
 Abstract-A recent model to analyze the Center of Pressure 
trajectories is based on the fractional Brownian motion. By 
doing so, one note that standing still is describe  by different 
mechanisms  following the  frequency. Previous studies exhibit 
the existence of a control mechanism which stabilize the upright 
position at a large enough time scales (from 0.3 s to 1.2 s 
depending on the method and on the authors) or equivalently at 
low frequencies. The different mechanisms are separated by a 
critical time scale or equivalently a critical frequency. This 
critical frequency is fundamental to understand the control 
mechanism of upright position : only physiological phenomenon 
at frequencies larger than this critical frequency could 
contribute to the task of maintaining equilibrium.  
A new statistical method is introduced based onto the recent 
progress in signal processing : the wavelets analysis. The 
algorithm is entirely automatic. Seventeen healthy young 
subjects were studied under quiet-standing conditions, the mean 
value of critical frequency is 1.8 Hz corresponding to a mean 
critical time scale 0.68 s. The algorithm is entirely automatic.  
Keywords- Postural Control, Stabilogram, Fractional Brownian 
motion, Wavelet analysis. 

 
 

I. INTRODUCTION 
 

A good model of control mechanism of undisturbed stance 
control in human upright posture is useful in applications. 
Several statistical studies have been proposed in the past. All 
are based on the center of pressure (COP), which is the 
resultant point of the reaction forces measured by a force 
platform. In the seventies, these data were analyzed as a set of 
points without any order, although  COP is time varying and 
should be considered as time series or as the observation of 
the trajectory of a stochastic process at discrete times. In this 
framework the questions are : 
i) which class of stochastic processes provide a good model?  
ii) how determining with reliability the parameters of the 
process?  
iii) what is the biological meaning of these parameters ? 
 

Different models have been proposed (Ornstein-Uhlenbeck 
processes in [6], roughly speaking a spring with a random 
excitation), but the most convincing seems the model of “so-
called” fractional Brownian motion (f.B.m.) introduced by 
Collins and De Luca. Using the stabilogram diffusion 
analysis, they detect two different zones on the log/log plot of 
the stabilogram with two different slopes : these two zones 
are interpreted as corresponding to two different mechanisms 
at high frequencies (an erratic comportment) and at low 
frequencies (regulation). 

Moreover they determined by a graphical method a critical 
time corresponding to the change between the two regulation 
mechanisms. However the method proposed by Collins & De 
Luca is heuristic and depends on the subjectivity of the user, 
see for e.g. [7]. For studying the influence of experimental 
conditions on sufficiently large samples, an automatic 
procedure of determination of the change time is needed. A 
second drawback of the pioneer work of Collins & De Luca 
and of the use statistical method based on f.B.m is the 
absence of a rigorous model which forbids any justified 
statistical study. The aim of this paper is to propose an 
automatic method of detection of the change point between 
the different mechanisms of regulation and to apply it to a set 
of 17 experimental data.  
 

II. METHODOLOGY 
 
Material 
 

The force-plate was an AMTI model OR6-5. The signals 
were amplified through an AMTI model SGA6-4 amplifier. 
The numerical-analog converter card was a Data Translation 
model DT2801 (12 bits). Recorded data were the three forces 
and the three moments of the efforts of contact on the surface 
of the force-plate. From the forces and moments measured on 
the platform, we calculated the COP coordinates (X,Y) of the 
subject in the force-plate referential. X axis of the platform 
corresponds to the fore-aft direction and Y axis corresponds 
to the medio-lateral direction, whereas Z axis corresponds to 
the vertical axis (positive downwards).The rate frequency was 
100 hertz for one duration of 60 seconds. 

The subjects were placed on the force-plate in a cabin 
conformed to the standards [4] of the Association Française 
de Posturologie (AFP). They had to stand upright during one 
minute. The resting time between trials was one minutes too. 
They had to fix a plumb line placed at about 90 centimeters in 
front of them. The subjects’ feet positions were controlled by 
a special frame fixed on the force-plate with a clearance of 2 
cm between the feet and an angle of 15° between the medial 
sides of the feet. 
 
Recall on the method based on the stabilogram diffusion plot. 
 

The f.B.m. model is characterized by the scale law of the 
increments : the log/log diffusion plot as a function of 
increasing times scales ∆t is a straight line with a 2H slope, 
where H is a real number (0<H<1) called the Hurst’s 
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Fig. 1 The double logarithm plotting of the variogram of the X-axis COP 

which express the mean square distance <∆X2> as function of time scale ∆t. 
The critical time scale is visually about  ∆tc= 1.05 s.  following [3] 

and ∆tc= 0.67 s.  following [10]. 
 

parameter. Its meaning is of prime order : when H is greater 
than 0.5 the increments are positively correlated and the 
process is persistent, when H is less than 0.5 the increments 
are negatively correlated and the process is anti persistent.  
The log/log plot of the diffusion corresponding to COP of 
human in upright quiet stance is not a straight line but exhibit 
at least two segments of straight line with a slope 2H1 with 
H1>0.5 for small time scales and a slope 2 H0 with H0<0.5 
for large time scales [3, 6], see Fig. 1. 

These two segments are interpreted as corresponding to 
two different behaviours : at small time scales the increments 
are persistent (this could not insure equilibrium) and at large 
time scales the increments are anti-persistent which insures 
the equilibrium. The critical point between these two 
segments is heuristically determined in [6] and these authors 
found a mean value of critical time scale ∆tc= 0.9 s. Another 
heuristic method is proposed in [6] which leads to a mean 
value of critical time scale ∆tc= 0.4s. and to a value of H1 
smaller than in [3]. In both studies [3, 6], the results are 
mostly empirical since the statistical treatment is not justified 
by any model. 
 
Brief recall on Fractional Brownian Motions  
 

Fractional Brownian motions were popularized after 1965 
by Mandelbrot, see [5] for e.g. He first noticed the relevance 
of f.B.m. to describe and interpret various real phenomena 
and he developed the statistical study of f.B.m. during the 
following decade. However the f.B.m. were (implicitly) 
known before and were indeed introduced by Kolmogorov 
(1940). The representation of f.B.m. used by Mandelbrot in 
[5] (called Moving Average representation) supposes that the 
Hurst index H is constant. In the model introduced by  [3], 
there are different values depending on the frequency, 
anyway it is not possible to give any meaning to the Moving 
Average representation when the Hurst index H is varying 
with the frequency. From the other hand, Kolmogorov use 
another representation called the harmonizable representation, 
which  is a kind of Fourier representation. Moreover this 
representation is generalizable to every stationary Gaussian 

process and each process is caracterized by its density 
spectrum ρ(f). F.B.m correspond to a power law density 

spectrum ( ) ff H )2
1( +−=ρ  where f is the frequency. When the 

Hurst index depend on the frequency, we denote it H(f), this 
corresponds to the process with density spectrum 

( ) ff fH )2
1)(( +−=ρ . It is then natural to consider the COP as a 

process with different Hurst indexes following the 
frequencies associated to the density spectrum 

( ) ff fH )2
1)(( +−=ρ , with a function H(f) piecewise constant. In 

[1], this model was called Multiscale fractional Brownian 
motion (m.s.f.B.m.). After having given a rigorous definition 
of the model introduced in [3], we want to estimate the value 
of  the parameters of this model, i.e. the frequency changes 
and the different Hurst indexes. 

Let us stress another famous property of f.B.m. and some 
consequence in our model. F.B.m. are self-similar processes, 
this means they have the same statistical behavior at every 
scales. More precisely if BH(t) is a f.B.m. with the Hurst index 
H, then BH(a t) as the same distribution than )(. tBa H

H . So 

f.B.m. corresponds to a stochastic fractal. The boundness of 
COP trajectories (which remain in the quadrilater defined by 
the two feet) induces that at very large scale the Hurst index 
should be 0 and that at least a second frequency change 
should exist.  
 
Brief recall on Wavelets Analysis 
 

Wavelets are a convenient tool to analyze the signal’s 
properties at different scales. In many fields of signal 
processing, wavelet analysis has replaced the classical Fourier 
analysis. In Fourier analysis, a signal is decomposed onto a 
basis of functions sin(ω t) or cos(ω t). Each of these functions 
have only one frequency, but it have a infinite time support. 
Therefore Fourier analysis is convenient for stationary signal 
observed on a long time interval.  Wavelets correspond to 
another tradeoff between time localization and frequency 
localization : wavelets take into account a finite band of 
frequencies and they are decreasing very fast in time (Fig. 2), 
this allows frequency analysis of a signal observed on a 
shorter time interval. 
 
 

   
Fig. 2.  a) the Meyer wavelet Ψ(t)  

b) its Fourier transform )(ˆ fΨ  



Wavelet analysis of  f.B.m. and m.s.f.B.m 
 

Then we analyze the signal through the wavelet coefficient 
at different scales a wich  corresponds to the frequencies 
f=1/a. Let Ψ(t) be the Meyer wavelet [8], the wavelet 
coefficient at frequency f of the signal X(t) observed with a 
time lag ∆ is defined by  

( ) ( )
[ ]

∑
=

∆=
Nf

k
X kfd

Nf
fI

1

2 ,
][

1          (1) 

where N is the number of points observed for the signal X(t), , 
∆ the time lag between two observations, [Nf] the entire part 
of the real number Nf and 
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Formula (2) explains that the wavelet coefficient I(f) 
corresponds to the energy on the frequency band [2πf/3, 
8πf/3]. When the time lag ∆ is sufficiently small (which is 
equivalent to a sufficiently high frequency of sampling ), we 
have (see [1]) 

( ) ( ) ( ) fX

N
dufuufI ερ

π

π ∆
+Ψ= ∫ 1ˆloglog 223

8

3
2

   (3) 

where εf is a centred Gaussian vector. If the signal X(t) were a 
f.B.m. of Hurst index H, then the square density spectrum is 

( ) uffu HH )12()12(2 . +−+−=ρ  which implies 

( ) ( ) ( ) fHX

N
KfHfI ε

∆
+Ψ++−= 1loglog12log   (4) 
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. Therefore a linear 

regression of log(IX(f)) onto log(f) provides the slope 
( )12 +− H  and after the Hurst index H. This result remains in 

force as soon  as the density spectrum satisfy the condition 

( ) uu H )12(2 +−=ρ  with a constant Hurst index H when the 

frequency u belongs to the frequency band [2πf/3, 8πf/3]. 
When the C.O.P. follows the model of Collins & De Lucas, 
the coordinate X(t) corresponds to a m.s.f.B.m. with one 
frequency change located in ω1 (in the frequency band 
studied) with a Hurst index H0 for frequencies f < ω1 and 
with a Hurst index H1 for frequencies f > ω1. In this case, we 
have a linear regression with slope – (2H0+1) when f’=4πf/3 
< ω1/2, a linear regression with slope slope – (2H1+1) when 
f’=2πf/3> 2 ω1 and a transition zone when ω1/2 < f’< 2 ω1, 
see Fig.3.  

To avoid this transition zone, we compute the difference of 
the slope estimated by linear regression into left and right 
boxes of size Λ separated by a hole of size log (4) = log(2 ω1) 
– log(ω1/2), see [1] and Fig. 4. The value of the critical 
frequency is estimated as the first minimum of the function 
D(f). 
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Fig.3 The double logarithm plotting of the wavelets coefficients 

of the X coordinate of the COP as a function of frequency 
(computed on the same data than the variogram of Fig. 1). 
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Fig. 4 The plot of the test statistic. 

The function D(f) express the difference of the slope of  Fig. 3 
computed on two sliding boxes separates by a hole of size log(4). 

The abscissa of the minimum of D(f) corresponds to the frequency change, 
in this case log ω1 =  0.16, ω1 =1.17 Hz and ∆tc= 0.67s. 

 
 

Description of the method. 
 
i) We choose the algorithm parameters. We fix the frequency 
band [ωmin, ωmax] in which we want to detect and estimate 
frequency changes on the Hurst index. We have chosen 
ωmin=0.633 Hz and ωmax=16.62 Hz which correspond to time 
scales 1.57 s.  and 0.06 s. We fix the discretization on 
frequencies q = 41/45  and the number of frequencies in the 
left and the right box 30=Λ . Those parameters automatically 
determine the number of frequencies M, here M= 211 and the 
ratio 04.5.2 == Λqr . 

ii) We compute the logarithm of the wavelets coefficient log 
I(fk) for frequencies fk= qk. ωmin / r  for  k =1,…,M , (Fig. 3).  
iii) We compute D(fk) defined as the difference between the 
linear regression coefficients (in log/log scale) within a left 
box (for frequencies fj, with an index j in [k-22-Λ, k-23]) and 
within a right box (for frequencies fj, with an index j in 
[k+22, k+23+Λ]). The left and right boxes are separated  by 
a hole of 45 indexes which corresponds to a size log 4 = 45 
log q, this is the length of the transition zone 
iii) We determine the critical frequency ω1 as the first 
minimum of the function D(f) and after the two Hurst indexes 



H0 (resp. H1) from the slopes of the segments of Fig. 3 with 
abscissa f in [ωmin , ω1/ r ], resp. f in [r. ω1, ω max]. 

The program is written with Matlab 5.2 and uses the 
wavelets toolbox which provides the values of the Meyer 
wavelet Ψ(t) and of its Fourier transform. Fig. 3 gives an 
example and shows the frequency change at log f =0.16, that 
is f =2.38 Hz. 
 

III. RESULTS 
 

This method has been applied  our method to a set of 16 
subjects and the results are compared with the variogram 
method proposed in [10].  
 

TABLE I 

 Log freq. 
Freq. 
(Hz) 

Time (s.) Time[10]  (s.) 

Mean 0.48 1.80 0.68 0.53 

(Std) (0.47) (0.93) (0.28) (0.26) 

 
Critical frequencies vary from 1.04 Hz to 4.14 Hz 
corresponding to critical time scales from 0.24 s to 0.96 s. For 
the other hand, the method proposed in [10] leads on the same 
set of data to time scales varying from 0.02s to 1.01s. For the 
data corresponding to Fig.1, we have ∆tc = 0.85 s when [10] 
gives ∆tc = 0.67 s.  We find, as in [3] and [10] a Hurst index  
H0<0.5 for small frequencies corresponding to large time 
scales and a Hurst index H1>0.5 for large frequency or small 
time scales.   
 

IV. DISCUSSION 
 

The wavelet analysis of the COP signal leads most often 
to critical time scales between the critical time scale provided 
by [10] and the critical time scale provided by [3] and close to 
the second one. But the method in [3] is effectively visual and 
heuristic, it depends on the operator. Moreover the critical 
time scales could depend on the duration of the observation : 
we obtain different critical time scales when the duration is 
20 seconds, 40 seconds or 60 seconds, see [1], this is due to 
the existence of  at least another frequency change on the 
Hurst coefficient at large scales. The frequency localization 
of Fourier transform of the Meyer wavelet induces a 
propagation of a frequency change only on a finite band of 
frequency of size log 4 in log Hz. For this reason the wavelet 
algorithm is robust with respect to the duration of the 
observation.  Last but not least, the proposed wavelet analysis 
is based onto a mathematical model well constructed which 
protects us against numerical artifacts. 

From the biological point of view, the precise 
determination of the critical frequency is very relevant, more 
than the exact value of the Hurst index corresponding to the 
different control mechanism. The only relevant fact is that 
H0<0.5 for small frequencies H1>0.5 for large frequency. 
Precise knowledge of the critical frequency ω1 in given 
experimental conditions induces that only physiological 
phenomenon of frequency f greater than ω1  contribute to the 

task of maintaining upright position. Making varying the 
experimental condition could then give new information 
about the control of equilibrium of human been. 
 

V. CONCLUSION 
 

This algorithm is robust and allows an automatic detection 
of the critical frequency or the associated critical time scale. 
Operators subjectivity is so avoid. 

With this tool, it is then possible to describe the different 
factors effects on the postural control mechanism : vision, 
feet position, feedback, gender. Other challenging way is to 
explore the relationship between critical frequency (or critical 
time scale) and physiological phenomenon. 
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