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Abstract - The purpose of this study was to design a new 
magnetic coil (MC) for effective functional magnetic 
stimulation (FMS) of inspiratory muscles in human subjects.  
Part 1 of the study emphasized on the technical procedure of 
the coil design, and part 2 demonstrated the efficacy of the 
resulted coil in producing inspiratory functions.  Part 2 is 
reported in another paper titled “Racetrack magnetic coil for 
functional magnetic stimulation of the inspiratory muscles –
toward magnetic assisted ventilation”. The primary goal for 
the new MC was to maximize nerve activation from T1 to T6 
spinal nerve roots, and minimize activation of other nerves 
and muscles. Through the process of coil design, a racetrack 
shaped MC was conceptualized and produced.    
Keywords: inspiratory muscle, assisted ventilation, magnetic 
stimulation. 

 
I. INTRODUCTION 

 
 Magnetic stimulation has been used in recent years as a 
noninvasive method for stimulating the nerves.  In recent years, 
investigators have used magnetic stimulation to evaluate the 
respiratory system by stimulating the phrenic nerves [1]-[2] and 
thoracic spinal nerves [3].  In addition, studies have demonstrated 
significant inspired volume generation by FMS of the inspiratory 
muscles as well as significant expired pressure production by 
FMS of the lower thoracic nerves in dogs [4] and significant 
improvements in expired function in patient with SCI [5].  
Furthermore, FMS was applied to restore the impaired expiratory 
function in SCI patients using a 4-week FMS expiratory muscle 
training program [6].  After conditioning the expiratory muscles 
for four weeks, significant improvement in voluntary MEP 
(16%), FEF (23%) and ERV (73%) was observed.   
 Conventional round coils in various diameters and winding 
structures served very well for the stimulation of different muscle 
groups, for example detrusor muscles [7] and expiratory muscles 
[5]-[6].  With regard to inspiratory muscle stimulation, these coils 
were found ineffective in producing meaningful pulmonary 
function in our preliminary tests in human subjects and, more 
often than not, the results were inconsistent [3].  The reason may 
be that the rigorous contraction in shoulder, arm, and back 
muscles or even expiratory muscles during magnetic stimulation 
interfered with inspiratory muscle movements during inhalation.  
The need for designing a MC to selectively stimulate inspiratory 
muscles while minimizing activation of other muscle groups is 
apparent.   
  

 
 

II. MATERIALS AND METHODS 
A. Experimental E Measurements 

 
 The induced E in the proximity of the MC was systematically 
mapped for the new coils.  The field probes were a bi-polar probe 
manufactured in our laboratory and a gaussmeter probe (TBL 
STE92-0404).  The MC was placed below a plastic container 
with dimensions of 90x60x30 cm.  The container was filled with 
a resistive saline solution approximately equal to that of human 
tissue, e.g., 500 ohm-cm.  The bipolar electric field probe was 
placed into the saline filled plastic container located directly 
above the MC.  The electrodes of the probe were 0.1cm apart and 
insulated everywhere except at their tips.  The signal generated 
from this probe was displayed and digitized by an oscilloscope 
(HP 54602) and synchronized with the reading obtained from the 
gaussmeter (TBL 9200). The data was then stored in a PC for 
data analysis.  This data included on-screen visualization of the 
field distribution along a given plane.  
 The electric field measurements were made when the 
magnetic stimulation parameters were fixed at 20% of maximal 
intensity and 20Hz frequency. In order to measure ∂Vy /∂y with 
respect to the MC, the two electrodes (1 and 2) of the electric 
field probe were placed parallel to the y axis.  The probe was 
then moved along the x axis to measure E.  The voltage sensed at 
electrode 1, V1, minus the voltage sensed at electrode 2, V2, 
became the voltage difference, ∆V12, between the two electrodes.  
This was monitored by inserting the two electrodes into channels 
1 and 2 of the oscilloscope.  If the distance, d, between points 1 
and 2 was small, ∂Vy/∂y at the mid-point between the two 
electrodes could be approximated as ∆V12/d.  Furthermore, 
changes in ∂Vy/∂y along the z axis (vertical to the coil plane) 
were measured at the center of the coil. 
 
B. Computer modeling of magnetic coils 

 
A computer program FlexPDE, developed by PDE Solution, 

was used to simulate the induced electric field and nerve 
activation function generated in saline solution.  FlexPDE is a 
general solver for the solutions of systems of partial differential 
equations such as heat and Maxwell’s equations.  This solver 
incorporated a numerical technique based on the finite element 
method to solve unknowns such as induced electrical fields.  To 
arrive at solutions for the electric field component Ey (y is the 
orientation of nerve) induced by magnetic stimulation, Maxwell’s 
equations (Eq. 1 a-d) were simplified in the following manner: 
 

HjE ωµ−=×∇        (1a)  
EjJH ωε+=×∇        (1b) 
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ερ=⋅∇ E        (1c) 
0=⋅∇ H        (1d) 

 
Curling both sides of Eq. 1a and combining with Eq. 1b, if the 
medium is single and uniform then we have 
 

)()( EjJjHjHjE ωεωµωµωµ +−=×∇−=−×∇=×∇×∇ (2) 
EJjEE µεωωµ 22)( +−=∇−⋅∇∇      (3) 

 
With ρ = 0, assuming no charge source,  Eq. 3 becomes 
 

022 =+−∇ EJjE µεωωµ       (4) 
Separate the real part and imaginary part of E and J as E = Er + 
jEi  and J = Jr + jJi or σEr + σjEi and bring them into Eq. 4 

      
0)()()( 22 =+++−+∇ iririr jEEjEEjjEE µεωωµσ    (5) 

 
Equate the real part and imaginary part of Eq. 5 separately to 0 
 

022 =++∇ rir EEE µεωωµσ      (6a) 

022 =+−∇ iri EEE µεωωµσ      (6b) 
 
Equations 6a and 6b can be simplified to a 2-dimensional 
problem in the case of a round coil.  However, if the coil is not 
round, such as a racetrack coil, the problem is then a 3-
dimensional one.  Since the primary variables of interest are Ei,x 
and Ei,y, Ez is neglected and Eq. 6a and 6b are reduced to the 
following equations, 
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For the purpose of computer modeling, the fourth term of Eq. 7b 
and 7d can be rewritten as �ωµ(σEr,x+ Jr,x) and �ωµ(σEr,y+ Jr,y), 
respectively, to account for the operating current in the coils.  Jr,x 
and Jr,y are the current density in the coil region in the computer 
model in perspective direction, and they are 0 everywhere else.   
Solving a problem with FlexPDE required physical description of 
the problem.  To describe the problem, it was necessary to define 
the boundaries, place the material properties in appropriate 
regions, and assign the excitations and operation frequency.  The 
current I in the coils was set randomly at a magnitude of 10000A 
and frequency of 5000Hz in all the computer modeling.  A single 
uniform medium, saline, was assumed in the modeling.  A 3-D 
model and a 2-D were constructed to model the coils.  Two coils 
as shown in Fig. 1, a round 12.5cm and a racetrack coil 
(8cmx16cm) were modeled.  The current is assumed to be 
flowing uniformly from the center to the circumference in these 
coils.   

 
 

 
 
 

 
 
 
 
 
 
Fig. 1: Geometry of the racetrack coil (left) and round coil (right). 
 
 

 
III. RESULTS 

A. Electric field measurements  
 
 E measurements were plotted for the racetrack 8cmx16cm and 
round 12.5cm coils.  Fig. 2 showed the results of the measured  
electric field (Ey, parallel to nerve orientation) distribution taken 
at successive intervals of 0.5cm along the line y = 0.0cm, starting 
at the center (x = 0.0cm) of the coil to x = 8cm.  Both coils had 
zero field intensity at the center of the coils (x = 0.0cm), and the 
field intensity increased to a peak of 63.9 and 79.1 V/m at x = 3.0 
and 4.0 cm, respectively.  The locations of the peaks were inside 
the spiral coils rather than at the outer edges of the coils.  After 
their peaks, Ey of the two coils behaved very similarly.  Ey of 
both of the coils gradually decreased to zero with increasing x.  
Induced Ey was measured at the x = 3.0 and 4.0cm of the coil 
along the z-axis as shown in Fig. 3.  These measurements 
compared the penetration of the two coils.  As seen in Fig. 2, the 
round 12.5cm coil had a higher initial field strength than the 
smaller coils at z = 1.0 cm, 79.1 V/m, but it gradually declined 
with respect to z to 13.6 V/m at z = 6.0cm distance.  In contrast, 
the racetrack 8cmx16cm coil had an initial Ey of 63.9 V/m, which 
decreased to 14.1 V/m at z = 6.0cm.   
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Fig. 2: Electric field strength distribution of the round 12.5cm and the 
racetrack8cmx16cm coils.  
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Fig. 3: Penetration of the round 12.5cm and the racetrack 8cmx16cm coils.   
B. Computer modeling of magnetic coils 
 
 Two coils, the racetrack 8cmx16cm and the round 12.5cm,  
described above were simulated using FlexPDE models. The 
computer simulation results of the distributions of induced 
electric field strength in the y direction, Ey, along the x axis at z = 
1cm for the coils were shown in Fig. 4.  The computational 
results displayed the same pattern as those of the experimental 
results.  The peaks of Ey for the two coils were 33.3 and 35.7 
V/m at x = 3.25 and 4.25 cm for the round and racetrack coils 
respectively.  Similarly, Ey was computed at the x = 3.25 and 
4.25cm of the two coils respectively along the z-axis.  The round 
12.5cm coil had a slightly lower initial field strength than the 
racetrack coil at z = 1.0 cm, 33.3 V/m, but it gradually declined 
with respect to z to 10.5 V/m at z = 7.0cm distance.  In contrast, 
the racetrack 8cmx16cm coil had an initial Ey of 35.7 V/m, which 
decreased to 12.3 V/m at z = 7.0cm.  Furthermore, the 
computational results of the distribution of -∂Ey/∂y along a 45o 
line of x axis at z = 1cm for the 12.5cm round coil are shown in 
Fig. 5.  The -∂Ey/∂y for the coil had a peak of –955.0V/m2 at a 
distance of 6.7cm from the center along a 45o line with respect to 
the x axis.  From the peak, ∂Ey/∂y contour lines spread out in all 
directions and leveled off towards both the x and y axis.  The 
results of -∂Ey/∂y distribution were calculated from the 2-D 
model.  
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4: Contour plots of induced electric field strength vs. coil position: 
comparison of the round 12.5cm and the racetrack 8cmx16cm coils. 

IV. DISCUSSION 
 
The contour lines of the Ey and -∂Ey/∂y (nerve activation function 
[8]-[9]) distributions obtained from computer modeling delineate 
the possibilities of nerve depolarization in the aperture of the 
magnetic coils, the spot where the peak of -∂Ey/∂y is located 
being the most probable place of stimulation.  The distributions 
offer a good illustration of a coil’s performance in an infinite 
homogeneous volume conductor where the theory is established, 
and lend an approximate idea of the distributions in a very 
complex environment such as the human body.  The 12.5cm 
round coil mapped out a single phase and smooth -∂Ey/∂y 
distribution within and without the perimeter of the coils.  The 
peak of -∂Ey/∂y is located at a distance of the coil’s radius along 
the x∠ 45o line, and -∂Ey/∂y decreases gradually from its 
maximum to 0, toward the x and y axes.  The -∂Ey/∂y distribution 
profile points out that the round coil can potentially activate a 
few groups of muscles besides the upper intercostals muscles, 
e.g. when placed at T3.  In fact, expiration was actually produced 
in human subjects [3] using the same stimulator and coil when the 
coil was placed at T1 – T6 (coil placement based on the location 
of center of coil).  The reported expiratory pressure ranged from 
23 (placed at T1) to 31 (T6) cmH2O, and expiratory volumes from 
0.4 (T1) to 0.7 (T6) L.  This probably was caused by the excessive 
expiratory functions produced by the round 12.5cm coils, even 
though inspiratory functions were also produced at the same time.  
It is clear that an appropriate coil needs to be designed for the 
successful generation of inspiratory function by FMS.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5: Contour plots of nerve activation function strength: comparison of the 
round 12.5cm coil (computational results, gray levels refer to the round coils, 
gray levels black represents extreme values and that white corresponds to 0; 
white lines to the round coil). 
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The goal of the design is to simultaneously stimulate T1 to T6 
spinal nerves that innervate the inspiratory muscles, and 
minimally activate other nerves and muscles.  Since the round 
coil stimulates unwanted nerves besides the targeted nerves, 
logically the coil shape of choice would be a racetrack shape with 
a longitudinal span covering T1 to T6.  Checking with the -Ey 
distribution in the racetrack shaped coil from the computer 
model, activation becomes weak outside of the coil periphery.  
Therefore, the length of the racetrack coil can be set at 16cm, 
which is about the average length from T1 to T6 of the subjects in 
this study.  Ideally, limiting the width of the coil to the vicinity of 
neuroforamina (2 ~ 3cm from the middle line of the spine) is a 
good choice to avoid superfluous nerve activation and to make 
sure that T1 to T6 spinal nerves are covered.  However, the size of 
the coil is restricted by the fact that smaller MCs produce lower 
stimulation strengths [10].  To compromise, a midpoint width of 
8cm is adopted.  The measured Ey of the racetrack coil is indeed 
weaker than that of the 12.5cm round coil, as shown in Fig. 2.  
Fig. 2 also shows that the peak of Ey is at x = 3.0cm for the 
racetrack coil rather than at x = 4.0cm as it is for the round coil.  
Therefore, the racetrack coil is expected to limit stimulation to a 
narrower area than the round coil.  The computer modeling 
results of Ey and -∂Ey/∂y distributions in Fig. 2 through 5 
demonstrate the same point.   

 
V. CONCLUSION 

 
FMS has gradually gained popularity in the areas of 

neuromuscular diagnostics and rehabilitation in recent years.  
Magnetic coil design is one of the most important aspects of the 
FMS technique for its application in clinical settings.  This is 
because different clinical applications often times require 
different stimulation patterns.  One well-known example was to 
design coils for focal stimulation.  The present study is intended 
to address the incapability of the round coils in producing 
inspiratory functions.  The outcome of the study, a racetrack 
shaped coil, may provide a solution to the challenge.  This coil 
will be tested in human in the next part of the study.  
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