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Removing Power Line Noise From Recorded EMG
David T. Mewett, Homer Nazeran and Karen J. Reynolds

School of Informatics and Engineering, Flinders University, SA, Australia

Abstract—Three methods for offline removal of power line
interference (hum) from electromyograms (EMGs) were
compared using both simulated and recorded EMG signals. The
first method was a simple recursive digital notch filter. In the
second method (Regression-Subtraction), the amplitude and
phase of the interference were estimated by regressing sine and
cosine functions onto a ‘quiet period’ before the start of the
muscular contraction. A sinusoid with this frequency,
magnitude and phase was then subtracted from the entire length
of the signal. In the third method (Spectrum Interpolation), it
was assumed that the magnitude of the original component of
the signal at the frequency of the interference can be
approximated by interpolating between the adjacent frequency
bins in the power spectrum. While Regression-Subtraction was
found to give the highest SNR for the output signal under ideal
conditions, Spectrum Interpolation was found to be comparable
if the phase of the interference was not constant and superior if
the interference contained strong harmonic components.

Keywords—EMG, signal processing, digital filtering.

I. INTRODUCTION

It is difficult to obtain high-quality electrical signals from
biological sources because the signals typically have low
amplitude (in the range of mV) and are easily corrupted by
capacitively or inductively coupled electrical noise. The most
important source of such noise is power line hum (50/60 Hz)
and its harmonics.

The EMG (electromyogram, electrical activity of muscles)
is becoming increasingly important in biomechanical or
physical therapy applications, and is recorded either from
‘surface’ electrodes on the skin above the muscle of interest,
or ‘intramuscular’ electrodes inserted into the muscle.
Surface EMG can only be recorded only for larger superficial
muscles but is more convenient than intramuscular EMG.
However, it also suffers from greater interference. This can
be reduced by careful skin preparation to ensure good
electrical contact with the electrodes and differential
amplification with common-mode rejection ratio > 100 dB
[1], but the interference may still be present in the recorded
signal. Removing hum from surface EMG is difficult because
the signal lacks a distinctive waveform and its bandwidth
includes components at power line frequencies.

II. SIGNAL PROCESSING

A. Notch Filter

The simplest method of removing narrow bandwidth
interference from a recorded signal is to use a linear,
recursive digital notch filter:
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where ω0 is the angular frequency corresponding to the
central frequency of the interference and the width of the
notch at –3 dB is 2(1 – r) radians, r < 1 for a stable filter.
Hence the Q-factor of the filter is:
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Obviously the filter cannot discriminate between hum and the
component of the EMG signal at that frequency, so the filter
distorts the signal.

B. Regression-Subtraction

The Regression-Subtraction method (time-correlated
power line noise subtraction) [2] assumes that the power line
interference is a superimposed sinusoid with constant
amplitude and phase throughout the recording. This limits the
method to experiments where there is no movement,
otherwise the phase of the interference will vary as the
electrodes move relative to the noise source. The amplitude
and phase of the interference are estimated from a ‘silent
period’ of little or no muscle activity, which may be at the
beginning or end of the recording.

Unit amplitude, quadrature sinusoids are generated at the
power line frequency ω0:
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These are then regressed onto the ‘silent period’ Y(n):

)()()(
)()()(

22

11

nendXcnY
nenbXanY

++=
++= (4)

where a, b, c and d are regression coefficients and e1 and e2

are error terms. The estimated power line interference is then
subtracted from the entire record:
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Provided that the assumption about the interference is
correct, this final step removes the hum without affecting the
signal.

C. Spectrum Interpolation

Suppose that the ‘true’ power spectrum of the corrupted
EMG signal is a continuous curve with a superimposed peak
at the power line frequency ω0. Then the magnitude of the
‘true’ frequency component of the EMG at ω0 can be
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estimated by interpolating this curve. Based on this concept,
we propose the following procedure for removing power line
interference from EMG:

1. Using an m-point Hanning (or other) window and
discrete Fourier transform, calculate the averaged m-
point spectrum S(ω) of the EMG, ω ∈ (–π, π).

2. Estimate the corrected value S′(ω0) by interpolating
between S(ω0 – dω) and S(ω0 + dω) where dω is
frequency resolution.

3. In the Fourier transform of the entire EMG signal,
replace the magnitude at ±ω0 with S′(ω0). The phase
remains unchanged.

4. Finally, take the inverse Fourier transform of this
‘corrected’ spectrum to give the EMG signal with
reduced interference.

III. EXPERIMENTAL METHODS

A. Simulated Data

Simulated EMG signals were used to allow a controlled
signal-to-noise ratio (SNR). Each signal x(n) consisted of two
sections: a ‘quiet’ section representing no muscle activity,
and an ‘active’ section representing muscle activity. The
quiet section was a sequence of 1000 zeros and the active
section was 4000 samples of EMG simulated assuming a
sampling frequency of 1 kHz. A 5000-point Gaussian white
noise sequence with variance of 5 × 10-3 was then added to
each signal to represent thermal noise in amplifiers.

The model used was a modification of the autoregressive-
moving average (ARMA) model used by Karlsson & Yu [3].
Zero-mean, unit-variance Gaussian white noise sequences
were passed through a filter with the magnitude of its
frequency response specified by:
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where fL and fH are low and high frequencies (respectively)
controlling the shape of the curve and k is chosen so that the
maximum value of |H(f)| is unity. A least-squares fitting
algorithm [4] was used to generate ARMA(20,20) models
from |H(f)|. Both stationary and non-stationary signals were
generated as follows.

1) Stationary EMG Signals: The active sections of the
signals were generated using 100 different models, obtained
by changing the settings for fL and fH. For each model, fL was
between 15–30 Hz and fH was between 120–160 Hz. Each
model was driven by a different white noise sequence.

2) Non-Stationary EMG Signals: The active sections of the
signals were generated using a single time-varying model,
which was driven by 100 different white noise sequences.
The model parameters (fL, fH) were decreased from (30, 160)
Hz to (15, 120) Hz in 100 uniform steps.

3) Power Line Interference: The power line hum p(n) was
a simulated 50 Hz sinusoid with an initial phase of 45°. To
simulate a phase shift due to movement, the phase of p(n)
was increased to 60°, 75° and 90° over 0.2 s (200 samples),
starting at 2 s, 3 s and 4 s. Input signals x(n) + A.p(n) were
then generated at SNRs between 0 and 40 dB. The SNR of
this input signal (SNRin) was varied by changing the
amplitude A of the interference while the amplitude of x(n)
remained constant:
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where xσ is the RMS amplitude of the ‘active’ part of x(n).

These inputs were processed to give outputs y(n) using
Q = 50 and Q = 25 notch filters, the Regression-Subtraction
method, and the Spectrum Interpolation method. For
Spectrum Interpolation, the length of the Hanning window
used was between 128 and 2048 points and the overlap
between successive windows was varied between 0 and 50%.

To calculate the output SNR (SNRout), only the ‘active’
part of the signal was used so that the startup transients of the
notch filters would have no effect. SNRout was calculated
from the variances σ2 of the noise-free input x(n) and an error
signal e(n) (the difference between the output and x):
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B. Real Data

The spectrum of a particularly noisy EMG signal is shown
in Fig. 2. This signal was recorded from the right
brachioradialis muscle using Noro-Trode adhesive dual Ag-
AgCl surface electrodes (Myotronics-Noromed, Inc.) and
custom-built 10–500 Hz EMG amplifiers. Skin preparation
prior to attaching electrodes included wiping with an
isopropyl alcohol swab to dissolve skin oils, shaving hair
from the recording site and rubbing the skin 20 times with
800-grade silicon carbide paper to thin the keratin layer and
thereby decrease the skin’s resistance. Data was recorded
digitally at 2000 samples / s  using a 12-bit data acquisition
card with input limits ± 5 V (National Instruments PC-LPM-
16PnP). Despite this skin preparation, the electrical contact
apparently was not good (inter-electrode resistance was
16 kΩ) and the signal contains not only 50 Hz hum but also
odd harmonics (150 Hz, 250 Hz etc.). The Regression-
Subtraction and Spectrum Interpolation methods were
applied repeatedly, once for each power line harmonic
frequency, and the Q = 50 notch filter was modified to give a
comb filter with notches at these frequencies. The EMG
signal was presumed stationary during the segment analysed
here (1 s of data at constant force, 5 s into the recording), but
the subject was asked to keep the muscle relaxed for the first
1 s of recording so that the Regression-Subtraction method
could be applied.
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Fig. 1. Mean output SNR vs input SNR for the simulations where the 50 Hz interference contained a 30° phase change over 0.2 s, starting at
t = 3 s. � Q = 50 notch filter, � Q = 25 notch filter, ◊ Regression-Subtraction, ∇ Spectrum Interpolation with w = 128, ∆ Spectrum
Interpolation with w = 2048.
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Fig. 2. Raw: Power spectrum of 1 s of a recorded EMG signal, showing high levels of power line interference. Comb: Spectrum after
processing with a linear comb filter (1 Hz-wide notches). R-S: Spectrum after processing with Regression-Subtraction method. SI: Spectrum
after processing with Spectrum Interpolation method, using a 1024-point Hanning window. All spectra calculated via Welch’s averaged
modified periodogram method using a 1000-point Hanning window with 50% overlap.
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TABLE 1
SNRout (dB) for stationary simulated EMG, no phase change in 50 Hz
interference, mean and standard deviation (σ) calculated over 100
simulations. Spectrum Interpolation results varied slightly with SNRin

and window length (σ ≈ 0.5 dB); values marked * are mean values of the
means and standard deviations.

Method SNRout

Mean σ
Notch filter (Q = 50) 19.2 1.9 
Notch filter (Q = 25) 16.0 1.6 
Regression-Subtraction 44.7 5.4 
Spectrum Interpolation 29.3* 5.4*

IV. RESULTS

A. Simulated Data

If the interference had constant phase, SNRout was
independent of SNRin as shown in table 1. The general
characteristics of results for stationary EMG simulations
when the phase of the interference changed are shown in Fig.
1. Other results not shown in this figure are as follows.
Changing the size of the window used in Spectrum
Interpolation made little difference to the results, and
changing the overlap between windows made no difference.
The time at which the phase change occurred had the greatest
effect on the Regression-Subtraction results, with SNRout

being lower for earlier phase changes. But the magnitude of
the phase change had a greater effect on all methods, with
larger changes giving a lower SNRout. For a constant-phase
interference, the mean results of the non-stationary EMG
signals were within 1 dB of the mean results of the stationary
signals.

B. Real Data

Based on the results from the simulated data, it was
expected that Regression-Subtraction would give the greatest
improvement in the quality of the EMG signal. As shown in
Fig. 2 however, Regression-Subtraction reduced the power in
the power-line hum interference fundamental but not the
harmonics. The comb filter further reduced the power in the
fundamental as well as the harmonics, but altered the shape
of the EMG spectrum. Spectrum Interpolation resulted in the
most improved spectrum, with the peaks from the power line
interference removed but no visible changes to the rest of the
spectrum.

V. DISCUSSION AND CONCLUSION

Previously, we have presented comparisons between notch
filters, Regression-Subtraction and Spectrum Interpolation
using a less satisfactory model to simulate EMG signals [5].
The model presented here gives a spectral characteristic
closer to those we have observed in practice. Based on
simulated data only, it is still difficult to specify a single
‘best’ processing method for removing power line

interference; Fig. 1 and table 1 indicate that different methods
may be better under different conditions. Overall,
Regression-Subtraction seemed the most promising but
cannot be applied in all situations and didn’t work very well
with experimental data. The subject did not move during the
recording of this signal, so the conditions for using
Regression-Subtraction were seemingly satisfied. Errors
could have been introduced if the power line hum was not
exactly 50 Hz or if the sampling rate was not exactly 2000
Hz, but neither of these problems were indicated; a 13000-
point DFT on the entire signal showed the peak interference
to be at 50 Hz with little leakage into the adjoining frequency
bins. A more likely cause is that compared to a pure sinusoid,
Regression-Subtraction seems not to reduce the fundamental
frequency as well if there are also harmonics.

For higher SNRin, the SNR is degraded by notch filters
(Fig. 1) because their nonlinear phase response and reduction
of bona fide signal frequencies actually introduce distortion
into the signal. This effect was also evident in the spectral
alteration caused by the comb filter (Fig. 2).

Spectrum Interpolation is not an ideal method: it does not
distinguish between periodic interference and the aperiodic
signal of interest. It might be described as a nonlinear notch
filter, where the interference is attenuated rather than
removed as such. But because it is effectively zero-phase,
there is not the phase distortion associated with linear
recursive notch filters. Of course it should be possible to
avoid having to use any DSP methods to reduce power line
hum if the EMG amplifier and subject connections are good
enough, but in the event that the recording is affected by this
interference, Spectrum Interpolation is a promising method of
suppressing it.
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