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Abstract- In this paper we describe a waveform recognition

method that extracts characteristic parameters from wave-

forms and a method of automated sleep stage scoring using

decision tree learning that is in practice regarded as one

of the most successful machine learning methods. In our

method, �rst characteristics of EEG, EOG and EMG are

compared with characteristic features of alpha waves, delta

waves, sleep spindles, K-complexes and REMs. Then, sev-

eral parameters that are necessary for sleep stage scoring

are extracted. We transform these extracted parameters

into a few discrete variables using canonical discriminant

analysis and the discretization method based on a random

walk, and then a committee that consists of several small

decision trees is formed from a small number of training

instances. Furthermore �nal sleep stages are decided by

a majority decision of the committee. Our method was

applied to the digitized PSG chart data, provided by the

Japan Society of Sleep Research and we carried out an

evaluation experiment. The experiment indicated that our

method can quickly execute learning and classi�cation and

precisely score sleep stages.

Keywords- EEG, sleep stages, waveform recognition, deci-

sion tree learning

I. INTRODUCTION

In general, characteristics of a waveform can be ex-
pressed quantitatively by using methods such as FFT,
wavelet transform, digital �lters, which extract signals
of speci�c frequencies, and averaging, so as to eliminate
noises. As a rule, a bio-signal changes in a complicated
manner and does not necessarily correspond to changes
in a living organism. Hence, it has been diÆcult to
obtain useful information on the interpretation of bio-
signals with these quantitative methods alone. For this
reason, various waveform recognition methods have been
proposed with computer processing replacing visual in-
spection by specialists. Furthermore many studies have
been carried out on automated sleep stage scoring based
on quanti�ed features of bio-signals. In fact, some meth-
ods have been proposed [1] [2] [3] [4] that exceed the agree-
ment percentage among specialists (approximately 70%).

In this paper, we propose a new method of waveform
recognition and an automated sleep stage scoring by de-
cision tree learning.

II. EXTRACTION OF CHARACTERISTIC
PARAMETERS

To achieve an automatic inspection of polysomnogram
(PSG) based on R&K rules, it is necessary to detect char-
acteristic waves from EEG, EOG and EMG at every epoch
(a time unit for sleep stage scoring, usually 20 or 30 sec).

A. Waveform Recognition of EEG

In our method the waveform recognition of character-
istic waves (alpha waves, delta waves, sleep spindles and
K-complexes) is carried out based on directions, peaks,
bottoms, and durations of waves which appear on EEG.

In the waveform recognition, 150 sample data points
at the beginning of the epoch are collected and the av-
erage is calculated to determine a baseline. Next, prior
to peak detection, a positive detection level and a setting
level are predetermined for each characteristic wave. The
positive detection level is assigned above the baseline. A
point is a peak if it is the maximum value in a control
interval (Fig.1). The control interval is de�ned as the in-
terval from where the waveform �rst crosses the positive
detection level to where it is smaller by the amount of the
setting level from the maximum value. Similarly, a bot-
tom (negative peak) is detected. At every control interval,
a peak and a bottom are alternately detected.

Next, the period of \the wave" as indicated by the time
interval between two adjacent bottoms and the average
amplitudes from the bottom to the peak in the �rst half
of the wave and the second half of the wave are calculated
(Fig.2). We then determine whether the two quantities
are inside of the region of frequency and amplitude based
on the properties of characteristic waves. If both the fre-
quency and the amplitude are inside of the region, the
wave is recognized as a characteristic wave. Otherwise
the wave is ignored.

From the duration and the total appearance time of
the wave detected by the method described above, the
characteristic parameters of EEG are obtained.

control

interval

positive detection level

setting level

peak

baseline

Fig. 1. Detection of EEG peak.

1 of 4

 

0-7803-7211-5/01$10.00©2001 IEEE 

 
Proceedings – 23rd Annual Conference – IEEE/EMBS Oct.25-28,  2001,  Istanbul,  TURKEY 

 



Report Documentation Page

Report Date 
25 Oct 2001

Report Type 
N/A

Dates Covered (from... to) 
- 

Title and Subtitle 
Automated Sleep Stage Scoring by Decision Tree Learning

Contract Number 

Grant Number 

Program Element Number 

Author(s) Project Number 

Task Number 

Work Unit Number 

Performing Organization Name(s) and Address(es) 
Yamanashi University Faculty of Engineering 4-3-11 Takeda,
Kofu, Yamanashi, Japan

Performing Organization Report Number 

Sponsoring/Monitoring Agency Name(s) and Address(es) 
US Army Research, Development & Standardization Group
(UK) PSC 802 Box 15 FPO AE 09499-1500

Sponsor/Monitor’s Acronym(s) 

Sponsor/Monitor’s Report Number(s) 

Distribution/Availability Statement 
Approved for public release, distribution unlimited

Supplementary Notes 
Papers from 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Oct
25-28, 2001, held in Istanbul, Turkey. See also ADM001351 for entire conference on cd-rom

Abstract 

Subject Terms 

Report Classification 
unclassified

Classification of this page 
unclassified

Classification of Abstract 
unclassified 

Limitation of Abstract 
UU

Number of Pages 
4



amplitude of

the second half wave

amplitude of

the first half wave average amplitude

period of

the second half wave

period of

the first half wave period

Fig. 2. The quanti�ed features of EEG.

B. Detection of REMs

Two EOG signals that are induced by electrodes at-
tached outside of the eyes during REM sleep are observed
as two rectangular waves with counter-phases. Our detec-
tion algorithm of REMs works as follows:

1. The onset level and the o�set level of REMs are de-
termined from the onset angle (40Æ) and the o�set
angle (28Æ), respectively. And a pointer is set at the
beginning of the epoch.

2. To detect the onset of REMs, the indicator is calcu-
lated at the location indicated by the pointer.

3. If the indicator exceeds the onset level, the location
is chosen as the onset of REMs and the pointer is
moved 12 points ahead. Otherwise the pointer is
moved 1 point ahead and the operation returns to
step 2.

4. To detect the o�set of REMs, the indicator is calcu-
lated at the location indicated by the pointer.

5. If the indicator is less than the o�set level, the loca-
tion is chosen as the o�set of REMs and the pointer
is moved 12 points ahead, and then returns to step
2. Otherwise the pointer is moved 1 point ahead and
the operation returns to step 4.

The algorithm employs the product of two di�erences
as the indicator. One is the di�erence in the amplitudes
between the data indicated by the pointer and the data 6
points ahead. Another is the di�erence between the data
6 points ahead and 12 points ahead.
When the left-eye wave is recognized as the inverse of

the right-eye wave, we employ the number of such loca-
tions as one of characteristic parameters.

C. Detection of EMG

EMG shows an extremely large amount of electric dis-
charge on the occasion of stage wake (SW) or movement
time (MT). As a sleep deepens from stage 1 (S1) to stage 4
(S4), EMG goes lower in amplitude, but continues to dis-
charge and completely disappears at stage REM (SREM).
For sleep stage scoring, it is necessary to examine the
amount of electric discharge.
In this study, a total electric discharge of EMG in the

epoch, namely the integrated values of the absolute values

of EMG amplitude is normalized by the electric discharge
of the setting REM level (5 mV�the number of sampling
data in 1 epoch). We employ it as one of characteristic
parameters.

III. DECISION TREE LEARNING
In order to make a highly accurate automated sleep

stage scoring, we use decision tree learning.
The training data in decision tree leaning consists of

the explanatory attributes and a target attribute. The
learning algorithm generates the tree to classify instances
according to the target attribute values (classes).
The points to take into consideration in decision tree

learning are as follows:

1. Attribute selection: For e�ective classi�cation, the
appropriate explanatory attributes must be selected.

2. Pruning: To prevent the over-�tting for the training
data, the decision tree must be pruned.

3. Discretization of continuous attributes: For e�ective
classi�cation, some continuous valued explanatory
attributes must be discretized.

In our study we employed C4.5 [5] for attribute selec-
tion and pruning. For sleep stage scoring, it is necessary
to discretize a large amount of continuous attribute data.
Our discretization method RWS [6] is suitable for this pur-
pose and is used in this system. Furthermore, canonical
discriminant analysis [7] and committee learning by bag-
ging [8] are employed in order to make a compact decision
tree.
Fig.3 shows the processing 
ow of decision tree learning

for automated sleep stage scoring.
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Fig. 3. Flowchart of processing of decision tree learning
and automated sleep stage scoring.
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Table 1. The values of characteristic parameters extracted from the digitized PSG chart data.

SW 35.24 12.38 0.00 0.00 8.21 6.69 0.00 0.00 0.53 0.58 12.81 8.82

SREM 11.28 9.76 0.05 0.79 1.14 1.96 0.00 0.00 0.65 0.68 1.18 0.95

S1 6.18 7.05 0.19 1.35 1.10 1.99 0.01 0.07 0.00 0.00 4.76 4.25

S2 6.01 5.63 4.37 4.43 6.79 4.34 0.02 0.13 0.00 0.03 2.34 1.86

S3 1.76 2.41 34.64 8.39 1.71 1.27 0.11 0.33 0.05 0.21 2.22 2.14

S4 0.74 1.43 42.51 8.34 0.83 1.10 0.15 0.38 0.08 0.28 1.70 0.29

MT 1.11 4.59 0.40 1.99 0.11 0.53 0.20 0.41 0.00 0.00 19.04 8.55

appearance ratio

of alpha waves

appearance ratio

of delta waves

The values on the left are the average values, and the values on the right are the standard deviations.

numbers of

REMs

normalized

integrated EMG

appearance ratio

of sleep spindles

total numbers

of K-complexes

para-
sleep
stages

meters

IV. EVALUATION EXPERIMENT

A. Experimental Method

In the evaluation experiment, we used the digitized
PSG chart data (the PSG digital data) provided by the
Japan Society of Sleep Research (JSSR). In the data, an
all-night sleep PSG of 8 hours (288000 seconds) by a 28-
year old normal male was recorded in digital form with
a 500 Hz sampling rate and 16-bit quanti�ed rate. The
sleep stages of 1440 epochs (20 sec/epoch) are provided as
the classi�cation results of specialists' visual inspection.
The sleep stages were scored by consultation with JSSR
computer committee members.
To test the e�ectiveness of our waveform recognition

based method and the decision tree learning, we used 5
kinds of digital bio-signals { 2 channels of EEG (C3, O1),
2 channels of EOG (right eye, left eye), 1 channel of EMG
(mentalis muscle) { and compared the classi�cation re-
sults using our method to the results obtained by JSSR.
First, the PSG digital data was split into 1440 epochs,

20 sec for 1 epoch. Our waveform recognition was applied
to 5 kinds of bio-signals at each epoch, and 6 kinds of
characteristic parameters needed for sleep stage scoring
were extracted.
Next, the cross-validation was carried out on the data

set with 1440 instances which include these 6 kinds of pa-
rameters as explanatory attributes and the scoring results
by JSSR as a target attribute. In the cross-validation, the
data set was randomly divided into �ve subsets with equal
numbers of instances. Then one subset was used as test
data and the others as training data. The decision tree
learning and the automated sleep stage scoring were ap-
plied to all subsets 5 times. The classi�cation accuracy of
our method is de�ned as the average percentage of cor-
rect answers over 5-time executions. The learning time
and the classi�cation time of our method are de�ned as
the average times for the decision tree learning and for
automatic sleep stage scoring respectively.
In this experiment, for pruning, the con�dence level

of the binomial distribution was set to 25%. For RWS,
the signi�cance level was set to 5%. For the committee
learning, the sampling ratio of the bootstrap method was
set to 70% and the number of member classi�ers was set
to 7.

B. Results of Experiment

Table 1 shows the values of 6 kinds of characteristic pa-
rameters extracted from the PSG digital data using the
method in Sec.II. The appearance ratio of alpha waves is
the highest at SW, next is SREM, and then S1, S2, S3,
MT and S4 in descending order. The ratio has a ten-
dency to decrease from S1 to S4 as sleep becomes more
deep. The appearance ratio of delta waves, on the other
hand, increases and it exceeds 30% at S3 and S4. The
appearance ratio of sleep spindles at SW and S2 is from 4
to 10 times larger than that of other sleep stages, except
for MT. The total number of K-complexes and the num-
ber of REMs do not exceed 1.0 at any stage, but the total
number of K-complexes at S3, S4 and MT and the num-
ber of REMs at SREM and SW show larger values than
those of other stages. The normalized integration value
of EMG is largest at MT with SW, S1, S2, S3, S4 and
SREM in descending order. This tendency is the same
as for alpha waves. These results show that our method
can extract the characteristic parameters, except for K-
complexes, approximately the same as does R&K rules.
Table 2 shows the results of the automated sleep stage

scoring using the decision tree learning of Sec.III. The
percentages of correct answers exceed 80% in 4 out of
5 data sets, and the average for all data sets is 81.4%.
Both the average percentage and total percentage are, in
descending order, S2, SREM, S3, S1, MT, SW and S4.
The higher the percentage of correct answers, the larger
the number of instances, except for S3 and S1 where that
order is reversed. Particularly at S2 where the number
of instances occupies 56.9% of the total, the percentages
of correct answers are very high, from 88.5% to 95.9%.
On the other hand, in MT, SW and S4 stages, where the
number of instances occupies only 3.8% of the total, the
percentages are smaller than the average, from 40.0% to
53.0%. This is because the situation where the instances
in leaves such as MT, SW, and S4, which contain a small
number of instances, are included in large leaves because
of the pruning, and are buried as errors.
When learning and classi�cation are carried out 5 times

by the cross-validation, the average learning time is 39.54
sec and the average classi�cation time is 3.23 sec. Learn-
ing time means the time required for decision tree learn-
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Table 2. The percentages of correct answers in the automated sleep stage scoring.

1 2 3 4 5 total

SW 3/4 2/4 0/3 1/2 3/4 9/17

75.0 50.0 0.0 50.0 75.0 52.9 50.0 30.6

SREM 29/36 40/51 22/33 33/48 39/47 163/215

80.6 78.4 66.7 68.8 83.0 75.8 75.5 7.3

S1 23/36 25/41 19/34 26/45 25/40 118/196

63.9 61.0 55.9 57.8 62.5 60.2 60.2 3.3

S2 158/177 140/152 172/186 139/157 141/147 750/819

89.3 92.1 92.5 88.5 95.9 91.6 91.7 2.9

S3 18/27 24/31 16/24 25/30 30/43 113/155

66.7 77.4 66.7 83.3 69.8 72.9 72.8 7.3

S4 2/4 1/3 2/3 0/1 1/2 6/13

50.0 33.3 66.7 0.0 50.0 46.2 40.0 25.3

MT 3/4 3/6 2/5 3/5 2/5 13/25

75.0 50.0 40.0 60.0 40.0 52.0 53.0 14.8

total 236/288 235/288 233/288 227/288 241/288 1172/1440

81.9 81.6 80.9 78.8 83.7 81.4 81.4 1.8

The upper values are the number of the agreement instances with visual inspection / the number

of instances in each sleep stage, and the lower values are the percentages of correct answers.

test data sets percentages of

correct answers

ing as shown in Fig.3 and classi�cation time means the
time required for automated sleep stage scoring as shown
in Fig.3. We can see that our method requires shorter
processing time and is more eÆcient than the existing
methods [3] [4]. The reasons are: 1) our method needs a
certain calculation in the pre-learning procedure such as
the generation of composed variables and discretization
of these variables, but in the learning process it requires
only splitting of the data set into subsets, 2) in the clas-
si�cation process it requires only simple operation and
comparison of numerical values at the time of branching,
so that it can classify instances without a large amount of
calculation.

V. CONCLUSIONS

In this paper, we described the waveform recognition
method and the automated sleep stage scoring based on
decision tree learning. In the former the characteristic pa-
rameters are extracted from waveforms and in the latter
the decision by majority is carried out in the committee.
To test the e�ectiveness of our method, the value of the
characteristic parameters at every sleep stage, the classi-
�cation accuracy and the processing time (learning time
and scoring time) were observed.
We have also performed an evaluation experiment using

the PSG digital data provided by JSSR. In the waveform
recognition, the characteristic parameters were extracted
in a form similar to the description for R&K rules. Then
in the decision tree learning, the sleep stage scoring was
made quickly with over 70% correct answers, which is in
agreement with the percentage obtained by specialists.
Thus, we conclude that our method is promising for

automated sleep stage scoring, and it can achieve learning
and classi�cation with high accuracy and quick execution.
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