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Principal Components of Recurrence Quantification Analysis of EMG
David T. Mewett, Karen J. Reynolds and Homer Nazeran

School of Informatics and Engineering, Flinders University, SA, Australia

Abstract—A nonlinear dynamical signal analysis technique,
recurrence quantification analysis (RQA), was applied to
surface electromyograms (EMG) recorded during a series of
isometric contractions. None of the ten RQA features calculated
adequately related the EMG to the force level so principal
components analysis was applied to combine these features into
a lower number of variables. Linear regression of the first
principal component gave similar lines for each subject.
However, the error was too great for these lines to be used in
predicting force from the principal component.

Keywords—EMG, nonlinear dynamics, recurrence
quantification analysis, principal components analysis.

I. INTRODUCTION

A. Aim

The aim of this study was to investigate the applicability
of a nonlinear dynamical analysis technique, ‘recurrence
quantification analysis’ (RQA), to the problem of examining
the electrical activity of muscles (electromyogram, EMG)
during isometric contractions. Recently [1], it was observed
that features obtained through RQA may vary with the force
produced by muscles. It has also been reported [2] that more
meaningful results may be obtained applying principal
components analysis (PCA) to a set of RQA features. To
investigate this for EMG, we recorded signals from
volunteers during muscular contractions at specific force
levels and applied a joint RQA-PCA process.

B. Nonlinear dynamics and embedding theorem

The field of nonlinear dynamics is concerned with the
way in which variables describing a system vary with respect
to each other instead of time. If the system is described by d
variables x1, x2, …, xd, then this relationship is the path
traced by the vector [x1, …, xd]. In many physical and
physiological systems however, it is only possible to measure
a single variable. For example, the EMG signal might be the
only quantity recorded from a neuromuscular system. The
dynamics of such systems can be modelled by applying the
‘embedding theorem’ [3].

The embedding theorem is based on the concept that an
observed scalar signal is a 1D projection of the dynamics of
the system which are represented in d dimensions. The
dynamics can then be reconstructed in a different vector
space with dE dimensions, using only the data in the scalar
signal. Suppose that the recorded data is a sampled and
quantised signal s(n). Then embedding vectors y(n) are
constructed from successively delayed samples of the signal:
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where T is an integer multiple of the sampling period and dE

is the chosen dimension. T is commonly chosen as the lag
corresponding to the first zero of the autocorrelation function
of s(n), although it has also been argued that the first local
minimum of the auto mutual information function is more
appropriate [4]. Little difference was found between these
two measures for the signals recorded in this study. A test for
false nearest neighbours can be used to find an appropriate
value for dE [5]. A vector yF(n) is a false nearest neighbour to
vector y(n) if yF is the closest vector to y when they are
embedded in dimension d, but much further away in
dimension d + 1. Ideally, dE should be chosen so that there
are no false nearest neighbours; in practice, < 1% false
nearest neighbours is accepted to allow for the effects of
random noise.

C. Recurrence plots and RQA

Several tools have been developed to analyse the
dynamics described by embedding vectors y(n). One such
technique is based on a graphical method called recurrence
plot analysis [6]. A recurrence plot shows the times when two
vectors y(i) and y(j) are close to each other, i.e. when y(j) is
within a distance r of y(i). If y(j) is close to y(i) then point
(i, j) is called a recurrent point and a plot of all recurrent
points is called a recurrence plot. Recurrent points form a
variety of patterns, the most important being upwards
diagonal line segments. These indicate that the dynamics
represented by a series of vectors are later repeated, hence
there is some determinism in the dynamics. An example of a
recurrence plot is shown in Fig. 1. The plot is symmetrical
about i = j because if (i, j) is a recurrent point then from the
above definition, (j, i) is also a recurrent point. Although the
way in which recurrent points are determined seems
straightforward, it is difficult to obtain much useful
information from the plot by visual inspection

Recurrence plots are most usefully described using a set of
features collectively known as recurrence quantification
analysis (RQA). These are [6, 7]:

• REC (% recurrence), the percentage of the recurrence
plot covered by recurrent points;

• DET (% determinism), the percentage of recurrent points
contained in upwards diagonal line segments;

• D/R, the ratio of DET to REC;
• Lmax, the maximum length of upwards diagonal line

segments;
• ER (entropy of recurrence), the entropy of the

distribution of lengths of upwards diagonal line
segments;

• TLR (trend of local recurrence), a measure of the change
in density of recurrent points away from the line i = j;
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• T1 (mean recurrence time of the first type), the average
time taken for a point in the embedding space to be
‘revisited’;

• T2 (mean recurrence time of the second type), the
average time taken for a point in the embedding space to
be ‘revisited’ excluding times of one unit.

In addition to Lmax, we also calculated the mean and median
lengths of upwards diagonal line segments, Lmean and Lmed.

The TLR measure can be useful when applying other signal
processing methods that demand stationarity, since stationary
signals have a TLR value close to zero.

II. EXPERIMENTAL METHODS

A. Data Acquisition

Eight healthy male subjects aged 18–36 years (mean =
24) volunteered for this study. Skinfold thickness as
measured over the right biceps brachii muscle was 2.5–6 mm
(mean 3.5 mm). Subjects were seated and instructed to flex
their right wrist against a cantilever beam with their upper
arm vertical, elbow flexed at 90° and forearm supine (palm
up). The beam was instrumented with four strain gauges in
full bridge arrangement. Surface EMG was recorded from the
right biceps brachii muscle using Noro-Trode adhesive dual
Ag-AgCl electrodes (Myotronics-Noromed, Inc.) and 63 dB,
custom-built 10–500 Hz EMG amplifiers. Prior to attaching
the electrodes, the recording site was prepared by wiping
with an isopropyl alcohol swab to dissolve skin oils, shaving
hair from the recording site and rubbing the skin 20 times
with 800-grade silicon carbide paper to thin the keratin layer
and thereby decrease the skin’s resistance. Data was recorded
digitally at 1000 samples / s  using a 12-bit data acquisition
card with input limits ± 5 V (National Instruments PC-LPM-
16PnP).

Subjects viewed the output from the strain gauge bridge
along with a target line on a computer monitor. The maximal

voluntary contraction (MVC), taken as the maximum force
achievable at the wrist, was determined by instructing the
subjects to follow an increasing target as far as possible.
EMG was then recorded while the subjects attempted to
maintain 0, 10, 30, 50 and 70% of the MVC over 7 s.
Subjects rested for 5–7 minutes between trials in order to
avoid fatigue effects.

B. Analysis

RQA was performed on an epoch of 1 s (1000 points)
selected from each recording. Embedding parameters T, dE

and the distance threshold r were different for each subject,
but the same parameters (calculated from the 70% MVC
recordings) were used for all recordings from a given subject.
T was taken as the lag corresponding to the first minimum of
the auto mutual information function, calculated as described
in [8]. dE was chosen as the lowest dimension for which the
percentage of false nearest neighbours was < 1% [4]. T was 4
samples for each subject and values for dE were 15–23 (mean
= 17). To calculate threshold r, first values corresponding to
30% of the maximum distance between embedding vectors at
each force level were calculated. r was then chosen halfway
between the maximum and minimum values.

Since the ten RQA features have different units, each was
divided by its standard deviation before applying PCA. This
‘standardised’ data was then projected onto the principal
components for further analysis.

III. RESULTS

A. Individual RQA features

Plots of the changes in RQA features vs force levels were
not encouraging. Overall, the three line lengths Lmax, Lmean

and Lmed decreased with increasing force, as did REC. The
ratio D/R increased, but there was little overall pattern
otherwise. Fig. 2 shows plots of REC, D/R and ER. REC and
D/R possibly follow power laws, but it is difficult to tell for
certain given the low number of force levels. Certainly there
is little to suggest there is a more useful relationship between
these features and force than there is between RMS
amplitude of the EMG and force.

B. RQA features combined via PCA

It was found that the total variability of the standardised
features was completely explained by four principal
components, with the first two components explaining 79–
96% (mean 86%). Generally, the three largest weights for the
first component (PC1) corresponded to REC, Lmean and Lmed;
the three largest weights for the second component (PC2)
corresponded to D/R, ER and T2 or TLR.

Fig. 3 shows the RQA features data for all subjects
projected onto PC1 and PC2 (i.e. the linear combination of
the RQA features indicated by the weights in PC1 and PC2),
along with the mean results. PC1 generally decreases with
increasing force, although not at all uniformly. PC2 generally
has a local minimum at 30% MVC, except for one subject
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Fig. 1. Recurrence plot of one second of a surface EMG signal recorded
from subject 2 at 30% MVC force level.
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with a minimum at 50% MVC. More striking is the
projection of the data onto the PC1-PC2 plane (Fig. 4) which
shows that as force increases, a U-shaped trajectory is traced
out clockwise in the plane.

Another surprising result was obtained by applying a
least-squares linear regression to the projection of data on
PC1 (Fig. 5), with the slopes of the lines for each subject
appearing similar (between –0.061 and –0.088 units/%MVC,
mean = –0.076 units/%MVC) and the lines intersecting at the
32% MVC force level where PC1 is 0.

IV. DISCUSSION AND CONCLUSION

An unfulfilled goal of EMG signal processing is to find a
definitive relationship between the EMG and force produced
by the muscle, or at least the torque about a joint since this is
easier to measure than muscular force. Such a relationship
would make it possible to determine the force or torque from
the EMG. While some of these results are interesting,
particularly the behaviour in the PC1-PC2 plane and the
closeness of the slopes of the regression lines for projections
on PC1, it is unlikely that they are particularly useful in terms
of this goal. The difference between the projected RQA data
values and the values along the lines of best fit (Fig. 5) are
too great for the lines to be used in predicting force levels.
Also, the projections on PC1 were only monotonically
decreasing for 3 out of the 8 subjects (Fig. 3). Due to the low
sampling of this curve (only five force values), it is unclear
whether or not this is due to errors for the other subjects.

The low sampling of force values also makes the task of
performing PCA an ill-posed problem, since there are more
RQA features than force levels. So differences between
projections on the components for different subjects may be
reduced if more force levels were examined. Of course, this
would require subjects to volunteer much more of their time.

Another limitation in attempting to use these results is
that this analysis was performed with static forces, over 1 s
epochs during which the EMG signal was roughly stationary
(as indicated by |TLR| < 0.008 for all signals). If the force
changes during the analysed epochs then it becomes even
more difficult to relate RQA variables or a linear
combination of them to specific force levels. But in another
study where RQA was used on EMG signals for studying
fatigue [9], the feature DET changed earlier than other
parameters after a step load increase. Whether the magnitude
of the change in DET was necessarily related to the
magnitude of the change in the load was not reported, nor
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Fig. 2. Variation of some RQA features with force (for all subjects).
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Fig. 3. RQA feature data in terms of the first two principal components
(PC1 and PC2). Dashed lines: results for individual subjects. Solid lines:
mean result.
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Fig. 4. RQA feature data projected onto the PC1-PC2 plane. Dashed lines:
results for individual subjects. Solid lines: mean result.
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were the effects of different loads. Interestingly, and in
contrast with the results shown in Fig. 2, there was little
change in REC in that study.

One problem that has so far been ignored is that only the
EMG of m. biceps brachii has been considered as
contributing to the torque about the elbow joint, when in fact
there are at least two other main elbow flexor muscles that
also contribute. It is unlikely that EMG will be successfully
related to the torque about a joint until methods are
developed that incorporate the activities of all the muscles
contributing to that torque.
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Fig. 5. Linear regression of RQA feature data projected onto PC1. The
actual values for each subject are also shown (cf. fig. 3).
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