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ABSTRACT 
 
 
 
Operational characteristics of a valveless pulse detonation engine system are 

being characterized by both experimental and computational efforts.  The detonation 

diffraction process from a small “initiator” combustor to a larger diameter main 

combustor in a continuous airflow configuration was evaluated during multi-cycle 

operation of a pulse detonation engine.  The multi-cycle detonation experiments were 

performed on an axisymetric engine geometry operating on both ethylene and propane 

fuel/air mixtures.  The new design explored the effect of forward relief area on 

performance and its ability to isolate the detonation products from the incoming air flow 

during cyclic operation. 

The use of a small fuel-oxygen initiator to initiate a fuel/air detonation in a larger 

main combustor has been achieved and has demonstrated the benefit of generating an 

overdriven detonation condition near the diffraction plane for enhanced transmission to a 

larger combustor.  Mach reflections have been observed on the outer wall downstream of 

the diffraction plane for the two-dimensional geometry and appear to be the primary re-

initiation mechanisms for the re-established fuel-air detonations for this geometry.  Multi-

cycle tests have successfully evaluated initiator/main combustor diameter ratios of up to 

1.58 and are expected to continue through 2.0. 
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I. INTRODUCTION 

A. BACKGROUND 

This investigation was conducted as part of the Office of Naval Research program 

for fundamental research into pulse detonation engines (PDEs).  The United States Navy 

has a current interest in developing a low cost, less complex propulsion system which 

operates on fuels certified for shipboard use, specifically a JP-10/air mixture. The interest 

in PDEs has increased dramatically in recent years due to their high theoretical 

performance and wide range of potential applications[Ref. 1]. 

This study explored ethylene/air and propane/air mixtures due to the detonation 

sensitivity of ethylene and the combustion similarities of propane to higher order hydro-

carbon fuels.  Practical operation of these systems requires the use of fuels that have 

already gained acceptance/approval by the military and/or aviation industry, such as 

kerosene based Jet-A, JP-5, JP-8 or JP-10.  The use of such fuels has inherent difficulties 

since such fuel/air mixtures are often difficult to detonate [Refs. 2 and 3], especially in a 

repetitive and reliable manner.  Therefore an initiator which consists of a small tube or 

auxiliary combustor filled with mixtures highly sensitive to detonation is being 

investigated as the means to initiate a detonation in a larger main combustor containing a 

less sensitive fuel-air mixture [Ref. 4].  Thus the importance of detonation diffraction or 

transmission from the small tube into a larger diameter main combustor arises. 

Generally, an initiator is significantly smaller than the main combustor and the 

detonation wave needs to transition from the initiator into the main combustion chamber 

through a diffraction process.  Previous work has been done on the diffraction of a JP-

10/Oxygen detonation wave into a larger main combustion chamber with out the use of a 

transition cone.  It was found that the detonation waves were unable to transition into the 

larger combustion chamber and therefore a transition process would be needed [Ref. 5]. 

Various initiator concepts exist which operate on fuel-oxygen mixtures while 

others utilize a blend of oxygen-enriched air as the oxidizer.  Although the use of oxygen 

provides excellent reliability, repeatability, and a very rapid ignition event, the 

minimization of the oxygen required is of paramount performance since it is treated as 
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“fuel” for specific impulse (Isp) and specific fuel consumption (SFC) calculations and 

directly reduces the overall system performance.  Thus, efficient coupling between an 

initiator and the larger combustor is of high importance [Ref. 4]. 

It is believed that with a gradual change in geometry, the detonation wave leaving 

the initiator will transition successfully from the initiator into the main combustion 

chamber [Ref. 6].  This study explored a new design where an initiator combustor 

operating on a highly detonable mixture first diffracts to a larger diameter and then 

diverges through a conical transition section with a divergence of 10 degrees (total angle) 

or five degrees (half angle).  The initiator, therefore, acts as the detonation ignition source 

for the primary fuel/air mixture in the main combustor.  For an effective transmission to 

successfully occur, the detonation wave exiting the initiator must overcome the 

diffraction process and continue to propagate into the less sensitive fuel/air mixture as a 

detonation wave. 

The goal was to determine how aggressive of a transition can be made as the 

detonation wave leaves the 1.75 inch diameter initiator and expands into the main 

combustion chamber.  A 5 degree ramp that expands from 2.5 inches inner diameter (ID) 

to 4 inches ID was designed to help determine the critical diameter diffraction ratio.  The 

critical diffraction ratio is defined as the maximum diameter ratio which a detonation 

wave successfully transitions from the initiator (Di) into the main combustor (D).  In this 

study, the initiator’s exit plane was allowed to traverse axially within the divergent 

conical section, thus effectively varying the D/Di ratio.  Therefore, this defined the 

diffraction limits for this specific combination of fuel/air and fuel/oxygen mixtures.  This 

study also explored the ability of the continuous airflow design to isolate the detonation 

products from the incoming airflow. 

 

B. OPERATIONAL ISSUES 

1. PDE Operation 

Over the last 15 years, pulse detonation engines have received a considerable 

amount of interest due to their potential for high performance.  These engines produce 

detonation waves that propagate through a premixed fuel/air mixture and produce large 
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intermittent chamber pressures and corresponding thrusts [Ref. 7].  The concept of using 

detonations as a means of propulsion is based on the simple concept of using a thrust 

tube, with the downstream side open, in which detonation waves are produced in a 

repetitive manner.  A fuel/air mixture is injected at the beginning of each cycle, ignited, 

and the deflagration wave quickly transitions into a detonation wave, producing 

significant head pressure at the closed end, and ultimately thrust.  After the detonation 

wave exits the combustor, an expansion wave (rarefaction wave) travels from the exit of 

the combustor to the head wall relieving the high pressure and removing the hot products 

from the combustor.  Further information on pulse detonation engines can be found in 

various review papers by Eidelman et al. [Ref. 8], Bussing et al. [Ref. 7], and Kailasanath 

[Ref. 9], and some applied research papers by Brophy et al. [Ref. 10] and Bussing [Ref. 

11]. 

Most current chemical propulsion systems used in the aerospace community are 

based on a constant pressure combustion process.  However, pulse detonation engines are 

more closely modeled as a constant volume combustion process with the differences 

being the conditions by which heat is added to the working fluid.  When similar fuel/air 

mixtures at matching original conditions are analyzed, the thermal efficiency is 

significantly higher in a detonation combustion process than in conventional constant 

pressure combustion process [Ref. 5]. 

3 

The current work on utilizing detonations for propulsion has primarily focused on 

a cyclic detonation process in pulse detonation engines.  The experiments were 

successfully carried out at the United States Naval Postgraduate School in Monterey, 

California [Ref. 12].  The pulse detonation engine geometry under development at the 

Naval Postgraduate School is a continuous air flow design, which does not utilize or 

require valves to supply the air to the main combustion chamber.  The absence of a valve 

on the air flow has permitted a convenient flow path to rapidly fill, detonate, and purge 

the combustion chamber at rates up to 100 Hz.  However, this absence has also 

introduced difficulties into the initiation process due to lowered confinement conditions 

when compared to conventional PDE concepts which involve some type of valve on the 

air supply.  The current geometry also utilized the initiator approach as described 

previously and is depicted in Figure 1. 



 

Figure 1.   Valveless PDE Configuration  

 

The initiator combustor operated on an oxygen-enriched fuel-air mixture to 

rapidly and reliably generate a detonation wave, which was then used to initiate the less 

sensitive fuel/air mixture located in the main combustor. A critical region of interest was 

at the initiator exit plane where the exiting detonation wave experienced a diffraction 

process into the main combustion chamber.  The concern for this area of the system was 

the motivation for characterizing the effects of the diffraction condition between an 

initiator of diameter, Di, and the main combustor of diameter, D, at the diffraction plane.  

The effects of diameter ratio (D/Di), mixture variation (fuel/air gradient), and varying 

degrees of confinement continue to be evaluated so that a more optimized condition can 

exist. 

 

2. Detonation Transmission 

A large body of research has been performed in the area of detonation diffraction, 

most of which involved homogeneous mixtures and focused on the concept of a critical 

diameter dc.  The critical diameter indicates the minimum tube diameter for a successful 

detonation transmission into an unconfined space for a given fuel/oxidizer mixture.  If the 

detonation wave is traveling in a tube with a diameter d<dc and encounters a sudden 

expansion into an unconfined space, the detonation diffraction process will cause the 

detonation to fail [Ref. 6]. 
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For homogeneous mixtures, the well documented critical diameter, dc, value of 13 

times the cell size (λ) of the mixture for transmission of a detonation wave to an 

unconfined volume has been verified many times to hold true for most mixtures [Ref. 

13].  The 13λ value has been shown to be valid for mixtures containing more irregular 

cell spacing, typically fuel/air mixtures with higher activation energies.  Mixtures 

containing highly regular detonation cell structure, such as argon diluted fuel/oxygen 

mixtures have been shown to often require a larger critical diameter than the 13λ rule, 

thus revealing the increased importance of wavefront structure during the diffraction 

processes in producing gas-dynamic hot spots for spontaneous reignition to occur.  The 

re-initiation process can be a result of a non-uniform energy distribution that exists 

during the diffraction process which is created by shocks colliding with each other and 

producing local hot spots where the detonation re-initiation occurs [Ref. 6].  The 

increased irregularity in the cellular structure for fuel-air mixtures often aids in the 

adjustment to sudden expansion conditions and can be interpreted as possessing more 

levels of instability and therefore more modes by which spontaneous reinitiation may 

occur near a critical diameter value [Ref. 14]. 

Teodorcyzk [Ref. 15] and Oran [Refs. 16 and 17] have looked at the reinitiation 

mechanisms of Mach reflections from the propagation of a quasi-detonation in an 

obstacle-laden channel at a rigid wall and imparting a spherical blast wave on a rigid 

wall, respectively.  Both studies stressed the importance of the rapid reignition sites 

immediately behind the generated Mach stems at the wall.  Murray [Ref. 18] also 

demonstrated the importance of shock-shock and shock-wall collisions for different exit 

conditions at the diffraction plane, including tube bundles, annular orifices, and 

cylindrical diffraction.  The reinitiation mechanism associated with the Mach reflections 

observed in those studies is extremely important for the initiator concept utilized in the 

current engine.  It also becomes increasingly important as the combustor diameter 

approaches the cell size of the mixture and few transverse waves exist to assist with 

adjusting to the expansion condition occurring at the diffraction plane.  The reinitiation 

process for such conditions appears to be a very local process and the influence of the 

wave front structure [Ref. 19] and reflection cannot be ignored during analysis. 
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Desbordes [Ref. 20] and Lannoy [Ref. 21] have investigated the effects of 

overdriving a detonation wave during diffraction from a smaller combustion tube to a 

larger volume.  In both studies it was determined that a definitive benefit existed when a 

detonation wave was allowed to propagate into a less reactive mixture immediately 

before diffraction occurred, thus creating an overdriven condition in the less reactive 

mixture.  Recently, Murray et al. [Ref. 22] investigated the direct benefit of utilizing a 

fuel-oxygen driver section, an initiator, and propagating the generated detonation wave 

into a fuel-air mixture in order to generate the overdriven condition.  Overall values of 

the effectiveness of driver-receptor mixtures and diameter ratios approached 30 for some 

conditions.  This indicates that there is a dramatic reduction in the required critical 

diameter for the receptor mixture.  Thus, a combination of Mach reflections and 

overdriven conditions are the mechanisms which appear to dominate initiator 

transmissions on the scale of most PDEs and will likely be responsible for the successful 

application in such systems [Ref. 4].  This mechanism is employed by the valveless PDE 

concept investigated in the current study. 

Previous studies on homogeneous fuel/air mixtures have shown successful 

diffraction of detonation waves when uniform throughout both the initiator and the main 

combustor for diffraction ratios of 1.25 and lower [Ref. 23].  For the purpose of this 

study, however, the mixture composition changed from an oxygen enriched fuel/air 

mixture to a fuel/air mixture when transitioning from the initiator to the main combustor 

at the point of diffraction and explored the benefit of heterogeneous conditions at the 

diffraction plane.  The PDE was operated up to a diffraction ratio of 1.58 for ethylene/air 

and 1.2 for propane/air mixtures.  Continued research will explore diffraction ratios up to 

2.25. 

 

3. Continuous Airflow PDE Design 

The operational cycle of the valveless PDE is shown below in Figure 2.  The 

cycle begins with air flowing through the engine and purging the previous combustion 

products (A).  Fuel is injected into the incoming air and flows into the main combustor 

(B).  Near the end of the fuel injection event (C), a highly detonable mixture is rapidly 
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injected into the initiator (D).  The mixture in the initiator is ignited and a detonation 

wave forms (E).  The detonation wave exits the initiator and initiates the fuel/air mixture 

residing in the main combustor (G). After the detonation wave exits the main combustor, 

a series of rarefaction waves reduce the pressure inside of the combustor and the 

combustion products are purged (H).  The process is then repeated. 

Immediately after the detonation wave from the initiator diffracts into the main 

combustor, a combustion-driven shock wave begins propagating upstream into the 

incoming air stream.  This propagation can be eliminated if the total pressure of the 

incoming air is sufficiently high and results in a choke point somewhere in the isolator, 

thereby producing a supersonic flow regime immediately downstream of this point.  The 

current test program evaluated subsonic inlet flow conditions and limited the isolator 

flow Mach number to less than 0.95.  Future testing will explore a supersonic isolator 

mode which may be used to model the forward diffuser section of a mixed compression 

inlet. 
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Figure 2.   Valveless PDE Cycle 
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II. EXPERIMENTAL SETUP 

A. PULSE DETONATION ENGINE 

The valveless PDE consisted of four fuel/air inlet arms discharging into a 

common inlet manifold.  The four fuel/air inlet arms have no particular physical or 

operational size requirements beyond providing enough length for good mixing and for 

the fuel to vaporize prior to entering the main combustor.  The fuel/air mixture was then 

allowed to co-flow around the initiator, through the isolator and transition ramp and into 

the main combustor which was 1 meter in length and had a 4 inch inner diameter.  The 

initiator could be moved to different axial positions along the 5-degree transition ramp to 

investigate various diffraction ratios between the initiator and the main combustor 

[Figure 3 and 4]. 

Figure 3.   Pulse Detonation Engine Design 
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Figure 4.   PDE Drawing 

 

The temperature of the inlet air could be adjusted from 50 oF to 300 oF via a 

hydrogen vitiator with an oxygen replenishing system to keep the oxygen molar ratio at 

21%.  This air flows through a choke upstream of the PDE in order to isolate the 

upstream pressure fluctuations and set inlet conditions to the PDE.  A 0.57 inch diameter 

orifice was used to monitor and control the mass flow rate of the air flowing through the 

PDE.  The fuel injection was controlled by either four Sturman Industries diesel 

prototype liquid fuel injectors [Figure 5] or four conventional solenoid valves for gaseous 

fuel injection.  The Sturman Industries electro-hydraulic injectors were designed for use 

in diesel and direct-injection engines and have been slightly modified for PDE 

applications.  Each Sturman injector produced a spray with Sauter Mean Diameter 

(SMD) values ranging from 14 µm to 9 µm for the 1500 psi to 2000 psi common rail 

pressure range respectively [Figure 6].  Duration of the fuel injection was from 4 ms to 

5.5 ms [Ref. 12]. 
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Figure 5.   Sturman Industries Fuel Injector 

 
Figure 6.   Hydraulic Power Unit 
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B. INITIATOR 

The initiator was a 15.625-inch long stainless steel chamber with an internal 

diameter of 1.75 inches [Figure 7].  The initiator geometry was previously developed 

from research performed by LT Dave Forster on initiating detonations [Ref. 24]. The 

initiator used an ethylene/air/oxygen mixture with a molar ratio of 1/1.02/2.78 

respectively to rapidly and reliably form a detonation.  Purge air continuously flowed 

through the initiator during operation and provided about 20% of the oxidizer required 

for operation of the initiator.  Oxygen and ethylene were then injected at appropriate 

intervals before the initiation of a detonation in the initiator.  Oxygen was injected into 

the initiator through 4 Parker Hannifin (0091600-4) valves  [Figure 8].  Ethylene was 

injected using a Valvetech (15060-2) valve.  The initiator design has demonstrated up to 

100Hz operation on ethylene, propane, and JP-10 [Ref. 25]. 

 
Figure 7.   Initiator 

Figure 8.   Parker Hannifin O2 Valve 
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C. DIAGNOSTICS 

High frequency Kistler 603B1 pressure transducers and type-K thermocouples 

were placed along the PDE to monitor detonation/shock wavespeeds and engine inlet 

conditions.  Infrared transmission measurements were made at two locations with a 3.39 

µm He-Ne laser [Figure 9] and an infrared diode to determine the proper timing of the 

fuel delivery and fuel mass fraction.  The Kistler pressure transducers were placed at 

locations 1 and 2 (2 inch spacing) for measuring upstream shock propagation, and at 

locations 3 and 4 (6 inch spacing) for measuring detonation wave speeds in order to 

determine successful detonation transition in the main combustor [Figure 10]. 

Figure 9.   Location of 3.39 µm He-Ne Laser Transmission 

 

Figure 10.   Transducer Locations 
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Various other pressure transducers and thermocouples were monitored throughout 

the PDE facility.  The Visual Basic GUI used to operate the facility monitored the 

operation of the PDE and provided the ability to abort runs safely.  All operations of the 

facility were controlled by an approved standard operating procedure supplied in 

Appendix A. 

 

D. VITIATOR 

A hydrogen/oxygen vitiator [Figure 11] was used to raise the inlet air temperature 

to the PDE when desired.  This was done to simulate typical inlet conditions that the PDE 

would experience under the expected supersonic flight conditions. 

Compressed air flowed through the vitiator, where a hydrogen/oxygen igniter was 

used to light a self-sustaining hydrogen\air combustor and raise the temperature of the 

inlet air up to 500 oF.  Since the vitiator combusts externally provided hydrogen, 

additional oxygen is added to the vitiated air at the exit of the vitiator to bring the heated 

air back to the proper oxygen molar concentration of 21% for use in the PDE. 

Figure 11.   Vitiator 
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E. SOFTWARE 

Fuel injection and ignition timing were controlled using a PC computer running a 

Visual Basic 5.0 Graphical Interface [Figure 12] and a BNC 5000 Pulse Generator.  The 

computer was also configured to measure system temperatures and pressures using a low-

speed data acquisition board.  The signals from the Kistler pressure transducers were 

sampled by a National Instruments Data Acquisition board at 500 kHz and viewed using 

a LabVIEW 5.0 user created program to plot the data.  The high speed data taken from 

the Kistler pressure transducers and was used to determine detonation wave speeds and 

upstream shock propagation in the PDE [Figure 13]. 

 

Figure 12.   Facility Operations GUI (Visual Basic 5.0) 
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Figure 13.   Sample Kistler Pressure Transducer Data 
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III. RESULTS 

A. FUEL INJECTION CHARACTERISTICS 

The initial tests on the multi-cycle engine were performed to verify the timing of 

the fuel delivery and the resulting equivalence ratios.  A 3.39 micron He-Ne laser was 

used since hydrocarbon based fuels easily attenuate the 3.39 micron signal due to the C-H 

stretch bond.  An accurate determination of the fuel/oxygen mixture arrival time at the 

diffraction plane was needed to accurately fill the initiator and prevent over filling into 

the main combustor.  Similarly, the timing of the main combustor’s fuel/air mixturewas 

also determined to precisely locate the end of the fuel injection charge at the initiator 

diffraction plane at the moment the initiator detonation wave diffracts into the main 

combustor.  The 3.39 micron transmission measurement was used at both the initiator 

diffraction plane and the combustor exit to determine fuel arrival and mass fraction.  This 

allowed for the appropriate timing of the injection process and coordinated the operation 

of the initiator.  The tests also verified successful operation of the liquid and gaseous fuel 

injectors. 

The transmission ratios received from the laser diode were used in conjunction 

with the Beer-Lambert law (Equation 1) to determine the partial pressure and eventually 

the mass fraction of the fuel present at that time of transmission. 

 

(1) xpeT α−=
 

Where T is the transmission ratio obtained from the attenuation measurements, x is the 

transmission path across where the attenuation occurred, α is the absorption coefficient 

provided in various references [Refs. 26 and 27] for various fuels, and p is the partial 

pressure.  Given this information, the partial pressure can be calculated and subsequently 

used to determine temporal fuel/air ratios [Figure 14] in the main combustor as well as 

the spatial distribution of fuel along the combustor. 
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Figure 14.   Transmittance of Propane/Air Mixture 

 

The transmittance measurements recorded for different mass flow rates therefore 

allowed the timing of the injectors and the expected fuel delivery times for the range of 

test conditions expected [Figure 15].  Figure 15 shows the delay from the time of start of 

injection to the point where the He-Ne laser diode detects attenuation from the fuel at the 

diffraction plane.  The end of the injection sequence was also determined from the 

transmittance plots.  However, the timing measurements for the end of the injection event 

are far more inaccurate than the arrival of the injection, so a 30 ms fill time was added to 

the beginning of the injection event to guarantee its completion. 
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Figure 15.   Injector Timing 

 

Typical results for the 10 Hz operation on propane are shown in Figure 16.  The 

square TTL trace represents the injection command for the initiator and the equivalence 

ratio trace is that for the propane/air mixture as it entered the main combustor.  Notice 

that the equivalence ratio drops to zero as the detonation wave exiting the initiator 

consumes the fuel present and continues into the main combustor.  Another feature to 

notice in Figure 16 was that the injection of the fuel was not yet completed prior to 

initiating the detonation as indicated by the equivalence ratio after the detonation 

passage.  This was caused by initiating the detonation prematurely and can be easily 

corrected by increasing the ignition delay command.  The observed variation in the fuel 

delivery led to a gradient in the equivalence ratio observed in the main combustor and 

will be evaluated in a future to study its effects on performance. 
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Figure 16.   Fuel Injection Timing and Equivalence Ratio vs. Time for Propane/Air Mixture 

 

The fuel injection timing that was found to be most effective during operation of 

the pulse detonation engine was as follows.  The main combustor fuel was injected at the 

beginning of the cycle (without a delay) for 30 ms.  After 14 ms delay in the start of the 

cycle the fuel/oxygen mixture was then injected into the initiator for 35 ms.  This allowed 

sufficient time for the main fuel air mixture to fill the main combustor prior to initiation 

and provided 2-3ms of initiator overfill to aid in the detonation diffraction process.  At 

the end of the injection cycle the initiator is then ignited to form the detonation wave.  

Due to the length of the main combustor and the required fuel injecting timing the 

operation of the PDE was limited to a maximum of approximately 20 Hz until 

optimization of the design could be completed.  The PDE was operated primarily at 10 

Hz in order to ensure the isolation of the detonation events to aid in determining the 

diffraction ratios. 
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During the filling of the combustor, the internal flow Mach number changes 

dramatically through the engine due to the axial area change and is shown in Figure 17.  

Once a detonation is initiated, a forward and aft propagation of disturbances occurs in the 

isolator section and the main combustor.  Characteristics for the baseline case of 

D/Di=1.25 is presented in Figures 17 and 18. 

Initially, operation of the PDE was going to use a mass flow rate of approximately 

1 kg/s in order to achieve 100 Hz operation.  However, it became apparent that the 

initiator would not operate at mass flow rates over 0.4 kg/s due to local sub-atmospheric 

pressures at the initiator exit.  A pressure transducer was installed in the manifold of the 

PDE to monitor the pressure of the airflow prior to entering the isolator at various flow 

rates.  It was found that the airflow in the isolator eventually choked and therefore 

became supersonic in the isolator section at a mass flow rate of approximately 0.3 kg/s. 

Since the first portion of this test program was to evaluate the subsonic isolator 

operation of this engine, the mass flow was therefore limited to prevent the isolator from 

choking locally and producing a supersonic flow region immediately downstream of that 

point.  The condition depicted in Figure 17 shows the isolator Mach number approaching 

0.95 and then decreasing as the cross-sectional area downstream of the isolator increases. 
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Figure 18.   X-T Diagram of Forward and Rearward Propagation of Disturbances 



Figure 18 shows the behavior of both the upstream and downstream propagating 

disturbances for a MISOLATOR=0.95 condition of propane/air at an equivalence ratio of 1.2 

with x=0 being defined as the initiator exit.  The lower right running trace depicts the 

propagation of the propane/air detonation towards the tube exit at the detonation velocity, 

VCJ = 1820 m/s.  Immediately behind the detonation front are a series of rarefaction 

waves which gradually reduce the post-detonation pressure to a lower value.  Once the 

detonation wave exits the tube, a series of rarefaction waves begin to propagate upstream 

in order to reduce the pressure in the combustor.  Only the leading rarefaction wave is 

depicted in the figure and is shown to propagate at the local speed of sound of the 

products.  This wave will eventually catch up to the upstream running shock wave 

initially propagating upstream at about VSH=450 m/s in the laboratory reference frame.  

Once the rarefaction waves catch up to the upstream propagating shock wave and relieve 

the pressure driving the shock, the detonation cycle is considered complete and the 

combustor is purged with the incoming air.  The process repeats for each detonation 

cycle. The information in Figure 18 is useful because it depicts where the rarefaction 

waves intersect with the upstream propagating shock.  The distance indicated on the x-

axis reveals the necessary isolator length to prevent the upstream propagating shock from 

extending further upstream in the valveless geometry.  It can be seen that the isolator 

length for a valveless design operating in a subsonic mode and an isolator Mach number 

of 0.95 would need to be approximately 0.5 meters long for a 1 meter long main 

combustor.  If the isolator section is shorter than this length, the forward propagating 

disturbance could result in an inlet problem. However, by reducing the length of the main 

combustor the length required for the isolator would be shortened as well. 

 

B. DIFFRACTION RESULTS 

Detonation wave diffraction conditions at the initiator/main combustor interface 

were characterized on single-shot detonation facility using high-speed Schlieren and CH* 

chemiluminescence imaging which utilized a 10nm FWHM interference filter centered at 

430nm [Ref. 28].  Previous single shot images are shown for this geometry and was 

representative of the valveless configuration.  This also allowed multiple diffraction 
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ratios to be characterized .  The experimental setup for those tests and sample CH* 

images are shown below in Figures 19 and 20. 

 

Figure 19.   Two-Dimensional Diffraction Geometry (From Ref 28) 

Figure 20.   Experimental Setup for Single-Shot CH* Images (left) Sample Images at (a) t=15 
µs (b) t=22 µs ,(c) t=29 µs, (d) t=36 µs for a Diameter Ratio of 1.33. (From Ref 28) 
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The observed detonation wave speeds during tests were very close to Chapman-

Jouget values provided by the Thermo-chemical Equilibrium Program and shown in 

Figure 21.  Occasionally, the observed detonation wave speeds were due to an overdriven 

condition which occurs during the re-initiation of the detonation in the main combustor.  

This results in a generally higher detonation wave speed than would normally be 

observed.  Sample TEP outputs for an Ethylene equivalence ratio of 1.4 and Propane 

equivalence ratio of 1.2 are shown in Appendix B. 
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Figure 21.   Detonation Velocity vs. Equivalence Ratio 

 

The PDE was designed to evaluate diffraction ratios from 1.42 to 2.28.  Two 

transition ramps were designed for evaluating the operation of the PDE, a 5 degree 

transition ramp and a 10 degree transition ramp.  However, due to the failure of two of 

the Parker Hannifin oxygen valves, only the 5 degree transition was evaluated and limited 

the largest diffraction ratio evaluated to 1.58.  The engine has been evaluated over 

diffraction range of 1.25 to 1.58 and operated on both ethylene/air and propane/air from 

stoichiometric to an equivalence ratio of 1.5.  From previous research conducted on 
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single cycle pulse detonation engines, these conditions were expected to produce 

successful detonation transitions up to diffraction ratios of 2.0.  Figure 22 shows results 

of previous PDE studies where successful and unsuccessful detonations were observed at 

different diffraction and equivalence ratios when the main combustor is filled with a 

stoichiometric ethylene/air mixture [Ref. 28]. 

Figure 22.   Diffraction Ratio vs. Equivalence Ratio Study 

 

It is expected that the upper limit to be evaluated will be a diameter ratio of 2.28 

with the 10 degree transition ramp in follow on research.  It can been seen that 

ethylene/air mixtures at an equivalence ratio of 1.2 have successfully diffracted for all of 

the diameter ratios tested to date.  Propane was evaluated at only two conditions, and will 

continue to be investigated in the near future.  Results to date are shown below in Figure 

23.  The failure of the Parker Hannifin oxygen valves has delayed investigation on the 

larger diffraction ratios. 
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C. PERFORMANCE CALCULATIONS 

Thrust measurements were taken and used to calculate the specific impulse of the 

valveless PDE geometry operating on ethylene.  Ethylene was chosen for the comparison 

due to the large amount of references referring to the specific impulse of ethylene/air 

detonation tubes.   Although a simple tube does not accurately model an engine with 

dynamic flow, it does provide a reasonable reference point for these calculations.  At this 

time, it does not appear that the specific impulse is noticeably reduced compared to 

simple tube results.  The results at this time contain a +/- 10% error due to noise in the 

acquired signal and the smoothing of the high frequency/transient load cell 

measurements.  These measurements are being redesigned and will be acquired more 
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accurately with a new six degree of freedom thrust stand to be used in future testing.  It 

will provide two independent measurements of thrust to improve the fidelity of the 

calculation. 
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IV. CONCLUSIONS 

The generation of strong Mach stem reflections downstream of the diffraction 

plane of the initiator combustor have been found to be a reliable reinitiation mechanism 

for the transmission of a detonation wave into a larger combustor over the range of 

diffraction ratios evaluated to date.  So far, diffraction ratios up to 1.58 have been 

successful with ethylene/air mixtures and propane/air mixtures have been successful 

diffracting over a 1.43 ratio.  The reliable generation of Mach stems along the wall 

downstream of the diffraction plane for coaxial initiators/combustors should be a 

valuable mechanism to take advantage during engine design since they do not depend 

directly on cell size, but on the strength of the exiting shockwave and the physical 

diffraction condition.  The sensitivity of the mixture to reignition can and should be 

correlated to the detonation cell size of the reactants used. 

The ability to isolate the incoming air flow from the detonation products has been 

shown to rely heavily on the isolator Mach number and combustion chamber length.  

Because the isolator length was not long enough to isolate the air flow for subsonic 

operation, the isolator section will need to be lengthened or the main combustor 

shortened for continued testing in a subsonic mode.  The difficulty in transitioning a 

detonation wave into the main combustor was noticed when higher mass flow rates were 

used.  This was due to local sub-atmospheric pressures at the initiator exit when flow in 

the isolator became sonic.  Future research on a revised PDE design will focus on the 

supersonic flow of fuel/air mixtures in the PDE. Although only subsonic isolator Mach 

numbers were evaluated during this portion of the test program, sonic or supersonic 

values corresponding to total pressure of 100 psi or higher will likely provide total inlet 

isolation from the post detonation pressure and will be evaluated in the next phase of this 

research. 
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V. FUTURE WORK 

Initial performance estimates of the valveless engine geometry appear to be only 

slightly lower than conventionally valved systems.  Thereby revealing a potential design 

simplicity without incurring unreasonable losses.  Although no significant performance 

loss has been observed, current uncertainties will need to be reduced to improve the 

fidelity of the calculations and provide more definitive results.  Future work will involve 

improved thrust measurements, higher frequency operation, and the utilization of liquid 

fuels at frequencies above 40 Hz. 

The design of the engine limited testing to air mass flow rates below 0.3 kg/s due 

to the engine choking at the manifold at higher flow rates.  This limit affected the 

operating frequency of the PDE.  By changing, the cross sectional area in these sections, 

the mass flow rate could be substantially increased without the airflow becoming 

supersonic in the transition ramp.  However the purpose of this thesis was to determine 

how large of a diffraction area the initiator could withstand before the detonation wave 

failed.  By increasing the cross sectional area of the manifold and the transition ramp, the 

risk of detonation failure increases and thus, the critical diffraction limit will be 

determined. 

Since the research objectives for this thesis were not completed due to equipment 

failure, all diffraction ratios were not observed for performance.  Additionally, not all the 

desired fuels were characterized for detonation failure for the different diffraction ratios.  

Follow-on work should continue to study the diffraction limits and evaluate JP-10 

operation as well.  Once the diffraction limits are determined the initiator can be 

redesigned at the optimum diffraction ratio to improve the frequency of operation. 

Mapping of the Pressure Volume Time (PVT) curves for a PDE would be very 

helpful for this engine geometry.  Although conventional PV curves are 2 dimensional, 

the required figures would be 3 dimensional due to the transient flow. 
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APPENDIX A: FACILITY OPERATIONS 

TEST CELL #2 

STANDARD OPERATING PROCEDURES FOR ETHYLENE FUEL 

 
Facility Open Procedures: 
 

1) Press RED “Emergency Stop” button in for Test Cell #2 
2) Turn on “SCARP” computer 
3) Turn on power to Cabinet #2 
4) Turn on 24 volt power supply at test cell #1 area.  Switch is labeled “POWER TO 

24VDC POWER SUPPLY/CELL 1” 
5) Turn on 115 volt power supply to Test Cell #1 in same panel as 24 volt power 

switch 
6) Execute “TC2_CONTROL_STEVE” from the icon on desktop (“SCARP”) 
7) Turn on “LIGHTS” at the video display panel to indicate gases are in use. 
8) Open HP air valve at the HP air tanks 
9) Turn on power to ER3000 regulator valves inside main control panel inside Test 

Cell #1 
10) Ensure manual purge valve is open.  Valve is under optics table in Test Cell #1 
11) Set purge air pressure to desired setting (green regulator in Test Cell #1) 
12) If using the He-Ne laser for diagnostics, turn on laser and ensure shutter is open 

 
 
In Cell #2: 
 

13) Open shop air, main air (vitiator), and HP air valves on rear wall 
14) Ensure relief valves to O2, H2, and C2H4 tanks are closed 
15) Open O2 (2), H2(2), N2(1), and C2H4(1) tank valves on right side wall and verify 

desired pressure at the bottles 
16) Open the C2H4 valve at the test stand 
17) Open left wall N2 valves and manually set regulator pressure to desired pressure 

for C2H4 injection 
18) Turn on the Kistler amplifiers 

a) Ensure proper gain is set in all amplifiers 
b) Set mode to Operate, Short, and Charge 

19) Plug in laser diode amplifier if using the laser for diagnostics 
 

Note: At this time you have full pressure of all gases and liquids at the test 
stand 
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In Control Room: 
 

20) Set the main air pressure for ER3000 regulator valve on SADDLER computer. 
a) Select Node 1 
b) Set main air pressure at desired level 

21) Enter “RUN CONDITIONS”, set desired conditions and exit 
22) Enter “FACILITY OPERATIONS” and check the “CONTINUOUS” and 

“SPARK” boxes. 
23) Execute “HighSpeedDAQ.vi” from the desktop (“SCARP”) 

a) Set sample ratio to 500,000 Hz 
b) Set device to 2 
c) Set channels to 0:3 
d) Set number of scans to 1,000,000 

24) Evacuate all personnel from Test Cell #2 
25) In Cabinet #2 arm the MSD Ignition switch 
26) Reset “Emergency Stop” button 

 
 
Run Procedures: 
 

27) Ensure all “Alarm Status” indicators are green in “Facility Operations” 
Note: If an indicators are red the test run will automatically be aborted 

28) Ensure area is clear of golfers and all RPCL personnel are in control room 
29) Start recording on VCR(s) 
30) Turn siren on at video display panel 

 
*********** W A R N I N G *********** 

The next step will result in the commencement of a run profile and ignition 
 
 

31) In “Facility Operations” click “Start Run” 
32) Open Main Air Valve switch to the right of the video display panel 
33) Once firing has begun click “Play” in the HighSpeedDAQ.vi application 
34) Once data acquisition is complete click “Stop Run” in “Facility Operations” 
35) Secure the Main air valve from switch to right of video display panel 
36) Maintain purge air for 10-20 seconds ( manual “Purge” button in “Facility 

Operations”) 
37) Secure siren at video display panel 
38) Stop recording on VCR(s) 
39) Press “emergency Stop” button 
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Close Facility Procedure for Ethylene Operations: 
 
Control Room: 

1) Ensure “Emergency Stop” button is depressed 
2) Close HighSpeedDAQ.vi application 
3) Exit “Facility Operations” 
4) Disarm the MSD Ignition switch 
5) Secure power to Cabinet #2 
6) Secure 24V power supply (switch labeled “Power to 24VDC Power Supply/Cell 

#1”) 
7) Secure 115V power supply to Test Cell #1 
8) Close HP air valve at HP tanks 
9) Turn off He-Ne laser and close shutter 
10) Reduce Purge Air regulator in Test Cell #1 to 0 psi 
11) Turn off power to ER3000 regulator valves inside main control panel inside Test 

Cell #1 
 
 
Test Cell #2 

12) Unplug laser diode amplifier 
13) Close N2 (1), C2H4 (1), O2 (2), H2 (2) bottle valves on right wall 
14) Open H2 relief valve to vent H2 pressure and then close relief valve on right wall 
15) Open C2H4 relief valve to vent C2H4 pressure and then close relief valve on right 

wall 
16) Wait a few minutes then open O2 relief valve to vent O2 pressure and then close 

relief valve on right wall 
 
Note: Steps 5-7 are separated in time so as to allow dissipation of gases prior 

to venting additional gases 
 

17) Close HP air, main air (vitiator), and shop air valves on rear wall 
18) Close N2 bottle valve on left wall 
19) Set N2 regulator pressure to zero (Regulator valve turned all the way to left) 
20) Close C2H4 bottle valve at the test stand 

 
 
Control Room: 

21) Secure “Lights” on video display panel 
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TEST CELL #2 

STANDARD OPERATING PROCEDURES FOR PROPANE FUEL 

 
Facility Open Procedures: 
 

1) Press RED “Emergency Stop” button in for Test Cell #2 
2) Turn on “SCARP” computer 
3) Turn on power to Cabinet #2 
4) Turn on 24 volt power supply at test cell #1 area.  Switch is labeled “POWER TO 

24VDC POWER SUPPLY/CELL 1” 
5) Turn on 115 volt power supply to Test Cell #1 in same panel as 24 volt power 

switch 
6) Execute “TC2_CONTROL_STEVE” from the icon on desktop (“SCARP”) 
7) Turn on “LIGHTS” at the video display panel to indicate gases are in use. 
8) Open HP air valve at the HP air tanks 
9) Turn on power to ER3000 regulator valves inside main control panel inside Test 

Cell #1 
10) Ensure manual purge valve is open.  Valve is under optics table in Test Cell #1 
11) Set purge air pressure to desired setting (green regulator in Test Cell #1) 
12) If using the He-Ne laser for diagnostics, turn on laser and ensure shutter is open 

 
 
In Cell #2: 
 

13) Open shop air, main air (vitiator), and HP air valves on rear wall 
14) Ensure relief valves to O2, H2, and C2H4 tanks are closed 
15) Open O2 (2), H2(2), N2(1), and C2H4(1) tank valves on right side wall and verify 

desired pressure at the bottles 
16) Open left wall propane valve and set pressure to 125 psi 
17) Open the propane ball valve to the test stand, verify pressure is still 125 psi 
18) Turn on the Kistler amplifiers 

a. Ensure proper gain is set in all amplifiers 
b. Set mode to Operate, Short, and Charge 

19) Plug in laser diode amplifier if using the laser for diagnostics 
20) Ensure red LED on hydro-pump breaker is off (not lit) and close the hydro-pump 

breaker if LED is off. 
Note: If LED is on when closing the breaker, the hydro-pump will turn on 

 
Note: At this time you have full pressure of all gases and liquids at the test 

stand 
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In Control Room: 
 

21) Set the main air pressure for ER3000 regulator valve on SADDLER computer. 
a. Select Node 1 
b. Set main air pressure at desired level 

22) Enter “RUN CONDITIONS”, set desired conditions and exit 
23) Enter “FACILITY OPERATIONS” and check the “CONTINUOUS” and 

“SPARK” boxes. 
24) Execute “HighSpeedDAQ.vi” from the desktop (“SCARP”) 

a. Set sample ratio to 500,000 Hz 
b. Set device to 2 
c. Set channels to 0:3 
d. Set number of scans to 1,000,000 

25) Evacuate all personnel from Test Cell #2 
26) In Cabinet #2 arm the MSD Ignition switch 
27) Reset “Emergency Stop” button 

 
 
Run Procedures: 
 

28) Ensure all “Alarm Status” indicators are green in “Facility Operations” 
Note: If an indicators are red the test run will automatically be aborted 

29) Ensure area is clear of golfers and all RPCL personnel are in control room 
30) Start recording on VCR(s) 
31) Turn siren on at video display panel 

 
*********** W A R N I N G *********** 

The next step will result in the commencement of a run profile and ignition 
 
 

32) In “Facility Operations” click “Start Run” 
33) Open Main Air Valve switch to the right of the video display panel 
34) Once firing has begun click “Play” in the HighSpeedDAQ.vi application 
35) Once data acquisition is complete click “Stop Run” in “Facility Operations” 
36) Secure the Main air valve from switch to right of video display panel 
37) Maintain purge air for 10-20 seconds ( manual “Purge” button in “Facility 

Operations”) 
38) Secure siren at video display panel 
39) Stop recording on VCR(s) 
40) Press “emergency Stop” button 
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Close Facility Procedure for Propane Operations: 
 
Control Room: 

1) Ensure “Emergency Stop” button is depressed 
2) Close HighSpeedDAQ.vi application 
3) Exit “Facility Operations” 
4) Disarm the MSD Ignition switch 
5) Secure power to Cabinet #2 
6) Secure 24V power supply (switch labeled “Power to 24VDC Power Supply/Cell 

#1”) 
7) Secure 115V power supply to Test Cell #1 
8) Close HP air valve at HP tanks 
9) Turn off He-Ne laser and close shutter 
10) Reduce Purge Air regulator in Test Cell #1 to 0 psi 
11) Turn off power to ER3000 regulator valves inside main control panel inside Test 

Cell #1 
 
 
Test Cell #2 

12) Unplug laser diode amplifier 
13) Close N2 (1), C2H4 (1), O2 (2), H2 (2) bottle valves on right wall 
14) Open H2 relief valve to vent H2 pressure and then close relief valve on right wall 
15) Open C2H4 relief valve to vent C2H4 pressure and then close relief valve on right 

wall 
16) Wait a few minutes then open O2 relief valve to vent O2 pressure and then close 

relief valve on right wall 
 
Note: Steps 5-7 are separated in time so as to allow dissipation of gases prior 

to venting additional gases 
 

17) Close HP air, main air (vitiator), and shop air valves on rear wall 
18) Open hydro-pump breaker 
19) Close propane ball valve on test stand 
20) Close propane valve at propane tank on left wall 

 
 
Control Room: 

21) Secure “Lights” on video display panel 
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TEST CELL #2 

STANDARD OPERATING PROCEDURES FOR JP-10 FUEL 

 
Facility Open Procedures: 
 

1) Press RED “Emergency Stop” button in for Test Cell #2 
2) Turn on “SCARP” computer 
3) Turn on power to Cabinet #2 
4) Turn on 24 volt power supply at test cell #1 area.  Switch is labeled “POWER TO 

24VDC POWER SUPPLY/CELL 1” 
5) Turn on 115 volt power supply to Test Cell #1 in same panel as 24 volt power 

switch 
6) Execute “TC2_CONTROL_STEVE” from the icon on desktop (“SCARP”) 
7) Turn on “LIGHTS” at the video display panel to indicate gases are in use. 
8) Open HP air valve at the HP air tanks 
9) Turn on power to ER3000 regulator valves inside main control panel inside Test 

Cell #1 
10) Ensure manual purge valve is open.  Valve is under optics table in Test Cell #1 
11) Set purge air pressure to desired setting (green regulator in Test Cell #1) 
12) If using the He-Ne laser for diagnostics, turn on laser and ensure shutter is open 

 
 
In Cell #2: 
 

13) Open shop air, main air (vitiator), and HP air valves on rear wall 
14) Ensure relief valves to O2, H2, and C2H4 tanks are closed 
15) Open O2 (2), H2(2), N2(1), and C2H4(1) tank valves on right side wall and verify 

desired pressure at the bottles 
16) Check left wall N2 valves (relief valve and ball valve to JP-10 pressure vessel) to 

ensure they are closed and the regulator valve is set to zero pressure (turned all 
the way to the left) 

17) Check the JP-10 valve at the pressure vessel to ensure it is closed 
18) Open left wall N2 valve and manually set regulator pressure to 125 psi 
19) Open the ball valve to the JP-10 pressure vessel, verify pressure is still 125 psi 
20) Open JP-10 valve at the pressure vessel 
21) Turn on the Kistler amplifiers 

a. Ensure proper gain is set in all amplifiers 
b. Set mode to Operate, Short, and Charge 

22) Plug in laser diode amplifier if using the laser for diagnostics 
23) Ensure red LED on hydro-pump breaker is off (not lit) and close the hydro-pump 

breaker if LED is off. 
Note: If LED is on when closing the breaker, the hydro-pump will turn on 

 
Note: At this time you have full pressure of all gases and liquids at the test 

stand 
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In Control Room: 
 

24) Set the main air pressure for ER3000 regulator valve on SADDLER computer. 
a. Select Node 1 
b. Set main air pressure at desired level 

25) Enter “RUN CONDITIONS”, set desired conditions and exit 
26) Enter “FACILITY OPERATIONS” and check the “CONTINUOUS” and 

“SPARK” boxes. 
27) Execute “HighSpeedDAQ.vi” from the desktop (“SCARP”) 

a. Set sample ratio to 500,000 Hz 
b. Set device to 2 
c. Set channels to 0:3 
d. Set number of scans to 1,000,000 

28) Evacuate all personnel from Test Cell #2 
29) In Cabinet #2 arm the MSD Ignition switch 
30) Reset “Emergency Stop” button 

 
 
Run Procedures: 
 

31) Ensure all “Alarm Status” indicators are green in “Facility Operations” 
Note: If an indicators are red the test run will automatically be aborted 

32) Ensure area is clear of golfers and all RPCL personnel are in control room 
33) Start recording on VCR(s) 
34) Turn siren on at video display panel 

 
*********** W A R N I N G *********** 

The next step will result in the commencement of a run profile and ignition 
 
 

35) In “Facility Operations” click “Start Run” 
36) Open Main Air Valve switch to the right of the video display panel 
37) Once firing has begun click “Play” in the HighSpeedDAQ.vi application 
38) Once data acquisition is complete click “Stop Run” in “Facility Operations” 
39) Secure the Main air valve from switch to right of video display panel 
40) Maintain purge air for 10-20 seconds ( manual “Purge” button in “Facility 

Operations”) 
41) Secure siren at video display panel 
42) Stop recording on VCR(s) 
43) Press “emergency Stop” button 
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Close Facility Procedure for JP-10 Operations: 
 
Control Room: 

1) Ensure “Emergency Stop” button is depressed 
2) Close HighSpeedDAQ.vi application 
3) Exit “Facility Operations” 
4) Disarm the MSD Ignition switch 
5) Secure power to Cabinet #2 
6) Secure 24V power supply (switch labeled “Power to 24VDC Power Supply/Cell 

#1”) 
7) Secure 115V power supply to Test Cell #1 
8) Close HP air valve at HP tanks 
9) Turn off He-Ne laser and close shutter 
10) Reduce Purge Air regulator in Test Cell #1 to 0 psi 
11) Turn off power to ER3000 regulator valves inside main control panel inside Test 

Cell #1 
 
 
Test Cell #2 

12) Unplug laser diode amplifier 
13) Close N2 (1), C2H4 (1), O2 (2), H2 (2) bottle valves on right wall 
14) Open H2 relief valve to vent H2 pressure and then close relief valve on right wall 
15) Open C2H4 relief valve to vent C2H4 pressure and then close relief valve on right 

wall 
16) Wait a few minutes then open O2 relief valve to vent O2 pressure and then close 

relief valve on right wall 
 
Note: Steps 5-7 are separated in time so as to allow dissipation of gases prior 

to venting additional gases 
 

17) Close HP air, main air (vitiator), and shop air valves on rear wall 
18) Open hydro-pump breaker 
19) Close N2 bottle valve on left wall 
20) Set N2 regulator pressure to zero (Regulator valve turned all the way to left) 
21) Open N2 relief valve to vent N2 pressure, then close valve 
22) Close N2 ball valve to JP-10 pressure vessel 
23) Close JP-10 valve at pressure vessel 

 
 
Control Room: 

24) Secure “Lights” on video display panel 
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APPENDIX B: THERMO-CHEMICAL EQUILIBRIUM PROGRAM 
(TEP) OUTPUTS FOR ETHYLENE AND PROPANE 

ETHYLENE (C2H4), EQUIVALENCE RATIO = 1.4 
DETONATION PROPERTIES OF AN IDEAL REACTING GAS 
                                                                             WT FRACTION  ENTHALPY  STATE   TEMP    DENSITY 
          CHEMICAL FORMULA                                                   (SEE NOTE) JOULES/MOL          DEG K   KG/M3 
 OXIDANT N  2.00000                                                            0.79000       55.023    G    300.00   0.0000 
 OXIDANT O  2.00000                                                            0.21000       54.154    G    300.00   0.0000 
 FUEL    C  2.00000   H  4.00000                                               1.00000    52339.012    G    300.00 568.8000 
0O/F=1.1639E+01  PERCENT FUEL=7.9121E+00  EQUIVALENCE RATIO=1.4000E+00  STOIC MIXTURE 
RATIO=1.6294E+01  DENSITY=0.0000E+00 
 UNBURNED GAS 
 
 
 P1,ATM           1.0000 
 T1,DEG K         300.00 
 H1,CAL/G          35.70 
 M1,MOL WT        28.708 
 GAMMA1           1.3783 
 SON VEL,M/SEC     346.1 
0BURNED GAS 
 
 
 P, N/M2        1.8265 6 
 T, DEG K           2825 
 H, J/KG        1.3037 6 
 S, J/(KG)(K)   9.4670 3 
 G, CAL/GRAM     -6080.4 
 U, CAL/GRAM       101.5 
 DEN, (KG/M3)   2.08     
  
 M, MOL WT        26.702 
 (DLV/DLP)T     -1.00291 
 (DLV/DLT)P       1.0675 
 CP, J/(KG)(K   2.0092 3 
 CP GAS(SF)       0.3599 
 GAMMA GAS(SF)    1.2605 
 GAMMA (S)        1.2100 
 SON VEL,M/SEC    1031.7 
 MU, POISE      7.84E-04 
 K,ERG/S-CM-K   1.78E+04 
 PRANDTL NO      0.66443 
0DETONATION PARAMETERS 
 
 
 P/P1             18.027 
 T/T1              9.417 
 M/M1             0.9301 
 RHO/RHO1         1.7806 
 MACH NO.         5.3084 
 DET VEL,M/SEC    1837.0 
 MOL WT(MIX)      26.702 
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PROPANE (C3H8), EQUIVALENCE RATIO = 1.2 
DETONATION PROPERTIES OF AN IDEAL REACTING GAS 
                                                                             WT FRACTION  ENTHALPY  STATE   TEMP    DENSITY 
          CHEMICAL FORMULA                                                   (SEE NOTE) JOULES/MOL          DEG K   KG/M3 
 FUEL    C  3.00000   H  8.00000                                               1.00000  -103650.477    G    300.00 500.0000 
 OXIDANT N  2.00000                                                            0.79000       55.023    G    300.00   0.0000 
 OXIDANT O  2.00000                                                            0.21000       54.154    G    300.00   0.0000 
0O/F=1.4398E+01  PERCENT FUEL=6.4945E+00  EQUIVALENCE RATIO=1.2000E+00  STOIC MIXTURE 
RATIO=1.7277E+01  DENSITY=0.0000E+00 
 UNBURNED GAS 
 
 
 P1,ATM           1.0000 
 T1,DEG K         300.00 
 H1,CAL/G         -36.06 
 M1,MOL WT        29.430 
 GAMMA1           1.3646 
 SON VEL,M/SEC     340.1 
0BURNED GAS 
 
 
 P, N/M2        1.7893 6 
 T, DEG K           2730 
 H, J/KG        9.4931 5 
 S, J/(KG)(K)   9.3385 3 
 G, CAL/GRAM     -5867.3 
 U, CAL/GRAM        26.9 
 DEN, (KG/M3)   2.14     
  
 M, MOL WT        27.112 
 (DLV/DLP)T     -1.00309 
 (DLV/DLT)P       1.0769 
 CP, J/(KG)(K   2.1101 3 
 CP GAS(SF)       0.3607 
 GAMMA GAS(SF)    1.2548 
 GAMMA (S)        1.1981 
 SON VEL,M/SEC    1001.6 
 MU, POISE      7.68E-04 
 K,ERG/S-CM-K   1.70E+04 
 PRANDTL NO      0.68327 
0DETONATION PARAMETERS 
 
 
 P/P1             17.659 
 T/T1              9.101 
 M/M1             0.9212 
 RHO/RHO1         1.7874 
 MACH NO.         5.2641 
 DET VEL,M/SEC    1790.2 
 MOL WT(MIX)      27.112 
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