
1

Confidence Based Anisotropic Filtering of Magnetic Resonance Images

Ersin Bayram1 , Yaorong Ge2 , Christopher L. Wyatt1

1 : Department of Medical Engineering, School of Medicine 2 : Department of Computer Science
Wake Forest University, NC, USA

Abstract— Image filtering is an important off-line image
processing technique to improve the signal-to-noise ratio
(SNR) and/or contrast-to-noise ratio (CNR) of acquired
images. The major drawback of filtering is that it often
blurs the fine structures and object boundaries in the im-
age along with noise. Anisotropic diffusive filtering tech-
niques incorporate gradient information to blur homoge-
neous regions while preserving the boundaries and inter-
esting structures. Unfortunately, their performance is lim-
ited in low contrast regions and around fuzzy boundaries.
This paper introduces a multi-scale confidence based con-
ductance function to address the limitations of anisotropic
diffusive filtering. Experiments on phantom and magnetic
resonance (MR) images have been performed using both
our method and the gradient-based anisotropic diffusive
filtering for comparison purposes.

Keywords—anisotropic diffusion, filtering, scale selection,
conductance, confidence, MR imaging

I. Introduction

Despite significant improvements in recent years, MR
images often suffer from low SNR or CNR, especially in
cardiac and brain imaging. This is problematic for fur-
ther tasks such as segmentation of important features, 3D
image reconstruction and registration. Therefore, noise
reduction techniques is of great interest in MR imaging as
well as in other imaging modalities.

Noise reduction techniques can be categorized in two
groups: acquisition-based noise reduction methods and
post-acquisition image filtering. Acquisition-based meth-
ods generally utilize longer scan times, averaging over re-
peated measurements, enlarging the voxel volume that
is being employed or improvements in hardware. Be-
side hardware improvements, these methods either in-
crease image acquisition time or sacrifice spatial resolu-
tion. Hence, post-acquisition image filtering stands as an
inexpensive and effective alternative.

Post-acquisition filtering techniques can be further di-
vided into two groups: space-invariant filtering and space-
variant filtering. In space-invariant filtering, spatially in-
dependent smoothing is applied to the whole image data
such as low-pass filtering or neighborhood averaging [1].
However, space-invariant filtering methods blur the im-
portant features in the image along with the noise.

Space-variant filtering techniques aim to address this
limitation by using local, feature-dependent strategies.
The approaches include recursive low-pass filtering with
adaptive coefficients [2], linear least-squares error filter-
ing [3], local shape-adaptive template filtering [4], and
anisotropic diffusive filtering [5].
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A. Anisotropic Diffusion

Anisotropic diffusive filtering is based on multi-scale
representation of images. Multi-scale filtering has been
formally introduced by Witkin [6]. The idea is embedding
the original image, I0(x, y), in a family of derived images,
I(x, y, σ), obtained by convolving I0(x, y) with a Gaussian
kernel, G(x, y, σ), of varying variance, σ2:

I(x, y, σ) = I0(x, y) ∗G(x, y, σ) (1)

Koenderink [7] has showed that this one parameter family
of derived images can be represented as the solution of the
heat conduction or diffusion equation:

Iσ = c∇2I(x, y) (2)

with I(x, y, 0) = I0(x, y) as the initial condition and the
constant, c being the conductance coefficient. Perona and
Malik [5] treated the conductance coefficient as a scale
and space varying function, c(x, y, t), forcing the diffusion
process to respect the natural boundaries of objects. This
leads to the anisotropic diffusion equation:

Iσ = div (c(x, y, σ)∇I(x, y)) = c∇2I +∇c∇I (3)

Perona and Malik proposed two different conductance
functions each monotonically decreasing functions of the
magnitude of the gradient of the intensity:

c(x, y, σ) = e−(
|∇I|

K )2 (4)

c(x, y, σ) =
1

1 + ( |∇I|
K )2

(5)

These conductance functions weaken the diffusion pro-
cess for values of the the intensity gradient greater than
parameter K, encouraging intra- rather than inter-region
diffusion. However, these conductance functions have
drawbacks: fine structures in low SNR or CNR regions
often disappear and fuzzy boundaries are further blurred.
To address these issues, noise level and edge-strength
based K selection [8] as well as adaptive schemes [9] have
been proposed. Moreover, there has been significant re-
search on determining a better conductance function such
as knowledge-based approaches [10].

This paper proposes a new method for defining the con-
ductance function using a-priori knowledge and a scale
selection mechanism. The method, which is referred to as
the confidence-based anisotropic diffusion, treats the con-
ductance function as a statistically defined, gradient-based
multi-scale confidence of region homogeneity.
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II. Methodology

Any point in an image is either in a homogeneous re-
gion or on a slope of a blurred edge. A generous diffusion
(c(x, y, σ) ' 1) is desirable in homogeneous regions as op-
posed to conservative diffusion (c(x, y, σ) ' 0) on a slope
of a blurred edge. As the edge locations are unknown, a
binary conductance function is not possible.

Therefore, the gradient is used as the image feature of
interest in our method as well. In contrast, it is used as a
tool to derive the confidence of being in a homogeneous re-
gion at each point in an image rather than an end-product
to define the conductance function. The reason is that
gradient strength is not a measure of the significance of a
feature in the image. Low contrast and fuzzy boundaries
should also be respected during the diffusion process.

A multi-scale approach is necessary in the gradient cal-
culation as the relevant features in images exist over mul-
tiple scales. Elder and Zucker [11] proposed a method to
select a minimum reliable scale at each point in an image
based on a-priori knowledge of:

1. The noise comes from a stationary, zero-mean white
noise process.
2. The standard deviation of the noise can be estimated
from the image itself or by calibration.

Reliable scale means that in gradient-based edge de-
tection, the false positive error rate due to noise alone is
less than or equal to a predetermined threshold at that
scale. The above assumptions are valid for MR image
data. Therefore, Elder and Zucker’s minimum reliable
scale technique can be utilized in the conductance func-
tion derivation.

A. Gradient Response of Noise

The gradient computation from discrete data is an ill-
posed problem. Smoothing the data with a Gaussian filter
is a well-known regularization approach. Hence, the gra-
dient can be estimated using the steerable Gaussian first
derivative basis filters:

gx(x, y, σ1) =
−x

2πσ4
1

e
−(x2+y2)

2σ2
1 (6)

gy(x, y, σ1) =
−y

2πσ4
1

e
−(x2+y2)

2σ2
1 (7)

σ1 denotes the scale of the Gaussian kernel, g(x, y, σ1).
The gradient of the intensity function I(x, y) is given by:

∇I = cos(θ)Ix(x, y, σ1) + sin(θ)Iy(x, y, σ1) (8)

where

θ = arctan

(
Iy(x, y, σ1)
Ix(x, y, σ1)

)
(9)

θ is the gradient vector direction at (x, y). Ix(x, y, σ1) and
Iy(x, y, σ1) are defined as:

Ix(x, y, σ1) = gx(x, y, σ1) ∗ I(x, y) (10)
Iy(x, y, σ1) = gy(x, y, σ1) ∗ I(x, y) (11)

In images, the gradient in homogeneous regions will have
a non-zero response as a result of noise. In order to talk
about the confidence on region homogeneity, one has to
consider the likelihood of the gradient response due to
noise only. Considering the derivative operation as a ran-
dom process transformation, the pdf of the absolute value
of the the noise gradient can be represented as [12], [11]:

p|∇I|(v) =
v

s2
1

e
−v2

2s2
1 (12)

where s1 is a function of the standard deviation of the
noise (σn) and the scale of the Gaussian kernel (σ1):

s1 =
σn

2
√

2πσ2
1

(13)

B. Conductance Function

Given the probability distribution function (pdf) of the
gradient of the noise in Eq.12, a type 1 error (αp) is defined
when using a gradient threshold (T ) to detect an edge:

αp =
∫ ∞

T

v

s2
1

e
−v2

2s2
1 dv (14)

Based on the the white noise assumption, pixel-wise type
1 error (αp) can be related to the type 1 error for the
whole image (αI) as follows:

αI = 1− (1− αp)N (15)

where N is the total number of pixels in the image. Using
a fixed type 1 error rate (i.e. αI = 0.01), we can define a
critical threshold function using Eq.14:

T (σ1) =
σn

2σ2
1

√
−ln(αp)

π
(16)

Given a pointwise type 1 error of αp, T (σ1) represents the
statistically reliable minimum gradient response based on
sensor noise and operator scale.

Fig.1.(a) and (b) are plots of T (αI) for different noise
levels and different type 1 error rates, respectively. T (σ1)
is a monotonically decreasing function of σ1, enabling the
detection of blurred boundaries, which have larger scale
content than sharp boundaries. Furthermore, it is lin-
early proportional to the standard deviation of noise. As
noise content increases, the threshold levels also increase
to eliminate spurious edges.

Using a linearly sampled scale space (σ1 ε {1, 1.5, 2, ...}),
a critical threshold map (C(x, y)) is defined based on the
multi-scale gradient response of the intensity function:

C(x, y) = max{T (σ1) : |∇I| ≥ T (σ1)} (17)

Fig.2.(a) is a brain MR image and Fig.2.(b) is the corre-
sponding critical threshold map. In the threshold map,
white regions correspond to the highest threshold level
indicating the presence of a strong gradient. In black re-
gions, the gradient response is not strong enough to use
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Fig. 1. (a) T (σ1) for different values of σn, αI = 0.01 (b) T (σI) for
different values of αI , σn = 10

(a) (b)

Fig. 2. (a) Brain MR Image (b) Corresponding Critical Threshold
Map

any level of threshold to decide on existence of an edge,
indicating a 100% confidence on region homogeneity. A
conductance function for the anisotropic diffusion can be
defined based on the critical threshold map:

c(x, y, σ1) =
T (min(σ1))− C(x, y)

T (min(σ1))
(18)

If the gradient response of a point falls outside the sam-
pling range of the critical threshold function, it is assumed
to be homogeneous, and a conductance value of 1 is as-
signed to that point.

III. Results

A qualitative comparison between the anisotropic diffu-
sion method by Perona and Malik and the proposed con-
fidence based anisotropic diffusion is presented using MR
images and a computer generated phantom.

Fig.3.(a) is the conductance function derived from the
Fig.2.(b). Black represents the zero conductance, whereas
white means a conductance of 1. Fig.3.(b) shows the re-
sult of the confidence based anisotropic filtering, while
Fig.3.(c) and (d) represent the anisotropic diffusion results
using conductance functions in Eq.4 and Eq.5, respec-
tively. The confidence-based filtering seems to preserve
the fine details and boundaries better than the anisotropic
diffusion while achieving a good smoothness in homoge-
neous regions such as white matter.

Fig.4 shows a region of interest (ROI) from Fig.2.(a),
and diffusive filtering of this ROI using the confidence
based method and the gradient-based anisotropic diffu-
sive filtering.

(a) (b)

(c) (d)

Fig. 3. (a) Confidence based conductance function corresponding
to Fig.2.(a). (b) Confidence based diffusion filtering of Fig.2.(a)
after 10 iterations. ((c),(d)) Anisotropic diffusive filtering after 10
iterations using Eq.4 and Eq.5, respectively

Fig.5 shows the Shepp-Logan phantom before degrada-
tion, after degradation, the confidence based conductance
map, a profile through the conductance map as indicated
with the solid line, and the results of the proposed and
anisotropic diffusive filtering methods after 10 iterations.
Both methods fail to recover the three small ellipses prop-
erly because of the low contrast boundaries in a noisy
environment.

The algorithm takes around 15 seconds to run for a
256x256 image on a 333MHz Intel Pentium II processor
for 10 iterations. Because the region homogeneity confi-
dence map derivation is reliable based on the type 1 error
thresholds and the additive noise assumption, the same
conductance function is used at every iteration. If a new
confidence map is derived at every iteration, the compu-
tation time increases by a factor of six despite no visual
improvement in the result. The code is optimized by sep-
arating the 2D Gaussian kernel convolutions into two 1D
convolutions.

IV. Discussion

Wiener filter restoration , followed by a difference op-
erator is used to estimate the standard deviation of the
noise based on the additive noise assumption. Simulation
studies show that a 5 × 5 Wiener filter gives an estimate
of noise within a 5% error margin.

A careful examination of the conductance map in the
brain MR image reveals that a wide band of zero conduc-
tance region is seen around blurred boundaries. In order
to blend these regions without allowing a generous blur-
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(a) (b)

(c) (d)

Fig. 4. (a)Region of interest from Fig.2.(a). (b) Confidence based
diffusion filtering after 10 iterations. ((c),(d)) Anisotropic diffusive
filtering after 10 iterations using Eq.4 and Eq.5, respectively

ring, a small constant can be added to the conductance
function. A better approach will be incorporating the sec-
ond derivative information into the conductance function.
As edges are defined at the zero-crossings of the second
derivative response, the strength of the second derivative
response can be used as a measure of distance to a bound-
ary. Unfortunately, in discrete domain, edges generally
fall off-pixel locations. Thus, second derivative strength
would not be a quite reliable measure, unless interpolation
and sub-sampling are employed.
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