
 

 

Abstract-Electric properties of tissues depend on many factors, 
including measurement frequency and temperature. Properties 
differ also in vivo and in vitro situations. We have collected 
conductivity values from several studies and compared the 
values measured from living tissue and tissue samples. The 
results show that the resistivity ratio of grey and white matter 
increases 36% after death, and the resistivity values increase 
over 100%.   
Keywords - Conductivity, brain tissue, source location 

 
I. INTRODUCTION 

 
The electric properties of tissues have a very important 

role in biomedical engineering. These properties determine 
the electrical current pathways through human body. If these 
properties are known, electrical models can be constructed, 
for example, to represent the electrical activation of the heart 
or the conduction of the brain activity to the scalp surface.  

With resistive model of the head, the information given 
by electroencephalography (EEG) can be effectively 
processed [1], [2], [3]. Models can be applied to the 
simulation of electric fields inside the head. For example, an 
electric source (dipole or set of dipoles) can be inserted 
inside the model and thereafter the electric field distribution 
can be computed. Further, the measured EEG signal can be 
used for obtaining the source location in the volume 
conductor. For example, epileptic loci can be located. In 
principal, accuracy of these computations is dependent on 
the accuracy of the volume conductor i.e. the number of 
compartments and their conductivities [4]. In [5] the results 
indicated that a 10% decrease in tissue resisitivity cause 3.0 
– 4.1% differences in the sensitivity distributions of the 
selected 3 EEG leads. In modeling the important factor is the 
ratio between various conductivities. The ratio of skull and 
brain resistivites is 15:1 rather than the commonly used ratio 
of 80:1 [6]. In [7] the estimated resistivity ratio of skull and 
brain is 14:1. 

There have been recent advances in source localization 
techniques. The amount of electrodes in EEG studies has 
been increased. Instead of the traditional 21 electrode 10–20 
system, 64 or more electrodes are usually used. In some 
studies even 512 electrodes are utilized. This improves the 
spatial accuracy, thus giving more information about brain 
functions. However, most researchers continue to take 
conductivity parameters from standard references [8], [9]. 
The standard reference values are usually measured from 
tissue samples. An increase in tissue resistivity with time 
after death has been reported in [8], [10].  Literature values 
are also measured at much higher frequencies than EEG 
frequencies.  

II. METHODOLOGY 
 
Previously we have made in vivo resistivity 

measurements with needle electrode from 9 patients with 
brain tumors [11]. Due to the location of tumors and selected 
surgical paths, it was not possible to measure both grey and 
white matters with every patient. The number of 
measurements ranged from 1 to 13 for each tissue measured. 

In addition to our own in vivo measurements [11], 
resistivity values were collected from various studies and 
reviews to table 1. If there were measurements made with 
more than one frequency, the measurements with the lowest 
frequency were chosen. If there were multiple measurements 
with same frequency, then average was taken. From [12] 
measurement frequency of 50 kHz was selected for 
comparison purposes. 

Some of the tissue resistivity values were measured from 
animal tissues, for example from dogs, cats, or rabbits. The 
measurement temperatures and species for every study are 
shown in table 1. It is also mentioned if the measurement 
was done from tissue samples or from living tissues. 

The frequency dependence of tissue resistivities can 
clearly be seen in table 1. For tissues, both relative 
permittivity (ε) and conductivity (σ) are strong functions of 
frequency. This frequency dependence (dispersion) arises 
from several mechanisms. For a typical soft tissue, different 
mechanisms dominate at different frequency ranges [13]. 
Electrical properties chance with frequency in three distinct 
steps and their dielectric constants reach enormous values at 
low frequencies. These steps are known as alpha (α), beta 
(β) and gamma (γ) dispersions [14]. The low frequency α 
dispersion is associated with ionic diffusion processes at the 
site of the cellular membrane. The β dispersion, in the 
hundreds of kilohertz region, is due mainly to polarization of 
cellular membranes, which act as barriers to the flow of ions 
between the intra and extra cellular media. Other 
contributions to the β dispersion come from the polarization 
of protein and other organic macromolecules. The γ 
dispersion, in the gigahertz region, is due to the polarization 
of water molecules [15]. Further information from these 
dispersions can be found in [9], [13], [14], and [16]. 
Parametric model to describe the variation of dielectric 
properties of tissues as a function of frequency has been 
developed [17]. 
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III. RESULTS 
 
Table 1 shows the resistivity values reported in the 

literature. The resistivity of living tissue seems to be smaller 
than the resistivity of tissue sample i.e. dead tissue. This 
result agrees with [8] and [10].  

The average of all grey matter values was 4,11and 
average of all white matter values was 5,85. Standard 
deviations were 2,37 and 3,92, respectively.  

For better approximation of tissue resisitivity values in 
EEG frequency region, averages and standard deviations 
were calculated from values measured at maximum of 100 
kHz. Measurements from tissue samples and from living 
tissue were treated separately. For dead grey matter at lower 
frequencies average was 5,96 and standard deviation 1,42. 
Dead white matter had an average of 9,02 and standard 
deviation of 2,61. Only one source had separated the white 
and grey matters when measuring the resistivity from living 
brain. Value for living grey matter was 3,51 and for living 
white matter 3,91. 

The ratio of white matter resistivity / grey matter 
resistivity had an average of 1,51 with dead tissues. Standard 
deviation was 0,21. The same ratio for living tissues in [11] 
was 1.11. The resistivity ratio of grey and white matter 
changes increases 36%, and the resistance values increase 
over 100%.  

 
IV. DISCUSSION 

 
Tissue resistivity values depend on several factors. The 

most important factor is the frequency of the measurement 
current. The resistivity values decrease when measurement 
frequency increases. In addition tissues have three 
characteristic dispersion regions where resistivity decreases 
rapidly: alpha (α), beta (β), and gamma (γ) dispersions. 
These dispersion regions are due to ionic diffusion processes 
and polarization of several different molecules. Usually 

measurement frequencies are much higher than EEG 
frequencies, which are from 0 to 70 Hz.  

Measurement of tissue resistivities at higher frequencies 
is also important, because frequencies between 0.1 – 100 
MHz have therapeutic and diagnostic uses in medicine. 

Temperature of measured tissue is also an important 
factor. For example, it was reported in [18] that 
cerebrospinal fluid has approximately 23% higher 
conductivity in 37 0C than in 25 0C. The grey and white 
matters of the brain tissue have also temperature dependence, 
which is shown with dog brain in [19] and with rat brain in 
[20]. 

Tissue resistivity increases after death. In [10] it was 
reported that there is a decrease of 62% in the current 
reaching the brain after death, compared with the situation in 
the living piglet. 

In [7] the estimated resistivity ratio of skull and brain is 
14:1. The same ratio calculated from the results of in vivo 
studies [6] and [11] is 17:1. In [5] the change in skull brain 
resisitivity ratio from 32:1 to 16:1 an average of 28% 
difference in three leads was produced. These results support 
the use of 15:1 skull brain resistivity ratio instead of the 
traditionally used ratio of 80:1 in head modeling studies. 

 
V. CONCLUSION 

 
Resistivity values measured from living tissues should be 

used in source location studies. Dead tissues have over 100% 
greater resistivity and the ratio of white matter and grey 
resistivities changes from 1,51 to 1,11 with 50 kHz 
measurement frequency. 

Living tissue resistivity values can vary between 
individuals and can be affected by pathological conditions 
such as nearby tumors. Reference [22] indicates that possible 
tumors should be taken into account when source location 
studies are done.  

 
 
 

TABLE I 
RESISTIVITY VALUES COLLECTED FROM OUR OWN MEASUREMENTS [11] AND LITERATURE 

Reference Author(s) Grey matter (Ωm) White matter (Ωm) Notes 

[8] Geddes & Baker 1967 4,38 (1 kHz) 7,46 (1 kHz) Rabbit’s brain. Presumably measured from tissue 
samples at 390C. 

[19] Foster et al. 1979 2,67 (10 MHz) 3,33 (10 MHz) Tissue samples from dog’s brain at 370C. 

[22] Stoy et al. 1982 5,88 (100 kHz) 8,33 (100 kHz) Tissue samples from dog’s brain at 370C. 

[23] Steel & Sheppard 1985 0,50 (1,8 GHz) 0,50 (2,4 GHz) Tissue samples from rabbit’s brain at 370C. 

[24] Tay et al. 1989 4,16 (3 kHz) whole brain Direct measurement from living cat’s brain at body 
temperature. 

[16] Pethig 1991 2,20 (27.12 MHz) 3,00 (27.12 MHz) Tissue samples from dog’s brain at 370C. 

[12] Gabriel et al. 1996b 7,84 (50 kHz) 12,89 (50 kHz) Tissue samples from human brain. 

[20] Bao et al. 1997 5,88 (100 kHz) 7,40 (100 kHz) Excised rat’s brain at 370C 

[7] Ferree & Tucker 1999 4,00 (1 kHz) whole brain Human head at body temperature. Value estimated 
with spherical model. 

[11] Latikka et al. 2001 3,51 (50 kHz)  3,91 (50 kHz) Direct measurement from living human brain at body 
temperature.  
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