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Abstract-QOL (Quality Of Life) in old ages has received much
attention. Fracture of bones is seriously related to the QOL and
is mainly caused by osteoporosis in old ages. BMD (Bone
Mineral Density), an index to evaluate the mechanical strength
of the bone, does not always reflect the strength. On the other
hand, micro X-ray CT has revealed the inner structure of bone.
Under such circumstances, an image compression technique was
employed to find a better index for the evaluation. MRA (Multi
Resolution Analysis) and a measure for the subband images are
popular in the technique. In this study, the MRA with Harr
functions and the power spectra of the subband images were
employed. A linear estimation with the power spectra was
performed to estimate the strength. To evaluate this method, the
micro X-ray CT imaging and a destructive test of rat lumber
vertebras were performed. The newly determined index is
higher correlated to the bone mechanical strength than the BMD.
Situation of human bone may not be so different from the rat
bones. This method may be, therefore, beneficial to estimating
the bone mechanical strength.
Keywords - Osteoporosis, micro X-ray CT, BMD (Bone Mineral
Density), MRA (Multi Resolution Analysis), image compression,
linear estimation

I. INTRODUCTION

QOL (Quality Of Life) in old ages has received much
attention. Fracture of bones is seriously related to the QOL
because it ranks higher to be bedridden, and is mainly caused
by osteoporosis in old ages. Therefore, detecting osteoporosis
in early stages is important. However, to evaluate possibility
of the fracture of bones itself, bone mechanical strength
should be estimated. In this meaning, nondestructing test of
bones is actually important.

Under the circumstances, the conventional diagnostic
parameter for osteoporosis is BMD (Bone Mineral Density).
However, the BMD does not always reflect the bone
mechanical strength. Therefore, another closely correlated
index to the bone mechanical strength should be required.

We propose an estimation method for the bone
mechanical strength from a micro X-ray CT image. This
method is based on an image compression technique using
MRA (Multi Resolution Analysis) [1] and a linear estimation
technique. We applied this method to 10 extracted lumbar
vertebras of rats as a preliminary study. The parameters
regarding the mechanical strength of each lumbar vertebra
was separately measured by a destructive test. Correlation
between the estimated and the measured bone mechanical
strength parameters was evaluated.

The research was partially supported by Grant-in-Aid for Scientific Research
(B-13557123) of Japan Society for Promotion Science.

II. METHOD
A. Multi Resolution Analysis

MRA is quite popular technique in image processing. We
have applied MRA to a section image of a bone captured by a
micro X-ray CT [2]. In the MRA, 2 one-dimensional filters
having exclusive passbands with respect to each other are
first prepared. To simplify the explanation, those two filters
are assumed to be lowpass- and highpss-filters. Second, an
image, treated as a matrix An,m (nth individium, mth section,
n=1,2,···,N, m=1,2,···,M), is convolved with one of filters
along horizontal (row) or vertical (column) direction and then
is down-sampled every two pixels. The procedure is
expressed by

[ ][ ] ( ),R,C
2 L,H n m↓ A , (1)

where [·,·] means alternate choice. For example, if An,m is
convolved with the lowpass filter along row and is down-
sampled, then the procedure is denoted by 2↓LR(An,m).
Usually, the MRA for images, a pair of the sequential
procedures, first along row and then column, is performed.
Therefore, it is described as 2↓[L,H]C(2↓[L,H]R(An,m)).
Twice the down-sampling and the combinations of lowpass-
and highpass-filters produce 4 images having the quarter size
of the original image. Third, the same procedure can be
performed recursively to produce the multi resolution
subband images. Through the recursive procedures, exactly
the same filters are used. However, the passband is further
divided two in each procedure due to the down-sampling.
The square sums of the pixels of the subband images may
play role of the power spectra of the image An,m. The power
spectra have shift-invariant property. If rotation-invariant
property is also required, then for example 2↓HC(2↓LR(An,m))
and 2↓LC(2↓HR(An,m)) should be treated as the same and 2
power spectra corresponding to them will be merged.
Therefore, the number of the power spectra is reduced by the
same treatment. Finally, the information of the original image
is represented by the shift-, rotation-invariant, and merged
power spectra. The power spectra, whose number is L, are
denoted by vector an,m=[an,m,1,an,m,2,···,an,m,L]T. Note that the
shift-invariant property is correct if the bone region still
remains all in the image after the shift but the rotation-
invariant one is not always so.

Assume that parameters regarding the mechanical strength
of the same bone as captured by the micro X-ray CT are
obtained by a destructive test. The parameters, whose number
is K, are also denoted by vector bn =[b1,b2,···,bK]T. If a linear
estimate is sought, we obtain

T ,n n=b W a (2)
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where W is a M×K matrix whose columns are the weight
vectors for the corresponding parameters regarding the bone
mechanical strength. Now, assuming

[ ] ( )1 2 1 ,1 ,2 ,

1 1 1 2 2 2 1 1 1

, , , , , , , ,

, , , , , , , , , , , , ,

N n n n n M

N N N

M M M

−

− − −

= =   

 
=  
  

A A A A A A A A

B b b b b b b b b b
(3)

(2) changes to
T .=B W A (4)

Using a pseudo inverse A− of A, we obtain
T .−=W BA (5)

Pseudo inverse is determined under a certain criterion, to be
considered later, such that W is optimal in the meaning by the
criterion among the individiums except Nth one. If the bone
mechanical strength of Nth individium bN is estimated with
W determined without any influence from Nth one, then it
will be an evaluation of the effectiveness of this method. The
procedure can be used any nth (not restricted in only Nth)
such that the correlation coefficients between the measured
and the estimated of the bone mechanical strength can be
calculated for the evaluation. It makes sense because what an
unknown case is estimated from known cases is a
conventional diagnosis technique.

Let us now return to the criterion regarding the pseudo
inverse. For this kind of overdetermined problem, least square
solution is often used [3]

1T T T .
−

 =  W B A A A (6)

We should also take importance of each spectrum an,m,l (with
difference of l) into account for the effective evaluation.
Namely, an,m,l which varies widely among individiums (with
difference of n) and does not so within a individium (with
difference of m) is preferable. This means that the bone
mechanical strength of an individium is estimated the same
from any section images of the same individium and also is
estimated differently by the different individium. (Of course,
if different individiums have the same mechanical strength,
then an,m,l is not necessary to vary.) To evaluate the
importance of an,m,l, the matrix
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(7)
is employed. var(an,m,l,n) (var(an,m,l,m)) of (7) indicates
variance of an,m,l with difference of n (m). With (7) and a
regularization for stability of the inverse matrix, (6) is
modified to

1T T Tα ,
−

 = + W B A CA I A C (8)

where α and I are the regularization parameter and the L×L
identity matrix, respectively.

III. EVALUATIONS

A. Experiments

10 rat Lumbar vertebras (just bone hereafter) were
extracted. In the 10 rats, 5 were normal and the other 5 were

ovariectomy-operated. Then the bones were captured by a
micro X-ray CT. The number of section image of each bone
was 30 whose slice pitch was 20.7 (µm). The size and the
resolution of each image were 512×512 and 25.8 (µm/pixel),
respectively. For the MRA analysis, each image was
decomposed up to level 3 (to be 43=64 subband images) by
Haar functions as used for the lowpass- and highpass-filters.
The square sums of the 64 subband images were merged to be
the 27 power spectra in the treatment mentioned in Section II.
Therefore, 27×30 power spectra were obtained per bone, and
the size of A in (4) was 27×(30·(10−1)).

BMD, as an absorptiometry of X-ray, was approximated
by the micro X-ray CT image. Here, we used the square sum
of each micro X-ray CT image as the BMD. Replacing A by
A´ using the BMD, the size of A´ was 1×(30·(10−1)). The
estimation with A´ apparently changed to underdetermined
such that

1T T T −
′ ′ ′ =  W BA A A (9)

was used instead of (8). The proposed method can be
compared with the BMD by the difference of the estimation
results from (8) and (9).

On the other hand, a destructive test (compression versus
deformation) of the extracted bones was separately performed
to obtain the bone mechanical strength parameters, cut power,
elasticity, perseverance, and maximum load. Then all
parameters were normalized by a parameter of a bone.
Consequently, the size of B in (4) was 4×(30·(10−1)).

B. Results and Discussions

Figs. 1(a) and (b) show a typical micro X-ray CT image of
a normal rat bone (a) and its MRA images (b). Complicated
structure of trabecular bone can be seen in Fig. 1(a). The
original bone structure can be recognized in some subband
images located around top left corner in Fig. 1(b). It is
because the low frequency bands gather around the corner
and maintain the approximate shape of the bone.

Figs. 1(c) and (d) show typical power spectra of a normal
and an ovariectomy-operated rat bones, respectively. Those
are stack plots of the power spectra from all the 30 sections.
The numbers of the frequency bands are lined in frequency
ascending order. The frequency bands whose power spectra
are vertically spread indicate the within-bone variance of
power spectra is wide.

On the other hand, Fig. 1(e) shows the stack plots of the
power spectra for all the 10 rat bones. A typical power spectra
is picked up from 30 ones within the same rat bones. The blue
and red lines indicate the power spectra from the normal and
the ovariectomy-operated rats, respectively. The secondly
drawn blue lines almost overlapped with the firstly drawn red
lines such that the evaluation for the bone mechanical
strength qualitatively is difficult. The frequency bands whose
power spectra are vertically spread indicate the inter-bone
variance of power spectra is wide.

The variance ratio calculated from Figs. 1(c), (d), and (e)
reflect the matrix C in (7). Note that Figs. 1(c), (d), and (e)
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are displayed by vertical semilog plots such that the apparent
vertical width does not directly mean the variance.

Fig. 2 shows the estimation results of the bone mechanical
strength from the micro X-ray CT images and the
approximated BMD. Top left, top right, bottom left, and
bottom right parts correspond to the estimation results
regarding the bone mechanical strength parameters, cut power,
elasticity, perseverance, and maximum load, respectively, as
shown in the corresponding graphs. The parameters of the
bone mechanical strength are normalized such that the units
of the axes are absolute numbers. The red and blue marks
indicate, as the same in Fig. 1, the normal and the
ovariectomy-operated rats, respectively. The circles and
crosses indicate the estimation results from the micro X-ray
images (the proposed method) and from the BMD,
respectively. The error bars indicate the standard deviation of
the difference of the 30 section images. The blue and red
marks are almost horizontally exclusively except in case of
elasticity such that the ovariectomy operation closely relates

to the bone mechanical strength. The estimation results are
also demonstrated by the correlation coefficients between the
estimated and the measured bone mechanical strength
parameters shown in Table I. From Fig. 2 and Table I, the
results from the micro X-ray CT are more closely correlated
to the bone mechanical strength than those from the BMD.
However, elasticity is difficult to estimate from both of them.
The reasons are expected as follows. The bone mechanical
strength may consist of 3 factors, quality, quantity, and
structure. Although the BMD is sensitive only to the quantity
factor, the micro X-ray CT is so to not only the quantity but
also the structure factors. Therefore, the estimation results
from the micro X-ray CT are better than those from the BMD.
However, both measurement techniques are based on
absorptiometry using X-ray. X-ray may not be sensitive to the
quality factor. If elasticity may depend on the quality factor
on the contrary, then the estimation results from both of them
become poor. For the highly correlated estimation to
elasticity, one would try to extract the quality information by
a nonlinear estimation. If, actually, monotonic nonlinear
functions such as log-energies, entropies, and etc. were used
for the measure of the subband images instead of the power
spectra, then the estimation results were significantly changed.
However, such nonlinear methods were not unstable with
choice of the bone section image. The other measurement
technique instead of using X-ray is worth being considered.
First of all, we plan to use an ultrasound measurement and its
fusion methods with using X-ray in the near future.
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TABLE I
CORRELATION COEFFICIENTS BETWEEN THE MEASURED AND THE EVALUATED

cut power elasticity perseverance max. load
micro X-ray 0.89 0.43 0.73 0.88

BMD 0.82 0.13 0.64 0.79

Fig. 1. A micro X-ray CT image, the MRA images, and the power
spectra. (a) Typical micro X-ray CT image of image of a rat
lumber vertebra. (b) The subband images of (a) by the MRA. (c)
The power spectra stack plots of the MRA image of a normal rat
bone. (d) The same as (c) except of an ovariectomy-operated rat.
(e) The power spectra stack plots of the MRA images of all the 10
rat bones. In (c)-(e), blue and red indicate normal and
ovariectomy-operated, respectively. Those power spectra are
similar with respect to each other such that the qualitative
evaluation for the bone mechanical strength is difficult.

Fig. 2. Estimation results of the bone mechanical strength from
the micro X-ray CT (circles) images and the BMD (crosses)
approximated by the square sum of the pixels of the micro X-ray
CT images (blue : normal, red: ovariectomy-operated). Left top,
right top, left bottom, and right bottom correspond to the bone
mechanical strength parameters, cut power, elasticity,
perseverance, and load, respectively (as shown in the
corresponding graphs).
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IV. CONCLUSION

We propose a method for estimating a bone mechanical
strength from a bone section image captured by a micro X-ray
CT. The method is outlined as follows. Not only the micro X-
ray imaging but also the destructive test (compression versus
deformation) is performed to obtain the bone mechanical
strength parameters, cut power, elasticity, perseverance, and
maximum load. Those above are the preparations. First, MRA
with Haar functions up to level 3 is applied to the micro X-
ray CT image. The MRA generates the 64 subband images.
Second, a measure for each subband image is designed. In
this step, taking the order of the convolution with the
lowapass- and highpass-filters into account, some subband
images should be treated as the same in the meaning of
frequency. It indicates, from another viewpoint, that a
rotation-invariant measure should be used. Therefore, the 64
subband images are merged to the 27 subband ones and the
square sum of each subband image is calculated as the power
spectrum. Third, weight matrix is calculated by a linear
equation between the power spectra and the bone mechanical
strength. Finally, the linear estimation based on the linear
equation is performed to a micro X-ray CT image that has not
been used for the weight matrix calculation. It makes sense
because what an unknown case is estimated from known
cases is a conventional diagnosis technique.

As a preliminary study, this method was applied to 10
extracted lumbar vertebras of rats (5 normal and 5
ovariectomy-operated). The correlation between the estimated
bone mechanical strength and the measured ones were
evaluated. As the results, the proposed method could
successfully estimate the bone mechanical strength except
elasticity. The correlation coefficients were high comparing
with the estimation results from the BMD. Note that the
BMD was approximated by the micro X-ray CT images. The
estimation for the elasticity is future work.

Situation of human bones may not be so different from rat
bones. This method may be, therefore, beneficial to
estimating the bone mechanical strength.
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