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SYNTHETIC APERTURE LADAR: FUNDAMENTAL THEORY, 
DESIGN EQUATIONS FOR A SATELLITE SYSTEM, 

AND LABORATORY DEMONSTRATION 
 
 
1. INTRODUCTION 
 
 A synthetic aperture ladar (SAL) could provide dramatic improvements in either resolution or, 
compared to synthetic aperture radar (SAR), the time needed to record an image, or both. The reduced 
imaging time results from the shorter time needed by the platform to traverse the synthetic aperture (SA) 
that produces the same resolution with a shorter wavelength. When the observation range reaches a 
thousand kilometers or more, no other method of imaging can offer centimeter-class resolution with a real 
aperture size no larger than a few meters. Additionally, because SAL is an active sensing method, it is not 
restricted to daylight operation. This report investigates one of the few limits on SAL that is of a 
theoretical nature: the limit imposed by photon statistics (a limit that is not relevant to SAR). A criterion 
is developed for the number of photons that is needed for each resolution element of an image, and design 
equations are given to evaluate a proposed design with respect to this criterion. The engineering problems 
of implementing SAL are less easily dealt with. The more prominent are indicated below, but their actual 
means of solution are resolutely ignored in this report. A brief treatment of the effects of propagation 
through the atmosphere is given in Section 2.7. It indicates that high-resolution SAL imaging from orbit 
is possible, but much more work needs to be done on this topic, because the atmosphere can degrade 
beam quality substantially at visible and infrared wavelengths.  
 
 Previous work on SAL [1,2 and references cited therein] has not considered the implications of photon 
statistics and, in the laboratory, has usually used fixed-frequency CW lasers and measured Doppler shifts 
from moving targets to create an image. The approach to SAL analyzed here [3] is the SAR technique of 
transmitting a series of FM-chirped pulses, heterodyning the return signal with a similarly chirped local 
oscillator (LO), isolating a single range resolution element as a narrow-frequency subband of the 
detector’s output (a process called deramping, described in Section 10.1 of Curlander and McDonough [4] 
or Section 1.3 of Jakowatz et al. [5]), and match-filtering data from this subband to pick out an azimuth 
resolution element by its phase history. As discussed in Section 3, this technique has recently been 
demonstrated at 1.55 µ in a laboratory-scale experiment [6], though not yet in the photon-limited regime. 
This report examines the effects of photon statistics and of speckle on imagery from a space-based 
system. We are motivated in part by a desire to bridge the gap between the heterodyne detection and 
optical imaging communities, so the development will include some relevant tutorial information, but we 
assume a reasonable degree of familiarity with the physical principles of heterodyne detection lidar (see, 
for example, Shapiro et al. [7] and references cited therein) and SA image formation [4,5]. Park and 
Shapiro [8] discuss a similar system (their Doppler pulse compression is the equivalent of the phase 
history matched filter described here), but they emphasize short-range (< 100 km), air-based operation 
and do not consider photon statistics or speckle. Kyle [9] proposes a SAL system that transmits a coded 
pulse stream, rather than an FM chirp, to resolve range. The method is theoretically sound, but requires 
very fast modulation of the laser and wideband detectors. Kyle [9] evaluates his system in much the same 
way as presented here in Section 2.5, but drastically overstates the signal-to-noise ratio (SNR) of his 
illustrative example. Aleksoff et al. [10] show the full potential of SA imaging with a laboratory 
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demonstration of a 3-D SAL, but the method requires 2-D motion of the platform and is therefore 
unsuitable to the imaging problem considered here.   
 
 The system modeled here is a scan-mode SAL that transmits a beam with a ground footprint having an 
instantaneous diameter that contains M pixels. As the motion of the sensor’s platform sweeps the beam 
along the ground, M pulses, each of time duration τpul, are transmitted during the dwell time, τdw, the time 
a single pixel remains illuminated. The minimum detectable frequency difference in the heterodyne signal 
is δf = 1/τpul, and this, combined with the chirp rate, determines the minimum resolvable range element. 
Azimuthal SA processing requires measuring both the amplitude and phase of the light scattered from the 
scene, and at optical frequencies this can be done only with heterodyne detection. The fact that phase 
must be measured separates SAL from conventional optical heterodyne systems, which are used as 
sensitive detectors of narrow-band light, but measure only the number of photons received, not their 
phase. For this reason, SAL necessitates a more thorough treatment of shot noise than is normally 
required.  
 
 For a photon-limited direct detector, the number of signal photons detected in a single measurement is 
known, but the same cannot be said for a photon-limited heterodyne detector. Because of shot noise from 
the LO, it is impossible to conclude that a particular number of signal photons was detected in a 
measurement. Consequently, the value of n, the number of signal photons inferred from the heterodyne 
measurement, is not restricted to integral values and is treated as a continuous variable when its 
probability density function (PDF) is considered. The PDF is needed to calculate the carrier-to-noise ratio 
(CNR) and, combined with speckle, the SNR. CNR is an unfamiliar term in normal, direct-detection 
optical imaging: it means SNR before the effect of speckle is included. The definition of CNR normally 
used for heterodyne detection is a legacy of its RF origin and leads to a photon-limited CNR proportional 
to the number of signal photons instead of the square root of this number. The photon-limited CNR for 
SAL will be defined to be proportional to the square root of the number of signal photons, a definition 
more familiar to the optical imaging community. CNR and SNR for SAL will be compared to those for a 
direct detection system that detects the same number of photons from one polarization of the light 
returned from a coherently illuminated scene (recall that scattering from ordinary surfaces randomizes 
polarization). In other words, SAL will be compared to a direct-detection system with a polarizer in it. 
CNRs and SNRs can always be improved by a factor of 2  by measuring both polarizations, but this is 
far easier to do with a direct-detection system (just remove the polarizer!) than with a heterodyne system, 
for which a beamsplitter and an additional detection channel must be added. Speckle limits the SNR of 
single-look imagery to, at most, unity for SAL, just as it does for SAR or for direct detection. Fortunately, 
the limit can be closely approached when only a few photons per pixel are received.  
 
 Section 2.1 describes phase-sensitive heterodyne detection, with emphasis on the fact that signal and 
noise are complex numbers in Fourier space. Section 2.2 derives the appropriate CNR for an imaging 
system and compares it to the traditional RF definition, Section 2.3 propagates signal and noise through 
synthetic aperture processing, and Section 2.4 combines the result with speckle to produce the SNR of the 
SAL image. Section 2.5 presents design equations, with emphasis on the specifications of the laser. 
Section 2.6 describes the effect of a moving object in the scene and Section 2.7 compares the angle swept 
out by the satellite with respect to the ground observation point to the isoplanatic angle of the atmosphere.  
 
2. FUNDAMENTAL THEORY AND DESIGN EQUATIONS 
 
2.1 Phase-Sensitive Heterodyne Detection 
 
 A light wave with frequency f and phase φ is described by Eexp(2πift + iφ) with E real and non-
negative, and the units of E are chosen so that power is related to the electric field by 
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where the integral is over the area, Ad, of the detector, E may be, and usually is, a function of position on 
the detector, and E  is the appropriate average. To relate E  to N, the average number of photons in pulse 
time τpul (N need not be an integer), we write P = hνN/τpul, where h = 6.63 × 10-34 joule-sec is Planck’s 
constant and ν is the frequency of the light, to find that  
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where ηd is the detector’s quantum efficiency, assumed constant across the detector, qe is the charge of an 
electron, qe/hν performs the detector’s transducer function of replacing hν by qe, ηh is the heterodyne 
mixing efficiency[11], ∆f = f& ∆t is the beat frequency, φS = φS0 + 2π(f0∆t + ½ f& ∆t2), and Eq. (2) has been 
used. The first term in the third equality of Eq. (3), when multiplied by τpul/qe, is the total number of 
electrons generated (= photons detected). The second term identifies the range element in question by its 
beat frequency ∆f. A different range element yields a different ∆f, a relation that will be stated precisely in 
Section 2.5. Equation (3) is most easily understood from the point of view of the semiclassical theory 
[12], that the field itself may be treated classically, that is, without intrinsic fluctuations. Fluctuations in 
the number of photons detected results from a stochastic interaction between the electromagnetic field and 
the detector: shot noise, which is treated below.  
 
 Equation (3) is written for a single range resolution element. In the detector’s actual output, there are M 
such terms, having M different frequencies, one for each range resolution element in the footprint. In 
order to satisfy the Nyquist criterion, the detector’s output is digitized with (at least) 2M samples over the 
time τpul, and the value of the ∆f component of the discrete Fourier transform (DFT) of these samples is   
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where τpul/2M normalizes the DFT so that its DC component is the total charge generated and tm = 
mτpul/2M is the time of the mth sample. D(∆f) is divided by qeηd(ηhNL)½ to obtain the desired value, D'(∆f) 
= NS

½exp(iφS), that is needed for SA processing. It is a basic property of the DFT that the separation 
between the DFT’s discrete frequency components is δf = 1/τpul, so D' is the signal over bandwidth δf (i.e., 
from one range resolution element) at a frequency displaced by ∆f from the frequency of the LO. 
  
 In the photon-limited regime, the dominant source of noise is shot noise from the total number of 
photons detected, which is ηd(NL + NS). Normally NL >> NS, and that approximation will be used here. NL 
>> 1 always. As shown in Appendix A, the noise at any frequency is described by a 2-D Gaussian 
distribution [Eq. (A1) with s = 0] with, replacing N in Eq. (A5) by NL + NS, σ2 = qe

2ηd(NL + NS)/2 ≈ 
qe

2ηdNL/2. This is the noise on the signal D. If a random variable is divided by a constant to obtain a new 
random variable, the variance of the old variable must be divided by the square of the constant to obtain 
the variance of the new one. Since D is divided by qeηd(ηhNL)½ to obtain the desired value, D', σ2 must be 
divided by the square of this factor, (qeηd)2ηhNL, to obtain 
 

 2 1'
2 d h

σ =
η η

. (5) 

 
That is, the PDF of the random variable D' plus noise is a 2-D Gaussian centered on NS

½exp(iφS) with 
width given by σ'2, as illustrated schematically in Fig. 1. With signal and noise now specified, we are 
ready to describe SA processing and see how noise propagates through it, but it is instructive to pause at 
this point to examine the CNR and the number and phase uncertainties of heterodyne detection.  
 
2.2 Carrier-to-Noise Ratio 
 
 As stated above, CNR is SNR before speckle is taken into account, so the results of this section apply to 
a coherent-light sensor that makes repeated measurements without changing the part of the speckle field it 
samples. In optical imaging, the normal definition of SNR or CNR is the ratio of the magnitude of a 
signal to the standard deviation (square root of the variance) of the signal’s estimator. For photon-
counting direct detection, the number of detected photons, n, follows Poisson statistics with 〈n〉 = ηdNS. 
Now, n must be divided by ηd to obtain an estimate of the signal: 〈n/ηd〉 = NS. For the Poisson distribution 
the variance is equal to the mean, that is, Var(n) = 〈n〉 = ηdNS, which must be divided by ηd

2 to obtain 
NS/ηd, the variance of the estimator of the signal. Thus CNR = NS/(NS/ηd)½ = (ηdNS)½, as expected.  
 
 For heterodyne detection, the result of measuring the return from a single pulse is a complex number, 
rexp(iφ), equal to D' plus noise, from which an estimate of D' must be derived. As shown in Fig. 1, 
rexp(iφ) is distributed according to Eq. (A1) with s = NS

½ (without loss of generality, we have set φS = 0) 
and σ = σ' from Eq. (5). The magnitude, r, is the square root of the number of photons inferred from the 
measurement: r = n½. Now 〈n〉 = 〈r2〉 = 〈x2〉 + 〈y2〉, and the Gaussian moments of Eq. (A1) are easily 
evaluated to show that 〈n〉 = s2 + 2σ'2. It is only slightly less easy to use 〈n2〉 = 〈r4〉 = 〈(x2 + y2)2〉 to show 
that 〈n2〉 = s4 + 8s2σ'2 + 8σ'4 and therefore that the variance of the 1-D distribution of n is  
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Fig. 1 Distribution of measured values with NS
½ = 1, φS = 0, for the ideal case σ'2 = ½ (i.e., ηd = ηh = 1), 

showing 1- and 2-sigma contours. For the non-ideal case, σ'2 is increased in accordance with Eq. (5). reiφ 
represents a particular measurement taken from this distribution. r = n½, where n is the number of signal 
photons inferred from the measurement (see text). 

 
 
 An unbiased estimator of NS is n - 2σ'2, since 〈n - 2σ'2〉 = s2 = NS. Since, from Eq. (5), σ'2 = constant, the 
variance of this estimator is the same as the variance of n. Using the definition given above, the CNR of 
heterodyne detection for imaging applications is the ratio of NS to the standard deviation of its estimator:  
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where Eqs. (5) and (6) have been used. Taking ηd = ηh = 1 in the first approximation shows that the best 
possible CNR of heterodyne detection is a factor of 2  below the best possible CNR of direct detection. 
For NS << 1/(ηdηh), CNRIM is proportional to the number of photons detected, rather than to the square 
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root of this number, a fact that will be revisited in Section 2.4 [see discussion below Eqs. (13) and (14)] 
where it is found to apply also to the SNR of SA imaging.  
 
 Heterodyne detection was first done in RF work, where CNR is defined as the ratio of signal power to 
noise power, where signal power means the square of the value of the heterodyne-detected signal, which 
is (NS

½)2 = NS, and noise power means 2σ'2. Thus 
 

 ( )2
RF IM12CNR 2 CNR

2 '
S

d h S
N

N= = η η =
σ

, (8) 

 
where CNRIM1 is taken from the first approximation in Eq. (7). The first equality in Eq. (8) matches, for 
two examples, Eq. (12) of Park and Shapiro [8] and Eq. (1) of Shapiro [13], once the conversion to 
photons has been made. If the RF expression for CNR is used to discuss an optical imaging system, large 
overstatements of CNR can result, compared to what is normally expected in optical imaging.  
 
 In the ideal case, ηd = ηh = 1 and the variance is 2σo'2 = 1. The magnitude of D' is the square root of a 
(not necessarily integral) number of photons. The units of σ'2 may therefore be regarded as photons, so 
that 2σo'2 = 1 photon. This is the variance (in Fourier space) for a measurement done over time interval 
τpul and frequency interval δf = 1/τpul, so 2σo'2 may be generalized to 2σo'2 = [1 photon/(sHz)]×τpulδf, since 
the time-bandwidth product of the measurement is τpulδf = 1. This generalization illustrates the oft-heard 
statement that heterodyne detection adds noise at the rate of 1 photon/(sHz). But this statement can be 
misleading to those accustomed to photon-limited imaging because 2σo'2 is a variance (= noise power), 
not a standard deviation, and it is the variance of the 2-D distribution of D' plus noise, shown in Fig. 1, 
not the variance of the 1-D distribution of the number of photons, which is Var(n), given in Eq. (6). 
Another way to express this variance is to multiply it by hν and write it in terms of power as 2σo'2 = hν 
W/Hz, or, more generally, as 2σ'2 = hν/(ηdηh) W/Hz. This form, multiplied by a receiver bandwidth, 
appears as the denominator of the expressions for CNR given by Park and Shapiro [8] and Shapiro [13].   
 
 The 1-D distribution of the number of photons can be found from Goodman’s [14] Eq. (2.9-20) or (2.9-
27). These equations give, respectively, exact and approximate forms of the PDF of n½ as, in Goodman’s 
notation, PA(a), where a = n½. Using n = a2, the PDF transformation method in Goodman’s Section 2.5.2 
shows that the distribution of the number of photons inferred from a heterodyne detection of NS is 

( )
SNP n  = PA(a)/(2a). This distribution is stated as Eq. (19) of Shapiro and Wagner [15], but is not given 

here because all we need (see Section 2.4) are its first and second moments, 〈n〉 and 〈n2〉, which have been 
given above Eq. (6). Since we have not found them in any reference, we exhibit, for small NS, the 
uncertainties, ∆n and ∆φ, due to heterodyne measurement of the values of n and φ, from which NS and φS 
are estimated. The term uncertainty is used in place of standard deviation because that is the usual 
terminology of quantum mechanics. We already know from Eq. (6) or the denominator of the first 
equality in Eq. (7) that ηdηh∆n = (2ηdηhNS + 1)½. This way of expressing ∆n is chosen because it allows a 
single curve to show ∆n for all values of ηdηh. We again set φS = 0 so ∆φ = 〈φ2〉½, which can be evaluated 
by numerical integration using the PDF in Eq. (A1) and φ = tan-1(y/x), or using Goodman’s Eq. (2.9-25). 
The result is plotted in Fig. 2, along with ∆sinφ and the products ∆n∆φ and ∆n∆sinφ. ∆sinφ is included 
because sinφ rather than φ is the true quantum mechanical observable [16]. For ηd = ηh = 1, ∆n∆φ ≥ 1 for 
heterodyne detection, as also found by, for example, Shapiro and Wagner [15].  
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Fig. 2  Number and phase uncertainties for phase-sensitive heterodyne detection. ηdηh∆n = 2 1d h SNη η + . 

For NS = 0, ∆φ = / 3π  and ∆sinφ = 1/ 2 .   
 
 
2.3 Synthetic Aperture Processing and Phase Errors 
 
 Section 2.1 described the measurement of D' plus noise, where D' is the complex amplitude of the wave 
reflected from one range resolution element and σ' describes the noise of the measurement. Figure 3 
shows a range resolution element, divided into M pixels. The pixel labeled m = 0 has just entered the 
illuminated region. Each illuminated pixel contributes a phasor, Am = amexp(iαm), with amplitude am and 
intrinsic phase αm, to D'. The intrinsic phase depends on the detailed structure of the element and on the 
viewing geometry and may be regarded as random. Thus the average number of photons contributing to 
D' is the result of the sum of the random phasors Am, and the discussion in the first paragraph of Appendix 
A shows that am,rms = (NS/M)½ in order that the Am add up to a complex number with magnitude NS

½.  
 
 The phase of each of the Am is modified by the curvature of the wave front as indicated in Fig. 3. 
Referenced to zero at the center of the wave front (m = M/2), the light described by phasor Am must travel 
a greater distance by the amount ∆lm = [(m - M/2)p]2/R, where p is the size of a pixel and R is the range, to 
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return to the detector. Am is therefore multiplied by the phase coefficient Cm = exp(i∆lm×2π/λ), and the 
sum of all these contributions makes up the signal: D' = ΣAmCm. Figure 3 and the expression used for ∆lm 
assume that the beam direction is exactly perpendicular to the velocity vector of the transmitter. Relaxing 
this assumption changes the expression for the ∆lm, but not the results of the analysis. The noise, or error, 
denoted by Em, adds to the signal to produce the result of a single measurement, ΣAmCm + Em, as indicated 
by the first row of Table 1 (less the last column, which indicates multiplication by Cm*). The second row 
shows the contributions to the measurement of the second pulse, when the illuminated region has moved 
by one pixel, and so on, until the M – 1 row describes the pulse having the last contribution from the m = 
0 pixel. Synthetic aperture processing applies a matched filter to pick out the phase history of a particular 
pixel as it passes through the beam’s footprint. As indicated in Table 1, the filter picks out A0. Appendix 
B describes this process in more detail and shows how the high-resolution characteristic of SA processing 
is obtained. The Cm* are indexed upward by one row to pick out A1, downward to pick out A-1, etc.  
 
 

 
 

Fig. 3  Side view of transmitted wave front encountering one range resolution element. Azimuthal 
resolution elements (pixels) are labeled 0 to M-1 (see text). The transmitter is traveling to the left. 

 
 
      Table 1  Representation of Measurement Composition and Matched-Filter SA Processing 
 
{      A0C0 + A1C1 + . . . + AM-2CM-2 +AM-1CM-1 + E0   } × *

0C  

{  A-1C0    + A0C1 + A1C2 + . . . + AM-2CM-1  + E1   } × *
1C  

{ A-2C0    + A-1C1    + A0C2       .           .   + E2   } × *
2C  

     .     .       .       .           .       .     . 
     .     .       .       .       .     . 
     .     .       .       .       .     . 
{. . . A-2CM-3+ A-1CM-2  + A0CM-1    + EM-1} × *

1MC −
 

{. . .   ≈ 0   ≈ 0    MA0     ≈ 0      . . .     ≈ 0     ≈ 0 + G    }  
 
 
 For clarity of presentation in Table 1, the profile of the illuminating beam is treated as uniform, when in 
reality it would have a Gaussian or perhaps an Airy shape. A more careful treatment includes the beam’s 
nonuniform profile in the matched filter, but does not change the final results here or in Appendix B.  
 
 The next-to-last column in Table 1 contains the Em, which are the error contributions from shot noise. 
The Em are random numbers distributed according to Eq. (A1) with s = 0 and σ = σ' from Eq. (5). The last 
column shows the coefficients of the phase history matched filter. These coefficients are calculated from 
the known geometry of the observation. The bottom row, which is the sum of the rows above it after the 
multiplications by Cm* have been done, shows the contributions to the output of this filter. The output of 
the filter is comprised (mostly) of the phasor MA0 plus noise given by G = ΣEmCm*. The result of 
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multiplying the random complex number Em by the unit-magnitude phasor Cm* is again a random 
complex number, so G, the sum of M such numbers, is a Gaussian-distributed random complex number 
with σ''2 = Mσ'2. The total number of photons from the m = 0 pixel in the final image is denoted Np, so 
Np/M are contributed by each pulse, that is, a0

2 = Np/M. Note that a0
2 may be small compared to unity. The 

PDF of MA0 + G is centered on Ma0 = (MNp)½, while the desired signal is Np. Therefore, the output of the 
matched filter must be divided by M½ to obtain a PDF centered on Np

½. Accordingly, σ''2 must be divided 
by M, returning us to σ'2 as before. Thus, the error in the output of the matched filter is the same as the 
error in the measurement of NS

½, so the PDF for Np is the same as that given for NS at the end of Section 
2.2, with NS replaced by Np. That is, it is ( )

pNP n , and Var(n) and the CNR for Np are given by Eqs. (6) 

and (7) with NS replaced by Np.  
 
 The average number (averaged over speckle, which is treated in the next section) of photons received 
per pulse is NS,ave and the average number of photons per pixel in the final image is Np,ave. Since the 
photons received from M pulses are distributed over M pixels, NS,ave = Np,ave, that is, the average number 
of photons inferred from a single heterodyne detection is the same as the average number in each pixel in 
the final image.  
 
 It was stated above that the Cm* are calculated from the geometry of the observation. This calculation is 
a harder problem for SAL than for SAR because the accuracy of the calculation is set by the wavelength 
of the radiation, which is typically about four orders of magnitude smaller for SAL. (Fortunately, the 
range need not be known to wavelength accuracy: referring to Fig. 3, it is easy to show that the curvature 
of a wave front at 999 km range is insignificantly different from its curvature at 1,000 km for the small 
footprints possible with SAL – see Section 2.5.)  
 
 As shown by the above discussion, it is basic to SA imaging that the phase of the light returned from 
the scene be measured. Ideally, the phase of the light emitted by the laser would be constant over the 
entire imaging time, τim, but this is not essential: only phase knowledge is required, not phase accuracy. In 
principle, if phase errors are known, compensating corrections can be applied to the digitized data. This 
problem has received much attention from SAR workers, especially with regard to the effects of having 
imperfect knowledge of the platform’s motion: if the platform is one-half wavelength closer to the scene 
than expected upon reception of a pulse, a phase error of 180° is incurred. This means that the matched 
filter coefficient applied to the digitized data from this pulse will be in error by a factor of exp(iπ) and 
will fail to pick out the right phasor, as described above (cf. especially Table 1). If phase errors this large 
occur on a pulse-to-pulse basis, then the data are reduced to hash and no image can be recovered. But, as 
discussed by, for example, Jakowatz et al. [5], if phase errors occur more slowly, a rough image can be 
generated and serve as the basis for “auto-focusing” algorithms to correct the phase of each pulse in 
software and render the image sharp. These techniques can be carried over to SAL if the hardware can 
keep phase error rates to the low level required. In the baseline imaging scenario of Section 2.5, the dwell 
time is τdw = 1.7 ms and 100 pulses are sent during this time, one every 17 µs. Ideally, phase errors would 
be small over 1.7 ms, but auto-focusing requires only that phase errors be small over the time between 
pulses (17 µs), a factor of 100 (= M ) relaxation of the requirement. 
 
 Another source of phase errors is the passage of the beam through the atmosphere. Now, if the 
atmosphere simply changed the phase of the wave returned from the scene by a fixed amount, it would be 
indistinguishable from the scene itself (recall that scattering from a conventional surface  as opposed to, 
say, a mirror   randomizes phase) and no problem would be encountered. But as the satellite moves, the 
line of sight from the satellite to a particular pixel on the ground follows a (slightly) different path through 
the atmosphere. If this different path imposes a significantly different phase change than the previous one, 
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it will disrupt the phase history of the pixel and inhibit our ability to form a good image. This point is 
discussed further in Section 2.7. 
 
 Unlike SAR, for SAL the stability of the LO cannot be taken for granted, which is another source of 
phase errors. From a range of 1,000 km, the round-trip time of flight is about 7 ms. In order for the LO to 
maintain its phase over this time period, it must have a linewidth of about 100 Hz or better. This is a 
formidable requirement for a laser, especially a power laser. The solution will probably be an extremely 
stable reference laser against which the phase errors of the power laser can be measured.  
 
2.4 Speckle and SNR 
 
 The most severe limit on an imaging system that uses coherent light is speckle. In the foregoing, the 
variance due to shot noise of a single pixel in the final SA image has been calculated. But if that pixel 
were viewed from a different direction, the sensor would be in a different part of the pixel’s speckle field 
and a different value of Np would be observed. Or if there are many pixels in the scene with the same 
reflection properties, they will produce different values of Np because different parts of their speckle 
fields are sampled. To find the resulting SNR in an image, the speckle and shot noise contributions to 
variance must be combined.  
 
 With s = 0, Eq. (A1) describes the phasor distribution of speckle. The resulting intensity PDF [see 
Goodman [14], Eq. (7.5-1)] is,  
 

 ( )
0 0

1 exp p
S p

N
P N

N N
 

= − 
 

, (9) 

 
where N0 = 〈Np〉 is the average of Np taken over many realizations of speckle. The second moment of this 
distribution is 〈Np

2〉 = 2N0
2, so the variance is Var(Np) = N0

2. This leads to the familiar result that the SNR 
due to speckle for a single polarization is unity: SNR = N0/[Var(Np)]½ = 1. Equation (9) is given as a 
continuous function. In high-intensity speckle, this is justified because N0 >> 1; in our case, it is justified 
because both Np and N0 are averages and are normally not integers.  
 
 For a fixed realization of speckle, the variation in the number of photons, n, that contribute to a 
particular pixel in a single image is due only to shot noise from the heterodyne detection. The PDF of this 
1-D distribution, ( )

pNP n , was introduced at the end of Section 2.2. As discussed there, we have not 
calculated ( )

pNP n  explicitly, but, using s2 = Np in the expressions for 〈n〉 and 〈n2〉 given above Eq. (6), 
have calculated its first moment to be Np + 2σ'2 and its second to be Np

2 + 8Npσ'2 + 8σ'4. Combining the 
distribution of speckle realizations given by Eq. (9) with ( )

pNP n  gives the total probability of getting a 
particular value n:  
 

 ( ) ( ) ( )
0

pT N S p pP n P n P N dN
∞

= ∫ , (10) 

 
which may be stated in words as the probability of measuring the value n given Np, summed over the 
probability of Np. The moments of n are  
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( ) ( ) ( )

( ) ( )
0 0 0

2

0
2

0

2 '

2 ' ,

pT N S p p

p S p p

n nP n dn nP n dn P N dN

N P N dN

N

∞ ∞ ∞

∞

= =

= + σ

= + σ

∫ ∫ ∫

∫      (11) 

as expected, and 

 

( ) ( )

( ) ( )

2 2

0 0

2 2 4

0
2 2 4 2 2
0 0 0

8 ' 8 '

2 8 ' 8 ' 2( 2 ' ) ,

pN S p p

p p S p p

n n P n dn P N dN

N N P N dN

N N N

∞ ∞

∞

=

= + σ + σ

= + σ + σ = + σ

∫ ∫

∫  (12) 

 
so Var(n) = (N0 + 2σ'2)2, and, using σ'2 from Eq. (5), the SNR for photon-limited SA imaging is  
 

 

0
SA 0

0

0 0

0

SNR 1 for 1/( ) ,
1/( )

for 1/( ) ,
1/ 2 for 1/( ) .

d h
d h

d h d h

d h

N
N

N
N N

N

= ≈ >> η η
+ η η

≈ η η << η η

= = η η

 (13) 

 
 These steps can be repeated for direct detection: in Eqs. (11) and (12), ( )

pNP n  is replaced by the 

Poisson distribution having mean ηdNp and the integral over n by the discrete sum over n appropriate for a 
Poisson distribution. The results are 〈n/ηd〉 = N0, 〈(n/ηd)2〉 = 2N0

2 + N0/ηd, and Var(n/ηd) = N0
2 + N0/ηd, so 

the SNR for photon-limited direct detection (DD) of one polarization of coherent light is 
 

 

0
DD 0

0

0 0

0

0

SNR 1 for 1/ ,
1/

for 1/ ,

for 1 ,
1

d
d

d d

d

N
N

N

N N

N
N

= ≈ >> η
+ η

≈ η << η

= η =
+

     (14) 

 
which, for ηd = 1, is the same as Goodman’s [14] Eq. (9.2-18) once the identification 0K N=  has been 
made.  
 
 We now relate SNRSA to SNRRF, the expression for SNR used by the RF community. The relation 
between SNRRF and CNRRF in the presence of speckle can be found from Eq. (4.10) of Shapiro et al. [7], 
which shows the relation for an arbitrary random process. The intention of Shapiro et al. is that the 
random process is turbulence, but the formula can also be used for speckle. Putting the statistical property 
of speckle that the variance equals the square of the mean [this was written above as Var(Np) = N0

2, in 
Shapiro et al.’s notation it is Var(|y|2) = 〈|y|2〉2] into Eq. (4.10), and using Eq. (4.11) and our Eq. (8) with 
NS = N0 shows that       
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RF
RF 1

RF RF
22

20RF
SA

RF 0

CNR / 2
SNR

1+CNR / 2 (2CNR )

CNR
(SNR ) .

CNR 1 1/( )d h

N
N

−
=

+

  
= = =  + + η η   

     (13a) 

 
Observe that when SNRSA = ½, SNRRF = ¼ = -6 dB.  
 
 Equations (13) and (14) show the saturation effect [7] expected when speckle is the dominant source of 
noise: when N0 >> 1/(ηdηh), SNR ≈ 1 in both cases and higher values of N0 do not improve SNR. When 
N0 = 1/(ηdηh), the SNR of SAL imagery is ½ – only a factor of two below the limiting value of 1. SNR 
can, of course, be improved at the cost of complexity by measuring both polarizations, at the cost of 
resolution by combining pixels in one image, as is often done for SAR, and/or at the cost of more 
observation time by combining images that sample different parts of the speckle field.  
 
 For small N0, SNRSA is proportional to the number of photons detected, while SNRDD has the more 
familiar property of being proportional to the square root of this number. Now, if multiple images from 
uncorrelated parts of the speckle field are added together, both SNRSA and SNRDD improve only as the 
square root of the number of images combined (this is the normal statistical expectation, see also p. 217 of 
Curlander and McDonough [4]). This means that it is much harder to make up for a low count rate by 
adding SA images, compared to DD images, as the following numerical example shows. Taking ηd = ηh = 
1 for simplicity, N0 = 0.1 implies SNRSA ≈ 0.1 and SNRDD ≈ 0.3. It takes nine images to improve SNRDD 
to 0.9, but 81 to improve SNRSA to 0.9. This shows the importance of designing an SA system to meet the 
criterion N0 = 1/(ηdηh) for single-look imagery implied by Eq. (13). If this condition is not met, very 
many single-look images will have to be combined just to approach an SNR of unity.  
 
 The astute reader may ask about taking the multiple images while maintaining phase coherence across a 
larger part of the speckle field, i.e., using a larger SA. But with, say, twice the SA, SA processing yields 
twice as many pixels, each having half the extent in the azimuth direction as the original and each 
receiving the same number of photons as the original pixel. Adding these pixels together to match the 
original pixel improves SNRSA by 2 , the same result as adding two successive, separately processed 
images, so the improvement is the same whether the multiple images are taken coherently or incoherently.  
 
 
2.5 Space-Based SAL Design Equations 
 
 In Section 2.4, we showed that the total number of photons present at the detector from one pixel in the 
scene needs to be N0 ≈ 1/(ηdηh) for a worthwhile SNR in an image (multiple images can then be added to 
improve SNR in the usual way). In this section, we calculate the number of photons per pixel that would 
be received by an orbiting SAL. Parameters are given below for a baseline system using 2 µm light and 
for a variation using 10 µm light. The baseline system assumes a beam footprint of 10 m and a resolution 
of 0.1 m. The 10-m footprint exposes a basic limitation of SAL – supplying enough photons to cover a 
substantially larger footprint requires prohibitive laser power. A range of 1,000 km is chosen to give an 
easily scaled parameter that is approximately a geometric mean between the minimum and maximum 
distances (100 – 10,000 km) at which use is contemplated. The footprint size is assumed to be determined 
by the diffraction limit of the transmitting aperture. Circular apertures for the transmit and receive optics 
are assumed, but the area ratio of circles to squares (π/4) is ignored. Also ignored is the difference 
between the resolution measured perpendicular to the beam and measured on the ground. With the 
resolution measured perpendicular to the beam, the pixels are assumed square, that is, when the ground 
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surface is inclined at 45° with respect to the beam, the laser is assumed to have sufficient chirp capability 
to yield the same cross-track resolution as SA processing yields in the azimuth (along-track) direction. An 
orbital speed of 6 km/s is used because it is reasonably accurate for low and medium orbital altitudes. 
Even for extremely elliptical orbits, the speed of the satellite differs from 6 km/s by less than a factor of 
two as long as the orbit’s apogee is no more than about 10,000 to 12,000 km.  
 
 A degree of flexibility that is essential to an effective SAL is added by assuming that the beam can be 
rapidly repositioned, either by steering the beam or rotating the satellite, so that a footprint can be scanned 
more than once and/or neighboring footprints can be covered. This capability is needed to make up for the 
low SNR and small footprint inherent to SAL. Beam repositioning allows improvements in SNR by 
taking images from different parts of the speckle field and in area coverage by taking a mosaic of images. 
Further, we assume that coherence can be maintained for up to Nsc scans of the same footprint, so that 
multiscanning can also improve resolution. Nsc = 1 for normal scan mode operation, and in this mode SA 
processing is contained in the assumption that the pixel size p is one-half the diameter of the transmitting 
aperture DT as shown in Eq. (B5). Scanning the footprint Nsc times means that the platform traverses an 
Nsc-times-longer synthetic aperture and, therefore, that the resolution of the image can be Nsc times better, 
i.e., that the pixel size is given by p = DT/(2Nsc). If Nsc is allowed to become large, this process approaches 
spotlight-mode SA imaging [5], a subject that is not explicitly considered here, but for which the formulas 
given below remain valid. The total dwell time τdw is defined to be the time that a single point on the 
ground is illuminated by the beam. This is the time it takes to move the beam the length of the footprint at 
the speed of the orbiting platform, multiplied by Nsc to account for multiple scans. In order for all points 
in a single ground footprint to have complete phase histories, i.e., to be moved completely through the 
beam, the beam must move two ground footprints in each scan. Thus, the time it takes to generate a 
complete image of one footprint is 2τdw, referred to as the imaging time τim.  
 
 SAR systems normally use the same antenna for transmission and reception, but this is not essential for 
SA imaging. For SAL, the receiver will be assumed to have a different aperture, with K-times-larger 
diameter than the transmitter. The K-times-larger aperture collects K2 as much light from a ground pixel 
and has a K-times-smaller footprint than the transmitter. There must therefore be K2 heterodyne detectors 
in the focal plane of the receiver instead of one, and light from the first M/K pixels shown in Fig. 3 is 
detected by one of these, light from the next M/K pixels by another, and so on. Thus, the phase history of 
a pixel indicated in Table 1 must be traced through the outputs of K detectors. There is no problem with 
this in principle, “only” in engineering.  
 
 
Basic design parameters (general terms and a numerical example are given) 

  1) λ = 2 µm = 2 × 10-6 m   
  2) P = laser output power = 1 kW (time-averaged) 
  3) transmit optics area = DT

2 = (0.2 m) 2 
  4) receive optics area = DR

2 = K2 DT
 2 = (1 m) 2 (⇒ K2 = 25) 

  5) R = range to scene = 1,000 km = 106 m   
  6) V = platform speed ≈ 6 × 103 m/s (orbital altitude ≤ 10,000 km) 
  7) ρ = surface reflectance = 0.1 (changes with wavelength), Lambertian distribution 
  8) ηt = combined transmission efficiency of transmit and receive optics and atmosphere = 0.5 
  9) Nsc = number of scans of footprint = 1  
 
Derived quantities  

  1) F = footprint size = (λ/DT)R = 10 m (⇒DT = λR/F)  
  2) p = pixel size = DT/(2Nsc) = 0.1 m (from SA processing) 
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  3) Ω = collection solid angle = DR
2/R2 = [(1 m)/(106 m)]2 = 10-12 ster 

  4) τdw = dwell time = (Nsc × footprint length)/(platform speed) = NscF/V = 1.7 ms 
  5) τim = 2τdw = imaging time = 3.3 ms 
  6) M = number of pulses that illuminate one pixel = F/p = 100 
  7) τpul = pulse time ≤ τdw/M = Nscp/V = 17 µs 
 
 
 Derived quantities 6 and 7 are determined by the SA processing requirement that there be one 
transmitted pulse per azimuthal resolution element. The pulse repetition frequency (PRF) is 
 

 4 0.1m1PRF 6 10
6 km/ssc sc

V V
N p N p

    
= = ×     

    
pulses/s. (15) 

 
We saw in Eq. (4) that the Nyquist criterion requires that each pulse be sampled at least 2M times to 
recover M range resolution elements, so the data sampling rate SR must be SR ≥ 2M/τpul ≥ 2FV/(Nscp2) = 
12 MHz for the numerical example, a modest requirement.  
 
 To see what the frequency range of the laser’s chirp must be, we first observe that the two-way transit 
time of a wave front across a range increment δl is δt = 2δl/c. In Eq. (3), we saw that if the laser’s 
frequency is varied linearly through a total chirp range ∆fch in the time τpul ( f& = ∆fch/τpul), the change in 
beat frequency caused by the time increment δt is δf = 2(∆fch/τpul)(δl/c). We have already seen that the 
minimum detectable frequency difference is δf = 1/τpul, so, setting δl = p (if the surface is inclined at 45°, 
a range resolution of p implies an image resolution of p measured perpendicular to the beam and 2 p 
measured along the surface), we find     
 

  0.1m1.5
2ch
cf
p p

 
∆ = =  

 
GHz. (16) 

 
 The length of the synthetic aperture is the distance traversed by the platform in the dwell time. It can be 
written in a number of useful forms, some of which are 
 

  SA 2dw sc
RL V N F
p

λ
= τ = = . (17) 

 
The diameter of the transmitter needed to give the desired footprint and the consequent pixel size that 
results from SA processing are related by 
 

 10 m2 0.2
2 1,000 kmT sc

R RD N p
F F

   λ λ  = = =     µ     
 m. (18) 

 
The time-averaged laser power within the usable footprint is taken to be P/2. The power per unit solid 
angle scattered from the surface, assumed Lambertian, is then 
 

 ρ cosθ
2 π
PJ =    W/ster, (19) 
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where θ is an observation angle. We take cosθ ≈ 1, and multiply by the transmission efficiency to find 
that the power collected from the footprint and impinging on the detector is  
 

 
2

22 2
R

F t t
DP PP
R

ρ
= Ωη = ρη

π π
W. (20)  

 
The conversion factor to photons is 5 × 1024 × λ photons/j when λ is expressed in meters, so the photon 
rate is 5 × 1024 × λPF. The total number of photons per pixel impinging on the detector in one polarization 
is this rate multiplied by the dwell time, by the fractional area of the footprint covered by one pixel, and 
by ½ to account for polarization. Using the synthetic aperture condition Nsc = λR/(2pF) from Eq. (18) and 
τdw = NscF/V = λR/(2pV), this is   
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 (21) 

 
 Equations (18) and (21), along with the criterion from Eq. (13) that N0 = 1/(ηdηh) provides a near-
saturation SNR, contain most of the high-level information needed to decide if a notional design is 
adequate. The laser required to implement the design must have the capabilities given in Eqs. (15) and 
(16). We expect to find 1/(ηdηh) ≈ 2 – 4 in a well-designed system, so Eq. (21) indicates that the 
illustrative system is viable. Putting typical SAR parameters into Eq. (21), P ≈ 200 W, λ ≈ 2 cm, F ∼ 20 
km, p ∼ 2 m, DR ∼ 5 m, gives N0 ∼ 105 photons, which shows why SAR workers don’t worry about photon 
statistics. Equations (18) and (21) are design equations used to determine the hardware parameters (λ, P, 
DT, DR, Nsc) needed to produce the desired end-use parameters (p, F, R). We can substitute λR/F = DT 
from Eq. (18) into Eq. (21) to find that 
  

 
2 2

24
0 35 10

8
T R

t
pD DPN

R V
= × ρη

π
, (22) 

 
which shows how the signal scales with range, keeping constant resolution, once the hardware parameters 
are fixed. Observe that Eq. (22) is independent of λ. 
 
 Equation (21) shows the advantage of using the longest wavelength that can give the desired 
information and/or is technically feasible on a spacecraft: the longest wavelength tends, depending on 
choices of the other parameters, to produce the largest N0. The ability to use Nsc > 1 provides a means of 
achieving the same footprint and resolution with a longer wavelength by increasing λ and Nsc (and DT) 
proportionately in Eq. (18). This allows N0 to be increased and/or laser power to be reduced in Eq. (21), 
and reduces the PRF given in Eq. (15). An alternative to the baseline design that requires much less laser 
power and reasonable mirror sizes is λ = 10 µ, DT = DR = 1 m (common transmit and receive aperture, 
which provides the simplification that K = 1), and Nsc = 5. This does incur the relatively mild penalty that 
the reflectivity of most surface materials tends to be low (~ 5%) in this spectral region, but allows N0 = 5 
with P = 80 wt. If DR can be larger than one meter, laser power can be further reduced.       
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 The imaging time can be expressed in similar parametric form as 
 

  
3

2
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sc
im
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−
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τ = =
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 (23) 

 
so the area coverage rate is 
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 (24) 

 
 Kyle [9] evaluates a SAL system for the Earth in much the same way as presented in Eq. (21), but does 
not reduce the result to photons. In our notation, he uses P = 10 wt, λ = 10 µ, p = 0.1 m, DT = DR = 0.2 m, 
R = 200 km, ρ = 1, ηt = 1, and V = 8×103 m/s. Comparing his Eqs. (3) and (4a) shows that his footprint 
size, denoted D' by him in his Eqs. (2) and (3) and DI in his Eqs. (10) – (15), is D' = DI = F = 10 m. 
Putting these values into Eq. (21) and multiplying by two to include both polarizations yields N0 = 9 
photons, which makes the system viable by our definition (aside from the unrealistic assumptions about 
reflectivity and transmission efficiency, and no consideration given to degradation of beam quality due to 
propagation through the atmosphere), but falls about two orders of magnitude short of supporting the 
claim made in the fourth paragraph of his Section V that the CNRRF is 331 (Kyle does not consider 
speckle, so N0 = Np and his SNR is our CNRRF). Kyle’s basic error appears to be failing to recognize the 
discrepancy between (a) the bandwidth needed to match the pulse width of ∆t = 0.23 ns stated by him as 
necessary to give the range resolution specified in his Eq. (19), and (b) the bandwidth from his Eq. (5a) on 
which the noise expression in his Eq. (16) is based. A wider bandwidth in his Eq. (16) would result in a 
lower SNR in his Eq. (17). Stated as a time, rather than bandwidth, discrepancy, Kyle’s dwell time is τdw 
= DI/V = 10/8,000 = 1.25 ms, and he states that there are N2 pulses in this time, which, with N = 100 (as 
implied by a footprint of 10 m and a resolution of 0.1 m), implies a pulse time ∆t = 0.125 µs, nearly three 
orders of magnitude greater than 0.23 ns. Kyle does not address this discrepancy. If the 0.125 µs value is 
substituted into Kyle’s Eq. (15), we find DI = 10 m, as expected; if 0.23 ns is used we find DI = 5,430 m. 
Neither value matches Kyle’s statement in the sixth paragraph of his Section V that DI = 543 m.  
 
 
2.6 Object Motion Sensitivity 
 
 SAL is sensitive to motion in the scene, just as SAR is. Consider Fig. 3, the discussion of phase history 
in Section 2.3, and Appendix B, especially Eq. (B1). Suppose that pixel zero consists of an object moving 
toward the sensor at speed v. If, during the time τdw = NscF/V that the footprint takes to cross the object Nsc 
times, it moves a distance λ/2, then the phase of the light returned from this point of the scene changes by 
the unexpected increment -2π/M for each of the M pulses. This means that when the sum ΣA0Cm

*
mC  is 

evaluated to find the content of pixel zero, the phasors wrap to zero and the sum is zero instead of MA0: 
pixel zero appears to be empty (aside from noise and small contributions from other pixels). But when the 

*
mC  are indexed upward to pick out A1, the *

1mC +  in the sum ΣA0Cm
*

1mC +  compensate for the unexpected 
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phase change and the result is (M-1)A0: the content of pixel zero is added into pixel 1. Thus, the object 
speed required to move a pixel by one resolution element in the azimuth direction is   
 

 1
/ 2 0.6

2az
dw sc

VR Vv p
N FR R

λ λ
= = = =

τ
 mm/s,  (25) 

 
where p = DT/(2Nsc) = λR/(2NscF) has been used, and the numerical value is taken from the parameters in 
Section 2.5. Equation (25) applies to SAR as well as SAL, the difference between the two being only that 
SAL is expected to have one to two orders of magnitude better resolution (smaller p) than SAR, hence is 
more sensitive to object motion by the same factor.  
 
 The speed required to move a pixel by one resolution element in the range direction is found by 
evaluating the Doppler shift. An object moving toward the sensor at speed v imposes a Doppler shift of 
δfD = 2v/λ. We have already seen in Section 2.1 that the frequency increment in the heterodyne detection 
that corresponds to one range resolution element is δf = 1/τpul. We now write τpul = ατdw/M,  
where α, 0 < α ≤ 1, is the duty cycle of the laser (cf. derived quantity 7 in Section 2.5), and set δf = δfD to 
find that  
 

 1 1 60
2r az

dw

M Mv vλ
= = =

ατ α
 mm/s, (26) 

 
where α = 1 has been assumed for the numerical example. Equation (26) gives the speed needed to cause 
an object to appear in the adjacent range resolution element. If the object is near the edge of a footprint, 
then, depending on the direction of the motion, a speed a few times larger than vr1 may remove it from the 
image entirely. Since the footprint is M resolution elements across, a speed of Mvr1 = 6 m/s will remove 
the object from the image regardless of its true location. Since 6 m/s is about 13 mph or 11 knots, it 
appears that SAL will not be useful for observing ships at sea or, because of wave motion, the sea surface 
itself. 
 
 
2.7 Isoplanatic Angle of the Atmosphere 
 
 The primary atmospheric effect of concern to SAL is distortion of the returning wave front, caused by 
turbulence. It is well known that if two light rays pass side-by-side through the atmosphere, coherence 
between them will be nearly unaffected as long as the distance between them does not exceed a small 
value referred to as the coherence, or isoplanatic, length, typically 0.1 – 1 m, depending on the state of the 
atmosphere and the wavelength of the light. To maintain phase coherence for the entire time of image 
formation, the transmitted pulses must all travel through an isoplanatic region of the atmosphere. This 
means that, as viewed from the ground observation point, the angular motion of the platform must remain 
within an isoplanatic angle of the atmosphere during the period in which the pulses are transmitted. If this 
is not the case, then the phase of the last returned pulse will differ from that of the first by an unknown, 
atmosphere-dependent amount and the output of the matched filter will not be the desired quantity.  
At λ = 2 µ, the isoplanatic angle of the atmosphere is typically ∆θiso = 20 – 40 µrad (at a good site) and 
scales as λ6/5. The angular speed of the platform with respect to the ground is V/R, so the time it takes the 
platform to cross an isoplanatic angle is  
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 Comparing Eqs. (23) and (27) shows that 
 

 ( )
1/ 52 0.1m0.5 1.0im

iso p
τ  µ = − ×   τ λ   

, (28) 

 
which indicates that our example system is marginally within the limits imposed by the atmosphere, at 
least under good conditions. Park and Shapiro [7] reached a similar conclusion.  
 
 If τim > τiso, phase errors introduced by the atmosphere begin to enter. Now, as discussed in Section 2.3, 
phase errors introduced by platform jitter may be correctable if they are sufficiently slowly varying, and 
at first glance the same would appear to be true for atmosphere-induced phase errors. But jitter-induced 
phase errors are constant across the beam’s ground footprint (i.e., are the same for all pixels, which is 
what makes their correction possible), while atmospheric phase errors are constant only across a 
coherence length of the atmosphere (typically < 1 m), and can vary considerably across a footprint 
(typically ≥ 10 m). Removing errors of this type by data processing is much more problematic. If DR is 
sufficiently greater than DT that one resolution element of the receiving optics is about the same size as 
one coherence length, then correcting atmospheric phase errors in data processing appears feasible, but 
again adds the complication, as discussed in Section 2.5, that multiple heterodyne receivers must be 
placed in the focal plane. Further consideration of this problem shows that adaptive optics are of no use to 
a space-based SAL because the atmosphere is close to the scene, not close to the receiver (the opposite of 
the case in astronomy). This means that phase errors cannot be corrected in the optics’ pupil plane – 
which is what adaptive optics do. For an air-based SAL, adaptive optics may be of some use, but would 
be a complicated means of achieving a probably marginal performance improvement.  
 
 Observe that Eq. (28) depends almost exclusively on resolution and suggests, depending on the 
effectiveness of phase error correction techniques, a minimum attainable resolution for Earth 
observations: if the desired pixel size is too small, then the size of the SA is too big, and the paths of the 
light rays cannot be confined to a sufficiently small range of angles as they pass through the atmosphere. 
  
 
3. LABORATORY DEMONSTRATION 
 
3.1 Background 
 

One-dimensional imaging with either FM chirping or reconstructed phase history is fairly 
straightforward in the optical domain. Detection of 1-D range information with an FM-chirped system can 
be done relatively easily since tracking of the optical phase is not required. Also, 1-D image information 
from reconstructed phase history is relatively easy to obtain with a single-frequency laser. Thus, 1-D ladar 
systems using pulse-echo [17], FM chirping with coherent detection [17,18], and SA processing with 
reconstructed phase histories [2,9,19] have been reported. Also a range-Doppler ladar system [20] and a 
stepped-frequency, tilt-mirror system [10] requiring 2-D scanning with a potential to produce 3-D images 
have been investigated. But full 2-D implementation of a synthetic aperture imaging ladar, a long-sought 
goal, has not previously been demonstrated.   
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 A number of difficulties prevent a straightforward duplication of SAR 2-D imaging techniques in the 
optical domain. Because the optical field cannot be detected directly, coherent detection must be used to 
retrieve the range and optical phase. The phase tracking has to be done on a micron instead of on a 
centimeter scale, the received signal is very weak, and atmospheric turbulence effects play a role. We 
report here the first demonstration of a full 2-D SAL system using both phase history reconstruction and 
range information from an FM-chirp waveform.  
 
3.2 The Experiment 
 

Figure 4 illustrates our SA system geometry. The illumination source was a New Focus 6328HP 
external-cavity single-mode tunable laser with approximately 5 mW of power at 1.55 µm, measured at the 
fiber output from the laser. The frequency was varied with a tilting-mirror/grating combination, providing 
a linear wavelength sweep of 10 nm in 1 second. Ninety percent of the light was used for the target 
interferometer, while 10% was used for the reference interferometer and HCN cell. The target beam was 
propagated through a length of single mode fiber containing a circulator. To form a heterodyne detection 
system, the 4% reflection from the end of the fiber was used as the LO. The divergent, diffraction-limited 
beam at the output of the fiber had a power of about 3 mW. A curved wave front, as required for SA 
processing, illuminated the target. A lens with a focal length of 8 cm reduced the curvature of the beam at 
the target, while keeping the size of the beam ≈ 1 cm. This arrangement allows simulation of longer 
diffraction distances with shorter working distances for convenience in the laboratory. For our 
experiment, this setup simulated an effective aperture of about 150 µm, at 1 m range. The actual target 
range was 30 cm. The target, a photograph of which is shown in Fig. 5, consisted of the letters “NRL” cut 
out from reflecting tape and mounted on an aluminum plate at a 45-degree angle of incidence in the Y 
direction (perpendicular to the simulated direction of flight) to allow oblique illumination. Flight was 
simulated by translating the target in the X direction in 50 µm increments with a computer-controlled 
translation stage. This allows each target point to sample different parts of the curved wave front, thereby 
generating a full phase history. The laser was scanned in wavelength over a span of 10 nm at each X 
position. Light backscattered from the target was collected by the lens and returned to the transmitting 
fiber. The fiber-optic circulator directed the light that entered the fiber, along with the LO light, to the 
InGaAs photodiode detector. The resulting heterodyne signal was digitized and stored on a computer for 
processing. To acquire a 1×1 cm image, 200 frequency sweeps with one sweep per 50 µm step were 
performed.  Acquisition of a complete image required a total of 6 minutes.  
 

Image information in the Y (= range) direction is determined from the beat frequency between the 
return signal and the LO. To obtain 2-D information, both the amplitude and the phase of the heterodyne 
signal were digitized and stored. The amplitude of the beat frequency is used to assign brightness to the 
derived position in the final image. Spatial resolution in the Y direction is determined by the total 
frequency range of the chirp waveform and is independent of range. The heterodyne signal IH for a linear 
frequency chirp is given by [cf. Eq. (3) of Section 2.1]  

 

 ( ) cos 2 2 S
H L S S

z
I t E E f t

c
∆ ∝ π × + ϕ 

 
& ,            (29)  

 
where EL and ES are the local oscillator and signal fields, respectively, f&  = ∆fch/τpul is the chirp rate 
resulting from sweeping the laser through the frequency range ∆fch in the pulse time τpul, ∆zS is the 
distance between the end of the fiber and a resolved spot on the sample, c is the speed of light, t is time, 
and ϕS is an arbitrary phase . Observe that the time delay between the LO and the light returned from the 
scene is ∆t = 2∆zS/c.  
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Fig. 5  The target: NRL in reflective 

tape on aluminum plate 
 
 
 The heterodyne beat frequency in Eq. (29) is vH = f& ∆t = f& 2∆zS/c = (2∆zS/λ2)(dλ/dt), where λ is the 
instantaneous wavelength and df = (c/λ2)dλ has been used. In our case, the chirp rate is 10 nm in 1 second 
(τpul = 1 s) and ∆zS = 30 cm, so νH = 2.5 kHz. With τpul = 1 s, the heterodyne detector is capable of a beat 
frequency resolution of 1/τpul = 1 Hz (as explained in Section 2.1), corresponding to a range resolution of 
120 µm [δvH = (2/λ2)(dλ/dt)δ(∆zS) ⇒ δ(∆zS) = 120 µm for δvH = 1 Hz]. However, before correction, 
resolution is much worse, partly because the laser’s scan is linear in wavelength, not in frequency, but 
mostly because the linearity of the wavelength scan is, according to the manufacturer’s specification, only 
about 1%. In practice, we found a 32 Hz (instead of 1 Hz) beat frequency width for the return from a 
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point object, resulting from nonlinearities over the 10-nm wavelength scan. To overcome this factor-of-32 
loss of resolution, we sent ≈ 5% of the light into a reference interferometer, as shown in Fig. 4, with ∆zR ≈ 
∆zS  + 1 cm. In the reference interferometer, the object is a flat mirror perpendicular to the beam, so there 
is only one range element. Therefore, variations in the heterodyne beat frequency can be due only to scan 
nonlinearity, so the reference interferometer can be used to monitor scan non-linearity and correct its 
effects. This device would not be needed in an operational system using a highly stabilized laser. When 
the signals in the target and reference interferometers are multiplied together and passed through a low-
pass filter (i.e., double-heterodyned; this is done digitally in the computer) only the beat frequency 
variations caused by different ranges remain in the signal, which is the same as Eq. (29) but with the 
range ∆zS replaced by the range difference ∆zD = ∆zS - ∆zR :  
 

 ( ) cos 2 2 D
H L S S

z
I t E E f t

c
∆ ′ ∝ π × + ϕ 

 
& . (30) 

 
For our system, ∆zD ≤ 1 cm. The heterodyne frequency under these conditions is reduced to 83 Hz with 
the error due to chirp nonlinearity being essentially eliminated. Since the sample is at ≈ 45-degree angle 
of incidence, the resolution in the target plane is decreased by a factor of 1.4. The resolution in the Y 
direction projected on the target is thus 120 × 1.4 = 170 µm.  
 
 In order to prevent random phase fluctuations due to air currents during data collection, the experiment 
was done in an enclosed section on a floating optical table. Small variations in the starting wavelength of 
different wavelength sweeps can produce artifacts in the phase history that corrupt SA image generation. 
Therefore, SAL 2-D imaging requires control of the laser wavelength at the start of each scan to a highly 
reproducible value. For SA processing to work, the resulting phase fluctuations need to be substantially 
smaller than 2π. In the 1.55 µm range, HCN has a number of very narrow absorption lines. About 5% of 
the light from the laser was sent through an HCN cell and data collection is triggered by the sudden 
change in transmission from one of these lines. The resulting starting frequency is reproducible to about 
0.01 nm, thereby providing scan-to-scan phase coherence much better than one radian.  
 
 Image information along the X direction is provided by analysis of the stored phase values for each Y 
position, as discussed in detail in Section 2.3. As the curved wave front of the diffraction-limited laser 
beam crosses each spot of the target, a unique phase signature is generated during the heterodyne 
detection.  Analysis of the phase data yields the X position from the unique phase signature. The best 
theoretical resolution in the X direction is equal to ½ the diameter of the transmitting aperture and is 
range independent [21; see also Eq. (B5)]. For our system this corresponds to 75 µm (= ½ the diameter of 
the 150 µm effective aperture). The 1 cm beam diameter at the target is diffraction-limited by the size of 
the effective aperture and is therefore the resolution the system would have without SA processing. In this 
case SA processing improves resolution by a factor of more than 100: (1 cm)/(75 µm) = 133. To retrieve 
the image from the data that were stored on a computer, standard SA processing was carried out, as 
explained in Section 2.3.  
 
 Figure 6 shows the raw data before SA processing, with 200 × 200 points showing the real part of the 
Fourier transform of I'

H along the Y axis, as a function of X position. The frequency varies from 0 to 
200 Hz. The phase information is spread out over the length of the picture. Figure 7 shows the result of 
SA processing. Since the target was slightly longer than 1 cm in the X direction, two SAL images, 
overlapping by 5 mm, were combined to create the figure. As part of SA processing, we also compensated 
for the laser beam’s Gaussian profile (cf. Section 2.3). As expected for coherent detection, the image 
consists of speckles. The X and Y resolution in the image, estimated from the speckle size, is about 
90 µm by 170 µm, in good agreement with the predicted 75-µm by 170-µm resolution of SA processing. 
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Fig. 6  Real part of the Fourier transform of the raw 
data, before SAL processing 

 
 

Fig. 7  Processed image of the target shown in Fig. 5. 
Vertical direction is the projected range Y and 
horizontal direction is X. 
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4. SUMMARY 
 
 This report argues the theoretical feasibility of an orbit-based SAL at IR wavelengths for achieving 
centimeter-class resolution, an argument backed up by the first laboratory demonstration of 2-D imaging 
with a scan-mode SAL. The relatively restricted set of observation ranges appropriate for an operational 
SAL, a few hundred to several thousand kilometers, is suited to the orbit-based surveillance problem. At 
shorter ranges, conventional imaging in visible light can provide high resolution, at longer ranges, 
excessive laser power and/or real collecting aperture size is required. SAL’s limitations of low SNR and 
area coverage for single-look imagery can be alleviated by multiple images and mosaicking of scenes.  
 
 The effect of photon counting statistics on SNR for SAL has been developed. Equations (13) and (14) 
show that a low photon rate imposes a much greater SNR penalty on SAL than on a direct detection 
system. For SAL, if laser power and receiving aperture are not high enough to produce an SNR close to ½ 
in single-look imagery, then, compared to direct detection, a much larger number of repeated images must 
be combined to achieve an SNR approaching unity. (But direct detection requires a much bigger real 
aperture to achieve the same resolution.)  
 
 Various engineering difficulties have been touched upon in the course of the discussion. The most 
obvious are the laser technology issues of developing high-power, space-qualified lasers with fast chirp 
rates, pulse repetition frequencies of tens or hundreds of kilohertz, and coherence times up to tens or even 
hundreds of milliseconds. Another major engineering problem is providing line-of-sight pointing control 
consistent with the desired footprint size and capable of executing multiple scans of the scene in order to 
produce some combination of increased SNR, increased area coverage, increased resolution, and reduced 
laser power. As stated in Section 2.3, generating the matched filter coefficients for SA signal processing 
requires compensating for platform vibrations to an accuracy better than the wavelength of the light used, 
a problem that requires sensitive accelerometers but will be easier to deal with for the smooth motion of a 
spacecraft than for an airborne system. To an extent, this problem can be handled in post-processing by 
the focusing methods developed for SAR. Yet another problem is the need to place many heterodyne 
detectors in the receiver focal plane when DR > DT.  
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Appendix A 
 

TWO-DIMENSIONAL GAUSSIAN PROBABILITY 
 
 
 Following Goodman,* a complex number, aexp(iθ), is called a phasor. Goodman calculates the two-
dimensional probability density function that describes the sum of a large number of random phasors. 
There are two points in this paper to which this PDF is relevant: finding (1) the frequency content of shot 
noise and the consequent variance with which a detected number of photons is measured by heterodyne 
detection, and (2) how contributions from the pixels in the beam’s ground footprint add up to make the 
measured signal. In both cases we need to know the sum of N of these random phasors. The sum is an 
origin-centered 2-D Gaussian distribution described by σ2 = N〈a2〉/2, where 〈a2〉 is the expectation value 
of a2 over the distribution from which a is chosen, and phase is assumed random and uniformly 
distributed over (-π, π). Adding a complex value s, representing a signal, to this distribution displaces its 
center a distance |s| from the origin, and we may, without loss of generality, take s to be real and non-
negative, so the PDF of the sum plus signal is  
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, (A1) 

 
which is taken from Goodman’s Eq. (2.9-18) with minor changes in notation. x and y represent the real 
and imaginary parts, respectively, of a complex number. In extension of the definition of variance for a 1-
D Gaussian distribution, the variance of this PDF is  
 
 [ ] 2 2 2 2 2Var ( , ) ( ) ( ) 2P x y x s y x s y≡ − + = − + = σ . (A2) 

 
When s = 0, (2σ2)½ = N½arms is the rms value of the magnitude of the sum.  
 
 The value of σ2 for heterodyne detection is found by evaluating shot noise. The easiest way to see that 
shot noise results in white, Gaussian noise in frequency space is to write the current produced in a 
detector of quantum efficiency ηd by N impinging photons as  
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d N
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=
= δ −∑  , (A3) 

 
where qe is the electronic charge, the sum is over the ηdN detected photons, and tn is the creation time of 
the nth electron. The Fourier transform of this current is 
  

                                                 
* J.W. Goodman, Statistical Optics (John Wiley & Sons, New York, 1985).  
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Since the tn are randomly distributed, the second sum in Eq. (A4) is the sum of a large number of phasors 
with (constant) amplitude qe and random phase 2πftn. Therefore, independently of f, the result is an origin-
centered 2-D Gaussian distribution described by Eq. (A1) with s = 0 and  
 
 2 2 / 2e dq Nσ = η     . (A5) 
 
A random number chosen from this distribution is the noise that is added to the DFT component shown in 
Eq. (4), and, divided by (qeηd)2ηhNL, appears as the noise term Em in Table 1.  
 
 Equation (A4) uses the continuous Fourier transform as an easy way to reach the desired result. If the 
idealized response δ(t - tn) is replaced by the actual detector response having finite width, and this width 
is reasonably densely sampled, the same result is obtained with the discrete Fourier transform used in Eq. 
(4). The reader who wishes to pursue this topic further may consult Lucke* where the properties of 
photon-limited noise in the DFT of spatial data are explicated at length. The discussion there applies also 
to the DFT of temporal data, and that paper’s Eq. (26) is the equivalent of Eq. (A5) once it is recognized 
that the total number of photons detected is closely approximated by ηdNL and that the error figure shown 
in this paper’s Fig. 1 is circular (so that, as described in the other paper, S2k = 0).  
 

                                                 
*  R.L. Lucke, “Fourier-space Properties of Photon-Limited Noise in Focal Plane Array Data, Calculated with the 

Discrete Fourier Transform,” J. Opt. Soc. Am. A 18(4), 777 – 790, 2001. 
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Appendix B 
 

SYNTHETIC APERTURE PROCESSING AND RESOLUTION 
 
  
The pixel 0 column of Table 1 shows that the matched filter gives a value of MA0 for the desired pixel. To 
justify the claim that the other pixels add to “≈ 0”, we first examine the pixel 1 column, which is   
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where Cm = exp{2πi[(m - M/2)p]2/λR} has been used. The sum on the right side of the second equality is 
the sum of M – 1 unit-amplitude phasors with phase increment ∆φ = 4πp2/λR. The sum is exactly zero – 
the phasors “wrap” to zero – if the phase of the last phasor is 2π - ∆φ greater than the phase of the first, 
i.e., if  
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or 
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whence 
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where F = Mp is the size of the illuminated footprint and M >> 1 has been used. Further, if F is 
determined by the diffraction-limited resolution of a transmitting aperture with diameter DT, i.e., F = 
λR/DT, we find  

 
2
TD

p = , (B5) 

 
for the resolution of an SA system. Equation (B5) is the same as, for example, Eq. (1.2.9) of Curlander 
and McDonough.*  
 
                                                 
* J.C. Curlander and R.N. McDonough, Synthetic Aperture Radar: Systems and Signal Processing (John Wiley & 
Sons, New York, 1991). 
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 Equations (B1) through (B3) are exact only if pixel 1 consists of a point object at its center. Since the 
return is actually spread out over the pixel, these equations are approximate, but the basic principle 
remains: the pixel 1 column of Table 1 makes only a small contribution to the last row because the 
phasors wrap to (nearly) zero. In the pixel 2 column, the phase increment is twice as big and the wrapping 
happens faster. The pixel M - 1 column makes a small contribution because it contains only a single term. 
Intermediate columns make small contributions by a combination of these effects. Finally, all these small 
contributions are random phasors that add up across the bottom row of the table to give a sum that is 
small compared to the coherent sum, MA0, from pixel 0.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 




