,P) 
C=[]; 
for i=1:length(P) 
   Temp=P(i); 
   TMean=find(T==Temp); 
   Mean=mean(A(:,TMean),2); 
   C=[C Mean]; 
end 
return 
------------------------------------------------------------------------------------------------------------ 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Function FacemapA computes the square of the difference  
% between a subimage and its projection on the facespace; 
% the subimage has the size of the eigenface 
% input:  W- array (m x n) containing the eigenfaces in columns  
%         m dimension of each eigenface, n number of eigenfaces 
%         dim1 - dimension 1 of each eigenface, dim2=m/dim1 
%         Amean- vector containing the mean of the data used to create the eigenfaces 
%         A- array (p x q) containing the image to be analyzed 
% output  C- array (r x t) containing the difference between the subimage and its projec-
tion squared 
% 
% Diogo Pereira 
% 10/15/02 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function [C]=facemapA(W,dim1,Amean,A,T1,T2,T3) 
[M,N]=size(A); 
[P,L]=size(W); 
AF=FFT2(A,256,256); % AF is the FFT of the image 
L1=M-dim1+1; 
L2=N-(P/dim1)+1; 
T5=zeros(L1,L2); 
for i=1:L 
    U=reshape(W(:,i),dim1,P/dim1); 
    UF=AF.*conj(FFT2(U,256,256)); 
    U=real(IFFT2(UF)); 
    U=U(1:L1,1:L2); 
    U=U-T3(1,i); 
    U2=U.*U; 
    T5=T5+U2; 
end 
Amean=reshape(Amean,dim1,P/dim1); 
AmeanF=FFT2(Amean,256,256); 
T4F=AF.*conj(AmeanF); 
T4F=real(IFFT2(T4F)); 
T4=2*T4F(1:L1,1:L2); 
C=T1+T2-T4-T5; 
return 
------------------------------------------------------------------------------------------------------------ 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% function [T1,T2,T3]=facemapini(A,B,W) 
% This function computes terms T1, T2 and T3 of the five terms used on the face map  
% equation 
% input:  A- (M x N)Image where the face is located 
%         B- Mean face of the eigenfaces in a column 
%         W- (K x L)Matrix containing eigenfaces in columns 
%         dim1- vertical dimension of the eigenface 
% Diogo Pereira 
% last update: 10/15/02 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [T1,T2,T3]=facemapini(A,B,W,dim1); 
[M,N]=size(A); 
U=dim1; 
P=length(B)/dim1; 
[K,L]=size(W); 
L1=M-dim1+1; 
L2=N-P+1; 
T1=zeros(L1,L2); 
A2=A.*A; 
% Computing T1 using FFT2 
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A2F=FFT2(A2,256,256); 
WindowF=conj(FFT2(ones(dim1,P),256,256)); 
T1=IFFT2(A2F.*WindowF); 
T1=real(T1(1:L1,1:L2)); 
% Computing T2 
B=reshape(B,1,U*P); 
T2=B*B'; 
T2=ones(L1,L2)*T2; 
% Computing T3 
T3=(B*W); 
return 
------------------------------------------------------------------------------------------------------------ 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% function [B]=locatehead(A) 
% this function will locate the boundaries of the head 
% and will crop the image around the head 
% it locates just the horizontal boundaries 
% input:   A - original image 
% output:  B - cropped image 
%  
% Diogo Pereira 
% last update: 10/11/02 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function [B]=locatehead(A); 
A=double(A); 
[M,N]=size(A); 
P=1; 
F=N; 
Z=zeros(M,1); 
D=[A Z]-[Z A]; 
d=floor(M/6); 
P1=find(D(2*d,:)>25); 
P2=find(D(3*d,:)>25); 
P3=find(D(4*d,:)>25); 
% computing P the minimum among P1, P2 and P3 
if ~isempty(P1) 
    P=P1(1); 
end 
if ~isempty(P2) 
    P=min([P P2(1)]); 
end 
if ~isempty(P3) 
    P=min([P P3(1)]); 
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
F1=find(D(d*2,:)<-20); 
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F2=find(D(d*3,:)<-20); 
F3=find(D(d*4,:)<-20); 
% computing F the maximum among F1, F2 and F3 
if ~isempty(F1) 
    F=F1(length(F1)); 
end 
if ~isempty(F2) 
    F=max([F F2(length(F2))]); 
end 
if ~isempty(F3) 
    F=max([F F3(length(F3))]); 
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
B=A(:,P:F); 
Return 
------------------------------------------------------------------------------------------------------------ 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% function [D]=classify(PB,P,dmin) 
% This function classify PB in classes, each column of P represents a class 
% dmin is the minimum distance from each class. If the distance of PB to the 
% corresponding class 
% is larger than dmin, the anwswer return class O. The distance is the Euclidian distance 
% input: PB matrix containig the data to be classified, each column contain the data 
%        P matrix containing the coefficient of each class, each column contain the data of 
%       one class 
%        dmin minimum distance from each class, it is a scalar 
% output: D row vector containing the number of the class that each object was classified 
% to  
% 
% Diogo Pereira     07/28/2002 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [D]=classify(PB,P,dmin); 
[L,M]=size(PB); %there are M objects 
[N,K]=size(P);  %there are K classes 
D=zeros(1,M); 
for i=1:M 
    dif=P-PB(:,i)*ones(1,K); 
    [dist,pos]=min(( sum((dif).^2,1) )); 
    if dist<dmin 
        D(1,i)=pos; 
    end 
end 
return 
------------------------------------------------------------------------------------------------------------ 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% function [C]=distance(A,B) 
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% this function computes the distance between the elements in A and the elements in B 
%  
% input A=  array containing vectors in columns 
%       B=  array containing vectors in columns 
% output C = array containing the distance between the  
% Diogo Pereira    
% 11/01/02 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function [C]=distance(A,B); 
[L,M]=size(A);  %there are M objects 
[N,K]=size(B);  %there are K objects 
C=zeros(M,K); 
for i=1:M 
    dif=B-A(:,i)*ones(1,K); 
    C(i,:)=sqrt(( sum((dif).^2,1) )); 
end 
return 
------------------------------------------------------------------------------------------------------------ 
function [NV,ND] = sortem(V,D) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%[V,D] = SORTEM(V,D) 
%Sorts the columns of V along with the absolute value of the elements of D and 
 % eliminates the column of V 
% corresponding to zero on the diagonal of D 
% 
% Diogo Pereira, 2002 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
dvec = diag(D);    %obtain the values of the diagonal and insert in a vector 
%eliminating the column on V corresponding to zero on D 
[I]=find(dvec==0); 
dvec(I)=[]; 
V(:,I)=[]; 
NV = zeros(size(V)); 
%sort the elements of dvec in descending order according with the absolute value of dvec 
[L,index_dv] = sort(abs(dvec));  
index_dv = flipud(index_dv); 
dvec=dvec(index_dv); 
%insert the elements of dvec on the diagonal 
ND=diag(dvec); 
%sort the columns of V according with index_dv 
NV=V(:,index_dv); 
Return 
------------------------------------------------------------------------------------------------------------ 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% ConverPGMtoBMP -this file loads all the images stored in pgm format and save 
% the cropped image in bmp format 
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% 
% Diogo Pereira 
% 12/14/2002 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
Person=[1 2 3 4 5 6 8 9 11 12 13 14 15 16]; % Person numbers contained on the files 
N_pictures=10; % number of pictures for each person number 
Section=1; 
load faces W H Amean C %Amg  
for i=1:length(Person) 
   for j=1:N_pictures 
       im_num1= num2str(Person(i)); im_num2= num2str(j);im_num3=num2str(Section);      
       img_name = strcat(im_num1,'-',im_num2,'-',im_num3); 
       A=readpgm8(img_name); % read pgm files 
       %Head=locatehead(A); %locates the head 
       B=double(A); 
       [m,n]=size(W); 
       WI=m/H;  
       [T1,T2,T3]=facemapini(B,Amean,W,H); 
       Q=facemapA(W,H,Amean,B,T1,T2,T3); 
       [M,I]=min(Q); 
       [N,yini]=min(M); 
       xini=I(yini); 
       face=A(xini:(xini+H-1),yini:(yini+WI-1)); % obtain the face on the image  
       namefinal=[img_name '-b.bmp']; 
       imwrite(face,namefinal,'bmp'); % save the files as bmp 
   end 
end 
 
------------------------------------------------------------------------------------------------------------ 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% cropface -returns a portion on the image selected  
% dragging a windows with a mouse, the size of the window is  
% given by H times W 
%  
% function [B]=cropface(A,W, H)  
% input  A = original image, matrix containing the image 
%        W = number of pixels wide 
%        H = number of pixels high 
%output  B = image selected 
%  
%  Diogo Pereira 
% last update: 10/03/2002 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [B]=cropface(A,W,H); 
[dim1,dim2]=size(A); 
figure('Units','pixels','Position',[100 100 dim2 dim1]); 
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imagesc(A); 
colormap(gray); 
set(gca,'Units','pixels','Position',[0 0 dim2 dim1]); 
waitforbuttonpress; 
point1 = get(gcf,'CurrentPoint'); % button down detected 
rect = [point1(1,1) point1(1,2) W H]; 
[P] = dragrect(rect); 
L=P(1,1); %L is the Left 
B=P(1,2); %B is the Bottow 
xini=dim1-B-H; 
yini=L; 
B=A(xini:(xini+H-1),yini:(yini+W-1)); 
Return 
------------------------------------------------------------------------------------------------------------ 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% cropimage - this program crops the images 
% The user click on the figure and a window is dragged 
% when the user releases the mouse, the portion contained 
% within the rectangle is cropped and saved with the same name  
% as the original file but with a '-a' added to the file name 
% input: file name, typed 
% output: image cropped 
% 
% Diogo Pereira 
% last update: 10/03/2002 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
clear 
close all 
clc 
name=''; 
% data input 
while name~='fim'  
    name=input('Type the name of the file ->','s'); 
    temp=name(1,1:3); 
    if temp=='fim' 
      break 
    end 
    close all 
   a=readpgm8(name); % read pgm files 
   W=45; 
   H=60; 
   b=cropface(a,W,H); 
   figure('Units','pixels','Position',[100 100 W H]); 
   imagesc(b); 
   set(gca,'Units','pixels','Position',[0 0 W H]); 
   colormap(gray); 
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   namefinal=[name '-a']; 
   imwrite(b,namefinal,'bmp'); 
   name=name(1,1:3); 
end 
------------------------------------------------------------------------------------------------------------ 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% ProjectPCA 
% Diogo Pereira                      07/28/02 
% This program saves the file faces used in other programs  
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
clear 
close all 
clc 
% Testing the routine using the first N_object faces of each class for training and the last 
% 10-N_object faces for testing 
N_class=16;  %N_Class is the number of classes 
N_object=10; %N_object is the number of objects in each class 
A=[]; 
T=[]; 
% W is an array containing the eigenvectors of the covariance matrix in each column 
% Load the training images into A matrix  
Person=[1 2 3 4 5 6 8 9 11 12 13 14 15 16]; 
N_class=length(Person); 
N_object=10; 
for i=1:N_class 
   for j=1:N_object 
       im_num1= num2str(Person(i));  
       im_num2= num2str(j);       
       img_name = strcat(im_num1,'-',im_num2,'-1-a'); 
        img= imread(img_name,'bmp'); 
       [dim1,dim2] = size(img); 
       x=reshape(img,dim1*dim2,1); 
       A=[A x];  % A contains one image in each row 
       T=[T Person(i)]; 
   end 
end 
clear x; 
N_pictures=N_class*N_object; %N_pictures is the total number of pictures on the A ar-
ray 
A=double(A); 
%show up to 100 images contained in the array A 
figure(1)     
for i=1:min([N_pictures 100]); 
   subplot(10,10,i) 
   trial_face=reshape(A(:,i),dim1,dim2); 
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   imagesc(trial_face) 
   colormap(gray); 
   axis off; 
end 
H=dim1; 
% Compute the pca of the data matrix   
[W,m,Amean,Ad]=pca(A); 
% Compute the matrix P 
P=W'*(Ad); 
% Computing the centroid of each class=the average of the coefficients 
C=[]; 
for i=1:N_class 
    U1=(i-1)*N_object+1; 
    U2=U1+N_object-1; 
    C(:,i)=mean(P(:,(U1:U2)),2); 
end 
save faces W Amean H C % stores some data on the file faces 
% Loading the testing data 
% Load the test images into B matrix  
B=[]; 
T=[]; 
N_class=14; 
Person=[1 2 3 4 5 6 8 9 11 12 13 14 15 16]; 
N_class=length(Person); 
N_object=10; 
for i=1:N_class 
   for j=1:10 
       im_num1= num2str(Person(i));  
       im_num2= num2str(j);       
       img_name = strcat(im_num1,'-',im_num2,'-5-a'); 
        img= imread(img_name,'bmp'); 
       [dim1,dim2] = size(img); 
       x=reshape(img,dim1*dim2,1); 
       B=[B x];  % B contains one image in each row 
       T=[T Person(i)]; 
   end 
end 
clear x; 
B=double(B); 
LB=size(B,2); 
B=B-Amean*ones(1,LB); 
PB=W'*B; 
% Computing the classification 
dmin=100000000; 
kmax=size(PB,1); 
for k=1:kmax 
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   [D]=classify(PB(1:k,:),C(1:k,:),dmin); 
   error=T-D; 
   n_error(k)=sum((error~=0),2); 
end 
figure(2)  
plot(n_error,'+b') 
xlabel('Number of eigenvectors'); 
ylabel('Number of Errors'); 
title('Classification errors using 140 test faces'); 
grid; 
end 
------------------------------------------------------------------------------------------------------------ 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% ProjectLDA 
% Diogo Pereira                      10/22/02 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
clear 
close all 
clc 
% W is an array containing the eigenvectors of the covariance matrix in each column 
% Load the training images into A matrix  
A=[]; 
T=[]; 
Person=[1 2 3 4 5 6 8 9 11 12 13 14 15 16]; 
N_class=length(Person); 
N_object=10; 
for i=1:N_class 
   for j=1:10 
       im_num1= num2str(Person(i));  
       im_num2= num2str(j);       
       img_name = strcat(im_num1,'-',im_num2,'-1-a'); 
       img= imread(img_name,'bmp'); 
       [dim1,dim2] = size(img); 
       x=reshape(img,dim1*dim2,1); 
       A=[A x];  % A contains one image in each row 
       T=[T Person(i)]; 
   end 
end 
clear x; 
A=double(A); 
N_pictures=N_class*N_object; %N_pictures is the total number of pictures on the A ar-
ray 
%show up to 100 image contained in the array A 
figure(1)     
for i=1:min([N_pictures 100]); 
   subplot(10,10,i) 
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   trial_face=reshape(A(:,i),dim1,dim2); 
   imagesc(trial_face) 
   colormap(gray); 
   axis off; 
end 
H=dim1; 
% Compute the pca of the data matrix   
% Amg=mean(mean(A)); 
temp=(N_class*N_object) - N_class; 
[W,m,Amean,Ad,EVA]=pca(A,temp); % This reduces the dimension to N-c  
% Compute the matrix P obtained with the PCA 
P=W'*(Ad); 
% Compute the Wopt of the Fisher's Linear Discriminant 
C1=ones(1,N_object); 
C=[]; 
for temp=1:N_class 
    C=[C temp*C1]; 
%C=[C1 2*C1 3*C1 4*C1 5*C1 6*C1 ...]; 
end 
[Wopt,D]=fld(P,C); 
% Compute the projection matrix P obtained with the FLD(Fisher Linear Discriminant) 
P=Wopt'*P; 
% Computing the centroid of each class=the average of the coefficients 
C2=[]; 
for i=1:N_class 
    U1=(i-1)*N_object+1; 
    U2=U1+N_object-1; 
    C2(:,i)=mean(P(:,(U1:U2)),2); 
end 
W2=W*Wopt; 
save faces2 W2 C2 %Amg 
% Load the test images into B matrix  
B=[]; 
T=[]; 
Person=[1 2 3 4 5 6 8 9 11 12 13 14 15 16]; 
N_class=length(Person); 
N_object=10; 
for i=1:N_class 
   for j=1:10 
       im_num1= num2str(Person(i));  
       im_num2= num2str(j);       
       img_name = strcat(im_num1,'-',im_num2,'-5-a'); 
        img= imread(img_name,'bmp'); 
       [dim1,dim2] = size(img); 
       x=reshape(img,dim1*dim2,1); 
       B=[B x];  % B contains one image in each row 
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       T=[T Person(i)]; 
   end 
end 
clear x; 
B=double(B); 
LB=size(B,2); 
B=B-Amean*ones(1,LB); 
PB=Wopt'*W'*B; 
% Computing the classification 
dmin=100000000; 
kmax=size(PB,1); 
for k=1:kmax 
   [D]=classify(PB(1:k,:),C2(1:k,:),dmin); 
   error=T-D; 
   n_error(k)=sum((error~=0),2); 
end 
figure 
plot(n_error,'-b') 
xlabel('Dimension of the transformation'); 
ylabel('Number of Errors'); 
title('Classification errors using 140 test faces'); 
grid; 
pause(1) 
end; 
% % Computing the error in the raw image 
% % Load the test images into B matrix  
% B=[]; 
% load faces W H Amean C  
%  
% for i=1:N_class 
%    for j=(N_object + 1):10 
%        im_num1= num2str(i);  
%        im_num2= num2str(j);       
%        img_name = strcat(im_num1,'-',im_num2,'-1'); 
%         img= readpgm8(img_name); 
%         %img=locatehead(img); %locates the head 
%         img=double(img); 
%         [m,n]=size(W); 
%         WI=m/H;  
%         [T1,T2,T3]=facemapini(img,Amean,W,H); 
%         F=facemapA(W,H,Amean,img,T1,T2,T3); 
%         %F=facemap(W,H,Amean,img); % returns F the facemap 
%         [M,I]=min(F); 
%         [N,yini]=min(M); 
%         xini=I(yini); 
%         face=img(xini:(xini+H-1),yini:(yini+WI-1)); % obtain the face on the image 
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%        [dim1,dim2] = size(face); 
%        x=reshape(face,dim1*dim2,1); 
%        B=[B x];  % B contains one image in each row 
%    end 
% end 
% clear x; 
% B=double(B); 
% %Normalizing the image 
% for i=1:size(B,2) 
%     B(:,i)=B(:,i)+Amg-mean(B(:,1)); 
%     B(:,i)=B(:,i)/max(B(:,i))*256; 
% end 
%  
% temp=N_class*(10-N_object); 
% B=B-Amean*ones(1,temp); 
% PB=Wopt'*W'*B; 
%  
% % Computing the classification 
% dmin=100000000; 
% kmax=size(PB,1); 
% T=[]; 
% for temp=1:N_class 
%    for temp2=1:(10-N_object) 
%    T=[T temp]; 
%    end 
% end 
%  
% for k=1:kmax 
%    [D]=classify(PB(1:k,:),C2(1:k,:),dmin); 
%    error=T-D; 
%    n_error(k)=sum((error~=0),2); 
% end 
% figure 
% plot(n_error,'-b') 
% xlabel('Dimension of the transformation'); 
% ylabel('Number of Errors'); 
% title('Classification errors using 60 test faces'); 
% grid; 
---------------------------------------------------------------------------------------------------------- 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% LocateClassifyA is the advanced version of LocateClassify 
% this routine locates a face and classify it according with the PCA method 
% but it uses FFT  
% input:  keyboard ->name of the file containing the image 
%         file faces->W eigenvectors, H high of the image on the database, C centroids of 
the classes 
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%         Amean mean of the data used to obtain the eigenvectors 
%         file faces2-> W2 projection directions, C2 centroids of the classes 
% output: number of the class the object was classified to 
% Obs.: you need to run the programs ProjectPCA and ProjectLDA before running this 
% rotine  
% to obtain the files faces and faces2 
% respectively 
% Diogo Pereira 
% last update: 10/09/2002 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
close all 
clear 
clc 
% obtaining the name of the image  
name=input('Type the name of the file ->','s'); 
T=3; 
B=readpgm8(name); % read pgm files 
[HI,WI]=size(B);% obtaining the size of the image 
% displays the image %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
figure('Units','pixels','Position',[100 100 WI HI]); 
imagesc(B); 
set(gca,'Units','pixels','Position',[0 0 WI HI]); 
colormap(gray) 
pause(.8) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
disp(['Locating the face, wait...']) 
% Locates and obtains the face%%%%%%%%%%%%%%%%%%%%%%%%%% 
B=locatehead(B); %locates the head 
B=double(B); 
load faces W H Amean C  
load faces2 W2 C2 
[m,n]=size(W); 
WI=m/H;  
[T1,T2,T3]=facemapini(B,Amean,W,H); 
Q=facemapA(W,H,Amean,B,T1,T2,T3); 
imagesc(Q); 
colormap(gray) 
[M,I]=min(Q); 
[N,yini]=min(M); 
xini=I(yini); 
face=B(xini:(xini+H-1),yini:(yini+WI-1)); % obtain the face on the image 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% displays the face image%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
figure('Units','pixels','Position',[400 100 WI H]);  
imagesc(face) 
set(gca,'Units','pixels','Position',[0 0 WI H]); 
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colormap(gray) 
% classify the face image%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
face=reshape(face,WI*H,1); 
face=face-Amean; 
%classify using the PCA scheme 
PB=W'*face; 
dmin=100000000; 
kmax=size(PB,1); 
k=kmax; 
D=classify(PB(1:k,:),C(1:k,:),dmin); 
disp(['You belongs to class ',num2str(D),' using the PCA classification scheme']) 
%classify using the LDA scheme 
PC=(W2)'*face; 
dmin=100000000; 
kmax=size(PC,1); 
k=kmax; 
D=classify(PC(1:k,:),C2(1:k,:),dmin); 
disp(['You belongs to class ',num2str(D),' using the LDA classification scheme']) 
end; 
------------------------------------------------------------------------------------------------------------ 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% InfraredTotalExitance 
% This program computes the Exitance of a blackbody 
% plotting it within a wavelength range for a given temperature 
%  
% Diogo Pereira 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
clc; 
close all; 
clear; 
h=6.625e-34; 
k=1.38e-23; 
c=3e8; 
c1=2*pi*h*c^2*10^20 
c2=c*h/k*10^6 
% c1=3.741e4; 
% c2=1.438e4; 
% The temperatures to be plotted (insert the desired temperatures on the array T 
T=[1150]; 
LT=length(T); 
L1=0.5; % inferior limit for the graph in micrometers 
L2=30;  % superior limit for the graph in micrometers 
L=logspace(log10(L1),log10(L2),2000); 
LL=length(L); 
for p=1:LT 
    for q=1:LL 
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        W(q,p)=c1/( L(q)^5 *(exp( c2/(L(q)*T(p))) - 1)); 
    end 
end 
% Generates a Matlab plot 
figure 
plot(L(:),W(:,1),'b-'); 
grid; 
xlabel('Wavelength [x 10^-6 m]'); 
ylabel('M - Exitance [Watts/(cm^2 x 10^-6 m)]'); 
title('Exitance for a blackbody'); 
% creates the legend 
legend('1150K'); 
% Save the data on a spreadsheet that can be read by excel 
filename='ExitanceBlackBody1150K'; 
M=[L' W(:,1)]; 
wk1write(filename,M,2,2); 
 
----------------------------------------------------------------------------------------------------------- 
function image = readpgm8(filename) 
%READPGM8 Read a raw pgm file as a matrix 
% 
%        IMAGE = READPGM(FILENAME) reads the binary PGM image data from 
%        the file named FILENAME and returns the image as a 2-dimensional 
%        array of integers IMAGE. Assumes the file is a raw PGM file 
%        containing 8-bit unsigned character data to represent pixel values. 
% 
% Matthew Dailey, 1997 
% Modified by Diogo Pereira, 2002 
% Open the file 
fid = fopen(filename,'r'); 
% Parse and check the header information.  No # comments allowed. 
A = fgets(fid); 
if strcmp(A(1:2),'P5') ~= 1 
  error('File is not a raw PGM'); 
end; 
A = fgets(fid); 
sizes = sscanf(A,'%d'); 
w = sizes(1); 
h = sizes(2); 
A = fgets(fid); 
max = sscanf(A,'%d'); 
tlength = w*h; 
if max ~= 255 
 error('Cannot handle anything but 8-bit graymaps'); 
end;  
% Read the raw data 
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[v,count] = fread(fid,inf,'uint8=>uint8'); % this makes v a uint8 instead of double 
%if count ~= tlength 
% error('File size does not agree with specified dimensions.'); 
%end; 
v=v(1:tlength,1); 
% Pack the column vector v into the image matrix 
image = reshape(v,w,h)'; 
fclose(fid); 
return 
---------------------------------------------------------------------------------------------------------- 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% CropFaceAuto -This file loads all the images stored in pgm format and save 
% the croped image in bmp format 
% 
% Diogo Pereira 
% 12/14/2002 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
Person=[1 2 3 4 5 6 8 9 11 12 13 14 15 16]; % Person numbers contained on the files 
N_pictures=10; % number of pictures for each person number 
Section=1; 
load faces W H Amean C %Amg  
for i=1:length(Person) 
   for j=1:N_pictures 
       im_num1= num2str(Person(i)); im_num2= num2str(j);im_num3=num2str(Section);      
       img_name = strcat(im_num1,'-',im_num2,'-',im_num3); 
       A=readpgm8(img_name); % read pgm files 
       %Head=locatehead(A); %locates the head 
       B=double(A); 
       [m,n]=size(W); 
       WI=m/H;  
       [T1,T2,T3]=facemapini(B,Amean,W,H); 
       Q=facemapA(W,H,Amean,B,T1,T2,T3); 
       [M,I]=min(Q); 
       [N,yini]=min(M); 
       xini=I(yini); 
       face=A(xini:(xini+H-1),yini:(yini+WI-1)); % obtain the face on the image  
       namefinal=[img_name '-b.bmp']; 
       imwrite(face,namefinal,'bmp'); % save the files as bmp 
   end 
end 
----------------------------------------------------------------------------------------------------------- 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% CrossValidate 
% This programs test the 2 schemes using cross validation 
% without keeping the number of elements per class constant 
% Diogo Pereira 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Load the images%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
A=[];  % A contains images in columns 
T=[];  % T containt the class number of each picture 
Crop='a'; 
N_pictures=10; % number of pictures for each person number 
 
Person=[1 2 3 4 5 6 8 9 11 12 13 14 15 16]; % Person numbers contained on the files 
Section=1; 
[A,T]=LoadImage(A,T,Person, N_pictures,Section,Crop); 
Section=5; 
[A,T]=LoadImage(A,T,Person, N_pictures,Section,Crop); 
Section=6; 
[A,T]=LoadImage(A,T,Person, N_pictures,Section,Crop); 
% Obtain the samples to be used on the testing and remove it from the training images 
N_trials=100; 
N_samples=100; 
APermanent=A; 
TPermanent=T; 
for i=1:N_trials 
    B=[];  % B contains the samples 
    TB=[]; % TB contains the class number of each sample 
    A=APermanent; 
    T=TPermanent; 
    N_images=length(T); 
    for j=1:N_samples 
        Sample=round((N_images-1)*rand)+1; 
        B=[B A(:,Sample)]; 
        A(:,Sample)=[]; 
        TB=[TB T(Sample)]; 
        T(Sample)=[]; 
        N_images=N_images-1; 
    end 
   % PCA %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
   % Compute the pca of the training images A  
   [W,m,Amean,Ad]=pca(A); 
   % Compute the projection matrix P 
   P=W'*(Ad); 
   % Compute the centroid of each class contained in Person 
   C=meanclass(P,T,Person); 
   % Using the testing images B 
   Ad=B-Amean*ones(1,size(B,2)); 
   % Compute the projection matrix P 
   P=W'*(Ad); 
   % Classify the testing images 
   dmin=100000000; 
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   [D]=classify(P,C,dmin); 
   NZD=find(D~=0); 
   D(NZD)=Person(D(NZD)); 
   error=TB-D; 
   n_errorPCA(i)=sum((error~=0),2); 
   %%%%%%%%%%%%%%%%%%%%%% 
   % LDA %%%%%%%%%%%%%%%% 
   % Compute the pca of the training images   
   temp=(N_images-1)*length(Person); 
   [W,m,Amean,Ad,EVA]=pca(A,temp); % This reduces the dimension to N-c = 36 - 
6=30 the best result was with 29 
   % Compute the projection matrix P 
   P=W'*(Ad); 
   % Compute the projection matrix P obtained with the FLD(Fisher Linear Discriminant) 
   [Wopt,D]=fld(P,T); 
   P=Wopt'*P; 
   % Computing the centroid of each class 
   C=meanclass(P,T,Person); 
   % Using the testing data 
   Ad=B-Amean*ones(1,size(B,2)); 
   P=W'*(Ad); 
   P=Wopt'*P; 
   % Classify the testing images 
   dmin=100000000; 
   [D]=classify(P,C,dmin); 
   NZD=find(D~=0); 
   D(NZD)=Person(D(NZD)); 
   error=TB-D; 
   n_errorLDA(i)=sum((error~=0),2); 
   %%%%%%%%%%%%%%%%%%%%%%%%% 
end 
figure 
L1=min(n_errorPCA); 
L2=max(n_errorPCA); 
temp1=linspace(0,L2,L2+1); 
N1=hist(n_errorPCA,temp1); 
plot(temp1,N1,'bd-'); 
title('Histogram of the number of errors'); 
xlabel('Number of errors'); 
ylabel('Number of occurence'); 
hold on 
L1=min(n_errorLDA); 
L2=max(n_errorLDA); 
temp2=linspace(0,L2,L2+1); 
N2=hist(n_errorLDA,temp2); 
plot(temp2,N2,'rd-'); 
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legend('PCA scheme', 'LDA scheme'); 
------------------------------------------------------------------------------------------------------ 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Function Facemap computes the square of the difference  
% between a subimage and its projection on the facespace; 
% the subimage has the size of the eigenface 
% input:  A- array (m x n) containing the eigenfaces in columns  
%         m dimension of each eigenface, n number of eigenfaces 
%         dim1 - dimension 1 of each eigenface, dim2=m/dim1 
%         Amean- vector containing the mean of the data used to create the eigenfaces 
%         B- array (p x q) containing the image to be analyzed 
% output  C- array (r x t) containing the difference between the subimage and its 
% projection squared 
% 
% Diogo Pereira 
% 09/16/02 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [C]=facemap(A,dim1,Amean,B) 
[m,n]=size(A); 
dim2=m/dim1; 
[p,q]=size(B); 
% computing r the number of lines of our facemap 
r=p-dim1+1; 
% computing t the number of columns of our facemap 
t=q-dim2+1; 
% creating an empty face map 
C=zeros(r,t); 
%scanning the image 
for L=1:r 
    for U=1:t 
        % obtaining the subimage PHI 
        PHI=B(L:(L+dim1-1),U:(U+dim2-1));   %PHI has dimension dim1 x dim2 
        % obtaining the subimage projected on the facespace PHIT 
        PHI=reshape(PHI, dim1*dim2,1)-Amean;     %PHI is reshaped to (dim1 x dim2)  x 
%1 
        Temp=A'*PHI;                       % Temp contain the projection of PHI in each eigen-
face 
        PHIT=A*Temp;                       % PHIT contain the reconstructed PHI using the ei-
genface   
        % obtaining the difference between PHI and PHIT 
        C(L,U)=sum((PHI-PHIT).^2); 
    end 
end 
return 
------------------------------------------------------------------------------------------------------------ 
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