

AFRL-IF-RS-TR-2002-297
Final Technical Report
November 2002

REAL-TIME ASSET RESCHEDULING WITH
EXECUTION MONITORING AND ACCURATE
ASSET TRACKING

Kestrel Institute

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. F080

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the U.S. Government.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

 This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

 AFRL-IF-RS-TR-2002-297 has been reviewed and is approved for publication.

APPROVED:
 RICHARD C. METZGER
 Project Engineer

 FOR THE DIRECTOR:
 MICHAEL L. TALBERT, Maj., USAF

 Technical Advisor, Information Technology Division
 Information Directorate

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 074-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
 NOVEMBER 2002

3. REPORT TYPE AND DATES COVERED
Final May 97 – Sep 00

4. TITLE AND SUBTITLE
REAL-TIME ASSET RESCHEDULING WITH EXECUTION MONITORING
AND ACCURATE ASSET TRACKING

6. AUTHOR(S)
Douglas R. Smith, Stephen Fitzpatrick, and Stephen J. Westfold

5. FUNDING NUMBERS
C - F30602-97-C-0154
PE - 63726F
PR - F080
TA - T2
WU - 01

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Kestrel Institute
3260 Hillview Avenue
Palo Alto California 94304

8. PERFORMING ORGANIZATION
 REPORT NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Defense Advanced Research Projects Agency AFRL/IFSE
3701 North Fairfax Drive 525 Brooks Road
Arlington Virginia 22203-1714 Rome New York 13441-4505

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

AFRL-IF-RS-TR-2002-297

11. SUPPLEMENTARY NOTES

AFRL Project Engineer: Richard C. Metzger/IFSE/(315) 330-7652/ Robert.Metzger@rl.af.mil

12a. DISTRIBUTION / AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 Words)
Through the use of software transformational synthesis technology, synthesize rescheduling algorithms that reschedule
transportation assets using data from automatic identification technology and asset tracking hardware and software.
Kestrel brought to bear its software synthesis technology which allows for the generation of correct-by-construction, high
performance schedulers from formal specifications of the problem they are intended to solve. Savi Technology brought
to bear its expertise in automatic identification technology and asset tracking hardware and software systems. In this
effort Kestrel and Savi co-developed scheduler for Yard Management Systems based on data from the Army's Crane
Ammunition Depot.

15. NUMBER OF PAGES
50

14. SUBJECT TERMS
Software Transformational Synthesis, Scheduling Algorithms

16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
 OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
 OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

i

Table of Contents

1 Project Goals and Chronology.. 1
2 Overview... 2
3 Project Results .. 2
4 Real-time Tracking and Continuous Scheduling .. 5
5 CAMPS Mission Planning System ... 8
6 Planware.. 9
7 Concluding remarks .. 12
8 References... 13
Appendix A Theories... 15

List of Figures

Figure 1: Continuous Scheduling Architecture... 7
Figure 2: Taxonomy of Resource Theories .. 10
Figure 3: Spreadsheet-like Interface for Acquiring Scheduling Constraints 11

1

1 Project Goals and Chronology

This report describes our research on advanced scheduling technologies supported by the
ARPA/Rome Lab Planning and Decision Aids (PDA) program during 1997 - 2000. At the outset,
this project brought together Kestrel Institute and Savi Technology to develop technology for
continuous scheduling based on highly-accurate real-time asset tracking and execution
monitoring. The original goal was to demonstrate the benefits of combining high-quality
logistics data with a robust scheduling capability in an operational DoD setting.

Kestrel brought to bear its software synthesis technology which allows the generation of correct-
by-construction, high-performance schedulers from formal specifications of the problem they are
intended to solve. Savi Technology, Inc. brought to bear its expertise in automatic identification
technology and asset tracking hardware and software systems. Savi implemented numerous
government and commercial asset visibility and tracking systems employing a wide range of
automatic identification technologies (AIT), including bar-code, optical memory cards, smart
cards, portable data terminals, and radio frequency identification. For example, Savi provides
high-quality logistics data and execution monitoring for the U. S. Army and U. S. TRANSCOM
in their Ammunition AIT project. We hoped to demo our combined results in this context.

Under this contract Kestrel and Savi codeveloped a continuous scheduler for Yard Management
Systems, based on data from the Army's Crane Ammunition Depot. The Yard Management
System project addresses the problem of scheduling a fleet of hostlers (tractors) in a dock-side
depot. A typical depot has various types of temporary storage areas where cargo is held for
inspection or until it is required for loading onto a ship, train or trailer for transportation out of
the depot. The hostlers transfer cargo between the storage areas as the status of the cargo changes
and between the storage areas and the cranes that transfer cargo onto or off ships and trains.

This demonstration system, while successful, didn't fully exploit the strengths of Kestrel's
scheduling technology. One goal of this project was to piggyback on some of Savi's deployed
systems to demonstrate the effectiveness of continuous scheduling in a context where Savi's
realtime tracking technology had been deployed. As it happened, Savi's deployment schedule for
its Ammo AIT project slipped, depriving the project of its main application domain. After
consultation with all stakeholders, Kestrel and Rome Lab decided to terminate Savi's
involvement and redirect Kestrel's research effort (in December 1998).

The revised project had two directions:

1. Support for the CAMPS project at AMC - Together with BBN and Carnegie-Mellon
University, Kestrel developed an advanced scheduling system for AMC TACC (Air
Mobility Command, Tanker-Airlift Operations Center) at Scott AFB. This system is
scheduled for integration by Logicon Corporation into the CAMPS system and
deployed in 2001.

2. Support for Planware - Planware is a domain-specific generator of high-performance

scheduling software. The goal of the Planware system is to put Kestrel's scheduler

2

synthesis technology in the hands of users who aren't specialists in formal methods.
Using Planware, the user interactively specifies a problem and then the system
automatically generates a formal specification and refines it.

Funding problems disrupted this project in 1999. The Air Force terminated 6.3 funding service-
wide in GFY 2000, leaving this project unfinished. Rome Lab was able to find some additional
funds to continue Kestrel's CAMPS participation until May 2000. At that point, AMC was able
to pick up support for CAMPS MPS.

2 Overview

This report describes our research on the transformational development of scheduling soft- ware.
Our approach to developing scheduling software involves several stages. The first step is to
develop a formal model of the transportation scheduling domain, called a domain theory.
Second, the constraints, objectives, and preferences of a particular scheduling problem are stated
within a domain theory as a problem specification. Finally, an executable scheduler is produced
semi-automatically by applying a sequence of transformations to the problem specification. The
transformations embody programming knowledge about algorithms, data structures, program
optimization techniques, etc. The result of the transformation process is executable code that is
consistent with the given problem specification. Furthermore, the resulting code can be
extremely efficient.

We developed this transformational technology and applied it to several application areas. First,
we focused on continuous scheduling to sit on top of the real-time tracking systems supplied by
Savi. Our previous schedulers had all been offline batch schedulers, so we were curious to
extend our generative technology to cover continuous scheduling. We also wanted to exploit the
availability of real-time data about the state of the world to continuously monitor and reschedule
activities. The YMS demonstration system described in Section 4 embodies the results of this
effort. Second, we used our transformation system KIDS [7, 9] to generate a scheduler for one of
the worlds most complex scheduling problems: strategic airlift scheduling at the Air Mobility
Command at Scott AFB. This project is described in Section 5. Finally, we focused on
incorporating our expertise in scheduler generation into a highly automated system for scheduler
synthesis (Planware), which is described in Section 6.

3 Project Results

This section provides a detailed list of significant accomplishments, events, demonstrations, and
systems developed under this project. A compact summary of the most significant achievements
of this project is given in the Concluding Remarks section.

1. YMS demonstration system - The Yard Management System project addresses the
problem of scheduling a fleet of hostlers (tractors) in a dock-side depot. A typical
depot has various types of temporary storage areas where cargo is held for inspection
or until it is required for loading onto a ship, train or trailer for transportation out of

3

the depot. The hostlers transfer cargo between the storage areas as the status of the
cargo changes and between the storage areas and the cranes that transfer cargo onto or
off ships and trains. This system was demonstrated at the May 1998 and October 1998
PDA workshops.

2. Planware - A working version of Planware was developed and demonstrated

extensively at workshops. Among the key developments are

(a) Constraint Acquisition - We developed a new tabular format for acquiring
scheduling problem requirements. This result enabled a much richer means for
interactively getting user input on the scheduling problem at hand, without
requiring users to read or write formal specifications.

(b) Colimits of Diagrams - Another key technical result was the development and

implementation of colimits of diagrams, which enabled us to provide precise sup-
port for composing structured representations of knowledge. We believe that this
result is a major mathematical advance with respect to knowledge representation
and processing, far transcending our particular application to program synthesis.
We use colimits of diagrams to provide better support for design-by-classification,
embodied in Planware's substrate called Designware (for more details, see [6, 5]).
We applied for a patent on this operation.

(c) Constraint Propagation Theory - We developed and implemented a generalized

theory of constraint propagation that subsumes earlier forms of constraint
propagation (and-constraints) and global search (or-constraints).

3. CAMPS Mission Planning System (MPS) - We developed version 0.5 of MPS which

was released at the end of the project. This version included basic scheduling of
aircraft loading and routing, aircrews, and mog at enroute ports, as well as many other
features required for deliberate airlift planning.

4. Publications

Lee Blaine, Limei Gilham, Junbo Liu, Douglas R. Smith, and Stephen Westfold,
Planware - Domain-Specific Synthesis of High-performance Schedulers, Proceedings
of the Thirteenth Automated Software Engineering Conference, IEEE Computer
Society Press, Los Alamitos, California, October, 1998, 270-280.

Smith, D.R., Mechanizing the Development of Software, in Calculational System De-
sign, Proceedings of the NATO Advanced Study Institute, Eds. M. Broy and R. Stein-
brueggen, IOS Press, Amsterdam, 1999, 251-292.

Smith, D.R., Designware: Software Development by Refinement, invited paper in
Proceedings of the Eighth International Conference on Category Theory and
Computer Science, Edinburgh, September, 1999.

Westfold, S.J. and Smith, D.R., Synthesis of Efficient Constraint Satisfaction Pro-

4

grams, Knowledge Engineering Reviews, Special Issue on AI and OR, 2001.

5. Patents - We applied for a patent on diagrams of colimits:
D. Pavlovic, J. Liu, and D.R. Smith, Method and Apparatus for Determining Colimits
of Hereditary Diagrams, patent application submitted September 1999.

6. Project-related Presentations, Meetings and Events - Unless otherwise specified, Dr.

Smith participated in each item below.

 CAMPS meeting, Scott AFB, 20 May 97.
 ARPI Annual Workshop, Lynnfield, MA, 9-12 June 1997; Dr. Smith received the Guns

and Butter Award from the DARPA Program Manager for “basic research and a solid
record of successful transitions to ARPI customers”. Dr Smith gave an invited talk
entitled “Domain-Specific System for Synthesizing High-Performance Schedulers"; Dr.
Smith gave demos of Planware and KIDS; Dr. Smith also gave a talk entitled “Synthesis
of Real-Time Schedulers".

 Interview with SAAM and Contingency & Exercise mission planners, AMC HQ, Scott
AFB, 29 September 97.

 CAMPS meeting, Logicon HQ, San Pedro, CA, 27-28 October 1997.
 PDA Workshop, San Francisco, 4-6 Nov 97.
 CAMPS meeting, interview with SAAM and Contingency & Exercise mission planners,

AMC HQ, Scott AFB, 3 December 97.
 visited MTMC HQ, Falls, Church, VA to discuss KI/Savi scheduling of yard

management at Sunny Point. Attending: Col Larry Curtin, Col Morrow, Dan Monahan,
16 January 1998.

 Talk and Demo of CAMPS Mission Planner, Logicon Office, Scott AFB, 28 January
1998.

 Visited Sunny Point, NC to interview MOTSU personnel, 17-18 Feb 98. Result was
hostility to Kestrel/Savi participation in an application effort, so we looked elsewhere.

 CAMPS meeting, Kestrel, 4 Mar 98
 CAMPS meeting, Logicon HQ, San Pedro, 5 Mar 98
 CAMPS demos and discussions, Logicon at Scott AFB, 28-29 Apr 98.
 DARPA ISO meeting, Monterey, CA, 4-5 May 98. Presentation of the Yard Management

System, CAMPS, and Planware at ARPI Annual meeting, Monterey, CA, 6-7 May 1998.
 CAMPS meeting, Logicon HQ, San Pedro, 19-20 May 98 (Tom Emerson attended)
 PDA program review at Kestrel with Al Frantz, 25 Jun 98.
 Talks on Planware and category theory applied to software refinement, Air Force Rome

Lab, Rome, NY, 2 Sept 98.
 Tutorial on Designware and paper on Planware, Automated Software Engineering, 13-16

Oct 98, Honolulu, HI.
 Talks and demos on Planware, CAMPS, and Continuous Scheduling Architecture, ARPI

meeting, Arlington VA, 27-29 Oct 98.
 CAMPS meeting, AMC, Scott AFB, 17-19 Feb 99.

5

 Project review, PDA, John Lemmer, 30 Apr 99
 Meeting on USAF Common Scheduler Project, ESC, Hanscom AFB, Bedford, MA, 21

May 99.
 Invited Talk, \Software Development by Mechanized Refinement", Workshop on

Language, Logic, and Computation, CSLI, Stanford University, 29 May 1999.
 Meeting on ESC Common Scheduler Project, at Kestrel, 12 Aug 99. Attending were

Frank LaMonica and John Lemmer (AFRL), Russ Graves (MITRE & ESC), and Kestrel
personnel.

 Invited Talk, Designware, Eighth International Conference on Category Theory and
Computer Science (CTCS 99), Univ. Edinburgh, UK, 10-12 September 1999.

 talk on Planware, and CAMPS demo, ARPI/PDA Workshop, Arlington VA, 14-15
September 1999.

 Invited Talk, CS Colloquium, Cornell University, 30 Sept 99.
 Invited talk on Designware, High Integrity Systems Conference, Albuquerque, NM, 14-

17 Nov 99.
 Invited talk on Planware, to Air Force Scientific Advisory Board, AFRL, Rome, NY, 7-8

Dec 99.
 CAMPS meeting, Kestrel, 13-14 April 2000.
 CAMPS meeting, Logicon Scott office, O'Fallon, IL, 11-12 May 2000.
 BBN, Cambridge, MA, CAMPS work, 2 Jun 00
 CAMPS RAD/JAD, alpha release of CAMPS MPS, Logicon Scott, 27-28 Jun 00

4 Real-time Tracking and Continuous Scheduling

The Yard Management System project addresses the problem of scheduling a fleet of hostlers
(tractors) in a dock-side depot. A typical depot has various types of temporary storage areas
where cargo is held for inspection or until it is required for loading onto a ship, train or trailer for
transportation out of the depot. The hostlers transfer cargo between the storage areas as the status
of the cargo changes and between the storage areas and the cranes that transfer cargo onto or off
ships and trains.

The objective in scheduling the fleet of hostlers is to reduce the loading and unloading times of
ships and potentially to achieve acceptable loading and unloading times with fewer hostlers. The
main difficulty in constructing an optimal schedule is that the number of schedules for any given
set of cargo movements is exponential in the number of movements: for even moderately large
numbers of movements, it is infeasible to try every possible schedule.

One solution is to compute lower bounds on the completion time for schedules and use this
information to prune from the schedule search space schedules that could not possibly be
optimal. The lower bound computations typically require much less time than would the
construction of the schedules themselves. Furthermore, a given lower bound computation
typically applies to a large number of schedules (derived from a common, partially constructed

6

schedule) all of which may be pruned. Lower bound computations can thus make the
construction of an optimal schedule feasible.

The YMS system

We developed a prototype YMS system that provides continuous scheduling of logistics
operations by means of near-real time asset visibility data, sentinels and monitoring code,
continuous scheduling engine, and an execution manager (see Figure 1).

We describe the various components of this architecture below. The components are processes
running concurrently on a Unix workstation, and communicating via CORBA middleware
infrastructure.

Savi Asset Manager

The Savi Asset Manager provides near-real time asset data acquisition based on automatic
identification technologies. The asset data is gathered in various distributed and central locations.

Scheduling Server

The scheduling engine transforms the available resources, delivery requirements, and domain
constraints into a schedule for logistics operations. Several rescheduling algorithms are available
- global reschedulers for times when it is more important to reoptimize the schedule than to
minimize change, and local reschedulers when minimizing change is desirable. We anticipate
supporting user-specifiable degrees of optimization versus change in the scheduling server. The
scheduling engine has the ability to determine sensitive events or combination of events that
could require rescheduling operations. Under the control of user-specified parameters and other
forms of guidance, the scheduling server automatically generates sentinels to watch for particular
events.

Execution Manager

The execution manager provides situation visibility and control to the user, and mediates the
activities of the data tracking system and the scheduling server.

Visibility and control: The status of the assets is provided via direct access to the data center. The
Schedule viewer provides a view of the scheduled logistics operations, for a record of recent
changes to the logistics operations, and information about the capabilities, delivery requirements,
and constraints. The Sentinel Status view provides information of currently active sentinels and
previously triggered sentinels. The user specifies which sentinels to generate and how. The user
can also choose from a range of rescheduling tools and tool guidance following notification of a
need to reschedule from a sentinel.

7

Figure 1: Continuous Scheduling Architecture

8

Mediating the tracking system and scheduler: Sentinels are executed by an interpreter in the
execution engine that creates a process that watches (active sentinel) for a given set of events.
The sentinel remains active until the events happen or the sentinel is canceled or replaced. If a
sentinel event occurs, the execution manager notifies the user and may trigger the replanning
operation.

Kestrel researchers constructed a domain theory for the YMS scheduler that models the typical
operation of a depot and containing algebraic laws that permit the automated derivation of lower
bound functions suited to the depot (See Appendix A). Furthermore, the domain theory contains
laws that permit the automated instantiation of various algorithm theories such as global search,
local search and greedy heuristic algorithms. Instantiation of these theories would produce a
family of schedulers having various degrees of compromise between scheduler execution time
and the quality of the schedules produced (not all of the schedulers will produce optimal
schedules). The family of schedulers would also contain real-time reschedulers which use
information provided by real time tracking systems to adjust schedules as they are executed to
account for deviations between predicted and actual performance.

Successful demonstrations of the YMS system were given at the ARPI workshops in May 1998
and October 1998.

5 CAMPS Mission Planning System

This section provides a brief overview of the algorithm underlying the Mission Planner in
CAMPS. The MPS algorithm operates on level 2 TPFDD data and generates mission plans over
nominal aircraft and crews. The MPS tracks and constrains the following kinds of resources in
constructing a mission plan: (1) aircraft, (2) crews and their duty days, (3) parking mog, (4)
working mog, (5) runways (takeoff and landing separations), (6) port operating hours. Currently,
fuel supplies at ports are tracked but not constrained.

The MPS algorithm essentially iterates over movement requirements which are sorted by
increasing LAD primarily.

1. The main control loop:
For each movement requirement (MVR), the algorithm attempts to move it in the
context of previously planned missions. First, the algorithm tries to place the MVR on
existing mission provided that (1) it has capacity, (2) the mission route includes the
POE and POD, (3) the mission is feasible with respect to the ALD, EAD and LAD of
the MVR. If an existing mission cannot (fully) carry the MVR, then the algorithm will
attempt to create a new mission.

2. Creating a new mission:

Given MVR, we first look ahead in the list of unscheduled movement requirements to
find those that could be coallesced with it; in particular, we look for requirements from
the same (or a nearby) POE with a similar ALD that are going to the same POD. If

9

enough cargo (or PAX) can be found to justify a new mission (according to a
minimum threshold per MDS), then a route generator is called to produce a candidate
list of available aircraft and routes. Route generation includes positioning from the
current location of the aircraft to the POE, travel through enroutes (including possible
AR stops) to the POD, followed optionally by depositioning to a recovery base. For
each leg of the mission, the algorithm generates choices of (1) crew and whether the
crew flies the leg in their current duty or the next, (2) base open hours interval for
departure, (3) takeoff position (to enforce takeoff separations), (3) base open hours
interval for arrival, and (4) landing position (to enforce landing separations). If mog
bounds are specified for ports along the route, then parking mog and working mog are
tracked and the constraints are enforced.

The Mission Planner is based on constraint propagation technology. See [9] for more details
about the nature and design of constraint-based algorithms for scheduling. One key feature of our
approach is to use time windows for every temporal decision; in particular during scheduling, the
departure time of every flight is given by a time window - an earliest departure time and a latest
departure time. When the departure times of flights must be coordinated, for example, by
enforcement of a minimum separation between takeoffs at a port, then a dependence constraint is
asserted between flights so that the earliest departure time of one flight is, say, at least 15
minutes before the earliest departure time of another flight departing from the same station. If the
departure time of the first flight must be delayed, then the asserted constraint will cause the
earliest departure time of the second flight to be delayed if necessary to enforce the minimum
takeoff separation. In this scenario a change to the time window of one flight is propagated
through the takeoff separation constraint to cause a change to the time window of the second
flight - an example of constraint propagation.

6 Planware

This section presents an overview of Planware, a generator of high-performance scheduling
algorithms, currently being developed at Kestrel Institute. Our aim is to convey a sense of the
rationale for Planware, the design process that it supports, the architecture of the current
Planware system, and our results to date. The reader may find more detail in the references.

Architecturally, Planware is an extension of the Specware system [10], a system for developing
formal specifications and refinements based on concepts from higher-order logic and category
theory. Planware and Specware embody theoretical developments stemming from Kestrel's
experience with previous systems, such as KIDS [7] and DTRE [2].

The goal of Planware is to allow experts in planning and scheduling to assemble quickly a
specification of a scheduling problem, and to generate automatically a high-performance
scheduler from it. The user's interactions with the system are designed to be entirely in the
scheduling domain { the user does not need to read or write formal specifications, nor to
understand the logical and category-theoretic foundations of the system. We have invested
substantial effort in automating the construction of scheduling domain theories.

10

Figure 2: Taxonomy of Resource Theories

To assemble a requirement specification and underlying domain theory, Planware requires
very little information from the user:

1. to select from a taxonomy of resource theories the particular kind of resource against
which to schedule the tasks (See Figure 2)

2. to modify a spreadsheet-like table of expressions that provide bounds on the various

attributes of reservations of the selected resources (See Figure 3).

From this minimal amount of information, Planware can automatically

 generate a formal specification of the scheduling problem (plus the relevant background
concepts that comprise a domain theory),

 reformulate the specification using datatype refinements to build some of the problem
constraints directly into the schedule datatype, allowing a dramatic simplification of the
specification,

 apply domain-independent knowledge about designing global search (backtracking)
algorithms with constraint propagation,

 apply datatype refinements and optimization techniques, and finally
 generate Common Lisp code.

11

Figure 3: Spreadsheet-like Interface for Acquiring Scheduling Constraints

For example, after design and refinement, the specification of a transportation scheduling domain
comprises about 10,000 lines of text of which about 3000 lines are the scheduling algorithm (the
remainder consists of axioms and datatype operations that are not needed by the running
scheduler).

A key point here is that the high level of automation in Planware is achieved by applying
domain- specific control (via a hand-built tactic):

1. to construct a problem specification and domain theory,

2. to apply a series of domain-independent design theories and code-generation rules. The

result is a fast, correct, executable scheduler automatically constructed from the user's
description of a scheduling problem.

We believe that Planware is a new paradigm for domain-specific software generators. Planware
differs from other domain-specific software generators in that it is built on a foundation of
domain-independent general-purpose software specification and synthesis capabilities

12

(Specware/Designware). In particular, Planware relies on

1. the Specware capabilities for composing specifications, refining them and translating
to code (especially colimits of diagrams);

2. the Designware libraries of domain-independent design knowledge about algorithms,

datatype refinements, and expression optimization techniques (and their application
tactics) to construct refinements.

The domain-specificity of Planware comes in the form of

specifications of domain knowledge - the abstract scheduling specification, the taxonomies of

task and resource theories, etc.

scheduling spec construction tactics - tactics for lifting properties of tasks to constraints on the

scheduler, tactics for lifting resource constraints to scheduling constraints, tactics for
constructing the constructors and other datatype operations needed by the refined Task,
Resource, Reservation, and Schedule specs,

embeded algorithm design tactic - tactics for generating a global search theory for the

scheduling problem at hand, etc.

The background of domain-independent design knowledge allows a user to derive software even
when the requirements fall outside the domain-specific scope of the system. The user then gets
less automation, and must supply more guidance in the construction process.

There are many things to be done before Planware can be deployed. One crucial extension is
allowing the user more flexibility in supplying task information. We are developing a
spreadsheet-like interface that is derived from the user's choice of resource theory and presents
the user with plausible options for lower/exact/upper bounds on all crucial attributes of a
reservation for that kind of resource. We are working to let the user choose and modify arbitrary
entries. As before the user only interacts with the system in domain-specific terms. Another vital
extension is to generalize the abstract scheduling spec to multiple resource classes. Another
extension that is underway is to extend Planware to allow the synthesis of scheduling systems,
including visual displays, editors, GUI, database mediators, and so on.

See [1] for more details and an example of Planware in action.

7 Concluding remarks

This project enabled us to show the flexibility of our specs-to-code technology as applied to a
range of scheduling problem types: continuous scheduling, large-scale complex airlift
scheduling, and highly-automatic scheduler generators. We expect each of these areas to
continue to develop and to result in improved products for DoD needs.

13

Summing up, this project has led to theoretical breakthroughs, direct application support for the
US Air Force, and business opportunities in technology transfer:

1. Fundamental Breakthroughs in Software Synthesis Technology -

 Diagram Colimit - This is a fundamental tool for automatically composing knowledge
structures. Our belief in the long-term criticality of this operation is reflected in our
applying for a patent on it.

 Planware - Planware is a new paradigm for domain-specific software generators.

Planware differs from other domain-specific software generators in that it is built on a
foundation of domain-independent general-purpose software specification and
synthesis capabilities (e.g. the diagram colimit operation in Specware/Designware).
Our discovery of the tabular spreadsheet-like format for acquiring problem
requirements was a significant breakthrough in the Planware interface. It is
paradigmatic of how a simple domain-specific specification interface can be built on
the basis of a clear mathematical model of a class of problems.

2. Application Support for the US Air Force - CAMPS MPS is the next-generation scheduling

system at the TACC at AMC, Scott AFB. It provides speed and scheduling capabilities far
beyond AMC's current tools. MPS' support for hub-and-spoke operations may enable a radical
change in AMC airlift operations strategy.

3. Tech Transfer and Business Opportunities - Planware as a generator (vending machine) of

schedulers has generated commercial interest. Kestrel Technology (a for-profit LLC started
recently to develop and transfer Kestrel Institute technologies) has won an SBIR to develop
Planware into a commercially viable tool. We also anticipate that Kestrel Technology will
provide long-term maintenance support to AMC for CAMPS MPS, and will be looking for
other opportunities for developing variants of MPS for the US Air Force.

8 References

[1] Blaine, L., Gilham, L., Liu, J., Smith, D. R., and Westfold, S. Planware { domain-specific

synthesis of high-performance schedulers. In Proceedings of the Thirteenth Automated
Software Engineering Conference (October 1998), IEEE Computer Society Press, pp. 270 -
280.

[2] Blaine, L., and Goldberg, A. DTRE - a semi-automatic transformation system. In

Constructing Programs from Specifications, B. Möller, Ed. North-Holland, Amsterdam, 1991,
pp. 165 - 204.

[3] Meseguer, J. General logics. In Logic Colloquium 87, H. Ebbinghaus, Ed. North Holland,

Amsterdam, 1989, pp. 275 - 329.

[4] Smith, D. R. Toward a classification approach to design. In Proceedings of the Fifth

14

International Conference on Algebraic Methodology and Software Technology, AMAST'96
(1996), vol. LNCS 1101, Springer-Verlag, pp. 62 -84.

[5] Smith, D. R. Designware: Software development by refinement. In Proceedings of the Eighth

International Conference on Category Theory and Computer Science (1999), M. Hoffman, D.
Pavlovic, and P. Rosolini, Eds., pp. 355-370.

[6] Smith, D. R. Mechanizing the development of software. In Calculational System Design,

Proceedings of the NATO Advanced Study Institute, M. Broy and R. Steinbrueggen, Eds. IOS
Press, Amsterdam, 1999, pp. 251 - 292.

[7] Smith, D. R. KIDS - a semi-automatic program development system. IEEE Transactions on

Software Engineering Special Issue on Formal Methods in Software Engineering 16, 9
(September 1990), 1024-1043.

[8] Smith, D. R., and Lowry, M. R. Algorithm theories and design tactics. In Proceedings of the

International Conference on Mathematics of Program Construction, LNCS 375, L. van de
Snepscheut, Ed. Springer-Verlag, Berlin, 1989, pp. 379-398. (reprinted in Science of
Computer Programming, 14(2-3), October 1990, pp. 305-321).

[9] Smith, D. R., Parra, E. A., and Westfold, S. J. Synthesis of planning and scheduling software.

In Advanced Planning Technology (1996), A. Tate, Ed., AAAI Press, Menlo Park, pp. 226-
234.

[10] Srinivas, Y. V., and Jüllig, R. Specware: Formal support for composing software. In

Proceedings of the Conference on Mathematics of Program Construction, B. Moeller, Ed.
LNCS 947, Springer-Verlag, Berlin, 1995, pp. 399-422.

15

Appendix A Theories

A YMS Theories

This appendix details the KIDS theories for the Yard Management System scheduler. A brief
summary of the theories is presented below, followed by the full text of the theories.

Cargo A simple ADT representing a cargo item.

Slot The various types of storage area in a yard (bunkers, loading bays, etc.) are uniformly

represented as 'slots'.

Movement Request This ADT represents a task for the hostlers in the form of an item of

cargo to be moved from a source slot to a destination slot. Some additional information,
such as the distance between source and destination fields is cached for efficiency in
computing metrics on schedules.

Ship Manifest This represents a partial order on movement requests that arises from

physical restrictions on loading and unloading ships. The movement requests are
categorized into numbered strata such that all movement requests in a given strata must
be accomplished before any movement requests from higher-numbered strata, but there
is no ordering on the movement requests within a single strata.

Geometry The geometry of a yard is represented essentially as a graph of distances

between slots. The graph is directed to allow for asymmetric routes (e.g., one-way
roads).

Hostler The Hostler theory defines an ADT to represent individual hostlers and their

properties; e.g., their speed and turn-around times.

Yard A Yard represents a single physical scheduling site: its geometry (slots and the

distances between them) and resources (hostlers).

Reservation A reservation represents the assignment of a hostler to satisfy a particular

movement request during a particular time period.

Schedule A schedule represents the assignments of all hostlers over a certain time period.

Conceptually, a schedule is a set of reservations.

Work Metric The work metric is used to assess schedules both in gauging the quality of a

schedule and in computing lower bounds on completions of partial schedules (these
lower bound are used for pruning searches). The work represented in a schedule in
based on productive work (cargo moved) and unproductive work (repositioning of
hostlers between cargo movements).

16

YMS Theory This theory defines feasibility on hostler schedules. The primary
components of feasibility are: the ordering on cargo movements is respected; each
reservation is long enough for its cargo movement to be accomplished; successive pairs
of reservations for a given hostler are sufficiently separated to allow for repositioning of
the hostler; the schedule does not allocate more hostlers than are available in the yard.

Global Search with Pruning This theory defines an algorithm schema for performing

global search with pruning based on a lower bound on the costs of all schedules in a
given branch of the search space. The schema includes a parameter that allows the
quality of the final schedule to be specified in terms of deviation from true optimality
(e.g., 'within 5% of optimal'). Reducing the quality even slightly from strict optimality
can dramatically reduce the size of the search space. The theory also shows how the
search can be initialized with a schedule generated by a quick but non-optimizing
heuristic scheduler to further reduce the size of the search space.

Greedy Append for Earliest Finish This theory is an example of a greedy heuristic

scheduler that can be used to initialize the pruning global search scheduler. It is based
on constructing reservations to minimize the finishing time for some movement request
chosen at random from the head of the manifest (such that the ordering of the
movement requests is respected).

A.1 Cargo

!! in-package("RE")
!! in-grammar('THEORY-GRAMMAR, 'cypress-grammar)

% Represents an item of cargo.

THEORY CARGO

% --

THEORY-IMPORTS {}

% --

THEORY-TYPE-PARAMETERS {}

% --

THEORY-TYPES

type cargo-id = symbol
type cargo-type = symbol

17

type cargo = tuple(id: cargo-id, cargo-type: cargo-type)

% --

THEORY-OPERATIONS
function cg-make(id: cargo-id, cargo-type: cargo-type): cargo

= <id, cargo-type>

function cg-id(c: cargo): cargo-id

= c.id

function cg-type(c: cargo): cargo-type

= c.cargo-type

END-THEORY

A.2 Slot

!! in-package("RE")
!! in-grammar('THEORY-GRAMMAR, 'cypress-grammar)

% Represents a "slot" (hostler berth) in a yard.
THEORY SLOT

% --
THEORY-TYPES

type slot-id = fixnum
type slot-name = symbol
type slot = tuple(id: slot-id, name: slot-name)

% --

THEORY-OPERATIONS
function sl-make(id: slot-id, name: slot-name): slot

= <id, name>

function sl-id(s: slot): slot-id

= s.id

function sl-name(s: slot): slot-name

= s.name

18

END-THEORY

A.3 Movement Request

!! in-package("RE")
!! in-grammar('THEORY-GRAMMAR, 'cypress-grammar)

% Represents a request to move cargo.

THEORY MOVEMENT-REQUEST

% --

THEORY-IMPORTS {SLOT, CARGO, GEOMETRY}

% --

THEORY-TYPES

type mvr = tuple(source: slot-id,

 destination: slot-id,

cargo: cargo,
tag: fixnum,
dist: distance,
load: fixnum)

% --

THEORY-OPERATIONS

function mvr-make(s: slot-id, d: slot-id, c: cargo): mvr

= <s, d, c, undefined, undefined, undefined>

function mvr-source(m: mvr): slot-id

= m.source

function mvr-destination(m: mvr): slot-id

= m.destination

function mvr-cargo(m: mvr): cargo

= m.cargo

19

function mvr-set-tag(m: mvr, tag: fixnum): mvr
= <mvr-source(m),

mvr-destination(m),
mvr-cargo(m),
tag,
m.dist,
m.load>

function mvr-tag(m: mvr): fixnum

= m.tag

function mvr-compute-distance(m: mvr, g: geo): mvr

= let(s: slot-id = mvr-source(m),
d: slot-id = mvr-destination(m))

let(dist: distance = geo-distance(g, s, d))
<s, d, mvr-cargo(m), mvr-tag(m),
dist,
(dist div *LOADED-HOSTLER-SPEED* + *TRIP-DURATION-OVERHEAD*)>

function mvr-distance(m: mvr, g: geo): distance

= if defined?(m.dist)
then m.dist
else geo-distance(g, mvr-source(m), mvr-destination(m))

function mvr-cached-distance(m: mvr): distance

= m.dist

function mvr-load(m: mvr): fixnum

= m.load

% --

THEORY-LAWS

assert mvr-source-and-destination-different

fa(mvr) mvr-source(mvr) ~= mvr-destination(mvr)

END-THEORY

A.4 Ship Manifest

!! in-package("RE")
!! in-grammar('THEORY-GRAMMAR, 'cypress-grammar)

20

THEORY SHIP-MANIFEST

% --

THEORY-IMPORTS {TIME-AND-DISTANCE, MOVEMENT-REQUEST}

% --

THEORY-TYPE-PARAMETERS {}

% --

THEORY-TYPES

type rank = fixnum
type repo-map = tuple(index: seq(fixnum),

distances: seq(distance))
type manifest = tuple(rank: fixnum,

loaded: set(mvr),
unloaded: set(mvr),
unloaded-distance: distance,
repo: repo-map
)

% --

THEORY-OPERATIONS

function man-make-empty(): manifest

= <0, {}, {}, 0, undefined>

function man-rank(man: manifest): fixnum

= man.rank

function man-add-stratum(man: manifest, mvrs: set(mvr)): manifest

= let(rank = man-rank(man)+1)
<rank,

man.loaded,
(man.unloaded union

image(lambda(m: mvr) mvr-set-tag(m, rank), mvrs)),
undefined,
undefined>

function man-loaded(man: manifest): set(mvr)

= man.loaded

21

function man-unloaded(man: manifest): set(mvr)

= man.unloaded

function man-finished?(man: manifest): boolean

= man-unloaded(man) = {}

function man-rank-of-mvr(man: manifest, m: mvr): fixnum

= mvr-tag(m)

function man-mvr-less?(man: manifest, mvr1: mvr, mvr2: mvr): boolean

= mvr-tag(mvr1) < mvr-tag(mvr2)

function man-mvr-has-been-loaded?(man: manifest, mvr: mvr): boolean

= mvr in man-loaded(man)

function man-remove-mvr-from-distance-map(man: manifest, done: mvr)

: repo-map
= if not(defined?(man.repo))

then undefined
else <man.repo.index,

seq-shadow1(man.repo.distances, mvr-tag(done), 0)>

function man-mark-mvr-loaded(

man: manifest, mvr: mvr | mvr in man-unloaded(man)
): manifest
= (<man.rank,

(man.loaded with! mvr),
(man.unloaded less! mvr),
(man.unloaded-distance - mvr-load(mvr)),
man-remove-mvr-from-distance-map(man, mvr)>)

function man-head(man: manifest): set(mvr)

= let(min-rank: fixnum
= min-i(image(lambda(m:mvr) man-rank-of-mvr(man, m),

man-unloaded(man))))
filter(lambda(m: mvr) man-rank-of-mvr(man, m) = min-rank,

man-unloaded(man))

function man-tail(man: manifest): set(mvr)

= let(min-rank: fixnum
= min-i(image(lambda(m:mvr) man-rank-of-mvr(man, m),

man-unloaded(man))))
filter(lambda(m: mvr) man-rank-of-mvr(man, m) > min-rank,

man-unloaded(man))

22

function man-refined?(man1: manifest, man2: manifest): boolean

function man-compute-unloaded-distance(man: manifest, g: geo)

: manifest
= let(new-unloaded: set(mvr) =
image(lambda(m: mvr) mvr-compute-distance(m, g), man-unloaded(man)))

let(dist: distance =
reduce(+, image(mvr-load, set-to-seq(new-unloaded))))

<man.rank, man.loaded, new-unloaded, dist, man.repo>

function man-unloaded-distance(man: manifest): distance

= man.unloaded-distance

function man-mvrs-in-order(man: manifest): seq(mvr)

= if man-finished?(man)
then []
else

let(m: mvr = arb(man-head(man)))
prepend(man-mvrs-in-order(man-mark-mvr-loaded(man, m)), m)

function man-find-closest-mvr(m: mvr, s: seq(mvr), i: fixnum, g: geo)

: tuple(mvr, distance, mvr)
= if i=size(s)

then <m, 0, undefined>
elseif i=size(s) - 1
then <m,

geo-distance(g, mvr-destination(m), mvr-source(last(s))),
last(s)>

else
let(md: tuple(mvr, distance, mvr)

= reduce(lambda(x: tuple(mvr, distance, mvr),
y: tuple(mvr, distance, mvr))

if x.2<=y.2 then x else y,
image(lambda(j)

<m,
geo-distance(g, mvr-destination(m), mvr-source(s(j))),
s(j)>,

[i+1 .. size(s)])))
md

function man-find-closest-mvrs-aux(todo: seq(mvr), g: geo,

done: seq(mvr), chosen: map(mvr, set(mvr)),
closests: seq(tuple(mvr, distance, mvr))
): seq(tuple(mvr, distance, mvr))
= if empty(todo)

then closests

23

else
let(next: mvr = first(todo))
let(candidates: seq(tuple(distance, mvr))

= [<d,m> | (m: mvr, d: distance)
m in done

& (m in domain(chosen)
=> fa(c: mvr)(c in chosen(m)

=> mvr-destination(c) ~= mvr-destination(next)))
& d = geo-distance(g, mvr-destination(next), mvr-source(m))])

let(dc: tuple(distance, mvr)
= reduce(lambda(dm1: tuple(distance, mvr),

dm2: tuple(distance, mvr))
if dm1.1<=dm2.1 then dm1 else dm2,
candidates))

let(choice: mvr = dc.2,
dist: distance = dc.1)

man-find-closest-mvrs-aux(
rest(todo),
g,
append(done, next),
chosen

+* {| choice -> if defined?(chosen(choice))
then chosen(choice) with next

else {next} |},
prepend(closests, <next, dist, choice>))

function man-find-closest-mvrs(mvrs: seq(mvr), g: geo)

: seq(tuple(mvr, distance, mvr))
= let(rev: seq(mvr) = reverse(mvrs))

let(m: mvr = first(rev))
let(e = <m, 0, undefined>)
man-find-closest-mvrs-aux(rest(rev), g, [m], {| |}, [e])

function man-compute-closest-sources(man: manifest, g: geo): manifest

= let(mvrs: seq(mvr) = man-mvrs-in-order(man))
let(closest: seq(tuple(mvr, distance, mvr))

= man-find-closest-mvrs(mvrs, g))
let(sorted: seq(tuple(mvr, distance, mvr))

= sort(copy-list(closest),
lambda(x: tuple(mvr, distance, mvr), y: tuple(mvr, distance, mvr))

x.2>=y.2))
let(index: seq(fixnum)

= image(lambda(x: tuple(mvr, distance, mvr)) mvr-tag(x.1), sorted))
let(distances: seq(distance)

= image(lambda(x: tuple(mvr, distance, mvr)) x.2, closest))
(<man.rank, man.loaded, man.unloaded, man.unloaded-distance,

24

<index, distances>>)

function smaller-i(x: fixnum, y: fixnum): fixnum

= if x<y then x else y

function sum-n-non-zeros(s: seq(distance), index: seq(fixnum),

n: fixnum, pos: fixnum, total: distance
): distance

= if pos>size(index) or n=0
then total
elseif s(index(pos)) = 0
then sum-n-non-zeros(s,index, n, pos+1, total)
else sum-n-non-zeros(s, index, n - 1, pos+1, total+s(index(pos)))

function man-repositioning-lower-bound(man: manifest, Y: yard)

: distance
= reduce(+, man.repo.distances, 0)

- sum-n-non-zeros(man.repo.distances, man.repo.index,
smaller-i(size(y-hostler-ids(Y)) - 1,

size(man.repo.index)),
1, 0)

% --

THEORY-LAWS

assert man-head-and-tail-disjoint

fa(m) man-head(m) intersect man-tail(m) = {}

assert man-head-and-tail-cover-unloaded

fa(m) man-head(m) union man-tail(m) = man-unloaded(m)

assert man-equivalence-of-loaded-and-mvr-has-been-loaded

fa(m) man-loaded(m)
= { mvr | (mvr) man-mvr-has-been-loaded?(m, mvr) }

assert man-loaded-and-unloaded-are-disjoint

fa(m) man-loaded(m) intersect man-unloaded(m) = {}

assert man-mvrs-in-head-are-not-pre-ordered-1

fa(m, mvr1, mvr2)
mvr1 in man-head(m) & mvr2 in man-head(m)

=> man-mvr-less?(m, mvr1, mvr2) = false

assert man-mvrs-in-head-are-not-pre-ordered-2

fa(m, mvr1, mvr2)

25

mvr1 in man-head(m) & mvr2 in man-head(m)
=> man-mvr-less?(m, mvr2, mvr1) = false

assert man-mvrs-in-head-preorder-mvrs-in-tail
fa(m, mvr1, mvr2)
mvr1 in man-head(m) & mvr2 in man-tail(m)
=> man-mvr-less?(m, mvr1, mvr2)

assert man-mvrs-in-tail-do-not-preorder-mvrs-in-head

fa(m, mvr1, mvr2)
mvr1 in man-head(m) & mvr2 in man-tail(m)

=> man-mvr-less?(m, mvr2, mvr1) = false

assert man-mark-loaded-refines-manifest

fa(m, mvr)
mvr in man-unloaded(m)

=> man-refined?(m, man-mark-mvr-loaded(m, mvr))

assert man-refinement-preserves-loaded-status

fa(m1, m2, mvr)
man-refined?(man-mark-mvr-loaded(m1, mvr), m2)

=> man-mvr-has-been-loaded?(m2, mvr)

assert man-mark-loaded-implies-has-been-loaded

fa(m, mvr)
mvr in man-unloaded(m)

=> man-mvr-has-been-loaded?(man-mark-mvr-loaded(m, mvr),
mvr)

END-THEORY

A.5 Geometry

!! in-package("RE")
!! in-grammar('THEORY-GRAMMAR, 'cypress-grammar)
% Represents the geometry of a yard.

THEORY GEOMETRY

% --

THEORY-IMPORTS {SLOT, TIME-AND-DISTANCE}

26

% --

THEORY-TYPES

type geo = tuple(distances: seq(seq(distance)),

count: fixnum)

% --

THEORY-OPERATIONS
function geo-make-empty(): geo

= <[], 0>

function geo-next-number(g: geo): integer

= g.count + 1

function geo-add-slot(g: geo, name: slot-name): tuple(geo, slot)

= let(new-dists: seq(seq(distance))
= append(image(lambda(s) append(s, *undefined*), g.distances),

[*undefined* | (i) i in [1 .. geo-next-number(g)]]))
<<new-dists, geo-next-number(g)>,

sl-make(geo-next-number(g), name)>

function geo-add-assymetric-separation(g: geo,

src: slot-id, des: slot-id, dist: distance
): geo
= let(new-dist: seq(seq(distance)) =
seq-shadow1(g.distances, src,

seq-shadow1(g.distances(src), des, dist)))
<new-dist, g.count>

function geo-add-separation(g: geo,

src: slot-id, des: slot-id, dist: distance
): geo
= geo-add-assymetric-separation(

geo-add-assymetric-separation(g, src, des, dist),
des, src, dist)

function geo-slot-ids(g: geo): set(slot-id)

= {1 .. g.count}

function geo-distance(g: geo, src: slot-id, des: slot-id

| src in geo-slot-ids(g)
& des in geo-slot-ids(g)
): distance

= g.distances(src)(des)

27

END-THEORY

A.6 Hostler

!! in-package("RE")
!! in-grammar('THEORY-GRAMMAR, 'cypress-grammar)

% Represents a hostler.

THEORY HOSTLER

% --

THEORY-IMPORTS {TIME-AND-DISTANCE, SLOT, CARGO,

GEOMETRY, MOVEMENT-REQUEST}

% --
THEORY-TYPES

type hostler-id = fixnum
type hostler-name = symbol
type hostler = tuple(id: hostler-id, name: hostler-name)

% --

THEORY-OPERATIONS
function hos-make(id: hostler-id, name: hostler-name): hostler

= <id, name>

function hos-id(h: hostler): hostler-id

= h.id

function hos-speed(h: hostler, c: cargo): speed

= *LOADED-HOSTLER-SPEED*

function hos-unloaded-speed(h: hostler): speed

= *UNLOADED-HOSTLER-SPEED*

function hos-duration-for-move(h: hostler, mvr: mvr, g: geo): duration

= add-durations(
mvr-distance(mvr, g)

div hos-speed(h, mvr-cargo(mvr)),

28

TRIP-DURATION-OVERHEAD)

function hos-duration-for-unloaded-trip(h: hostler,

src: slot-id, des: slot-id, g: geo)
: duration
= geo-distance(g, src, des)

div hos-unloaded-speed(h)

function hos-duration-for-repositioning(h: hostler,

mvr1: mvr, mvr2: mvr, g: geo)
:duration
= add-durations(

hos-duration-for-unloaded-trip(h,
mvr-destination(mvr1), mvr-source(mvr2), g),

REPOSITIONING-OVERHEAD)

function hos-duration-for-move-with-repositioning(h: hostler,

mvr: mvr, origin: slot-id, g: geo
): duration
= add-durations(

add-durations(
hos-duration-for-move(h, mvr, g),

hos-duration-for-unloaded-trip(h, origin, mvr-source(mvr), g)),
REPOSITIONING-OVERHEAD)

END-THEORY

A.7 Yard

!! in-package("RE")
!! in-grammar('THEORY-GRAMMAR, 'cypress-grammar)

% Represents a cargo yard: geometry, resources.

THEORY YARD

% --

THEORY-IMPORTS {SLOT, HOSTLER, GEOMETRY}

% --

THEORY-TYPES

29

type yard = tuple(
slots: map(slot-id, slot),
hostlers: map(hostler-id, hostler),
geometry: geo,
cached-hostlers: set(hostler),
number-of-hostlers: fixnum
)

% --

THEORY-OPERATIONS
function y-make(S: set(slot), H: set(hostler), G: geo): yard

= <{| sl-id(sl) -> sl | (sl: slot) sl in S |},
{| hos-id(ho) -> ho | (ho: hostler) ho in H |},
G,
H,
size(H)
>

function y-slot-ids(y: yard): set(slot-id)

= domain(y.slots)

function y-slot(y: yard, s-id: slot-id
| s-id in y-slot-ids(y)
): slot

= y.slots(s-id)

function y-slot-from-name(y: yard, name: slot-name): slot

= arb(filter(lambda(s: slot) sl-name(s) = name, range(y.slots)))

function y-hostler-ids(y: yard): set(hostler-id)

= domain(y.hostlers)

function y-hostler(y: yard, h-id: hostler-id

| h-id in y-hostler-ids(y)
): hostler
= y.hostlers(h-id)

function y-hostlers(y: yard): set(hostler)

= y.cached-hostlers

function y-geometry(y: yard): geo

= y.geometry

function y-number-of-hostlers(Y: yard): fixnum

= y.number-of-hostlers

30

END-THEORY

A.8 Reservation

!! in-package("RE")
!! in-grammar('THEORY-GRAMMAR, 'cypress-grammar)

% Represents a reservation of a hostler for a cargo item
% in a schedule.

THEORY RESERVATION

% --

THEORY-IMPORTS {HOSTLER, MOVEMENT-REQUEST, TIME-AND-DISTANCE,
YARD}

% --

THEORY-TYPES
type rvn = tuple(hoslter-id: hostler-id,

mvr: mvr,
period: period)

% --

THEORY-OPERATIONS
function rvn-make(h: hostler-id, mvr: mvr, p: period, Y: yard): rvn

= <h, mvr, p>

function rvn-hostler-id(r: rvn): hostler-id

= r.hoslter-id

function rvn-mvr(r: rvn): mvr

= r.mvr

function rvn-period(r: rvn): period

= r.period

END-THEORY

31

A.9 Schedule

!! in-package("RE")
!! in-grammar('THEORY-GRAMMAR, 'cypress-grammar)

THEORY SCHEDULE

% --

THEORY-IMPORTS {TIME-AND-DISTANCE, HOSTLER, MOVEMENT-REQUEST,

RESERVATION, GEOMETRY, YARD, SHIP-MANIFEST}

% --

THEORY-TYPE-PARAMETERS {}

% --

THEORY-TYPES
type h-info = tuple(rvns: seq(rvn),

load: duration,
closure-time: time,
closure-slot: slot-id)

type schedule = tuple(hostlers: seq(h-info),

cached-h-ids: set(hostler-id),
closure: rvn,
sum-of-closure-times: time)

% --

THEORY-OPERATIONS
function sch-make-empty(n: fixnum): schedule

= <[<[], 0, 0, undefined> | (i) i in [1 .. n]],
{},
undefined,
0
>

function sch-is-empty?(S: schedule): boolean

= not(defined?(S.closure))

function sch-hostler-ids(S: schedule): set(hostler-id)

= S.cached-h-ids

32

function sch-size(S: schedule): fixnum

= reduce(+,
image(lambda(h-id) size(S.hostlers(h-id).rvns),

sch-hostler-ids(S)),
0)

function sch-sort-reservations(rs: set(rvn)): seq(rvn)

= sort(rs, lambda(r1: rvn, r2: rvn) is-earlier-time?(
pd-start(rvn-period(r1)),
pd-start(rvn-period(r2))))

function sch-reservations-for-hostler(S: schedule, h-id: hostler-id)

: set(rvn)
= seq-to-set(S.hostlers(h-id).rvns)

function sch-ordered-reservations-for-hostler(S: schedule,

h-id: hostler-id)
: seq(rvn)
= S.hostlers(h-id).rvns

function find-preceeding-reservation-aux(

rvns: seq(rvn), ti: time, l: fixnum, u: fixnum
): rvn
= if l=u

then if l<=size(rvns) then rvns(l) else undefined
else

let(m: fixnum = (l+u) div 2)
if is-earlier-time?(pd-end(rvn-period(rvns(m))), ti)
then find-preceeding-reservation-aux(rvns, ti, m, u)
else find-preceeding-reservation-aux(rvns, ti, l, m)

function find-preceeding-reservation(rvns: seq(rvn), ti: time): rvn

= find-preceeding-reservation-aux(rvns, ti, 1, size(rvns))

function sch-all-reservations(S: schedule): set(rvn)

= reduce(union, [sch-reservations-for-hostler(S, h-id)
| (h-id: hostler-id) h-id in set-to-seq(sch-hostler-ids(S))])

function sch-add-reservation(S: schedule, r: rvn): schedule

= let(h-id: hostler-id = rvn-hostler-id(r))
let(new-rvns: seq(rvn) = prepend(S.hostlers(h-id).rvns, r),

new-load: duration = S.hostlers(h-id).load+pd-duration(rvn-period(r)),
new-closure-time: time = pd-end(rvn-period(r)),
new-closure-slot: slot-id = mvr-destination(rvn-mvr(r)))

let(new-closure: rvn =

33

if not(defined?(S.closure))
then r
else if new-closure-time>pd-end(rvn-period(S.closure))

then r
else S.closure,

new-sum-of-closure-times: time
= S.sum-of-closure-times

+ new-closure-time
- S.hostlers(h-id).closure-time)
<seq-shadow1(S.hostlers, h-id,

<new-rvns, new-load, new-closure-time, new-closure-slot>),
S.cached-h-ids with h-id,
new-closure,
new-sum-of-closure-times>

function sch-sum-of-closure-times(S: schedule): time

= S.sum-of-closure-times

function sch-closure-slot-for-hostler(S: schedule, h-id: hostler-id)

: slot-id
= S.hostlers(h-id).closure-slot

function sch-extract-mvrs-from-seq-of-reservations(rs: seq(rvn))

: seq(mvr)
= image(lambda(r:rvn) rvn-mvr(r), rs)

function sch-last-reservation-for-hostler(S: schedule, h-id: hostler-id)

: rvn
= first(S.hostlers(h-id).rvns)

function sch-closure-time-for-hostler(S: schedule, h-id: hostler-id)

: time
= S.hostlers(h-id).closure-time

function sch-last-reservations(S: schedule): seq(rvn)

= [sch-last-reservation-for-hostler(S, h-id)
| (h-id: hostler-id) h-id in set-to-seq(sch-hostler-ids(S))]

function sch-closure-reservation(S: schedule): rvn

= S.closure

function sch-closure-time(S: schedule): time

= let(r: rvn = sch-closure-reservation(S))
if defined?(r)
then pd-end(rvn-period(r))
else 0

34

function sch-rvns-are-successive(S: schedule, r1: rvn, r2: rvn)

: boolean
= let(h-id: hostler-id = rvn-hostler-id(r1))

h-id = rvn-hostler-id(r2)
and is-earlier-time?(pd-start(rvn-period(r1)),

pd-start(rvn-period(r2)))
and not(ex(r3: rvn)(

r3 in sch-reservations-for-hostler(S, h-id)
and is-earlier-time?(pd-start(rvn-period(r1)),

pd-start(rvn-period(r3)))
and is-earlier-time?(pd-start(rvn-period(r3)),

pd-start(rvn-period(r2)))
))

function sch-duration-for-hostler(S: schedule, h-id: hostler-id)

: duration
= S.hostlers(h-id).load

function sch-total-duration(S: schedule): duration

= reduce(add-durations,
[sch-duration-for-hostler(S, h-id)
| (h-id) h-id in set-to-seq(sch-hostler-ids(S))],

0)

END-THEORY

A.10 Work Metric

!! in-package("RE")
!! in-grammar('THEORY-GRAMMAR, 'cypress-grammar)

% Metrics on schedules, based on "work done"
% (i.e., cargo shipped, distance moved).
% Used for pruning schedules.

THEORY METRIC-WORK

% --
THEORY-IMPORTS {HOSTLER, MOVEMENT-REQUEST, RESERVATION,
GEOMETRY, YARD, SHIP-MANIFEST, SCHEDULE, TIME-AND-DISTANCE}

% --

35

THEORY-TYPES
type hsec = fixnum

% --

THEORY-OPERATIONS
function load-based-on-hostler(man: manifest, h: hostler, g: geo): hsec

= man-unloaded-distance(man)

function true-repositioning-cost-for-hostler(

S: schedule, h-id: hostler-id, Y: yard
): hsec
= let(ordered: seq(rvn) = sch-ordered-reservations-for-hostler(S, h-id))

let(h: hostler = y-hostler(Y, h-id))
reduce(+,

[hos-duration-for-repositioning(h,
rvn-mvr(ordered(i - 1)), rvn-mvr(ordered(i)), y-geometry(Y))
| (i: integer) i in [2 .. size(ordered)]],

0)

function true-total-repositioning-cost(S: schedule, Y: yard): hsec

= reduce(+,
 [true-repositioning-cost-for-hostler(S, h-id, Y)

| (h-id: hostler-id) h-id in set-to-seq(sch-hostler-ids(S))],
0)

function load-cost-for-hostler(S: schedule, h-id: hostler-id): hsec

= sch-duration-for-hostler(S, h-id)

function total-load-cost(S: schedule): hsec

= sch-total-duration(S)

function work-cost-for-hostler(S: schedule, h-id: hostler-id): hsec

= sch-closure-time-for-hostler(S, h-id)

function total-work-cost(S: schedule): hsec

= sch-sum-of-closure-times(S)

function total-work-cost-precompute(S: schedule, works: seq(hsec))

: hsec
= reduce(+,

[works(h-id)
| (h-id) h-id in set-to-seq(sch-hostler-ids(S))])

function work*(S: schedule): hsec

36

= let(r: rvn = sch-closure-reservation(S))
if defined?(r)
then pd-end(rvn-period(r))
else 0

function work*-precompute(S: schedule, works: seq(hsec)): hsec

= reduce(lambda(x: hsec, y: hsec)
if x>=y then x else y,

[works(h-id)
| (h-id: hostler-id) h-id in set-to-seq(sch-hostler-ids(S))],

0)

function work*-id(S: schedule): hostler-id

= arb({h-id | (h-id: hostler-id) h-id in sch-hostler-ids(S)
and work-cost-for-hostler(S, h-id) = work*(S)})

function repositioning-cost-for-hostler(S: schedule, h-id: hostler-id)

: hsec
= work-cost-for-hostler(S, h-id) - load-cost-for-hostler(S, h-id)

function total-repositioning-cost(S: schedule): hsec

= total-work-cost(S) - total-load-cost(S)

function schedule-cost(S: schedule, Y: yard): hsec

= work*(S) * y-number-of-hostlers(Y)

function schedule-cost-precompute(S: schedule, Y: yard,

works: seq(hsec)): hsec
= work*-precompute(S, works) * size(y-hostler-ids(y))

function spare(S: schedule, Y: yard): hsec

= schedule-cost(S, Y) - total-work-cost(S)

function find-shortest-distances(

d: slot-id, c: integer, ss: seq(slot-id), g: geo
): seq(distance)
= let(sorted: seq(distance)

= sort([geo-distance(g, d, s) | (s) s in ss],
lambda(x,y) x<=y))

[sorted(i) | (i) i in [1 .. c]]

function find-shortest-distances-for-source(

s: slot-id, c: integer, dd: seq(slot-id), g: geo
): seq(distance)
= let(sorted: seq(distance)

= sort([geo-distance(g, d, s) | (d) d in dd],

37

lambda(x,y) x<=y))
[sorted(i) | (i) i in [1 .. c]]

function repo-lower-bound-from-destinations(S: schedule,

Y: yard, M: manifest)
: hsec

= man-repositioning-lower-bound(M, Y) div *UNLOADED-HOSTLER-SPEED*
+ *REPOSITIONING-OVERHEAD*

* (size(man-unloaded(M)) - y-number-of-hostlers(Y))

function repo-lower-bound(S: schedule, Y: yard, M: manifest): hsec

= let(d2 = repo-lower-bound-from-destinations(S, Y, M))
d2

function find-largest-distances(

d: slot-id, c: integer, ss: seq(slot-id), g: geo
): seq(distance)
= let(sorted: seq(distance)

= sort([geo-distance(g, d, s) | (s) s in ss],
lambda(x,y) x>=y))

[sorted(i) | (i) i in [1 .. c]]

function predicted-cost-pre-compute-repo(

S: schedule, Y: yard, M: manifest, repo: distance, load: hsec
): hsec
= if man-finished?(M)

then schedule-cost(S, Y)
else

let(w: hsec = total-work-cost(S),
cost: hsec = schedule-cost(S, Y))

let(spare-cost: hsec = cost - w)
if load+repo > spare-cost
then cost + load + repo - spare-cost
else cost

function predicted-cost(S: schedule, Y: yard, M: manifest): hsec

= predicted-cost-pre-compute-repo(S, Y, M, repo-lower-bound(S, Y, M),
load-based-on-hostler(M,

arb(y-hostlers(Y)), y-geometry(Y)))

function lower-bound-for-delta-schedule(

old-S: schedule, h-id: hostler-id, new-M: manifest,
Y: yard, repo: distance, load: hsec,
rvn-h: rvn
): hsec
= let(fts-h: time = pd-end(rvn-period(rvn-h)))

38

let(new-closure-time: time
= greater-i(sch-closure-time(old-S), fts-h))

let(new-cost-S: hsec = new-closure-time * y-number-of-hostlers(Y))
if man-finished?(new-M)
then new-cost-S
else

let(w: hsec
= sch-sum-of-closure-times(old-S)

+ fts-h - sch-closure-time-for-hostler(old-S, h-id))
let(spare-cost: hsec = new-cost-S - w)
if load+repo > spare-cost
then load + repo + w
else new-cost-S

END-THEORY

A.11 YMS

!! in-package("RE")
!! in-grammar('THEORY-GRAMMAR, 'cypress-grammar)

% Defines the constraints on a feasible hostler schedule.

THEORY YARD-MANAGEMENT-SYSTEM-2

% --

THEORY-IMPORTS {HOSTLER, MOVEMENT-REQUEST, RESERVATION,
GEOMETRY, YARD, SHIP-MANIFEST, SCHEDULE}

% --

THEORY-TYPE-PARAMETERS {}

% --

THEORY-TYPES

% --

THEORY-OPERATIONS
function sch-sequence-of-mvr-refined?(s1: seq(mvr), s2: seq(mvr))

: boolean

39

= size(s1) <= size(s2)
and-then fa(i: fixnum)(i in domain(s1) => s1(i) = s2(i))

function schedule-refined?(S1: schedule, S2: schedule): boolean

= sch-hostler-ids(S1) subset sch-hostler-ids(S2)
and-then fa(h-id: hostler-id)

(h-id in sch-hostler-ids(S1)
=> sch-sequence-of-mvr-refined?(

sch-extract-mvrs-from-seq-of-reservations(
sch-ordered-reservations-for-hostler(S1, h-id)),

sch-extract-mvrs-from-seq-of-reservations(
sch-ordered-reservations-for-hostler(S2, h-id)))

)

function order-respected?(S: schedule, man: manifest): boolean

= fa(r1: rvn, r2: rvn)
(r1 in sch-all-reservations(S)

and r2 in sch-all-reservations(S)
=> man-mvr-less?(man, rvn-mvr(r1), rvn-mvr(r2))

=> is-earlier-time?(pd-end(rvn-period(r1)),
pd-end(rvn-period(r2)))
)

function feasible-resources?(S: schedule, Y: yard): boolean

= sch-hostler-ids(S) subset y-hostler-ids(Y)

function feasible-durations?(S: schedule, Y: yard): boolean

= fa(r: rvn)(r in sch-all-reservations(S)
=> is-shorter-duration?(

hos-duration-for-move(
y-hostler(Y, rvn-hostler-id(r)),

rvn-mvr(r),
y-geometry(Y)),

pd-duration(rvn-period(r)))
)

function feasible-separations?(S: schedule, Y: yard): boolean

= fa(r1: rvn, r2: rvn)(
r1 in sch-all-reservations(S)

and r2 in sch-all-reservations(S)
and sch-rvns-are-successive(S, r1, r2)
=> is-later-time?(

pd-start(rvn-period(r2)),
add-duration-to-time(

pd-end(rvn-period(r1)),
hos-duration-for-repositioning(

40

y-hostler(Y, rvn-hostler-id(r1)),
rvn-mvr(r1),
rvn-mvr(r2),
y-geometry(Y))))

)

function YMS-Schedule(Y: yard, man: manifest | true)

returns (S: schedule
| order-respected?(S, man)
& feasible-durations?(S, Y)
& feasible-separations?(S, Y)
& feasible-resources?(S, Y)
)

END-THEORY

A.12 Global Search with Pruning

!! in-package("RE")
!! in-grammar('THEORY-GRAMMAR, 'cypress-grammar)

% Theory for global search with pruning.

THEORY SCHED-GS-PRUNING

% --

THEORY-IMPORTS {HOSTLER, MOVEMENT-REQUEST, RESERVATION,
GEOMETRY, YARD, SHIP-MANIFEST, SCHEDULE,
YARD-MANAGEMENT-SYSTEM-2, SCHED-TESTER,
SCHED-GREEDY-APPEND-FOR-EARLIEST-MVR-FINISH}

% --

THEORY-TYPE-PARAMETERS {}

% --

THEORY-TYPES
var *tree-size*: fixnum = 0
var *leaf-size*: fixnum = 0
var *lb*: hsec = 999999
var *opt*:real = 2.0

41

var answer: schedule = undefined

% --

THEORY-OPERATIONS
function fts(S: schedule, Y: yard, h-id: hostler-id, mvr: mvr,

lower-bound: time, mvr-duration: duration)
: time
= let(close:time =

if h-id in sch-hostler-ids(S)
then sch-closure-time-for-hostler(S, h-id)

+ mvr-duration
+ geo-distance(y-geometry(Y),

sch-closure-slot-for-hostler(S, h-id),
mvr-source(mvr))

div *UNLOADED-HOSTLER-SPEED*
+ *REPOSITIONING-OVERHEAD*

else add-duration-to-time(*EARLIEST-TIME*, mvr-duration))
if is-later-time?(lower-bound, close)

then lower-bound
else close

function find-latest-reservation-of-lower-rank-aux(

rvns: seq(rvn), man: manifest, m: mvr, l: fixnum
): rvn
= if l>size(rvns) then undefined

elseif man-mvr-less?(man, rvn-mvr(rvns(l)), m)
then rvns(l)
else find-latest-reservation-of-lower-rank-aux(rvns, man,

m, l+1)

function find-latest-reservation-of-lower-rank(

rvns: seq(rvn), man: manifest, m: mvr
): rvn
= find-latest-reservation-of-lower-rank-aux(rvns, man, m, 1)

function find-latest-reservation-of-lower-rank-for-hostler(

S: schedule, h-id: hostler-id, man: manifest, m: mvr
): rvn
= let(rvns: seq(rvn)

= sch-ordered-reservations-for-hostler(S, h-id))
find-latest-reservation-of-lower-rank(rvns, man, m)

function find-latest-reservations-of-lower-rank(

S: schedule, man: manifest, m: mvr
): seq(rvn)

42

= [r | (r: rvn, h-id: hostler-id)
h-id in set-to-seq(sch-hostler-ids(S))

& r = find-latest-reservation-of-lower-rank-for-hostler(S, h-id, man, m)
& defined?(r)]

function make-new-schedule-for-hostler(

S: schedule, mvr: mvr, h-id: hostler-id, Y: yard, M: manifest,
earliest-end: time, mvr-duration: duration
): schedule
= let(fts-h = fts(S, Y, h-id, mvr, earliest-end, mvr-duration))

let(rvn-h = rvn-make(h-id,
mvr,
pd-make-from-times(

fts-h - mvr-duration,
fts-h),

Y))
let(new-S = sch-add-reservation(S, rvn-h))
new-S

function gs-aux(S: schedule, M: manifest, Y: yard,

opt-factor: real, depth: fixnum)
: schedule
= *tree-size* <- *tree-size* + 1;

if man-finished?(M)
then (*leaf-size* <- *leaf-size* + 1;

if schedule-cost(S, Y)<*lb*
then (*lb* <- schedule-cost(S, Y);

print([*tree-size*, *lb*]);
S)

else undefined
)

else
let(mvr-choice: mvr = arb(man-head(M)))
let(manifests: manifest

= man-mark-mvr-loaded(M, mvr-choice))
let(repos: hsec = repo-lower-bound(S, Y, manifests))
let(pre-mvrs: seq(rvn)

= find-latest-reservations-of-lower-rank(S, M, mvr-choice))
let(earliest-end: time =

max-seq-i(append([pd-end(rvn-period(pre-mvrs(i)))
| (i) i in domain(pre-mvrs)],

EARLIEST-TIME)))
let(mvr-duration: duration

= mvr-distance(mvr-choice, y-geometry(Y)) div *LOADED-HOSTLER-SPEED*
+ *TRIP-DURATION-OVERHEAD*)

let(loads: hsec

43

= load-based-on-hostler(manifests, arb(y-hostlers(Y)), y-geometry(Y)))
let(rvns: map(hostler-id, rvn)

= {| h-id -> r | (h-id: hostler-id, r: rvn, fts-h: time)
h-id in set-to-seq(y-hostler-ids(Y))

& fts-h = fts(S, Y, h-id, mvr-choice, earliest-end, mvr-duration)
& r = rvn-make(h-id, mvr-choice,
pd-make-from-times(fts-h - mvr-duration, fts-h),
Y) |})
let(lower-bounds: seq(tuple(mvr, hostler-id, hsec)) =

sort([<mvr-choice, h-id, lower-bound>
| (h-id: hostler-id, lower-bound: hsec,

new-M: manifest)
h-id in set-to-seq(y-hostler-ids(Y))

& h-id <= depth
& new-M = manifests
& lower-bound =

lower-bound-for-delta-schedule(
S, h-id, new-M, Y, repos, loads, rvns(h-id))

],
lambda(smc1: tuple(mvr, hostler-id, hsec),

smc2: tuple(mvr, hostler-id, hsec))
smc1.3<=smc2.3))

let(schedules: seq(tuple(schedule, hsec)) =
[<new-S, cost>

| (smc: tuple(mvr, hostler-id, hsec),
h-id: hostler-id, lower-bound: hsec,
new-S: schedule, cost: hsec)

smc in lower-bounds
& h-id = smc.2 & lower-bound = smc.3
& new-S = (if lower-bound<*lb* * opt-factor

then gs-aux(sch-add-reservation(S, rvns(h-id)),
manifests, Y, opt-factor, depth+1)

else (*tree-size* <- *tree-size* + 1;
undefined))

& defined?(new-S)
& cost = if defined?(new-S)

then schedule-cost(new-S, Y)
else undefined

])
let(optimum: tuple(schedule, hsec) =

if not(empty(schedules))
then reduce(lambda(sm1: tuple(schedule, hsec),

sm2: tuple(schedule, hsec))
if sm1.2<=sm2.2

then sm1 else sm2,
schedules)

44

else <undefined, undefined>)
optimum.1

function gs(M: manifest, Y: yard, opt: real): schedule
 = gs-aux(sch-make-empty(size(y-hostlers(Y))), M, Y,
 1.0/(1.0 + opt/100.0), 1)

function test-schedule(opts: seq(real))
 = let(Y = construct-yard())
 let(M = construct-manifest(Y))
 let(initial: schedule
 = greedy-append-for-earliest-mvr-finish(M, Y))
 let(lb = schedule-cost(initial, Y))
 image(lambda(opt: real)
 (*lb* <- lb;
 tree-size <- 0;
 leaf-size <- 0;
 answer <- gs(M, Y, opt);
 (if defined?(answer)
 then print([
lb,
real-to-nearest-integer(opt), *tree-size*, *leaf-size*,
schedule-cost(answer, Y),
total-load-cost(answer),
true-total-repositioning-cost(answer, Y),
total-repositioning-cost(answer)

- true-total-repositioning-cost(answer, Y),
spare(answer, Y)])

else print([lb, real-to-nearest-integer(opt),
tree-size, *leaf-size*, undefined]));

print("");
undefined),
opts)

END-THEORY

A.13 Greedy Heuristic Scheduler

!! in-package("RE")
!! in-grammar('THEORY-GRAMMAR, 'cypress-grammar)

% Theory for greedy heuristic scheduler
% based on earliest finishing time.

45

THEORY SCHED-GREEDY-APPEND-FOR-EARLIEST-MVR-FINISH

% --

THEORY-IMPORTS {TIME-AND-DISTANCE, CARGO, SLOT, GEOMETRY,

MOVEMENT-REQUEST, HOSTLER, SHIP-MANIFEST, YARD,
RESERVATION, SCHEDULE, YARD-MANAGEMENT-SYSTEM-2, SCHED-
TESTER, METRIC-WORK}

% --

THEORY-OPERATIONS
function separation-time(Y: yard, h-id: hostler-id,

mvr1: mvr, mvr2: mvr)
: duration

= hos-duration-for-repositioning(y-hostler(Y, h-id),
mvr1, mvr2, y-geometry(Y))

function duration-for-mvr(Y: yard, h-id: hostler-id, mvr: mvr)

: duration
= hos-duration-for-move(y-hostler(Y, h-id), mvr, y-geometry(Y))

function duration-for-move-with-repositioning(Y: yard, h-id: hostler-id,

mvr1: mvr, mvr2: mvr): duration
= hos-duration-for-move-with-repositioning(y-hostler(Y, h-id),

mvr2, mvr-destination(mvr1), y-geometry(Y))

function fts1(S: schedule, Y: yard, h-id: hostler-id, mvr: mvr,

lower-bound: time)
: time
= let(close:time =

if h-id in sch-hostler-ids(S)
then add-duration-to-time(

sch-closure-time-for-hostler(S, h-id),
duration-for-move-with-repositioning(

Y, h-id,
rvn-mvr(sch-last-reservation-for-hostler(S, h-id)),
mvr))

else add-duration-to-time(
EARLIEST-TIME,
duration-for-mvr(Y, h-id, mvr))
)

if is-later-time?(lower-bound, close) then lower-bound else close

function greedy-append-for-earliest-mvr-finish-aux(

46

S: schedule, M: manifest, Y: yard
): schedule
= if man-finished?(M)

then S
else

let(mvr*: mvr = arb(man-head(M)))
let(pre: set(rvn)

= seq-to-set(find-latest-reservations-of-lower-rank(S, M, mvr*)))
let(earliest-end: time

= max-i({pd-end(rvn-period(rvn)) | (rvn: rvn) rvn in pre}
with *EARLIEST-TIME*))
let(fts*: time = min-i({fts1(S, Y, h-id, mvr*, earliest-end)

| (h-id:hostler-id) h-id in y-hostler-ids(Y)}))
let(h-id*: hostler-id

= arb({h-id | (h-id: hostler-id) h-id in y-hostler-ids(Y)
and fts1(S, Y, h-id, mvr*, earliest-end) = fts*}))

let(rvn*: rvn = rvn-make(h-id*,
mvr*,
pd-make-from-times(

subtract-duration-from-time(fts*,
duration-for-mvr(Y, h-id*, mvr*)),

fts*),
Y))

let(new-S: schedule = sch-add-reservation(S, rvn*),
new-M: manifest = man-mark-mvr-loaded(M, mvr*))

greedy-append-for-earliest-mvr-finish-aux(new-S, new-M, Y)
function greedy-append-for-earliest-mvr-finish(M: manifest, Y: yard)

: schedule
= let (empty-sch = sch-make-empty(size(y-hostlers(Y))))

greedy-append-for-earliest-mvr-finish-aux(empty-sch, M, Y)

END-THEORY

