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Abstract-When dealing with seizure detection/prediction 
problems, there are three main performance metrics that must 
be optimized:  false positive rate, false negative rate, detection 
delay or, if the problem is seizure prediction, it is desirable to 
obtain the greatest prediction time achievable. Tuning specific 
extracted features to individual patients can lead to improved 
results. The processing window length is also an important 
parameter whose optimization may significantly affect 
performance. In this study we propose an approach for selecting 
the window length for the particular detection/prediction 
problem. This approach is applicable to other feature 
parameters suitable for tuning or optimization. 

 
I. INTRODUCTION 

 
Even though there are differences between seizure 

detection and prediction, there are also some similarities in 
the methodology used to approach each one as well as some 
common issues, such as feature extraction and two-state 
classification.  While the two classes in seizure detection are 
seizure onset and non-seizure onset, in seizure prediction the 
two classes are preseizure (preictal) and non-preseizure (not 
preictal).  

Some of the first attempts to detect seizures were 
accomplished during the seventies by Prior et al. [1] and Ives 
et al. [2].  These investigators intended to identify tonic-
clonic and other conspicuous seizures, respectively.  Both 
aimed to detect the seizures at any time during their 
evolution; without regard to detection delay.  In addition, no 
attempt was made to tune prediction parameters to individual 
patients.  In a similar fashion, Murro et al. [3] and Harding 
[4] performed similar work, but generalized to all patients. In 
the late nineties Qu and Gotman [5] proposed a seizure-onset 
detector introducing the idea of tuning quantitative features 
to individual subjects.   

In this study a methodology for tuning the window length 
or any other feature parameter is proposed, and analyzed for 
the particular problem of seizure onset detection. Section II 
describes the problem and general background, Section III 
explains an optimization methodology, and presents the 
results, and Section IV provides the discussion and 
conclusions of this study.  
 

II. GENERAL BACKGROUND 
 

For most detection/prediction problems, the 
running/sliding window method is the technique used to 
extract features from continuous data. Feature extraction is 

performed through a running window, as sketched in Figure 
1.  The shaded area is the sliding observation window, which 
moves through the data as features are computed.  The data 
points inside this sliding window are used for the feature 
generation as the window moves through the data.   
 

 
 

Figure 1: Running window technique 

 
Therefore, this observation window is continually 

collapsed into a feature vector by means of formulas and 
algorithms that take preprocessed EEG epochs as inputs and 
produce scalar quantities as outputs, which then become the 
components of the feature vector. Two levels of features can 
be defined: instantaneous features and historical features, 
which are sketched in Figure 2. 

 

observation window

history of raw EEG collapsed into
instantaneous feature vector

history of feature vector summarized
in another feature vector

history window

 
 

Figure 2: Types of Features 
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   Instantaneous features are computed directly from the 
original signal (IEEG data) through a running observation 
window.  Historical features are “features of features” that 
require a second, third or higher level of feature extraction, 
which entails the evolution of the history of features through 
time. Over a large set of instantaneous and historical features 
extracted (candidate features), feature parameter optimization 
takes place.   

  Several factors are taken into account when determining 
the window length to be used in the analysis.  Among them, 
data stationarity, data length required to compute the 
features, sampling frequency, maximizing the 
distinguishability between epochs containing seizures and 
those that do not and between epochs that are preictal and 
those that are not preictal, if seizure prediction is the 
problem, and minimizing detection delay.  A compromise has 
to be achieved between the requirement that a data window 
be sufficiently long to compute specific IEEG (intracranial 
EEG) features and that it be short enough to assume data 
stationarity. An IEEG segment of tens of seconds can be 
considered quasi-stationary, depending on the patient's 
behavioral state [6]-[7].  
 

III. WINDOW OPTIMIZATION METHODOLOGY AND 
RESULTS 

 
   An original methodology for selecting processing window 
size is proposed in this study. This methodology arises as an 
answer to the issues of how to effectively select the window 
size to compute specific features, and how to create the 
feature vector when the features extracted require data sets of  
different lengths.  These questions emerged during the 
development of the feature extraction stage of a broader 
problem of seizure onset detection and prediction [8]-[9]. 
This optimization methodology can be accomplished in two 
ways. In one case, when the classifier to be used in the 
detection/prediction system is known a priori, the objective 
function used in the optimization can be any combination of 
false positives (FPs), false negatives (FNs), and detection 
delays or prediction times obtained after the classifier output. 
In the other case, when the classifier has not been determined 
yet, an objective function aimed at maximizing the class 
separability is used. In this study, the second optimization 
option was ultilized, therefore, the goal of the optimization 
was to maximize the distinguishability between the seizure-
onset and no seizure-onset classes, or preictal and no-preictal 
classes for the prediction case. The scheme of Fig. 3 
summarizes the procedure.  In this scheme, each of the 
selected features is computed for different sliding window 
sizes.   
   Specifically, in the present analysis 90 different window 
sizes were selected within the range of 50 points (0.25 
seconds) to 9000 points (45 seconds).  This window range 
was selected to include the maximum window size to satisfy 
quasi-stationarity of the data segments [7] [11] and the 
minimum window size required to compute the feature [6].  
All these windows were shifted 90 points (0.45 seconds) 

along the IEEG sequence, while the running window method 
described earlier was used to generate the features.  These 
90-point shifts fix the maximum delay in the onset detection  
(d in Figure 5) to 0.45 seconds, assuming features capable of 
detecting the seizure onset as soon as one sample of the ictal 
IEEG is within the sliding window.  There is also a trade-off 
between this maximum detection delay for features capable 
of detecting the onset as soon as one ictal sample goes into 
the sliding window, and storage capacity of the system. The 
shorter this detection delay or the smaller the window 
shifting, the greater the memory space required.   

• 1- Determine window
range

• 2- Compute feature for the
m different window sizes

• 3- Find window length
for maximum k-factor

• 4- Align windows with
respect to the longest one

• 5- Repeat steps 2 and 3
for all selected features

- Stationarity criteria
- Minimum length required to
  compute the feature under analysis

For each window the starting point
on the original data is given by:
Nm  - N +1,     where:
Nm  = number of points of the longest
          window
N = number of points of the window
       being used

 

 

Figure 3: Window Size Selection for Maximum 
Distinguishability between Classes 

 
After each feature is computed for different windows, the 

k-factor given in (1) is computed as a measure of 
effectiveness of each feature.   
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where 
K is the k-factor (measure of effectiveness of the feature), 

iµ   is the mean of feature for class i, 

2
iσ   is the variance of feature for class i. 

 
For each seizure record, the window size corresponding to 

the maximum k-factor was chosen to preceed the analysis.  
Then, a visual verification followed to confirm that the 
window lengths that maximize the k-factor in each record 
clustered around some value. This mean value was chosen as 
the window length for the feature under consideration.  
Figure 4 illustrates the variation of the k-factor for the fractal 



dimension feature, as the window size is changed for four 
different seizure records. Note the so-called "optimal" 
window length within approximately 1000 and 1500 points. 
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Figure 4: K-Factor from the Fractal Dimension for Different 

Window Sizes 
 

Typically, the window sizes that maximized the k-factor 
were different for each feature. Therefore, a strategy was 
required to allow the creation of feature vectors from features 
extracted with different sliding window sizes, which implies 
that the features do not coincide in time and have different 
time spans between consecutive values.  To have a perfect 
time alignment and identical time span across features, two 
conditions must be satisfied.  The first condition guarantees 
the same time span for consecutive values on all the features.  
This was achieved by making the observation window 
displacement equal for all the window sizes on all the 
features.  The second condition requires the alignment of all 
the observation windows with respect to the right border of 
the longest window, as shown in Figure 5.  The effect of 
applying equal displacement of the observation window even 
for features with different window sizes is that the number of 
overlapping points on each observation window will change 
from feature to feature, while the shifting points remain 
constant.  

 time
   n0 n1 n2

   d

Original data
in these regions
are excluded

Longest sliding observation window

 
Figure 5: Time Alignment and Time Span for Different 

Window Sizes 

 
Using this approach, historical and instantaneous features 

can be combined by extracting historical features from the 
instantaneous feature utilizing a shift of one-feature-sample 
for the observation window and a time alignment of the 
historical features.  Intuitively, this type of approach could 
outperform those that rely only on instantaneous features.   

The window length of the best three features of 6 patients 
were selected following the procedure described.  The results 
for the other features always presented a global maximum 
like in the feature on Fig. 4, and the window lengths ranged 
from 700 points for the to 6000 points for the in patient . 

 

IV. DISCUSSION AND CONCLUSION 
 

A data driven methodology for window length selection 
and/or feature parameter selection in detection/prediction 
classification problems has been proposed and studied. The 
results obtained showed that in all features and patients 
studied there exists a global maximum for the k-factor 
corresponding to an “optimal” window length that maximizes 
class separability.  Class separability was determined as a 
measure proportional to the distance between the mean of 
each class and inversely proportional to the average variance 
of both classes (k-factor), however any other class 
separability measure or objective function that suits the 
particular problem goals can be used. The methodology 
applied to the specific problem of seizure-onset detection can 
be used as well for seizure prediction problems, and/or for 
any other detection/prediction problem.  In addition, this 
methodology can be extended to “optimize” other feature 
parameters related to each particular feature, such as a scale 
factor, the type of window used (Hanning, Hamming, Barlett, 
rectangular, etc.), etc. 

Further research is required to study this methodology in 
the case when the classifier is used as part of the feature 
parameter evaluation and the objective function is computed 
directly from the classifier output, rather than from the 
feature values directly. It is also important, to analyze the 
behavior of the method with other objective functions and 
when dealing with other feature parameters. 
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