
Abstract- Fluctuations of peripheral blood flux are related to its 
physiological or pathological condition. The oscillations of skin 
and muscle are well studied. Due to hard to install the probe, 
fewer studies about the oscillation of fluctuations of peripheral 
blood flux on internal organ are investigated. In this study, 
using a fast Laser-Doppler flowmetry (LDF) with a signal fiber 
probe, we measured the renal cortical flux (RCF) and 
abdominal aortic blood pressure (AABP) simultaneously in rats. 
With a continuous wavelet transform, we analyzed the 
fluctuations of RCF and estimate their weights on RCF.  
Keywords – Wavelet, Laser Doppler Flowmetry, Renal Cortex, 
Blood Flux 

 
I. INTRODUCTION 

 
Studies of the human skin microvascular oscillations had 

been done by Laser-Doppler flowmetry (LDF) in the past two 
decades[1,2,3]. They showed five distinct frequency ranges 
of fluctuation due to the pulsatile cardiac cycle (about 
0.6~2.3Hz), the respiratory-dependent oscillation (about 
0.2~0.6Hz), the intrinsic myogenic  activity of smooth muscle 
in vessels (about 0.06~0.2Hz), the arteriolar vasomotion 
(about 0.02~0.06Hz) and metabolic activity (about 
0.009~0.02Hz). Some similar studies in estimation the 
microvascular oscillations of muscle also shown a similar 
dynamics with the above researches [4,5]. 

However, only a few studies investigated the 
microvascular oscillations of internal organs by LDF [6] or 
by other methods [7]. We had developed a fast LDF method 
to estimate the pulsatile-related oscillation (0.5 ~20Hz) on the 
renal cortex of rats [8]. With this method, we can also 
estimate the wide range spectrum (0.01~10Hz) of renal 
cortical flux oscillation. 

In this study, the object is to develop a methodology in 
order to estimate the wide range oscillation (0.01~10Hz) of 
microcircular flux on the renal cortex. We use a LDF with a 
signal fiber probe to measure the renal cortical flux in rats 
and analyze the fluctuations with time by a continuous 
wavelet transform (CWT). 

 
II. METHODOLOGY 

 
Animal Preparation and Experimental Setup 
  3 male WKY rats, weighting from 250 to 350 g, were 
anesthetized with Urethane (300mg/kg, ip). The rat was then 
placed on an operation table with a heated pad to keep the 
body temperature. Anesthesia was maintained by additional 
doses of anesthetics as required. The polyethylene tube (PE 
10, Becton-Dickinson, USA) was inserted from the iliac 
artery into the abdominal aorta of the rat with a catheter-tip 
pressure transducer (P10EZ, Viggo-Spectramed, USA) to 
measure AABP.  
 Laser Doppler Flowmetry (MBF3, Moor Instruments Ltd., 
England) was used for the measurement; its time constant 

was set to 0.05 second and its cut-off frequency was 14.9 kHz. 
MBF3 samples the analogue signal with a 40Hz sampling 
rate and then converts it into analogue output. An optical 
fiber probe (P10M+P17, plastic fiber 500µm O.D., Moor 
Instruments Ltd.) was calibrated by the calibration flux 
standard (Moor Instruments Ltd.) to ensure its stability and 
performance.  
Experiments and Data acquisition 
 The left kidney was exposed from the dorsal side, and 
fixed with sterilized gauze sponges. The fatty capsule was 
separated carefully to avoid bleeding, and the surface of the 
kidney received an infusion of 37°C normal saline to keep it 
from drying during the experiments. 
 The optical fiber probe was gently touched vertically to 
the surface of the renal cortex to avoid artifacts introduced by 
respiration or other inner movements. The motion artifact 
caused by the respiration can be easily detected; the period is 
about 3-5 times that of the heartbeat. Proper installation of 
the probe and good care of the animals during the 
experiments can reduce the artifact. Aortic blood pressure, 
both diastolic and systolic, was monitored during the 
experiments.  
 The RCF signal was recorded from the analogue output of 
MBF3. Both the AABP and RCF signals were connected to a 
simultaneous sample & hold card AX753 (AXIOM 
Technology Co., LTD. Taiwan, R.O.C.) and then to an A/D 
converter card AX5621 (AXIOM Technology) with 20Hz 
sampling rate. Both signals were sampled simultaneously and 
synchronously. There were 5 different sites on the surface of 
renal cortex measured within one hour to avoid physiological 
change in each rat; each site kept at least 1 cm apart the other 
and the positions were chosen where there are no visible 
vessels. In each measurement, we acquired a 120 second-long 
data sequence. 
Data analysis and Statistics 
 A continuous wavelet transform with Morlet wavelet was 
used to analyze the measured data. A short time Fourier 
Transform (STFT) was also employed to be reference. The 
statistic results of the dominant spectrum peaks were 
represented by mean±SD. 
 All the signal processes were performed with MATLAB, 
IBM-PC version (Math Works, Natick, Mass., U.S.A.). 
 

III. RESULTS 
Figure 1 shows one example of CWT. Fig. 1(a) is the one 

of RCF and fig. 1(b) is the one of AABP. They show that 
there are some low frequency oscillations on RCF but not on 
AABP. 

  Figure 2 is a time average result in one measurement of 
RCF and AABP using STFT respectively. The heart-rate 
oscillation is the dominant peak in the spectrum and the 
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respiratory as well as low-frequency (below 0.1Hz) 
oscillations are also existed.  

 
Figure 1. CWT analysis of RCF(above) and AABP(below) 

 
Figure 2. STFT analysis of RCF(above) and AABP(below) 

 
Due to LDF calibration, the absolute values of RCF in 

different rat could be very diversified. Table 1 statistics the 
peak values of heart-rate oscillation and low frequency 
oscillation of RCF as well as AABP, respectively. It shows 
that, in the 15 measurements, the low frequency oscillation 
weights less than 67%.   

Table 1 
Peak values of heart -rate oscillation and low frequency oscillation 

(A) Rat1 

 Low frequency Heart rate 
RCF 2.38±0.71 8.24±0.71 

AABP 6.23±2.25 22.18±2.22 
×10^5; n=5 
 
(B) Rat2 

 Low frequency Heart rate 
RCF 4.05±0.17 6.95±1.70 

AABP 10.56±4.32 22.48±4.32 
×10^5; n=5 
 
(C) Rat3 

 Low frequency Heart rate 

RCF 4.32±2.22 6.54±0.96 
AABP 8.43±4.36 33.05±4.36 

×10^5; n=5  
 

IV. DISCUSSION 
 

Short time Fourier Transform was one of the most 
popular methods to investigate the time-frequency 
relationship of a time -variant signal. However, with a better 
time-frequency resolution, we use CWT to analyze our data 
in the study.  

Marcohemodynamics and microhemodynamics have 
been developed over two decades. One focus on arterial 
dynamics, and the other studies the behavior of 
microcirculation. However, there is an interesting distinction 
between them. Most of marcohemodynamics studies deal 
with the arterial behaviors in the range nearby the heart rate 
or on its harmonics; meanwhile, microhemodynamic studies 
concentrate on the lower frequency (0.01Hz~0.1Hz). The 
driving force driven by the arterial blood pressure seems to 
lose its role in its downstream. 

In Fig. 1, it shows that only the heart–rated oscillation 
and the respiratory-oscillatory keep much steady in all times. 
The heart-rate oscillation seems to be the basal signal as the 
carry wave in radio signal modulation. In our previous studies 
[8], through a long time average, most of the low frequency 
oscillation of RCF would be filtered out except the ones on 
harmonics of heart rate. At the same time, the respiratory 
oscillation and a low frequency (below 0.1Hz) are like the 
modulation signals, oscillating depends on events.   

The mammalian arterial blood pressure keeps almost 
constant from aorta to the range of arterioles; it drops 
abruptly in the short distances between arterioles and 
capillaries. Is the lost blood pressure the driving force of the 
blood flux in peripheral microvascular beds? Or is it just 
dissipated by the viscous force due to the tiny channels of 
arterioles and capillary? There is a disjunction in the studies 
between the arterial blood pressure and the microvascular 
flux. And, they are questions have to be further clarified.  
 Our result showed that the oscillation of peripheral blood 
flux in kidney is much different to the ones in skin or in 
muscle.  Heart-rate oscillation is the key oscillation. It 
implies that the heart pumping generated pulsatile pressure 
drives RCF with less peripheral modulation. 

 
 

V. CONCLUSION 
  

In summary, this study demonstrates a methodology to 
investigate the oscillations on RCF. With this methodology, 
we found that, different to skin or muscle, heart-rate 
oscillation is the dominant oscillation on RCF in the basal 
physiological state. 
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