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   Abstract -The aim of this study was to develop an automatic 
reconstruction of brach ytherapy catheters using CT data. Previously no 
such automatic facility has existed in any treatment planning software. To 
achieve this aim we have developed algorithms for the automatic 
reconstruction (which we term autoreconstruction) of plastic and metallic 
catheters. Our algorithms overcome a number of difficulties which arrise 
when a large number of catheters are present. These include situations 
with intersecting catheters and with loop techniques. 
 

   Index Terms -brachytherapy treatment planning, catheter reconstruction, 
computed tomography. 

I. INTRODUCTION 
Modern brachytherapy treatment planning is image based1-4 and 
frequently used imaging modality is CT scanning. CT based 
reconstruction accuracy depends on the CT imaging parameters such 
as the slice thickness, interslice  distance and image resolution. In 
addition, accuracy also depends on observational ability of the user.  
Image based treatment planning methods can significantly reduce the 
time required for the treatment planning process, to the use of 
projectional reconstruction methods using radiographs. Even so, a 
significant part of the treatment planning time is still spent in the 
reconstruction of catheters. From the analysis we made on 30 clinical 
implants the manual catheter reconstruction procedure took an average  
of 43.4% of the total treatment planning time: range of 22.6% to 71%. 
These times does not include those for image processing and 
contouring. The reconstruction time per catheter was an average of 
151.2 s: range of 42.9 s to 312 s. 

II. MATERIAL AND METHODS 
   A. Introduction 
The autoreconstruction process is based on post-implantation acquired 
CT images with the catheters in situ in their final positions. This 
includes the relevant patient anatomy, target volume(s), organs at risk, 
and the catheters. Catheter searching is made on a sequence of CT 
slices and is based on the Hounsfield number (HU) of the catheter 
material, catheter outer diameter, interslice distance, slice thickness 
and geometry of the catheter shape on the CT slices.  
The slice thickness and interslice thickness must be adequately 
selected in order to take into account the curvatures of the catheters 
because these are not regular small diameter cylindres. We must 
therefore avoid loss of catheter area contrast in the reconstruction 
process during the CT slice acquisition. In general 3mm slice thickness 
and a 3mm interslice distance are satisfactory especiallly in cases 
when catheters pass through CT slices almost parallel to them, or 
when they lie on only a single CT slice and the neighboring region has 
very similar or significantly different (more than 2000HU) HU 
properties to that of catheters.  

   B. Definitions 
The area on a CT image which represents a cross-section through the 
catheter volume within the slice is termed the catheter area. The terms 
catheter poin/pixel are used to describe any point/pixel which is 
automatically recognized by the algorithm or manually identified by 
user, and belongs to a given catheter area. From a catheter area one 
central point is considered to represent the catheter describing point1 
on  the CT slice. Each catheter is considered to be a geometrical entity 
that can be described by a set of arbitrary points laying on the CT 
slices, the catheter describing points1. 
   C. Hounsfield properties of the catheters 
We analysed profiles of few different types of catheters5-7 which 
derived the default HU ranges for the plastic catheters to be (-600÷-
200) and for the metallic catheters (2800÷3071), see Appendix. 

   D. User defined parameters 

Before the process of catheter autoreconstruction starts, the user must 
define some of the parameters that will be used in the search 
algorithm. These are: (a) catheter type: plastic or metallic, (b) serch 
region: on-plane (whole catheter lies in a single plane) or in-volume, 
(c) catheter tip position: forward, backward of the current slice (+ and 
– z direction in the DICOM definition8) and (d) catheter loop option. 

   E. Description of parameters 
1.In-volume case  
As input data, we have a single catheter point P(x,y,z), that the user 
defines through GUI on any CT slice for each catheter where catheter 
can be easily identified and does not intersect with another catheter. 
Firstly, the pixel region around that given point is searched until the 
last two connected pixels of the group are found with HU values 
within the selected catheter HU range. While there is any unsearched 
pixel in the tree-like process, this routine is repeated. Finally a list of 
all catheter recognized pixels on the CT-slice is built. The central point 
PC(x,y,z) of the catheter recognized area is given by the equations 
below.  

n is the total number of catheter recognized pixels and Ci.x and Ci.y 
are their x and y coordinates. ZCT is the z coordinate of the current CT 
slice where the recognition process was made. This central point is 
accepted as the first catheter describing point. 
We now find the two most distant pixels in the catheter recognized 
area. They will be assigned as P1 and P2. From the Fig. 1 we can 
establish following relationship: 

where r1 is the catheter outer diameter which depends on the type of 
catheter used, and r2 is the distance between the centers of pixels P1 
and P2. 
From Fig. 1 we see that catheter can have two possible directions. 
Distance d is given by: 

where h is the distance between the two successive slices. 
We now search for the next two catheter describing points, on the 
previous and on the next slice, based on the calculated distance d, the 
angle ϕ and direction of line l(PC,PC1), and l(PC,PC2) in the second 
case. We first find coordinates of two points PC1 and PC2. The possible 
catheter centers on the previous and on the next slices will be points 
PC11 and PC22 in the first case, or PC21 and PC12 in the second case, Fig. 
1. Points PC11 and PC12 have the same x and y coordinates as the point 
PC1, and their coordinate z is the coordinate z of the next and previous 
slice respectively. It is analogous for points PC21 and PC12. As we now 
have all possible catheter central points we need next to find which of 
these two point pairs (PC11,PC22) and (PC12,PC21) will determine the true 
catheter direction. 
We first check if the HU number of the pixel to which point P11 
belongs, lies in the selected HU range of catheter. If it does, then we 
set a distance d11 to 0mm, which means that this pixel belongs to 
catheter area. Otherwise, we search for the pixel P’11 with satisfying 
HU number in the four rings area around the pixel P11. If there is no 
pixel found d11 is set to 100mm. Otherwise, d11 is set to the distance 
between the PC11 and P’C11. In the same way we calculate distances d12, 
d21 and d22, that are distances from the points PC12,  PC21 and PC22 
respectively to the nearest pixel that belong to catheter area. Then we 
calculate: 
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  d1=d11+d22  and d2=d21+d12. 
If d1<d2, we accept the point pair (P’C11,P’C22) as recognized catheter 
points, othervise we accept (P’C12,P’C21). For example, if the pair 
(P’C11,P’C22) is accepted, and d11=100mm, this means that we will 
search for the catheter describing points only in backward direction, as 
no catheter recognized point P’C11 was found on the next slice. If 
d11=d22=200mm the algorithm stop searching because no new catheter 
point can automatically be found. In that case, the algorithm requires 
manual intervention for the determination of the next searching 
direction. 
The algorithm consists of searching backward and forward from the 
giving catheter point P in the –z and +z direction according to the 
DICOM definition8. The backward searching algorithm is given  
below.  

Input data: 
PC - center of the catheter recognized area; 
P’C12(P’C22) – recognized catheter point on the previous slice; 
Current_slice=PC slice – 1; 
Processing 
put PC in catheter describing point list; 
error_flag=false; 
Previous_point=PC; 
while(Current_slicesFirst_slice && error_flag==FALSE) 
{Find catheter area A around the P’C12 (P’C21); 
 CPC=central point of the catheter area A on a Current_slice; 
 put CPC in catheter describing point list; 
search_direction_line=extrapolated from points (Previous_point, CP C); 
 New=the nearest catheter point to the intersection of the search_direction_line 
and the previous CT slice (Current_sliice-1). A search is made in a four rings 
around the proposed pixel. 
If New is empty: error_flag=TRUE; 
else{Previous_point=CPC;  
       P’C12 (P’C21)=New; 
       Current_slice=Current_slice-1; } 
} 
 
After this the whole set of catheter describing points is available. 
In the case of metallic catheters, artifacts can occur because of theirs 
significantly higher HU characteristic then this of other tissues. This is 

overcomed by checking the reconstructed catheter points, and fix the 
possible errors by intential over-jumping of the error-segment. 
   2.Loops in the volume 
If catheter makes loops in the volume, we search it in the same way as 
previously described, except of the last step that need to be applied 
here. When the last point in the forward and backward direction is 
found, we analyse the shape of the catheter area on the CT slices of 
both the last found points in order to derive the next search direction 
from these, Fig. 2. After that we continue the process in exactly the 
same way. 

   3.On-plane case 
If the entire catheter lies in a single plane, CT slice or calculated 
oblique cut, the search is made only in two dimensions5-7. 

   F. Materials 
Our algorithms have been tested in routine clinical practice. The 
implants were selected to include a representative spectrum of 
anatomical sites as well as implant geometry and different catheter 
types and materials. The sccuracy and time analysis have been done 
for 30 different clinical implants: prostate, breast, cervix, brain, chest, 
scapula, skin, neck and glioblastoma implants, and one phantom 
implant with three looped plastic catheters. Representative CT image 
and 3D view are shown in Fig. 3 for the case of cervix tumor. 
A comparison of the accuracy and the time required was made for the 
classical manual catheter reconstruction from the CT slices, as 
implemented in Plato∗ BPS (Vs. 13.5) and for our autoreconstruction 
method. 

III. RESULTS AND DISCUSSION 
The accuracy and time analysis have been done for implants described 
in Materials.  
The catheter describing point difference analysis shows mean 
geometrical differences varying from (0.36±0.25)mm to 
(1.12±0.35)mm with a mean value over all 31 implants of 
(0.67±0.36)mm, whereas source dwell position based analysis (dwell 
positions produced at each 2.5mm starting from a given catheter tip) 
gave mean geometrical difference varying from (0.38±0.22)mm to 
(1.41±0.44)mm with a mean value of (0.87±0.36)mm. 
The reconstruction time analysis presented next shows that our 
algorithm is extremely time-efficient. In 27 of 30 clinical cases (90%) 
no manual intervention by user was needed duting the 
autoreconstruction based process. With our algorithm reconstruction 
was 25.7 times faster than the manual reconstruction (21.4 s compared 
to 547.2 s for the manual procedure). For the cases where the manual 
intervention was needed, reconstruction based on our algorithm s 8.2 
times faster than the manual one (81.7 s compared to 739.8 s for the 
manual procedure). 

IV. CONCLUSION 
Our autorecostruction algorithm significantly improves, simplifies and 
accelerates the imaging based brachytherapy treatment planning. The 
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    Fig. 1: Catheter geometry and possible catheter positions on the next slice. 
    It is analogous for the previous slice. 

(a)                                              (b) 
Fig. 3: (a) CT presentation and (b) 3D view of 8 plastic  catheters in  the case 
of cervix tumor. 
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Fig. 2: Search of the next catheter point in the case 
when catheter makes a loop in-volume. 



time needed for catheter reconstruction decreases to only the time that 
the user spends defining the input parameters through the GUI. The 
entire process is fully controled by user, who can brachytherapy 
treatment planning procedure. Therefore accept or reject the 
reconstructed catheters. The success rate of our method in the cases 
tested was found to be as high as 90%. This improves the safety and  
reliability of the catheter reconstruction process. This innovative 
algorithm can revolutionize brachytherapy treatment planning in the 
21st century. 

V. APPENDIX 

   F. Hounsfield number properties of the catheters 
The HU profile of the catheters on CT slice depends on the HU 
properties of the neighboring tissues or materials, on the slice 
thickness and on the angle at which the catheter enters the CT slice. 
This is because the CT images are smoothed during the reconstruction 
process of the CT slice acquisition. 
We have analyzed the HU profiles of the flexible plastic catheters5-7 
which have an outer diameter of 2.0 mm, wall thickness of 0.25 mm 
and effective wall density of 1.019 g/cm3. We have also analyzed 
profiles of brain implant flexible needles with an outer diameter of 2.0 
mm, wall thickness of 0.3 mm and effective wall density of 1.42 
g/cm3. Finally, we analyzed profiles for stainless steel trocar point 
needles with an outer diameter of 1.9 mm, wall thickness of 0.2 mm 

and wall density 8.02 g/cm3 . Some of our results for a plastic flexible 
brain needle are given in Fig. 4. All have been obtained using a 
Somatom Plus 4 CT scanner♦.  
The HU profile observed for catheters depend on slice thickness, HU 
properties of the surrounding material and angle ϕ between the 
catheter central axis at the catheter entrance position to the CT slice 
and the vertical axis through the CT slice. When the catheter is not 

orthogonal to the CT slice (ϕ 0≠ ) the catheter area on the CT slice 
has an ellipsoid shape and its HU profile along the ellipse’s major axis 
is shown in Fig. 4 for  ϕ=70o. The default HU values we use are in the 
following ranges, [-600, -200] HU for typical plastic catheter material 
and [2800, 3071] HU for typical metallic catheter material. 
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Fig. 4. Representative CT slices (a),(c) and HU profiles (b),(d), 
for a plastic flexible brain needle on the slices of 1 mm, 3 mm, 
5 mm and 10 mm thicknesses in air and water, respectively. 
The angle ϕ is defined as the angle between the catheter axis 
and the orthogonal on the CT plane. For ϕ=70° the profiles are 
calculated along the ellipse’s major axis of the catheter area.
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