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1.    Introduction 

A large amount of research interest has focused on the multiscale problem involving atoms 

and continua. It is widely accepted that many effects on the continuum germinate at the 

atomic level. Events such as fracture, fatigue, and inelastic material response can be traced 

back to phenomena in the atomic structure. Moreover, fabrication of nanoscale devices in 

mass quantities will likely come from nanopatterning techniques (e.g., see [1]). Creating 

patterns at the nanometer scale will likely involve unforeseen effects when coupled to me- 

chanical loads. Therefore, a computational mechanics method is necessary that can couple 

disparate scales - one scale in which the boundary conditions are applied and the other in 

which atoms reside. 

Nanopatterning has recently become popular for creating organized nanostructured materi- 

als, which are those that may be defined as materials whose structural elements, clusters, 

crystallites and molecules have dimensions in the 1- to 100-nm range. Experimental methods 

can be designed to exploit the symmetries and repetitiveness of periodic nanostructures to 

control the environment in which ultra-thin films and surfaces are created. Periodic struc- 

tures are often desireable because, when atoms and electrons are confined within nanoscale 

semiconductors and metal clusters, unique properties arise. Such materials are formed under 

a different paradigm of "bottom up" instead of conventional "top down" techniques. Figures 

1 and 2, respectively, illustrate some recent work of experimental and numerical nanopat- 

terning. In performing rigorous analysis of such systems, the impact of mechanical stresses 

and strains on the evolution and characteristics of the atoms must be modeled carefully. This 

requires a technique for translating mechanical information at the boundaries, e.g., clamps, 

pin joints, and loads, down to the atomic level. Moreover, to ensure that the mechanical 

nature of the problem stays consistent with the atomistic problem, the information contained 

at the atomic level must be transferred back up. 



(a) Array of nitrogen- 

modified copper nanodots 

(dark patches) and clean 

copper lines (bright areas). 

(b) Cobalt grown on the 

copper-nitrogen nanodot sur- 

face. 

(c) Iron deposited on the 

copper-nitrogen nanodot sur- 

face. 

Figure 1. Scanning tunneling microscopy (STM)  images of experimental 

nanopatterned systems [2]. 

Methodologies for linking a continuum to an atomistic domain can be found in literature as 

early 1971 [4]. Finite element (FE) methods were later employed in Mullins and Dokain- 

ish [5] using a numerically decoupled domain approach with spatially overlapping atomistic 

and continuum regions. A review of some of these methods can be found by Cleri et al. [6]. 

Among these early analytic and computational studies, frequent issues regarding the treat- 

ment of the interface arose, which were primarily handled through creative use of kinematic 

constraints. For example, Tadmor et al. [7] developed an FE-based formulation, the so-called 

quasicontinuum method. Similar efforts were made through the so-called handshaking or 

coupling-of-length-scales (CLS) method by Broughton et al. [8] by increasing the atomic 

resolution to account for electron degrees of freedom via the tight-binding (TB) method. 

The dynamic problem was studied with a generalized scaling approach in coarse-grained 

molecular dynamics (CGMD) by Rudd and Broughton [9] to better handle the propagation 

of waves through the atomistic-FE interface and the FE far field. 
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Figure 2. Monte Carlo numerical simulation of ion erosion of platinum (111) 

surface. The darker diamond region is the periodic cell and dark- 

ened pit-regions are areas of greater depth, (a)-(d) illustrate re- 

moval of mono-layers by ion erosion, each of greater depth [3]. 

Multiscale methods such as these have traditionally been limited mainly to localized regions 

of interest. For example, the applications to which these methods have been applied involve 

small sets of dislocations and cracks and limited analyses of their mutual interactions. The 

localized regions on which these simulations are run typically span, at most, several microns 

because of the bottleneck imposed by a direct interface between the continuum region and 

atomistic region. To ensure compatibility, kinematic constraints are used to tie together 

the equations and disparate length scales across this interface. Driving the resolution of the 

discretized continuum down to the atom scale to accommodate the interface intrinsically 



restricts the size of the continuum and leads to smaller overall dimensions of the problem. 

This can only be overcome by larger use of computer resources when dealing with problems 

with larger dimensions. 

The asymptotic expansion homogenization method has been widely studied by applied math- 

ematicians for many years. Numerous texts on the basic theory can be found in the liter- 

ature, for instance, by Bensoussan et al. [10], Sanchez-Palencia [11], and Bakhvalov and 

Panasenko [12]. Yet, despite the prolific research in the field, no attempts have been docu- 

mented for extending the technique to atoms. 

Homogenization may be particularly suited for nanopatterned systems because of the use 

of periodicity and asymptotics in the assumptions, perhaps even more so than traditional 

materials that employ homogenization theory such as composites. This is because, in most 

cases, the ratio of scales in atomistic-continuum problems better represents the asymptotic 

assumption in homogenization than in other types of multiscale problems. Furthermore, the 

periodic nature of nanopatterned systems is more apt at realistically adhering to the periodic 

assumption than unit cell models of composite material inclusions. 

In this report, the progress and initial results for a computational framework for homoge- 

nization of the atomistic problem is presented. Using two concurrent domains, one for the 

macroscale continuum domain and one for the periodic atomic scale domain, self-consistent 

sets of equations are derived. Atoms in arbitrary configurations and structures of unlimited 

size are permitted. Through the asymptotic expansion homogenization technique, a set of 

hierarchical equations are derived based on hyperelasticity. At the local level, the atomistic 

equations are used under the assumption of the harmonic approximation to generate the 

effective properties needed to solve the effective global level equations. The Cauchy-Born 

rule [13] is applied to the atoms to enforce the gross deformation of the continuum on the 

atoms. This circumvents the need to apply kinematic constraints by making use of the weak 

averaging properties of homogenization. 



The outline of this report is as follows. In section 2, the conventional continuum equations are 

shown, eventually leading to a variational form based on the principle of virtual work. Then, 

in section 3, the multiscale equations are developed, resulting in two sets of equations that 

govern the local and global length scales. By introducing the atomistic potential in sections 

4 and 5, the details of the atomistic formulations are presented and cast in a variational 

form for use in the multiscale homogenization method. In section 6, the derivatives of the 

atomistic energy potential needed to complete the derivation of the method are provided in a 

general form. In section 7, one- and two-dimensional (1-D and 2-D) demonstrative examples 

are shown. Closing remarks are discussed in section 8. Additional details of the analytical 

derivatives of the Tersoff-Brenner Type II potential were presented in [14]. 

2.    Continuum Formulations 

This section describes the kinematics, stress definitions, and linear momentum conservation 

laws needed to develop the homogenization method from atomistic principles. 

2.1    Kinematics 

Consider an open set V in 5ft3 that deforms to the configuration v in 5ft3. Points in V are 

denoted X = (X1,X2,X3) G V and are called material points, whereas points in v are 

denoted x = (xi,X2,x3) G v and are called spatial points. The deformation is a one-to-one 

mapping through <j) so that x = (f>{X). The deformation gradient is defined by 

d<j>      dx AT?        
d^       dXi m 

F = äx = äx = VoX   and   F^ = dxj 
= dxj' 

(1) 

where V0 signifies the gradient taken with respect to V. The determinant of F is termed 

the Jacobian and is defined by J = det F. The right Cauchy-Green strain tensor is defined 



by 

C = FTF, (2) 

and the Green strain tensor is defined by 

E = i(C-I). (3) 

2.2    Stress and Equilibrium 

The material representation for the conservation of linear momentum is defined by 

Vo • P + f0 = 0, (4) 

where P is the first Piola-Kirchoff stress tensor and f0 is the body force per unit of undeformed 

volume. In rate form, it is given by 

Vo • P + f0 = 0. (5) 

Using the principle of virtual work, equation (5) can be rewritten as 

/ (Vo • P) 5udV + t f0 • 6udV = 0, V5u, (6) 

where 5u is the virtual displacement. Then, using the definition for traction with respect to 

the undeformed body, equation (6) can be rewritten as 

/ P : V0SudV = f   t0 • 6udA + f f0 • 6udV. 
Jv Jav Jv (7) 

We invoke the notion of hyperelasticity by assuming that the atomistic potential, W, which 

is a function of the atom positions, can be expressed in terms of strain. This assumes that the 

strain energy density (or the free energy at zero temperature) is equivalent to the atomistic 



energy potential.   Following classical continuum mechanics, one can then define the first 

Piola-Kirchoff stress as 

P = —      and     P, = —, (8) 

and the first Lagrangian elasticity tensor [15] as 

_ _ cW _ dP _    d2W    _ dP^ .. 
C"öFäF-äF      and     Cijkl ~ dFzjdFkl ~ 8Fkl- 

W 

A relationship is needed between stress and strain. From equation (9), one can see that in 

hyperelastic materials, P is related to F through 

P = CF      and     Pij = CijkiFki, (10) 

where 

F = dü/dX = dv/dX, (11) 

and where ü = v denotes the velocity. 

Substituting equation (10) into (7) and using (11) yields 

f C:: (V0<5u ® V0v) dV = f   t0 • SudA + [ f0 • öudV, Vöu, (12) 
Jv JdV JV 

and the equivalent indicial form, 

f c^d~^^vdV = I ^5uidA + I fo^dV- (13) 
Jv ÖAj aJ^l JdV Jv 

This is the virtual work equation associated with hyperelasticity. The two-scale approach is 

described next. It is devised so that traditional FE continuum equations can be solved in 

the coarse scale and atomistic equations can be solved in the fine scale. 

3.    Homogenization 

The homogenization framework enables the weak coupling of the continuum to the atoms. 

By taking the limit of the time-independent asymptotic expansion parameter e ->■ 0, we 



exploit the weak convergence properties of the scheme in order to decouple the length scales. 

At the fine scale, the domain contains only atoms with periodic conditions prescribed on 

the boundary, and all atom displacements are measured relative to a fixed point in the 

local frame of reference. Prom classical examples of continuum mechanics of composite 

materials [16], this enables the method to account for mutual interactions of periodically 

spaced heterogeneities or, in this case, periodic lattice defects. 

The homogenization method is based on the assumption that two scales exist - a coarse 

scale and a fine scale. Coordinates in the coarse material scale are X = (XUX2,XZ), and 

those in the fine material scale are Y = (YUY2,Y3). Likewise, the spatial coordinates are 

the lowercase analogues. The two scales are related by the scale parameter 

^     x 

Y=7. (14) 

Therefore, we assume that the ratio of scales remains the same before and after deformation. 

The aim is to obtain two sets of coupled equations. The asymptotic series assumption 

decomposes the displacements as 

u(X)   =   ul°l(X) + uW(X) (15) 

=   uf°l(X)+euW(Y), (16) 

where vJ® represents the displacement at the coarse scale and uM represents the perturbed 

displacements due to inhomogeneity at the fine scale. Square brackets denote the order of the 

term in the asymptotic series. The actual physical representation of the total displacement 

at the fine scale is given by Takano et al. [17] as 

-u(X) = umicro(Y) 
£ (17) 

= F(uI°](X))Y + uW(Y). 

The variable X in equation (17) is a fixed value with respect to Y. That is, the deformation 

gradient of a point in the coarse scale gets mapped onto a fine scale grid. This point is 

typically a quadrature point in an FE sense. 

8 



The time derivatives are analogous to equations (16) and (17). They are given as 

u(X)   =   v(X) 

=   vl°](X) + evN(Y), (18) 

ümicro(Y)     =     V
micro(X) 

=   F(vt°l(X))Y + vW(Y). (19) 

Substituting equations (16) and (18) into (13) yields 

/ C :: [Vx (öu®{X)+ eÄuW(Y)) ®VX (v^X) + evN(Y))] dV 
Jv 

= f   (Äu^(X) + etfuN(Y)) • i0dA (20) 
Jav 

+ [ (Su® (X) + sou® (Y)) • f0dV,       VW0', W1]. 
Jv 

Note that by use of the chain rule and equation (14), 
dY 

V*<KX,Y) = Vx<£+—Vy0 

e 

(21) 

Therefore, 

Vx (u[0](X) + euW(Y)) = Vxu[°](X) + VyiiW(Y). (22) 

Using equation (22) in (20) and taking the average over Y gives 

/ Ü77 I C:: [(Vx<5ut°l(X) + Vy(5uW(Y)) ® (Vxv^(X) + VyvN(Y))] dFdV 
Vy M I 7y 

= f   (6u®(X) + eövP(Y)) • t0cM (23) 
Jav 

+ [ (<5uM(X) + eöuW(Y)) ■ i0dV,       V<W°1, cfaW 
Jv 

Then, in the limit as e —> 0, equation (23) is satisfied only if the following two equations are 

satisfied, 

-±- f  [ C :: [Vx5uM(X) (g) (V*vM(X) + VyvW(Y))] dYdV 
\Y\JVJY (24) 

= /   5u[°l(X) • t0<M + f (5u'°](X) • fcdV, V 6vF\ 
Jav Jv 



WILL0''' [V^utll(Y)®(V^v[0l(X) + V^v[1,(Y))]^^ = 05 VW'l. (25) 

By recourse to the FE method, the solution of equation (24) is straightforward, assuming C 

and vM are known. It is then evident that due to the dependence of equation (25) on v'0', 

equations (24) and (25) are coupled and must be solved concurrently. For general problems, 

an iterative numerical solution scheme can be employed to handle the non-linear system of 

equations together with a linearly ramped load to ensure solution convergence. 

In the next section, a method is shown for solving equation (25) for vM. Then in the following 

section, the formulation that enables the atomistic information to be fed into equation (24) 

is derived. These two sections constitute the iteration steps that must be performed for a 

general application. 

4.    Atomistic Equation 

Distinct and distinguishable atoms are assumed to reside in the local level cell. By the 

Cauchy-Born rule [13], at a point X, F(uM) is assumed to give the energy minimizing 

configuration of the atoms. For simplicity, we assume that the atoms are arranged in a 

lattice.* Then, the positions of the atoms Y are given from the lattice coordinates m by 

Y(m) = me*:   m G £, C = Z3, Z < N, (26) 

where e* are the primitive translation vectors and N is the integer multiple of atoms con- 

tained in the unit cell. To avoid confusion in notation, atom labels are noted in parentheses 

henceforth and are not subject to the conventional summation rules associated with indicial 

notation. The displacement of the atoms are 

q(m):    m<=£. (27) 

»Note that there is no restriction to perfect lattices. In fact, by using computers, arbitrary arrangements 

of atoms can be considered as long as the assumption of the Cauchy-Born rule still applies. 

10 



Upon deformation, the new positions of the atoms are given by 

y(m) = Y(m)+q(m). (28) 

The deformation gradient is defined by 

F = *. (29) 

The vector separating two atoms, i and j, in the reference configuration is given by 

Biij)=Y{j)-Yv, (30) 

where YQ-J denotes the position of atom j; and Y(j), the position of atom i. The vector 

separating two atoms in the deformed configuration is given by 

r(ij) = yu) - y(iy (31) 

Then, the Cauchy-Born rule can be stated in a more precise manner by 

r(u) = FY0) - FY(i) ,32s 

= FRfo> 

In defect regions and through the homogenization theory via equation (17), the rule becomes 

%')=F%)+%). (33) 

where ?(„•) = u[*l - uH is the additional term to account for high energy regions. 

For the energy associated with the deformation of the atoms, we use a modified form of the 

so-called Potential II parameterization of the Tersoff-Brenner potential [18,19]. It takes the 

form 

W=^[Eb(Y + q)-Eb(Y)], (34) 

11 



where W is the energy density of the frozen system, N is the number of atoms, and Eb is 

the binding energy given for a pure carbon system by 

B 

VR{T) 

2 (BW) + %)) ' 

f(jj)(r)D{e)    j2sß(r_rt^ 
(5-1) 

M; (5-1) 

/(y)(0    =    < 

1, 

I •! 1 + COS -Ä< 
(T-R( 

0, 

#(y)     = 

G(*) 

r < RW 

#]},   #*> < r < R& 
r > fi(2> 

-<5 

1 +   /_•   G(d(iJk))f(ik) (r(ik)) 
*(#j) 

-H I 

(35) 

(36) 

(37) 

(38) 

(39) 

(40) 

(41) d2 + (l + cos0)2 

with the constants given in Table 1. The modification in this work comes by way of omitting 

the extra bond-order term in [19], which is primarily used for problems involving changes 

in coordination numbers. We therefore presently restrict our consideration to classes of 

deformation involving no change in coordination. 

Given that the energy can be written as a function of the atom displacements, equation (25) 

can be expressed in a form conducive to atom representations. We equate vM to the rate of 

atom displacement and attempt to solve the equivalent form 

d_r     dvf _    dCijkldv™ 
dY~lJKl dYt dYj   dXi (42) 

under periodic boundary conditions. The solution to equation (42) is found as the zero of 

&R in the equation 

dtt = /CvN-2>-V0vM(x), (43) 

12 



Table 1. Parameters for Tersoff-Brenner potential. 

RM 1.39 Ä 

D^ 6.0 eV 

S 1.22 

ß 2.1 Ä 

5 0.5 

ÄW 1.7 Ä 

RV> 2.0 Ä 

0,0 0.00020813 

cl 3302 

dl 3.52 

where K is the N x N Hessian and is given by 

K = ™ (44) 
tfqaq 

where q is the vector of atom displacements of size 3N (in three dimensions) and I? is a third- 

order unsymmetric tensor that is obtained from the first derivative of the Euler-Lagrange 

equation with respect to the local deformation gradient given by 

d2W 
T> = 

dq<9F' 
(45) 

The size of T> depends on the dimensionality of the problem. In three dimensions, it can be 

expressed as an AT x 9 matrix, where 9 corresponds to the number of independent components 

ofF. 

5.    Multiscale Equation 

Once equation (43) has been solved for v^, the remaining task is to formulate a tractable 

global scale boundary value problem.  The key distinction between this investigation and 

13 



conventional continuum formulations, such as hyperelasticity, is the conspicuous incorpora- 

tion of vW, a fine-scale/atomistic quantity, in the global scale equations, and the definition 

of the material property tensor completely in terms of atomistic variables. 

We return to equation (24), recognizing that vM is now known. Incorporating the definition 

for the first Lagrangian elasticity tensor from equation (9) yields 

Y\SvLmE ■'■ [V*W°](X) ® (V*vM(X) + VyvW(Y))] dYdV 

= /   6uW(X)-i0dA+ / SuW{X)-iodV, VÄut°l. 
JdV Jv 

Then, using the definition of F in equation (1) and assuming a first-order Taylor series 

representation for the time derivative gives, 

Iff  d2W 
WlJvJydFdF :: (V*du[0](X) ® VxvM(X)) dYdV 

= J   6u®{X) • i0dA + / (5u!°](X) • f0dV (47) 

-W\UY&' (V^U[0](X) ® V[11(Y)) ^ V 5U(01' 
where there is now a double contraction on VxSu^ and a single contraction on vW in the 

last expression of equation (47). The solution to equation (47) yields v^. It is noteworthy 

that the last term is zero when the energy distribution over Y is constant, i.e., when the 

atom arrangement forms a perfect lattice. This reduces the problem to a classical harmonic 

approximation where the first Lagrangian elasticity tensor is assumed to model the material 

behavior. In equation (47), the last term serves as a corrective force in regions of highly 

energetic atoms (i.e., nonlocal regions) to account for defects and lattice inhomogeneities. 

6.    The Euler-Lagrange Equations and the Hessian 

In this section, the analytic forms of the Euler-Lagrange equations and Hessian are derived 

for a general potential. The nontrivial algebra typically needed to obtain equations (44) and 

14 



(45) for the specific case of the Tersoff-Brenner potential are shown in greater detail in [14], 

and only general forms are derived here. The Euler-Lagrange equation is the first derivative 

of the Lagrangian with respect to the degrees of freedom. In this problem, the Lagrangian 

is the negative of the atomistic energy density, which we presently assume is equivalent to 

the free energy at zero temperature. The Euler-Lagrange equation is therefore given by 
aw e 

(48) dq(m) 
1   dEb 

N 9q(m)' 

and using the chain rule for derivatives, it is 

1   dEb £ = 
N dq(m) 

1  / dEb     dr{ij) dEb     dr{ik)       dEb     dr{jk) 
(49) 

iV \dr{ij) dq{m) dr{ik) dq{m) dr{jk) dq{rr 

Here, we have implicitly assumed that there are three independent atomic position vectors. 

One can show quite easily that there are in fact only two by using the relationship ry*) = 

r(ifc) -T(y). 

The Hessian is obtained by taking an additional derivative of the Euler-Lagrange equations. 

Specifically, we again make use of the chain rule to obtain 

d2W 
K 

0q(n)9q(m) 
1       d2Eb 

iVöq(„)öq(m) 

1 
N 

d2Eb 

+ 

+ 

+ 

dr(ij)dr {ij) 

d2Eb 

dTiik)dr{ij) ' 

d2Eb 

dr{jk)drUk) 

d2Eb 

drtjk-sdrr ■(jk)OT{ij) 

d2Eb 

dr (ij) 

drUk)dr{ik) ' \dq(n)      dq{ 

#q(n) 
dvm 
öq(n) 
dr(jk) | 

öq(n) 
dTUk) c 

öq(n) 

dvd (ij) 

3q(m) 

,, dT(jk) 

Öq(m) 

9q(m) 

+ d2Eb 

+ 

dr(ij)dr(ik) 

'b 

dr W) 

d2Eh 

dru^dr q«) 

+ 

+ 

d2E 
(ik) 

b 

dv{ij)dv{jk) 

'b d2Eb 

dq{n) 
dT(ik) ^ 

dq(n) 
dr(ij) 

3q(n) 

dv{ik) 

8*w 
Oq(m) 

d*{ik) 

dq{m) 

) 
drUk) 

dq{m) 

, dr(jk) 

dr{ik)drUk) ' \dq{n)      dq{ 

(50) 

15 



Second derivatives of the interatom vectors are zero, i.e., 

d2i \ij) d2 

dq(m)öq(n) dq(m)dq(n 
=   0       V(m,n). 

(Y0') + %)-Y(i) + q(i)) (51) 

(52) 

Next, the appropriate right-hand side expressions are derived for equations (43) 

This involves the use of the chain rule again to obtain 

and (45). 

d2W 

dq(m)dF N 

d2E 'b 

and by definition, 

dr{ij)dr{ij) 

d2Eh 

dr(ik)dr{ij) 

,      d2Eb 

dr(ij)drUk) 

d2Eb 

dr(ik)dr{jk) 

dr 

'dr \ij) 
\ dF 

{ dF 
rdrW 

K dF 

'dr(jk) 

fa) _ T> 

dr 'fa) 

9r{ik) 

öq(m) 
dr(ij) 

Öq(m) 

dr(jjfc) 

OF   ™ dq{. m) 

and 

+ 

+ 

d2Eh 

d2Eb 

d*(ik)dr(ik) 

+ d2Eh 

+ 

drUk)dr{ij) 

d2Eb 

9r(jk)dTiik) 

d2Eb 

drlik)dr Uk)Or{jk) 

dr \ik) 

dF = Rfi, iik)- 

dr 

dF 

'dv{ik) 

, OF 

'dT{iJ) 

k OF 

dv(jk) 

dF 

{ik) ® Ör(ij) 

dq(m) 

dr{ik) 

drUk) 

dq(m) 
drUk) 

<9q(m) 

® 

(8) 

® 

V OF ^ öq(m); 

(53) 

(54) 

Finally, we use a similar approach to define the first Lagrangian elasticity tensor.  This is 

the traditional way of estimating the elastic properties of a solid. Using the chain rule once 

again gives 

d2W 

dFdF N 

d2Eh 

dr(ij)dr{ij) 

,      d2Eb 

dr{ik)dv{ij) 

,      d2Eb 

fc(ij)dr{jk) 

d2Eb 

dr(ik)dr{jk) ' 

( 

^fa^^fa) 
dF 

dr(ij) 

dF 

(drW 
{ dF 

'dr(jk) 

.  dF 

® 

® 

® 

dF 

OF 

gr(Ü)' 
OF , 

dF 

+ d2Eh 

+ 

+ 

+ 

dr(ij)fo(ik) 

d2Eb 

dr(ik)dr{ik) 

d2Eb 

dT(jk)dr{ij) 

d2Eb 

dr{jk)dT(ik) 

d2Eh 

'dr^k)     dv{ij) 

drUk)dT(jk) ( 

V OF 

(dr(ik) 

V dF 

\ dF 

(dT(ik) 

V dF 
dr(jk) 

® 

® 

aF , 

OF , 
9r(i*) 

® 

dF 
® 

OF 

aF 

5F 

(55) 
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The first Lagrangian elasticity tensor is used in equation (47), whose solution gives vl°l In 

a perfect lattice, equation (55) provides the only atomistic material information needed to 

solve the macroscopic continuum problem. The next section illustrates this by showing that 

the perturbation is zero for a uniform crystal. 

7.    Example Problems 

7.1    Example I: Perfect 1-D Atomic Lattice 

To illustrate the calculation, a 1-D analytical example is presented. The Tersoff-Brenner 

potential is used to represent the energetics of a 1-D single-species chain of carbon atoms. 

The objective here is to solve equations (42) and (43) for v^ and demonstrate a simple case 

of a perfect lattice using this method. 

One atom comprises the periodic unit cell, but to account for the effects of triples, two 

"fictitious" atoms are assumed to extend beyond the boundaries of the cell on each side as 

illustrated in Figure 3. Periodic conditions apply at the cell boundaries. The equilibrium 

lattice constant for the chain is r0 = 1.86868A. 

Fictitious atoms Fictitious atoms 

/     \ /     \ 
O        O 1   •   i O        O 

5                      3 i         1         i 

"\           /" 
Cell boundaries 

2                      4 

Figure 3. Unit cell of the 1-D carbon chain. The atoms are labeled by iden- 

tifying numbers. 
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The following two conditions stem from the 1-D assumption, 

RW < r < Ä(2)_ 
(56) 

This simplifies the expressions in [14].   The resulting Hessian for three arbitrary colinear 

atoms (i,j,k) is obtained as 

[/CW k) 

yiijk) r(ijfc) r(yfe) 
/Vn /V12 A^13 

jCiijk) ^(ijk) y-iijk) 
/v'91 '^■'99 /voo -22 

-(ij 
-32 

23 

r(Üfc)     r(yfc)     ^(ij/O 
/VQI /VQO ^33 

(57) 

where JCmn   = KnO? and the terms are defined by 

7» r,l+X  ,' ^?fc) = ^ - BV"A + aJSVAB»* fw + °-(6 + l)VAB$ (a0f[lk)) 

/c (y*) 
12 -^+^'-^vx://;it), 

u-iijk) _    a08   ,   i+i   ,        <T 1+| 
(aof'(ik)) 

anS l+T    ," 
VAB(ij)f(ik) 

K{i3k) _ a°<VRl+Jf' 
^23      - ~n~VAa{ij) J(tfc)> 

4T = *(* + D^ (a4,)2 + ^ißfo, 

(58) 

(59) 

(60) 

(61) 

(62) 

(63) 

Upon assembly of the two unique pairs (31,12) and their associated triples (123,132) in 

Figure 3, the final assembled Hessian of the global system is given by the matrix, 

K-n   K\2   /Ci3 

l^l —      K-21    Kil    /C23 

£31   £32   /C33 

which is assembled through the operation, 

(i,j,k)(i,j,k) 

\^ =   U    U    I*^]  = Krnn, 
(m)    (n) 

(64) 

(65) 
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where [J is the addition operator over all unique pair and triple combinations of (i,j, k) and 

(m) and (n) are displacement degrees of freedom for each atom. In equation (65), [K] is 

symmetric once again, and its components are obtained in detail for the problem shown in 

Figure 3 as follows: 

_ jr(123) /en = nr> + KX>' + JC 
(315) 

■'n 

JC12 = /do23) + K 

K 13 

/c 22 

K 

K, 

12 

(123) 
13 

(123) 
22 

+ JC 

+ r 

22 

-(241) 
■-13      J 

(315) 
12     > 

(241) 
11 1 

-(241) 
-33     > 

^23 — ^-23      J 

■-33 '11 

(66) 

(67) 

(68) 

(69) 

(70) 

(71) 

This constitutes the stiffness matrix K, in equation (43). 

The next step is to calculate the right-hand side of equation (42), which is equivalent to cal- 

culating T> and multiplying by the global rate of the deformation gradient. Using equations 

(45) and (53), the right-hand side for three colinear atoms (i,j,k) is obtained as 

fj)(ijkU 

' Dp) 1 
<  viijk)   > 

v: (ijk) 

where the components are defined by 

V?k) =RM (VR - BV'A') + (R{ik) - R{ij)) (j£VAB$fm 

+ Rm (£(* + 1)VAB
1
^ (a0f'{ik))

2 + a-^VAB
1^f[lk) J , 

2>«*> = - RM (VR - BV'A) - R{ik) (
afvABi;ffm) , 

V ~K(ij) \ -yvAÜ(ii) /( 
anS 

(ij) J(ik) 

S 1-1-2 

2 
- Rw L(S + 1)VAB$ (a0fm)\ \vAB^f[ik) 

(72) 

(73) 

(74) 

(75) 
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As earlier, the assembly operation 

{v}= Li {p«*)} = pra> 
(m) 

yields the right-hand side of the global system given by, 

(76) 

{V} (77) 

where the components are 

_ W123) X»! = P|iZOJ + V2 
,(315)       p(241) 

v2 = v£2Z) 

X>3 = x>{
3
U3) 

+ v\ ,(241) 

+ x»i ,(315) 

(78) 

(79) 

(80) 

Under the assumption of a 1-D perfect lattice, we have R{ij) = R{ik) and, consequently, 

T>x = 0. Then, we can satisfy the periodicity condition and the rigid body constraint by 

setting v|Jj = v[^ = 0. The solution is therefore 

„111 _ „W _ Ji] 
V(l) ~ V(2) ~ V(3) 0. (81) 

In light of equation (81), the last term in equation (47) is zero, and the material properties are 

obtained from the atomistic energy density solely through equation (55). This result shows 

that in a defect-free lattice, the homogenization method coincides with the conventional 

atomistic hyperelasticity problem. The next section shows an example in which a defect 

causes an inhomogeneous energy distribution, leading to a situation where homogenization 

is needed to average out the energy. 

7.2    Example II: 1-D Atomic Lattice With Defect 

Consider the problem shown in Figure 4, where the center atom is displaced by a distance 

L from its original energy minimizing configuration. This displacement of the center atom 
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Fictitious atoms _L_ Fictitious atoms 

/     \ /     \  _ 
Go     O o# O        (3G 

5                       3 i 

\    / 
Cell boundaries 

2                      4 

Figure 4. Unit cell of one-dimensional carbon chain with periodic defect. 

constitutes the defect. 

With this change, the key stiffness matrix term in equation (66) is now 

i+i/ 
K" =^„,-5(12,^+^^^/(13) 

,1+* ,2     a„6. + §(* + 1)VA{12)B^ (a0/('13))   + \vA{12)B\^fllz) 

+ ^(13) - Ais)V'A(13) + a0^(i3)B(\
+

3f/('12) 

(       f'      Y    i    G°°T/ D1+T/' 
\^ao/(12) J    + -y ^(13) ^(13) J (12)' + 2(* + 1)%3)V3) 

and likewise, equation (78) is now 

©i =i?(i2) (v^ia) - %»^(u)) + (ß(i3) - *<«>) {^-vAii2)B
1^f[m 

+ Ä(1S) (J(* + l)^(12X
+2)   (°0/(13))2 + X^(»)B(»*^») 

- Ä(13) (^(13) - ß(is)V;is)) - (i?(12) - Ads,) ffl^Bl+t f( 

- R{12) (
S-(5 + 1)V^3)*$ (a0fm)2 + ^Vk^ßS)*&>) > 

12) 

(82) 

(83) 

where R(12) = r0-L and R(X3) = r0+L. Then, solving equation (43) under periodic boundary 

conditions gives 

[i]     Vidv®       [i]       [i] (84) 

The uM/V0^
0] solution as a function of L/r0 is shown in Figure 5. As expected, the solution 

has symmetry about the origin and grows asymptotically larger as the size of the defect (L) 

grows closer to the cut-off radii. We intentionally avoid larger defects due to the nonconvex 
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structure of the energy well associated with the Tersoff-Brenner potential. This generally 

leads to unphysical discontinuities in the perturbation velocity (v^) due to discontinuous 

second derivatives of the atomistic energy with respect to the defect size. This is attributable 

to the construction of the empirical potential in equations (35)-(41), which is suited, by 

design, for systems where nearest neighbor atoms, even in defect regions, are within the 

cut-off radius Bp-\ 

Figure 5. Distribution of v^/V0v^ solution as a function of the defect size 

L. 

It is also noteworthy that arbitrary defect densities can be treated by appropriate modifica- 

tion of the unit cell. In most cases, one can tailor the desired density by increasing the size 

of the unit cell and performing the summations and the assembly of the atomistic discrete 

equations over more atoms. Figure 6 illustrates this idea for the 1-D carbon chain. 

Numerical experiments show that as the size of the unit cell increases, the perturbative 
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Figure 6. Larger chain of atoms in perfect arrangement around the defect 

region decreases the defect density. 

displacement has a sharp discontinuity at the defect. Figure 7 shows this nonlocal behavior 

as the number of atoms increases. The problem is of a single defect in chains of increasing 

size. The defect magnitude is held fixed at L/r0 = 0.01. The nonlocal discontinuity of the 

perturbative velocity qualitatively agrees with traditional displacement jumps that occur at 

dislocation cores. The discontinuity indicates that the material property at the defect (jy^O 

is modified by the last term in equation (47), an amount proportional to v^ that serves as 

a correcting force for the nonlocal effect. 

31 atoms    51 atoms 
21 atoms      >     ,   ,„.   , 

101 atoms 

Figure 7. Distribution of V^/VQV^ along unit cell length for varying num- 

bers of atoms (L/r0 — U.U1). 
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Although the primary details of the method have been demonstrated in these two examples, 

the method can be extended to consider the multiscale problem shown in equation (47) 

for more general cases involving self-consistent solutions with equation (43) as in the next 

section. 

7.3    Example III: 2-D Graphene With Defect 

The method can be generalized to multiaxial problems. In this example, we consider 

graphene with three types of point defects: interstitial, equilibrium point vacancy and sad- 

dle point vacancy. The atom positions around the point defects were first computed using 

quenched molecular dynamics. These are illustrated in Figure 8 together with the original 

defect-free configuration. Similar defect structures have been encountered both numerically 

and experimentally [20-22]. 

The effective elastic constants for the defect-free case were in the form of the first Lagrangian 

elasticity tensor (55), which compare reasonably with experimental results. Using the second 

derivative of the Tersoff-Brenner potential, the bulk values (in units eV/atom) for graphene 

were computed, 

C11U = 66.51 C2U2 = 21.63, (85) 

Cu22 = 20.06 C2l2l = 24.83, (86) 

C1212 = 24.83 C2211 = 20.06, (87) 

C1221 = 21.63 C2222 = 66.51, (88) 

and terms not listed are zero. The equilibrium energy is -7.37563 eV/atom and nearest 

neighbor bond length 1.45 Ä. For an assumed layer thickness of 3.4 Ä, which is the standard 

layer separation thickness for graphite, the effective Young's modulus from the bulk is Y = 

1.261 TPa with an effective Poisson's ratio of 0.302. These values agree well with measured 

values for graphite and carbon nanotubes [23]. 
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(c) Equilibrium vacancy. 
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• • • 
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(b) Interstitial. 

• • • 

• • • 

: X X ■ 
: X'Y: 

(d) Saddle point vacancy. 

Figure 8. Atom configurations in periodic cell.   Lines are used to denote 

regions near the defect. 

The model problem solved at the macroscopic scale is depicted in Figure 9. The uniform 

grid is composed of 25 4-noded quadrilateral elements. The right edge is pulled uniformly 

and the left edge is held fixed. All units of measure are carried through in terms of eV and 

Ä so that no assumption of a layer thickness is required. That is, although the problem is 
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Figure 9. FE model of macroscopic problem. 

two-dimensional, there is no need for a plane assumption. 

The solution procedure involves application of incremental loads with iterative loops over 

equation (47) and sub-loops over (43). The sub-loops seek converged values for vM subject 

to the modification from equation (33). In this problem, an overly cautious load increment 

of 1.0 x 10~4 strain was used, which ensured convergence tolerances for both v^ and vM far 

beyond 10"8Ä. 

The effective strain energy density and material properties are shown vs. strain in Figures 10 

and 11. Of key interest are the sudden jumps that occur for the effective material properties 

of saddle point and interstitial defect scenarios at approximate strain values of 0.05 and 0.15, 

respectively. This is attributable to the relative instability of those types of point defects. 

Such observations were made previously for the saddle point vacancy in [20]. The effective 

properties and energies at larger strains after the initial instability are meaningless and are 

therefore not shown. The instability occurs in this problem because the separation distance 

between neighboring atoms near the point defect exceeds the cut-off radius of the potential 

because of the deformation, thereby distorting the strain energy and effective properties. 
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We expect that the actual strain is much smaller before the instability occurs because of the 

present zero-temperature assumption. 

80 

—. 75 

E 
p 

> 

a 70 
ü 

65 

Defect-free 
Interstitial 
Equilibrium 
Saddle Point 

i j 

0.05 0.1 
Strain 

0.15 0.2 

(a)<7] mi (b)C: 2222 

Figure 10. Material property change with applied uniform strain. 

It is noteworthy that the approximate atom density in the longitudinal direction decreases 

(cell elongates), while it increases in the transverse direction. The subsequent material 

nonlinear effect causes the properties to decrease in Cmi while increase in C2222- We also 

note that the interstitial point defect possesses the highest values for material properties 

and lowest strain energy, whereas the trends for the saddle point vacancy are precisely the 

reverse. The defect-free structure exhibits stronger material properties and higher strain 

energy than the equilibrium vacancy structure. 

Comparing convergence rates between methodologies with homogenization (i.e., vW ^ 0) 

and without homogenization (i.e., vM = 0) shows the former with a distinct advantage.* 

"The methodology without homogenization implies an approach whose material property tensor is com- 

puted directly from the second derivative of the energy potential and whose formulation does not involve a 

perturbative term. 
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Figure 11. Strain energy with applied uniform strain. 

The equilibrium vacancy configuration is used here. The convergence results are illustrated 

in Figure 12. The calculation is of the transverse displacement of the upper right corner node 

of the mesh in Figure 9 as it evolves with the total number of computation cycles, JVsteps. 

The computation cycle is computed by adding the total number of nonlinear iterations steps 

(major loops plus sub-loops) with the total number of load increments, which is a crude 

way to estimate the convergence behavior. The number of load increments is selected to 

ensure that the final transverse displacement in the two methods is less than 1% different in 

magnitude. Figure 12 shows that the total required number of calculation steps is smaller 

in the homogenization result by a factor of four. 

This convergence behavior is attributable to the addition of the vW term in equation (33), 

which is closer to the energy minimizing configuration than equation (32) alone. Figure 

13 illustrates the atom displacement due to equation (32) relative to a local coordinate 
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Figure 12. Convergence with and without homogenization. 

system centered on the periodic cell, and Figure 14 illustrates the subsequent correction 

from equation (33). 

The uniform strain applied in this example results in a uniform state of strain throughout 

the entire mesh in Figure 9. It should be noted that more complex loading scenarios can 

be treated merely by changing the boundary conditions of the problem. These simple re- 

sults, however, are indicative of the generality of the method for two- and three-dimensional 

problems. 

8.    Conclusions 

Linking atomic scale physics with continuum scale phenomena is of keen interest in the 

mechanical study of solids and nanostructures.   The effects that dominate the mechanical 
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Figure 13. Atom displacements due to global deformation. 

Figure 14. Atom displacements due to homogenization method. 

behavior at the continuum scale typically initiate and evolve from the atomic scale. Moreover, 

periodic structures can emanate from nanopatterning and epitaxy through stresses induced 

from an underlying substrate. Despite numerous promising methods in the literature that are 

capable of linking scales up to the micron level, periodic structures with global dimensions 
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at and beyond the millimeter range - needed for mass producing nanoscale devices - have 

only begun to be studied. To this end, we have attempted to address this issue by exploiting 

the features of homogenization theory to devise a scheme that passes atomistic information 

to very large continuum scales. 

We have applied the Cauchy-Born rule to the atom scale by assuming that the configuration 

of atoms used to solve for the perturbation displacement at each load increment is indeed 

the minimizing configuration of the atomistic energy. We have not considered the method 

in conjunction with a lattice statics routine, i.e., various strategies of minimizing the atom- 

istic energy by quenched molecular dynamics or solving Newton's equations to minimize the 

interatom forces. These assumptions (i.e., zero temperature and Cauchy-Born) also pre- 

clude the formulation from modeling thermally activated phenomena such as crack growth, 

propagation, or damage evolution. However, it can be used to estimate mechanical effects 

across coupled length scales and, if needed, serve as the underlying framework for modified 

algorithms that can account for such problems. 

We demonstrated the method for one- and two-dimensional problems containing point de- 

fects. Mechanical data were reported from numerical experiments. The paucity of exper- 

imental data for nanomechanics makes validation difficult. However, the material proper- 

ties stemming from the reference configuration compares very well with available published 

measurements and the observed trends from mechanical deformation agree with generally 

accepted intuition. 

For this work, the specific case of the Tersoff-Brenner Type II potential was considered. 

But the principles and the general equations can be extended to any potential, provided the 

appropriate derivatives can be obtained as in [14]. Typically for classical systems, onerous 

tensor algebra and calculus are required or more computationally efficient procedures can be 

implemented to obtain derivatives numerically [24]. 

31 



The aim of this report was to describe an approach by which atomistic physics can be 

embedded into a continuum formulation for large scale systems. This goal has been achieved 

by formulating a consistent set of equations involving a classical atomistic potential at the 

fine scale and general finite strain and deformation elasticity at the coarse scale. Simple 

1-D analytical results and 2-D numerical experiments were shown to illustrate the approach 

and its features. More realistic multiaxial problems in two and three dimensions for more 

detailed validation are the subjects of ongoing work. 
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