
Abstract- In a previous work, the authors have used a
novel, radically different approach based on concurrent
multi-sensor array measurements and “super-resolution”
array processing scheme for phonocardiographic signals.
Using a specially designed passive acoustic array, acoustic
“images” corresponding to the various distinct phases of
the heartbeat were obtained.  In this paper, this approach
is extended using a novel framework, called Time-
Frequency Cardiac Passive Acoustic Localization (TF-
CARDIOPAL). The Choi-Williams distribution is utilized
to calculate a spatial time-frequency matrix to
characterize the spatial time-frequency distribution for
the nonstationary array signals.  Distinctive components
of this matrix on the time-frequency plane yield
important clues on possible source locations in the heart.
This finding has been used in extracting localization
information from the first heart sound signals  from a
healthy human subject.  Meaningful source localization
results that are well correlated with the mechanical
activation of the heart are obtained.

Keywords - Heart sounds, array processing, time-frequency
distributions, cardiac acoustic imaging

I. INTRODUCTION

In medicine, phonocardiography has been used as a
noninvasive diagnostic tool in screening patients with cardiac
problems. It has kept its popularity up to the early 1980�s, but
lost ground in favor of recently developed imaging techniques
such as CT, MRI and ultrasound. Advanced spectral
estimation and signal processing methods applied to sensitive
phonocardiogram (PCG) data re-emphasized the importance
of the technique. Significance of PCG and the signal
processing methods for the diagnosis of the heart valve
dysfunction and degeneration are strongly established in [1],
[2]. However, conventional techniques using single channel
PCG data do not have spatial information concerning the
heart sounds. Locating the sounds in the thorax could
improve the diagnosis of the heart abnormalities and help in
solving the controversy on the exact origin of the heart
sounds.

Recently, several researchers have directed their efforts to
achieve a spatial mapping of the acoustic energy emitted by
the heart. In these investigations, the heart sounds are
acquired from certain conventional landmarks on the thorax.
They are then processed using coherent averaging and
interpolation of the acoustic energy among the cardiac
sensors [3], [4]. In our previous work, we used a novel,
radically different approach based on concurrent multi-sensor

array measurements and �super-resolution� array processing
on the PCG signals [5]. Our approach stems from the modern
perspective on the genesis of the heart sounds proposed by
Durand and Guardo; namely the multi-degree of freedom
theory [1].

In the previous work, a system called Cardiac Passive
Acoustic Localizer (CARDIOPAL for short) was developed
for spatial localization of the assumed acoustic sources of the
heart. This system consisted of a specially designed passive
acoustic array, instrumentation hardware and a 2-D array
processing software. A subspace based adaptive array
processing method called MUSIC algorithm along with a
signal model for the sound-source foci on the heart and the
propagation of the sounds to the chest was used.
Effectiveness of the method was investigated using extensive
recording at different SNR levels on phantoms and tested
with success on adult subjects as well as on pregnant women
[6]. Using this system, different �images� corresponding to
the various distinct phases of the heart beat; e.g., closure of
the mitral and tricuspid valves, ejection of the blood in
systole, closure of the aortic and pulmonary valves, early and
late diastole, were obtained.

In this work, we extend our previous method using novel
framework, called Time-Frequency Cardiac Passive Acoustic
Localization (TF-CARDIOPAL). In this framework, to
characterize the spatial time-frequency distribution for the
nonstationary array signals the Choi-Williams distribution
(CWD) is utilized and a spatial time-frequency matrix is
calculated.  Besides having the same properties as the other
distributions, this matrix has very good suppression of cross
terms and a very good resolution [7]. Characteristic
components of this matrix on the time-frequency plane yield
important clues on likely source locations in the heart.  This
finding has been used in processing the first heart sound
signals from a healthy human subject to extract localization
information concerning the acoustic sources.

II. METHODOLOGY

A. 2-D Microphone Array and the Instrumentation System
The multi-sensor cardiac probe is a 105 mm x 105 mm x

40 mm planar microphone array consisting of 16 miniature
electret microphones mounted on a 4 x 4 grid. A soft
polyurethane layer is used to couple the rigid surface of the
collimator of the array to the thorax. The data acquisition
hardware of the system consists of microphone amplifiers,
80-1000 Hz band-pass analog filters, analog-digital-
converters and hardware interface to a PC. During the analog-
to-digital conversion process, all microphone channels are
sampled simultaneously and quantizied using 12 bits. Data is
transferred to the PC via Direct Memory Access (DMA).
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B. Acoustic Array Signal Model
Assuming that there are K point sources in the near field

of the 4 x 4-element array, the model for the signal Xmn(t) at
(m, n)�th microphone is written as

(1)
where Sk(t) is the waveform of the k�th sound source, amn(t,rk)
is the time-varying steering parameter depending on the k�th
source, on the array geometry, and rk=(rok, θk, φk) is the
spherical ordinate vector of the k�th source with respect to the
array origin. nmn(t) is spatially white Gaussian noise, M and N
are the number of microphones in the axis of the planar array.

Two fundamental assumptions can reasonably be made on
the production and the propagation of the heart sounds as in
the previous work [5], [6]. Assumption 1: The vibrating tissue
is small compared to the size of the microphone array and
acts as a point source, therefore, the sound wave from the
heart tissue propagate as a spherical wave in the near field.
Assumption 2: The intervening tissue is homogenous in terms
of sound absorption characteristics. The steering parameter
amn(t,rk) can be formed based on these assumptions and
another parameter due to the delay/advance of the wave with
respect to the array origin:

(2)
where rok is the distance between the k�th source and the array
origin, dmn(rk) is the distance from the same source to the (m,
n)�th array element, θk and φk is the elevation and azimuth
angles, respectively. κ is the wave number depending on
time-varying frequency of the source (f(t)) and on the speed
of the sound (c) on the medium, dx and dy are the inter-
element distances in the respective axes on the array, ρ is the
exponential loss factor of the medium.

C. A Spatial Time-Frequency Distribution
In the pervious work, it was shown that the phase-shift

parameter contributes less to the localization than the other
two parameters [5], [6]. Therefore neglecting the phase-shift
parameter in (2), one can obtain the time-independent array
steering parameter, i.e., amn(rk). Additionally, the time-
independent steering parameter assumes that a source does
not change its position through an estimation interval. In
matrix form (1) can be written as the following:

(3)

where X(t) is the MN x 1 array output vector,
A = [a(r1), a(r2), � , a(rK)] is the MN x K steering matrix
correspondingly defined by the steering parameters amn(rk),
S(t)=(S1(t), S2(t), � , SK(t))T is the K x 1 source magnitude
vector and n(t)=(n1(t), n2(t), � , nK(t))T is the MN x 1 spatial
white noise vector.

The discrete form of the Choi-Williams Distribution
(CWD) can be written as the following:

(4)

where U(.) is the analytic signal used to prevent the aliasing
effects [7]. WT(τ) is a symmetrical window for the range of
−T/2 ≤ τ ≤ T/2 and WU(µ) is a rectangular window with a
value of 1 for the range of µ. The size of the window WT(τ)
determines a tradeoff between the frequency resolution of the
signal auto-terms and the smoothed signal cross-terms.
Denoting the kernel in the parenthesis of (4) by CW(µ, τ, σ),
inserting (3) into (4) and taking the expectation one obtains
the discrete form of the spatial CWD:

(5)

where DS(t,f) is the source time-frequency matrix whose
diagonal elements are the source auto-terms and the off-
diagonal entries are the cross-time-frequency distribution of
the source signals. CWD is a real-valued distribution,
therefore DS(t,f) is a real-valued matrix. If DS(t,f) is also
nonsingular and has rank K, the conventional MUSIC
algorithm can directly be applied to equation (5), [5], [8].
However, the spatial distribution matrix DX(t,f) is not
guarantied to be a symmetric matrix. Therefore, the SVD has
to be performed in the subspace analysis.

D. Sample Spatial Time-Frequency Distribution

Ten segments of the first sound are extracted from the
records of a healthy subject. The segments are then
coherently averaged to get less noisy signal and the sample
spatial distribution matrix           is calculated using this
signal. The four diagonal entries of the matrix corresponding
to the sensors around the array origin are also averaged to get
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a representative TFD of the isolated data. The sample spatial
distribution matrix particular to a region is calculated using
the following equation:

(6)

where t1, tT and f1, fF define a region ΩΩΩΩ on the time-frequency
plane.

III. RESULTS

The average S1 signal from a sensor close to the array
origin and the average TFD over the four channels around the
array center are shown in Fig. 1 and Fig. 2, respectively. A
cross-term free spatial TFD is obtained using 128 and 28
samples for the window length T and V, respectively and by
assigning σ =1. Six regions of interests (ΩΩΩΩs) are defined by
inspecting the potential features of the TFD plane, as
indicated in Fig. 2. As in our previous work, the number of
sources and the loss factor in (1) and (2) are assigned to K = 5
and ρ = 8, respectively and these values are kept constant in
all calculations [5], [6]. Fig. 3 shows the localization results
corresponding to each region and two additional estimates,
which are due to a sum of early components. The source
planes are defined on a 50 x 50 grid (with 2.5 mm x 2.5 mm
grid size) at 5-6 cm distal to the array plane. The estimates in
Fig. 3 provide important spatial details that can be associated
to mechanical activity of the heart during S1.

IV. DISCUSSION

A principal focus in the middle of estimates is
consistently observed in early stages of S1, i.e., in region ΩΩΩΩ1,
ΩΩΩΩ2 and ΩΩΩΩ3. In general, this may be related to the phenomena
emphasized by cardiohemic theory [1], [2]. The region ΩΩΩΩ3
shows also a good clue for the closure of the mitral valve
beneath the principal focus. This focus seems to shifts slightly
to the left side in region ΩΩΩΩ4, towards the tricuspid area. The
region ΩΩΩΩ5 exerts a good focus of the closure of the tricuspid
valve. The weak components in region ΩΩΩΩ6 result in two foci
that may be associated to the opening snaps of the pulmonary
and aortic valves. There is still a very weak activity at the
tricuspid area.

Similar results from another subject with mild valvular
dysfunction were also obtained. In this way, the second heart
sound signals (S2) from both subjects were also investigated
and meaningful results were achieved. However, these results
could not be given here due to the space limitations.

V. CONCLUSION

In this paper, a novel approach, called Time-Frequency
Cardiac Passive Acoustic Localization (TF-CARDIOPAL) is
discussed for obtaining acoustic �images� that show 2-D
distribution of assumed �point� source locations within the
body.  The approach is based on  using multi-sensor array
measurements of heart sounds.  To characterize the spatial
time-frequency distribution of the nonstationary array signals,
the Choi-Williams distribution is utilized and  a spatial time-
frequency matrix is calculated.  Distinctive components of
this matrix on the time-frequency plane contain important
clues on possible acoustic source locations in the heart.  This
finding has been used in extracting localization information
from the multi-sensor array measurements of the first heart
sound signals  from a healthy human subject.  Source
localization results have been found to be well correlated with
the mechanical activation of the heart. Although the method
needs extensive and comparative studies to be useful for
clinical applications, it has a good potential for clinical
analysis and may shed new light on controversial issues
concerning the genesis of the heart sounds.
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Fig.1. The average first heart sound signal from a healthy subject. Fig.2. The average time-frequency distribution of the four channels
(pre-filtered using 100 Hz high-pass FIR filter).

Fig. 3. Each source localization estimate relates a particular region defined on the time-frequency plane of the first heart sound.
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