
Abstract-The problem that we investigate in the present paper is 
the improvement of the analysis of the primary tumor mass, in 
patients with advanced neuroblastoma, using X-ray computed 
tomography (CT) exams. To achieve this goal, we propose a 
methodology for the estimation of the histological content of the 
mass that comprises a technique for semi-automatic 
segmentation of the primary tumor mass in CT images of 
neuroblastoma and a statistical method to estimate, from 
segmented CT images, the histological composition of the 
primary tumor. The results of the method are compared with 
the results of histological analysis of surgically resected tumor 
mass. 
Keywords - Image segmentation, computed tomography, feature 
extraction, neuroblastoma 

 
I. INTRODUCTION 

 
Neuroblastoma is a malignant tumor of neural crest origin 
that may arise anywhere along the sympathetic ganglia or 
within the adrenal medulla. It is said to be an enigmatic and 
fascinating entity that represents, at the same time, one of the 
best examples of spontaneous regression for a malignant 
tumor and one of the tumors with the poorest cure potential 
for some groups [1]. Neuroblastoma is the most common 
extracranial solid malignant tumor in children; it is the third 
most common malignancy of childhood [2].  

On computed tomography (CT) exams, abdominal 
neuroblastoma is seen as a mass of soft tissue, commonly 
suprarenal or paravertebral, irregularly shaped, lobulated, 
extending from the flank toward the midline, and lacking a 
capsule. The mass tends to be inhomogeneous due to tumor 
necrosis intermixed with viable tumor, and contains 
calcifications in 85% of patients. Calcifications are usually 
dense, amorphous, and mottled in appearance. Sometimes, 
neuroblastoma presents areas of central necrosis, shown as 
low-attenuation areas that are more apparent after contrast 
enhancement [2]. 

Despite the proven usefulness of imaging techniques in the 
detection, delineation, and staging of the primary tumor [2], 
there is a need for improvement in the usage of these 
techniques for a more accurate assessment of the local 
disease that could lead to better treatment planning and 
follow-up. Foglia et al. [3] argued that the primary tumor 
status in advanced neuroblastoma cannot be assessed 
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definitively by diagnostic imaging, due to errors in sensitivity 
and specificity as high as 38%, when assessing tumor 
viability by imaging methods and comparing it to findings in 
delayed surgery. They also reported that CT exams could not 
differentiate viable tumor from fibrotic tissue or nonviable 
tumor destroyed by previous chemotherapy. 

Computer-based image analysis and other techniques could 
improve radiological analysis of neuroblastoma by offering 
more sophisticated, accurate, and reproducible measures of 
information in the image data [4]. Nevertheless, few 
researchers have investigated the potential of computer-aided 
diagnosis of neuroblastoma using diagnostic imaging; related 
published works are limited to tumor volume measurement 
using manually segmented CT slices (planimetry) [5]. In 
particular, there is no method, with or without computer aid, 
that could assess with precision, using image-based exams, 
the amount of active disease, scar tissue, fibrosis, benign 
tumor, and other tissues in a given tumor mass [3]. 
 

II.   METHODOLOGY 
 

The problem we propose to investigate is quantitative 
analysis of the primary tumor mass, in patients with advanced 
neuroblastoma, using CT exams. To achieve this goal, we 
propose a methodology for the estimation of the histological 
content of the mass, that comprises a technique for semi-
automatic segmentation of the tumor mass, a statistical 
parametric model for the histological composition of the 
tumor, and a method to estimate the parameters of the model. 
The segmentation algorithm implemented is based on the 
fuzzy connectivity concept as defined by Udupa and 
Samarasekera [6]. The statistical model employed is the 
Gaussian mixture model, and the algorithm for parameter 
estimation is the Expectation-maximization algorithm [7]. 

The complete methodology is shown in Figure 1. The path 
on the left shows the sequence of computer-based operations 
that lead to the estimation of the statistical model. The path 
on the right consists of obtaining the histological information 
regarding the tumor from delayed surgery and pathological 
analysis. Correlation of the information drawn from the two 
approaches should prove if the model is appropriate. 

 
A. Segmentation 
 

The problem of automatically or semi-automatically 
segmenting neuroblastoma using medical image processing 
techniques has not been studied, to the best of our knowledge.  
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The insight for the design of the techniques in the present 
work comes from other segmentation problems in the medical 
image processing area. The technique that we investigated for 
semi-automatic segmentation is based on the concept of fuzzy 
connectivity as developed in the work of Udupa and 
Samarasekera [6]. The fuzzy connectivity algorithm is a 
region growing procedure whose output, for each volume 
element (voxel) or picture element (pixel) in the image, is a 
value in [0,1] that represents the fuzzy degree of connectivity 
between the voxel and the seed voxel (or seed region) that is 
used to commence the procedure. 

Let C represent a set of features of each voxel, which is 
comprised of the spatial location of the voxel and a few local 
properties (such as local texture, CT value, and gradient). Let 
us define a function η : C x C → [0,1] (a fuzzy relation) that 
represents the fuzzy affinity between two voxels. The 
function η has the following properties: η(a , a) = 1 (the 
relation is reflexive) and η(a , b) = η(b , a) (the relation is 
symmetric). Qualitatively, the affinity between two voxels 
must be high if they are close in space and if their properties 
are similar, i.e., if they are close in the feature space.  

A path of size n between two voxels a and b is a sequence 
〈c1 = a , c2 , ... , cn = b〉 of voxels {ci}. The strength of the 
path is min[η(ci , ci+1)]. The connectedness between a and b 
is the strength of the strongest path between them, among all 
possible paths. Finally, a fuzzy object can be defined given a 
seed voxel and the function η evaluating for each voxel the 
fuzzy connectedness between each voxel and the seed voxel 
(or the seed region). Udupa and Samarasekera [6] have 
shown how this calculation can be performed using dynamic 
programming. 

The method described above was implemented in our 
work, with η(a , b) = 0 if voxels a and b are not neighbors, 
and 
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if a and b are neighbors, where f(a) is the CT value of the 
voxel a, and µ and σ are the mean and the standard deviation 
of the region. The values of µ and σ are estimated from the 
seed region. 
 In addition to the above, tumor regions were also 
segmented manually by an experienced radiologist (MV), on 
each CT slice. Manual segmentation represents the expert 
knowledge for comparison with the results of image 
processing. 
 
B. Histogram Evaluation 
 

In a CT image, each voxel contains an integer number 
which is the CT value, in Hounsfield units (HU), of the voxel. 
Therefore, the standard method of histogram evaluation was 
used with the manually segmented tumor mass. 

However, given the fuzzy object computed in the semi-
automatic segmentation procedure, we must evaluate the 
histogram in a different way. In this case, each voxel has a 
fuzzy membership value that quantifies the degree to which 
each voxel belongs to the tumor mass. To evaluate the 
histogram we proceed as follows: for each voxel, we add its 
membership value (a real number between zero and one) to 
the histogram position corresponding to the CT value of the 
voxel. 

The two histograms obtained as above were compared. The 
histogram obtained from the result of manual segmentation is 
considered to be the true histogram of the tumor for 
comparison purposes. 
 
C. Estimation of Histological Composition 
 

Once the primary neuroblastoma mass is segmented and 
the histogram obtained, we proceed to the estimation of its 
histological composition. The tumor mass is inhomogeneous, 
due to intermixed necrosis and viable tumoral tissue, and 
sometimes presents central areas of necrosis, shown as low-
attenuation regions inside the mass [2]. Therefore, we need to 
develop a global description of the mass that could lead to the 
estimation of the fractional volume corresponding to each 
tissue type, instead of attempting to separate the mass into 
distinct regions. 

We assume that the CT value for a voxel that arises from a 
given type of tissue (benign mass, necrosis, malignant tumor, 
fibrotic tissue, etc.) inside the mass is a Gaussian random 
variable. Therefore, the whole tumor mass is modeled 
statistically as a mixture of Gaussian variables, known as the 
Gaussian mixture model [7]. 

Let x denote the CT attenuation value for a given voxel, 
and θi = (µi , σi) be the set of parameters that describes the 
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Fig. 1: Methodology for computer-based analysis of neuroblastoma. 



Gaussian probability density function of the CT values of the 
ith type of tissue. The probability density function for x, given 
that x came from the ith type of tissue, is pi(xθi) =N(µi , σi), 
the one-dimensional normal distribution with mean µi and 
standard deviation σi. 

Let M be the true number of different types of tissue in the 
given tumor mass, which we will assume to be known for the 
moment. Let αi be the probability that a given voxel came 
from the ith type of tissue in the tumor mass. By definition, 
the αi values sum up to one. The value of αi can be seen as 
the fraction of the tumor volume that is composed of the ith 
type of tissue. Then, the probability density function for the 
entire mass is a mixture of Gaussians, specified by the 
parameter vector Θ = (α1 , ... , αM , θ1 , ... , θM), and 
described by 
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Let N be the number of voxels in the tumor mass and let  

x = (x1 , x2 , ... , xN) be a vector composed of the values of the 
voxels, which we will call the observed data. Given the 
observed data, we choose the best value of Θ to be the one 
that maximizes the likelihood of the data (the Maximum 
Likelihood principle), defined as 
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In order to maximize the likelihood, we use the 

Expectation-maximization (EM) algorithm [7]. The EM 
algorithm is an iterative procedure that starts with an initial 
guess Θg of the parameters and iteratively improves the 
estimate towards a local maximum of the likelihood. The 
generic EM algorithm is comprised of two steps: the 
expectation step (or E-step) and the maximization step (or M-
step). In the E-step, one computes the parametric probability 
model given the current estimate of the parameter vector. In 
the M-step, one finds the parameter vector that maximizes the 
newly calculated model, which is then treated as the new best 
estimate of the parameters. The iterative procedure continues 
until some stopping condition is met, e.g., the difference 
log[L(Θi+1x)] - log[L(Θix)] or the modulus |Θi+1 - Θi| of the 
difference vector between successive iterations is smaller 
than a predefined value. 
 In order to investigate the effect of the number of estimated 
kernels (M) in our analysis, the EM algorithm was executed 
with several different values of M and the results were 
compared to one another and to the opinion of experts (VOF, 
MV). 

III. RESULTS 
 
A three-year old female was diagnosed (in October, 2000) as 
having Stage IV neuroblastoma, with primary tumor located 
in the left adrenal gland, and with extensive metastatic 
disease in bone marrow and bones. After initial 
chemotherapy treatment there was complete disappearance of 
all metastases and an impressive diminishment of the primary 
tumor, which was then entirely removed surgically (in May, 

2001). There was no detectable nodal disease. According to 
the pathology analysis, the tumor showed no more than 30% 
of viable tumor cells, the remaining 70% consisting of 
fibrosis and necrosis. The pre-surgical CT exam revealed a 
heterogeneous area, located in the left adrenal gland, 
composed of higher density areas (calcifications) and less 
dense areas (necrosis). After contrast injection, the radiologist 
(MV) observed a heterogeneous contrast uptake by the mass. 
No vascular structure infiltration was observed. 
 Figure 2 shows the tumor mass shrunk by chemotherapy, 
in a CT exam prior to surgical resection, with the tumor 
manually outlined by the radiologist (MV). The tumor mass 
was segmented using the fuzzy connectivity algorithm, and 
the result is shown in Figure 3. The normalized histogram of 
the tumor mass was then obtained from the manually and the 
automatically segmented exams. The results are shown in 
Figure 4, where the solid line corresponds to the normalized 
histogram obtained from the manually segmented dataset, and 
the dashed line shows the normalized histogram drawn from 
the automatically segmented tumor mass. 
 Figure 5a, 5b, and 5c show the result of the Gaussian 
mixture model estimation, using the EM algorithm, with the 
manually segmented tumor mass from the pre-surgery CT 
slices, and correspond to the estimation of two, three, and 
four Gaussian kernels, respectively. The estimated model 
parameters are shown in Table 1. 
 

 
Fig. 2: Manual segmentation of the tumor mass, after chemotherapy 

treatment, in a CT image of a patient with Stage IV neuroblastoma (by MV). 
 

 
Fig 3: Fuzzy connectedness of the region obtained by region growing for the 

tumor illustrated in Figure 2. 
 
 



 
IV. DISCUSSION 

 
Comparing Figures 2 and 3, it is seen that the fuzzy 
segmentation of the tumor mass does not correspond well 
with the manual segmentation: several areas outside the 
tumor mass are erroneously labeled as tumor. The fuzzy 
segmentation method needs to be improved or the result 
processed further to obtain better delineation of the tumor 
mass. While the normalized histograms presented in Figure 4 
are similar, the corresponding parameters estimated for the 
Gaussian mixture model were significatively different (not 
shown). 

Two medical experts analyzed the results of the Gaussian 
mixture model estimation, shown in Figure 5a, 5b, 5c, and 
Table 1: a radiologist (MV) and an oncologist (VOF). The 
results were compared to the pathology findings. From  
 

 
Table 1 it is seen that, when estimating the model with three 
Gaussian kernels, the kernel with the smaller mean value has 
a relative weight of 0.77 (77%). This result agrees with the 
post-surgical pathology analysis, which reported a minimum 
of 70% of fibrosis and necrosis, tissues that have a smaller 
value in HU than viable tumor. 

Further work is in progress to improve the results of fuzzy 
segmentation, and to determine or select the number of 
Gaussian kernels to be used in the model. The methods will 
be tested with more cases as they become available. We will 
also explore the potential of the methods for analysis of CT 
scans during chemotherapy to estimate the change in the 
tumor in response to the treatment. 
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TABLE 1 
ESTIMATED PARAMETERS OF THE GAUSSIAN KERNELS 

# of Gaussians Weight Mean (HU) Standard 
Deviation (HU) 

1 1.0 44.83 19.38 
0.91 42.29 11.47 2 
0.09 71.82 46.61 
0.77 41.69 10.17 
0.19 48.10 21.54 3 
0.04 93.60 54.77 
0.63 43.31 12.35 
0.25 39.58 7.30 
0.11 54.09 31.13 

4 

0.01 117.88 54.61 

Fig. 4: Normalized histograms of the tumor mass, obtained from manual 
(solid line) and automatic (dashed line) segmentation of the pre-surgery CT 

images (33 slices). 

Fig. 5: Gaussian kernels estimated from the EM algorithm. Plots (a), (b), 
(c) show two, three and four estimated kernels (dashed lines), 
respectively, and the original histogram (solid) for comparison 
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