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ABSTRACT 
One of the last frontiers of structural dynamics is mid-frequency vibration analysis of 
complex structures. In the low-frequency range, finite element analysis (FEA) is well 
established as the standard method. However, as the frequency of vibration increases, the 
cost of FEA becomes prohibitive due to the necessary refinement of the finite element 
mesh to capture the shorter wavelength of vibration. Furthermore, the system response 
becomes sensitive to small parameter variations at higher frequencies, which means that a 
statistical analysis should be employed to make confident response predictions. In the 
high-frequency range, statistical energy analysis (SEA) is popular. However, SEA 
provides only averaged response predictions and cannot capture the resonant behavior in 
the response that becomes evident as frequency decreases. Thus, there exists a mid- 
frequency range in which there is no established analysis technique analogous to FEA or 
SEA. The goal of this research is to produce a review paper on mid-frequency vibration 
analysis that will provide a survey of the relevant literature, identify the key technical 
challenges, formulate an assessment of the state of the art, and propose directions for 
future research. 



OBJECTIVES 

The main objectives of this research are as follows: 
1. Perform a comprehensive literature search on mid-frequency vibration analysis 

and related topics, and collect an extensive set of references 
2. Review the relevant literature and summarize the mid-frequency approaches and 

techniques that have been developed to date 
3. Assess the state of the art by determining the major research challenges in the field 

and drawing conclusions on research progress to date, including applications to 
realistic complex structures 

4. Based on these findings, propose general directions and specific topics for future 
research 

5. Write a review paper that provides a comprehensive and structured summary of 
the literature, presents conclusions on the state of the art, and proposes future 
research directions 

In the short term, the outcome of this project will be the review paper mentioned in 
objective 5. In the long term, it is hoped that this work will help pave the way for the 
development of a fundamental analysis technique for the mid-frequency range, which will 
complete the set of tools available to engineers for analyzing structural dynamics across 
the frequency spectrum. 

ACCOMPLISHMENTS AND NEW FINDINGS 

In order to prepare the review paper, an extensive literature search was performed on 
mid-frequency vibration analysis and related topics. Over 250 references were collected, 
including journal articles, conference papers, doctoral dissertations, and technical reports. 
The mid-frequency literature was organized into three categories: 

• Low- to mid-frequency techniques, such as finite-element-based reduced order 
modeling methods that aim to reduce the computational costs as frequency increases 
toward the mid-frequency range 

• High- to mid-frequency techniques, such as modified formulations of SEA that aim to 
improve the accuracy as frequency decreases toward the mid-frequency range 

• Specialized and hybrid techniques that specifically target the mid-frequency range 

Following this categorization, the major approaches developed to date were identified. 

It was found that the mid-frequency range poses significant challenges in these areas: 

• Connection: The treatment of a complex structure as an assembly of connected 
component structures is both a natural starting block and a natural stumbling block in 



the mid-frequency range. For instance, different component structures may be best 
described by qualitatively different models for the same load case: one substructure 
may have relatively high modal density, the other low modal density. Also, the 
wave-mode duality of structural vibration is especially important in the mid- 
frequency range. Incompatibilities between a modal approach and a wave- or energy- 
based approach must be resolved if one is to consider hybrid methods that employ 
both types of analysis. Even if a hybrid approach is not taken, each interface 
between components involves vibration, wave, and energy transmission issues that 
are not easily resolved. Furthermore, complicated and/or jointed connections require 
specialized modeling. In terms of problem formulation, the partitioning of the model 
into appropriate substructures is a crucial step and may not always be obvious or 
convenient, particularly with respect to specialized mid-frequency analysis methods. 

• Computation: There is a critical accuracy versus efficiency trade-off in the mid- 
frequency range. From a low-frequency perspective, refining a finite element mesh, 
running the finite element analysis, and extracting key results from the analysis can be 
prohibitively expensive as frequency increases. Therefore, approximate methods 
must be adopted. From a high-frequency perspective, the situation is reversed. The 
simplifying assumptions that enable efficient analysis methods in the high-frequency 
range may not be appropriate for the mid-frequency range, leading to a quantitative 
and even qualitative breakdown in modeling accuracy as frequency decreases. 

• Prediction: As the frequency of vibration increases from the low- to mid-frequency 
range, parameter uncertainties have a greater influence on the response, especially as 
the wavelength decreases to the scale of random structural variations (e.g., 
manufacturing tolerances). At some point in the mid-frequency range, a deterministic 
model represents at best one member in the population of structures with the same 
nominal design, such that uncertainty in the system must be considered in order to 
predict the response. Estimated parameters and unmodeled structural complexities 
provide additional sources of uncertainty. Furthermore, from an engineering 
perspective, it is important not only to predict the response for a particular design, 
but also to predict the effect of design changes on that response. 

Of these three main areas, it was determined that the primary challenges of the mid- 
frequency range are related to the first area, the handling of substructure connections. It 
was also found that the best progress to date has been achieved in the second 
area—specifically, in improving the computational efficiency of finite-element-based 
analysis so as to push its range of application higher, into the mid-frequency range. 

A major shortcoming of most mid-frequency techniques is that they are either restricted 
to simple structures, or they cannot be readily applied to realistic complex structures. 
Therefore, it is clear that more effort needs to be expended on delivering tools that can be 



employed by engineers to solve real problems. This does not imply that fundamental 
research in this area is not important or instructive; rather, basic research must be 
complemented by and/or guided by applications. In addition, it is important to consider 
how a method enables not only the analysis but also the design of complex structures. 

Based on these findings, the following future research directions are proposed: 

• Tailored finite element models and methods 

• Physics-based domain decomposition techniques and related reduced order modeling 
methods 

• Smart hybrid methods that can assign automatically assign different modeling 
techniques to different substructures 

• Improved modeling of joints and interfaces 

• Applications to realistic complex structures and establishment of benchmarks 

• Optimized methods for special classes of structures 

Finally, it is suggested that a fundamentally new approach could be developed that takes 
the best aspects of both FEA and SEA. 

For a more comprehensive documentation of this work, a draft of the review paper that 
resulted from this project is appended to this final report. 
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INTERACTIONS AND TRANSITIONS 

The result of this project is a review paper on mid-frequency vibration analysis 
techniques. This paper will be submitted for journal publication. By publishing this 
review paper in the archival literature, this work will serve as a valuable reference for 
engineers and researchers seeking to solve mid-frequency vibration problems. This paper 
not only summarizes the mid-frequency analysis techniques to date, but it also draws 
important conclusions on the state of the art and proposes future research directions. By 
detailing the current challenges in the field and suggesting future topics for investigation, it 
is hoped that this work will spark new initiatives and breakthroughs in this important 
area of structural dynamics. 
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ABSTRACT 

In this work, the literature on mid-frequency vibration analysis of complex structures is reviewed. 
First, low-frequency and high-frequency techniques that provide a foundation for mid-frequency 
analysis, or that aim to expand the spectrum of application into the mid-frequency range, are selec- 
tively reviewed. Then, specialized and hybrid techniques that specifically target the mid-frequency 
range are covered. Following the review of existing methods, some general comments on the state 
of the art are provided. Based on the key issues and challenges that are identified, suggestions for 
future research are offered. 

1    INTRODUCTION 

One of the last frontiers in linear structural dynamics lies not beyond the realm of current tech- 
niques, but in the middle, surrounded by well-explored regions. The mid-frequency range of 
vibration is, by definition, bounded from below by the low-frequency range in which finite ele- 
ment analysis (FEA) is well established, and from above by the high-frequency range in which 
statistical energy analysis (SEA) is popular. In order to understand the defiant juxtaposition of the 
mid-frequency range, one must examine the limitations of low- and high-frequency techniques. 

Starting from a low-frequency perspective, as the frequency of vibration increases, a finite el- 
ement mesh must be refined in order to capture the shorter wavelengths of vibration. This mesh 
refinement increases the number of degrees of freedom (DOF) in the finite element model. At 
some point, the model of a complex structure will become so large that it makes FEA prohibitively 
expensive. Furthermore, the effects of parameter uncertainties on the structural dynamics [1] be- 
come significant as the frequency increases. Regarding the series of modes of a complex structure, 
Hodges and Woodhouse noted that "the individual modes high up the series become increasingly 
sensitive to details of the physical structure under investigation, to such an extent that they may 
be influenced by the deviations from ideal design which inevitably occur in construction" [2]. In 
addition to these random deviations (e.g., material property variations and manufacturing toler- 
ances), inaccuracies and approximations in the modeling constitute another form of uncertainty 
in vibration analysis. Therefore, at higher frequencies, it becomes not only more computationally 
expensive to perform FEA, but it may also be necessary to employ a statistical treatment that drives 
the analysis requirements beyond the capabilities of the hardware or software. 



In contrast, from a high-frequency perspective, the high modal density of a complex structure in 
this region, combined with the strong influence of uncertainties, make it more appropriate to model 
the vibration based on the time- and space-averaged response of groups of modes, as is done in 
SEA. This leads to a smooth estimate of the system response with respect to frequency, which does 
not rely on a detailed description of the geometry. As the frequency decreases, however, individual 
resonances first become evident and then become dominant in the actual frequency response of 
a complex structure. Therefore, at lower frequencies, models with higher fidelity are required to 
capture key response characteristics. 

Clearly, there are frequency limitations for both FEA and SEA. However, there is no established 
technique analogous to FEA or SEA for the resulting mid-frequency range that resides between 
their ranges of application. Furthermore, complex structures may have some components that ex- 
hibit low-frequency behavior and others that exhibit high-frequency behavior, which poses another 
class of mid-frequency problems that cannot be treated by established techniques. 

As a result of these issues, the mid-frequency range is receiving an increasing amount of interest 
from researchers. For example, in summarizing the outcome of a recent forum on the current 
status and future directions of structural dynamics [3], Inman and Ewins identified "mid- to high- 
frequency modelling" as one of nine key issues for future research [4]. Moreover, they made the 
following comment on the state of the art: 

In assessing how effective the structural dynamics community has been in meeting 
these expectations, it is clear that current techniques of structural dynamics are very 
effective for low frequency, linear, deterministic, relatively low-order structures in nice 
environments. It is equally clear that the current state of practice in structural dynam- 
ics is not very effective at treating non-linear, stochastic, mid-frequency, mixed-field 
problems. [4] 

Mid-frequency problems are also receiving attention in industry. For example, mid-frequency 
vibration problems in the automotive industry were recently noted by Nack [5]. In addition, 
measurements of car-to-car variability of frequency response functions in this range have been 
reported [6]. With the emergence of hybrid and electric vehicles that require lighter body struc- 
tures, mid-frequency vibration problems in the automotive industry could increase significantly in 
the next decade. Mid-frequency problems have also been examined in other industries, such as 
the aerospace industry. For example, a study on mid-frequency model development for aircraft 
fuselages was recently presented [7]. 

In this paper, the literature on mid-frequency vibration in complex structures is reviewed. In 
section 2, some background is provided on low- and high-frequency vibration analysis techniques, 
and the "mid-frequency gap" resulting from limitations of those techniques is discussed from var- 
ious points of view found in the literature. In section 3, low-to-mid-frequency and high-to-mid- 
frequency methods are selectively reviewed. Emphasis is given to work that has provided impor- 
tant foundations for mid-frequency methods, as well as efforts to expand the spectrum of low- 
or high-frequency analysis toward the mid-frequency range. In section 4, specialized and hybrid 
mid-frequency techniques are covered. Comments on the state of the art and suggestions for future 
research are provided in sections 5 and 6, respectively. Conclusions are summarized in section 7. 



2   BACKGROUND 
In this section, some key low- and high-frequency vibration analysis methods are briefly summa- 
rized, and their limitations in the mid-frequency range are noted. In addition, the mid-frequency 
range is considered from various points of view, and a simple definition is established for the 
purpose of facilitating subsequent discussions. 

2.1   Low-Frequency Vibration Analysis 

The low-frequency range is characterized by well-spaced modes and distinct resonant peaks in the 
frequency response function. An illustration is shown in Fig. 1, which is from the book by Ohayon 
and Soize [8]. 

FRF 

Frequency 
 >. 

LF MF HF 

Fig. 1: From [8]: a "qualitative diagram" illustrating structural response in the low-frequency (LF), 
mid-frequency (MF), and high-frequency (HF) ranges. 

In the low-frequency range, the vibration response can be predicted by modal analysis and/or 
finite element analysis. In fact, FEA in the low-frequency range is considered the gold standard for 
structural dynamics analysis. However, as the frequency increases, the finite element mesh must 
be refined in order to capture shorter-wavelength vibration, which can lead to a large number of 
DOF in a finite element model. Even without pushing the limits of fine meshes, large-scale models 
such as automotive vehicles can have millions of DOF, making it unwieldy to compute even the 
first few modes with FEA. Thus, cost is a major limiting factor for using FEA in the mid-frequency 
range. 

Another key issue for the use of FEA in the mid-frequency range is that the wavelengths be- 
come sufficiently small that parameter uncertainties have a significant effect on the response. In 



a recent paper, Hasselman et al. [9] made this observation on FEA as the frequency reaches the 
mid-frequency range: 

Conventional FEA breaks down in part because the resulting modes do not correlate 
well with their experimental counterparts. This is due to a combination of product (or 
test article) variability, relative to nominal design information upon which the FEMs 
are based, and experimental variability. In addition, and partly because of this vari- 
ability/uncertainty, FEM meshes have not been pushed to the limits of what modern 
computer software and hardware are capable of. [9] 

Thus, in the mid-frequency range, a deterministic model may not match the actual structural dy- 
namics due to parameter variations. More precisely, above some frequency the deterministic model 
represents—at best—one member in a population of structures with the same nominal design. 

2.2   High-Frequency Vibration Analysis 

The high-frequency range is characterized by high modal density, strong modal overlap, and an 
attendant smoothing effect in the frequency response. This is depicted in Fig. 1. Also, high- 
frequency structural response is sensitive to uncertainties in the system parameters. The modes, if 
they can be resolved at all, can vary greatly for a population of structures with the same nominal 
design. These factors suggest that energy-based techniques and statistical treatments should be 
used. Therefore, it should not be surprising that a standard high-frequency analysis approach is 
called statistical energy analysis. 

SEA [10-16] is clearly the most popular and established approach to high-frequency vibro- 
acoustic analysis. In the SEA framework, a structure is divided into a number of subsystems. 
These subsystems are not necessarily just physical components, but can also be the individual 
wave fields in the components (e.g., flexural waves versus compression waves). Each subsystem 
is characterized by the number of modes in a frequency range of interest. Due to uncertainty, 
all resonant frequencies are considered to have uniform probability of occurring anywhere in the 
frequency band. Thus, all modes are considered to be resonant modes vibrating with equal energy. 
This is called "equipartition" of the modal energy. In addition, a diffusive theory of vibrational 
power flow is employed. The power transmitted from subsystem 1 to subsystem 2 is modeled by 
the relation [15]: 

rii2 = WT7i2 F      NlF = a; (r/i2^i -r/21^2) (1) 

where u> is the center frequency, E\ and E2 are the total energies of subsystems 1 and 2, Ni and 
JV2 are the number of resonant modes for subsystems 1 and 2, and 7712 and 7721 are the coupling loss 
factors. The coupling loss factor is so named because, for instance, the term ujr/^Ei represents the 
power lost by subsystem 1 due to the coupling with subsystem 2. A coupling loss factor is thus 
analagous to a damping factor. 

SEA is a compelling approach in that it provides meaningful predictions, expressed in terms of 
a small set of parameters and variables, for systems with complex (one might say horribly messy) 
conditions: high frequency; broadband, spatially distributed excitation; significant parameter vari- 
ations; etc. In fact, it works especially well when the frequency is sufficiently high, the subsystems 
are sufficiently complicated, and/or the uncertainty is sufficiently great that the details of the system 



are best ignored in favor of a statistical treatment. However, the smooth, averaged response pre- 
dictions obtained with SEA become less meaningful in the mid-frequency range, as the details of 
the structure and the substructure coupling become more important, and the individual resonances 
become evident. 

2.3   The Mid-Frequency Gap 

As a result of the limitations of established low- and high-frequency techniques, there exists a 
mid-frequency region with no standard analysis approach. This mid-frequency gap was noted by 
Cuschieri [17] in a 1987 paper: 

Therefore SEA and FEA, while both are extremely useful in their respective frequency 
regions, can leave an empty gap in the mid-frequency range, where the modal density 
is not high enough for frequency averaging to give reliable results, but where a number 
of modes are present which can make the FEA unwieldy. [17] 

In a 1998 paper, Hasselman et al. [18] took a slightly different view of the mid-frequency gap, 
citing the difference between deterministic and statistical approaches: 

Ultimately a frequency regime is reached where there may not be a single resonant 
mode in a given frequency band, and the "average" response predicted by an SEA 
model is meaningless. Unfortunately, the frequency range associated with sparse 
modes, or low modal density, in statistical energy analysis usually coincides with the 
frequency regime where deterministic analysis of the total system becomes impracti- 
cal. A prediction model is required for this intermediate frequency range, to provide a 
bridge from low-frequency (deterministic) models to high-frequency (statistical) mod- 
els. [18] 

A third view is that the mid-frequency gap is due to a mixture of short and long wavelength behav- 
ior, as summarized by Langley and Bremner [19] in 1999: 

The conditions required for the successful application of SEA have been the subject of 
considerable previous work..., and it is generally recognized that, in addition to other 
conditions, each subsystem must ideally contain a number of resonant modes over the 
analysis band of interest. One implication of this condition is that the wavelength of 
the subsystem deformation must be of the same order as, or less then, the dimensions 
of the subsystem. In some cases this requirement may be only partially met: for exam- 
ple, in-plane waves in a plate are generally of much longer wavelength than bending 
waves, so that while the bending motion might meet the SEA requirement, the in-plane 
motion might not. While such difficulties can, in some cases, be overcome by employ- 
ing problem specific modeling techniques within SEA..., it is true to say that a general 
approach is lacking. The problem of the existence of both short and long wavelength 
deformations within a structure is likely to become more severe with decreasing fre- 
quency, in the sense that all wavelengths will be sufficiently short at a sufficiently high 
frequency. This creates a difficult mid-frequency zone between low-frequency finite 
element modeling and high-frequency SEA modeling. [19] 



All of these views are valid, but it should be noted that not all of the above criteria need to be met 
in order to define the mid-frequency range. In fact, if any of these criteria are met, one has found 
a mid-frequency problem. 

In this work, a pragmatic engineering point of view is adopted for defining the mid-frequency 
range, such that all of the above perspectives are included. The mid-frequency range for any 
structural dynamics problem is considered to be an intermediate frequency range for which there 
is no readily available method, such as FEA or SEA, to handle the analysis of the full complex 
structure in a systematic fashion with acceptable efficiency and accuracy relative to a lower or 
higher frequency region. This definition, of course, depends not only on the details of the system 
but also on the needs of the analyst. Furthermore, this definition implies that there is an available 
method that can provide acceptable results in a lower or higher frequency range. 



3    EXCURSIONS INTO THE MID-FREQUENCY RANGE 

In this section, low- and high-frequency analysis techniques that expand the range of applicability 
toward the mid-frequency range are considered. Special attention is given to methods that have 
been used as a basis for mid-frequency analysis, as well as to extensions that have been proposed 
to overcome the challenges associated with the mid-frequency range. Several of these approaches 
have been specifically presented by the authors as applicable across the low- to mid-frequency or 
the high- to mid-frequency spectrum. 

3.1    Pushing Low-Frequency Analysis Higher 

As a result of the high cost of FEA for large-scale models or fine meshes, substructuring techniques 
have been developed. These techniques make manageable the necessary finite element analysis 
through a divide-and-conquer approach. In addition, they enable the generation of reduced order 
models. Therefore, they provide a foundation for increasing the scope of the analysis into the 
mid-frequency range. 

3.1.1    Component Mode Synthesis 

A popular approach for generating reduced order models systematically from finite element models 
is component mode synthesis [20-30]. In component mode synthesis (CMS), a complex structure 
is partitioned into several component structures or substructures. (In this study, the terms "com- 
ponents," "component structures," and "substructures" are used interchangeably.) The vibration of 
the full complex structure is represented by a set of modes selected for each component structure, 
plus a set of vectors that are used to couple the components at their interfaces. The CMS approach 
was introduced by Hurty [20] in 1965, who suggested using fixed-interface modes for the com- 
ponents. In 1968, Craig and Bampton [21] introduced an improved fixed-interface CMS method. 
Goldman [22] showed that free-interface modes could be used instead of fixed-interface modes. 
MacNeal [23] introduced a hybrid method that allowed a combination of fixed and free interface 
DOF, and he also presented the residual flexibility method that accounts for the flexibility of the 
discarded modes. Rubin [24] extended MacNeal's residual flexibility method by also including 
residual inertial and dissipative terms. Hintz [25] also provided improvements to and observations 
on previous CMS methods. Hale and Meirovitch [27] showed that admissible functions could be 
used to model the substructures, which yields a more general method of CMS. An overview of the 
CMS approach was provided by Craig [28]. There have been several reviews of the CMS literature, 
including the papers by Craig [29] and Seshu [30]. 

The CMS approach has several advantages. Through substructuring, the model sizes for the 
required finite element calculations are reduced from the order of system DOF to the order of 
component DOF. Another clear computational advantage is that the final system model can be sig- 
nificantly smaller than the original finite element model while retaining excellent accuracy for a 
frequency range of interest. Furthermore, since the component models are separated, the compo- 
nents can be designed and re-designed separately before being assembled in the dynamic analysis. 

The most popular CMS method seems to be the Craig-Bampton method [21]. It is an excep- 
tionally efficient and stable method, and it has been implemented in many commercial software 
programs.  For example, it forms the basis of the superelement capability in the finite element 



code NASTRAN, and it is employed in the flexible element available in the mechanical system 
simulation code ADAMS. In the Craig-Bampton method, fixed-interface component modes are 
complemented by the so-called constraint modes. A constraint mode is the static deflection in- 
duced in a substructure by a unit displacement at one interface DOF, with all other interface DOF 
held fixed. Thus, there is one constraint mode for each interface DOF in the finite element model. 
The components are then assembled into a system model by enforcing displacement compatibility 
at the interfaces. For simplicity, consider the case of only two substructures. The system matrices 
are of the form [21]: 

MCMS = 

mNN 0 MNB- 

0      m?N   M2
A'ß 

MBN   MBN   MBB 
KCMS = 

kNN 0 0  ] 
0 K2 0 
0 0 KBB 

(2) 

where superscript N denotes normal-mode coordinates (component-mode DOF), superscript B 
denotes boundary coordinates (constraint-mode DOF), and the subscript refers to the substructure 
number. Note that m and k are matrix partitions that have been reduced in both dimensions by the 
modal truncation, while M and K are matrix partitions that have at least one dimension equal to 
the number of interface DOF, which has not been reduced from the finite element representation. 
Strategies for the reduction of these interface DOF are discussed in section 3.1.2. 

In 1997, Shyu et al. [31] introduced a variation on traditional CMS that combines the constraint 
mode approach with dynamic compensation. Instead of using static constraint modes, quasi-static 
constraint modes are calculated about a centering frequency for the frequency range of interest. 
This captures inertial effects of the truncated modes. The authors noted that this approach is 
"ideally suited for mid-band frequency analysis in which both high-frequency and low-frequency 
modes may be omitted." In a subsequent paper [32], criteria were presented for selecting the cen- 
tering frequency and the quasi-static mode sets for both low-frequency and mid-frequency response 
calculations. 

3.1.2   Secondary and Multi-Level Reduction Methods 

A drawback of fixed-interface CMS methods is that the finite element DOF for all interfaces be- 
tween component structures are retained in the system model as constraint mode DOF. Thus, while 
the component modes can be selected for a certain frequency range in order to reduce the model 
size, the interface DOF are not reduced. In some cases, the interface DOF can dominate the size 
of the model. 

In a 1977 NASA report, Craig and Chang [33] considered several methods for reducing the in- 
terface DOF, which they referred to as junction coordinates. One method involved constraining the 
component mode coordinates and allowing motion of junction coordinates to yield an eigenvalue 
problem of the form: 

KBßV> - AMßß</> (3) 

where KBS and MBB are the constraint-mode partitions from Eq. (2), A is an eigenvalue, and ip 
is an eigenvector. Craig and Chang noted that this corresponds to using Guyan reduction [34] to 
reduce out the interior coordinates of the components. 

These junction modes can then be selected and used to reduce the interface DOF, as in a tra- 
ditional modal analysis. Again, considering the simplest case of two substructures, this yields 
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where J denotes the junction mode coordinates. Note that all partitions have now been reduced by 
modal truncation. This approach is a straightforward way to generate very small system models of 
a complex structure for a frequency range of interest. 

Unfortunately, Craig and Chang did not publish this work in a conference proceedings or a 
journal, so it has remained a little known contribution. There have been many similar efforts since 
then, including several by authors who were not aware of Craig and Chang's work. In fact, Brahmi 
et al. [35] and Castanier et al. [36] derived the junction modes independently. Castanier et al. called 
them characteristic constraint (CC) modes, since they are eigenvector-based linear combinations 
of the constraint modes. They took the analysis further by showing how the CC modes capture the 
primary interface motion and thus provide a convenient framework for power flow analysis. They 
investigated CC-mode-based analysis of vibration and power flow in several subsequent studies 
[37-41]. This work will be discussed in section 3.1.3. 

Other efforts in the area of interface reduction and improved substructuring methods include 
the following. Bourquin and d'Hennezel [42,43] introduced a fixed-interface CMS method "based 
on a non-conventional choice of constraint modes tied to the normal modes of the Poincare-Steklov 
operator associated with the interface between the substructures" [42]. They called these alterna- 
tive constraint modes the "coupling modes," and they proposed algorithms for handling the various 
numerical computations needed to find these coupling modes [43]. 

Bouhaddi and co-workers [35,44-50] have proposed methods for improved dynamic conden- 
sation and Guyan reduction, two-level dynamic condensation, and interface reduction. For the in- 
terface DOF, they investigated reduction of junction coordinates not only for a synthesized system 
model [35,48,49], but also for the individual substructure models before assembly [46]. The latter 
approach requires analysis only for smaller sub-problems, and it is well suited for implementation 
in design optimization. 

Balmes [51-54] considered several interface reduction methods as well as more general issues 
related to finding optimal bases for reduced models. He calculated the junction modes based on a 
singular value decomposition of the matrix of constraint modes [51]. (It seems that Balmes also 
found the junction modes independently, since the Craig and Chang report was not referenced 
in [51]. However, in subsequent papers [52,54], Balmes cited Craig and Chang for the junction 
modes, and he noted that his work in [51] demonstrated that the junction modes correspond to an 
"optimal selection of generalized constraint modes" [52].) Balmes also proposed using arbitrary 
interface models to find a basis for representing the interface motion. For example, he suggested 
making a local finite element model by retaining the elements connected to the finite element nodes 
of the interface, and then finding the interface modes by performing a modal analysis of the local 
model with free boundary conditions [52]. 

Ohayon et al. [55] also proposed a singular value decomposition to find reduced models of sub- 
structure coupling. The employed both fixed- and free-interface modes, and performed singular 



value reduction on frequency-independent Lagrange multiplier terms. Rixen et al. [56] introduced 
a hybrid procedure for the dynamic analysis of general substructure problems using Lagrange mul- 
tipliers, including the case of non-conforming finite element meshes at the interface. Rixen [57] 
later proposed interface reduction via "force modes," or modes of the coupling forces between 
substructures. These force modes are based on the interface flexibility matrix, and they are con- 
ceptually similar to junction modes. 

Recently, Aoyama and Yagawa [58,59] introduced an alternative method for finding interface 
modes by performing a modal analysis for each pair of connected components. For any two con- 
nected components, the common interface is included in the modal analysis while the interface 
DOF shared with other components are held fixed. This effectively yields interface modes for the 
interface between the two components. Aoyama and Yagawa showed large order reductions using 
this method compared to a traditional CMS method. 

Another strategy for handling large-scale models is multi-level substructuring [60-63]. In this 
approach, the component structures are partitioned again into sets of sub-components to reduce 
the computational costs associated with calculating component modes and constraint modes. The 
sub-components are assembled back into their parent components, and the components are then 
assembled into the system model. Of course, this may be applied recursively for many levels of 
substructures. Recent applications of multi-level substructuring include the work of Mourelatos 
[64] and Tan et al. [38]. 

A notable initiative in this area is the adaptive/automated multi-level substructuring (AMLS) 
approach of Bennighof [65-71]. In AMLS, a finite element model is substructured recursively 
such that each of the substructures at the lowest level "consists of a small number of finite ele- 
ments" [67]. The Craig-Bampton method of CMS [21] is used to assemble the child substructures 
into their parent substructures. The overall computational costs are relatively low compared to 
conventional FEA of the full structure. Furthermore a frequency window technique for AMLS has 
been presented [67] to enhance the accuracy and efficiency of the approach, such that the cost of 
AMLS for a frequency band is on the order of that of FEA for a single frequency. To date, no 
other implementation of multi-level substructuring seems to be as aggressive and systematic as the 
AMLS approach. 

3.1.3   Power Flow and Uncertainty Analysis 

Since component mode synthesis provides a system model in terms of coupled substructures, it 
seems natural to use it as a lower-frequency alternative to SEA for power flow and uncertainty 
analysis. In fact, Lyon and DeJong compared the coupling loss factor for power flow in SEA to the 
interface model in component mode synthesis [15]: 

The coupling loss factor or its various equivalent expressions is a measure of inter- 
modal forces at the system junction, averaged over frequency and over the modes of 
the interacting systems. Sometimes this calculation may be carried out directly. Such 
a calculation is also the basis for the method of component mode synthesis as used in 
finite element analyses. [15] 

However, it is only recently that using CMS as a basis for power flow calculations has received 
significant attention. 
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In 2000, Mace and Shorter [72] presented energy flow models using both global and local 
finite element analysis. For the local analysis, they employed the Craig-Bampton method of CMS. 
In doing so, they noted that a "CMS model is particularly well suited for postprocessing into an 
energy flow model, since the global degrees of freedom of the structure are easily partitioned in 
subsystem degrees of freedom." They showed numerical results for a three-plate system, and found 
the response to have resonances due to subsystem mode-pair interactions that were not captured 
by the SEA results. They found the CMS-based approach to be computationally efficient. In 2001, 
Mace and Shorter [73] used CMS as a basis for performing mid-frequency analysis of built-up 
structures. They used perturbation to relate small changes in the component modal properties to 
resultant changes in the global modal properties. They then performed Monte Carlo simulation to 
estimate the statistics of the frequency response function at relatively low computational cost. 

Significant progress in CMS-based low- to mid-frequency vibration analysis has been made in 
recent work by Pierre and co-workers [36-40,74,75]. An investigation into a general framework 
for predicting the power flow between coupled component structures with uncertain parameters 
was performed by Tan et al. [74]. In this study, the power flow between two beams was modeled 
with CMS by computing the power transmitted through the constraint mode degrees of freedom. 
The ensemble-averaged power flow was estimated by expanding the modal responses in terms of 
locally linear interpolation functions in the random parameter space. Good agreement was found 
with wave-based approximations from the literature. However, it was seen that a large number of 
interface DOF could render a power flow analysis with traditional CMS rather inefficient. 

In order to reduce the size of a CMS model and provide a convenient basis for power flow 
analysis, Castanier et al. [36] found that a secondary modal analysis could be performed on the 
constraint-mode coordinates in order to retrieve characteristic constraint (CC) modes. The CC 
modes are thus a linear combination of the constraint modes that capture the primary motion in 
the interface region with relatively few vectors. They can be selected for a certain frequency range 
and used to reduce the system model, as in a traditional modal analysis. (The topic of interface 
reduction was covered in section 3.1.2.) 

For illustration, consider the cantilever plate shown in Fig. 2. The plate is partitioned into two 
components, called plate 1 and plate 2. A constraint mode for plate 2 is shown in Fig. 3. Recall 
that a constraint mode is the static deformation due to a unit displacement of a single interface 
DOF, with all other interface DOF held fixed. It can be seen that this yields a rather localized 
deformation shape. In contrast, consider the 6th and 7th CC modes for plate 2 shown in Fig. 4. It 
can be seen that the CC modes capture more natural, wavy motion of the interface. Furthermore, 
since the complementary sets of modes in the system model are fixed-interface component modes, 
the interface motion—and thus the power flow between substructures—is completely described by 
the CC modes. Therefore, the CC modes provide a basis for reduced order models of power flow. 
This is illustrated in Fig. 5, which shows the 6th and 7th CC modes again for the coupled system, 
which is the full plate. The motion in the interface region, with participation from both component 
structures, is clearly seen. 

Characteristic-mode-based models of power flow were developed for both deterministic and 
statistical analyses in several papers by Tan et al. [37-40]. It was found that such models provide 
a framework for efficient low- to mid-frequency vibration analysis of complex structures. Fur- 
thermore, the approach is general, and it can be applied to large-scale engineering structures such 
as military or automotive vehicles [38,40]. In a recent investigation [75], the method was im- 
plemented in NASTRAN using Direct Matrix Abstraction Program (DMAP) routines, in order to 
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Fig. 2: A cantilever plate partitioned into two components. 

Fig. 3: A constraint mode for plate 2. 

Fig. 4: The 6th and 7th CC modes (only plate 2 shown). 

Fig. 5: The 6th and 7th CC modes (full plate shown). 
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handle a vehicle finite element model with 1.5 million DOR For the range 0-200 Hz, a reduced 
order model with only 2124 DOF was found to predict the vibration response and power flow in 
the structure with excellent accuracy relative to the full finite element model. 

3.2   Pulling High-Frequency Analysis Lower 

3.2.1    SEA Enhancements, Extensions, and Alternative Formulations 

The underlying assumptions and resultant limitations of SEA have been examined by many re- 
searchers, including Woodhouse [76], Hodges and Woodhouse [2], Keane and Price [77], Langley 
[78,79], Fahy [80], and Mace [81]. These papers have provided great insight into the basic foun- 
dation of SEA. In addition, Dowell and Kubota [82] found the SEA results by investigating the 
asymptotic limit of classical modal analysis, an approach they called Asymptotic Modal Analysis 
[82-88]. The state of the art of SEA and alternative high-frequency analysis methods was recently 
reviewed by Sestieri [89]. 

Among other limiting assumptions, equipartition of modal energy and weak coupling between 
subsystems have been cited as key conditions for SEA. In fact, Langley [78] presented a general 
formulation of SEA and derived the standard SEA equations under the assumption of weak cou- 
pling. This is an important restriction, as it will be seen in subsequent sections that the modeling 
of the interface between substructures is a critical aspect of mid-frequency techniques. In 1992, 
Langley [90] examined the assumption of equipartition of vibration energy among the resonant 
modes, which is equivalent to assuming diffuse wavefields in each structural component. He noted 
that the diffuse wavefield assumption of SEA can lead to poor results due to the filtering effect 
of interfaces between components. Langley relaxed this assumption by modeling the vibrational 
wave intensity with a Fourier series, an approach called wave intensity analysis [90,91]. By taking 
a single Fourier term, the conventional SEA formulation is found. 

In 1987, Keane and Price [77] carefully considered the assumptions of SEA, with emphasis 
on the strength of coupling between subsystems. Using an example of a pair of one-dimensional, 
point-spring-coupled subsystems, they investigated the effect of relaxing certain assumptions. For 
structural systems with a few widely-spaced modes in the frequency range of interest, they sug- 
gested that rather than assuming that all resonant frequencies are equally likely to fall anywhere 
in the frequency range of interest, it might be better to allow a sequence of uniform probability 
density functions (PDFs) about the individual natural frequencies predicted by deterministic meth- 
ods. They noted, however, that this would complicate the statistical analysis significantly. In a 
similar vein, Keane and Price later examined the application of SEA to periodic structures [92]. 
They modeled the passband-stopband behavior of such systems by implementing a PDF for the 
natural frequencies that was greater in passband regions and smaller in stopband regions. Building 
on this work, Pierre et al. [93] related estimates of the variations in subsystem parameters to the 
distributions of subsystem natural frequencies. Their so-called parameter-based statistical energy 
method (PSEM) thus captured resonant behavior in the ensemble-averaged power flow in the mid- 
frequency region. However, this treatment was limited to simple one-dimensional systems and was 
not easy to generalize. 

There have been many other efforts toward improving SEA estimates of coupling loss factors 
and power flow. For example, Sablik et al. [94] used discretized modal densities to account for 
structural resonances in a beam network. Fredö [95] combined FEA with an SEA-like (SEAL) 
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energy flow balance to find the power flow between coupled plates. He derived "energy flow coef- 
ficients" that were similar to coupling loss factors, but they were related to the deterministic case, 
captured resonances, and could become negative at certain frequencies. Simmons [96] used finite 
element models to calculate coupling loss factors and power flow through plate junctions. Maxit 
and Guyader [97,98] have also presented a method for using finite element models to determine 
SEA coupling loss factors. 

Yan et al. [99] implemented this type of combined FEA/SEA approach in commercial soft- 
ware. They used NASTRAN to calculate impedance matrices at every driving frequency, and 
post-processed them to obtain coupling loss factors. These coupling loss factors were then used in 
AUTOSEA, a commercial SEA code, to find the system response in the mid-frequency range. 

Zhang and Sainsbury [100] introduced an approach called the energy flow method (EFM), 
which is based on SEA but also uses FEA for connections between strongly coupled subsystems in 
order to improve on the SEA results in the mid-frequency range. In particular, a method that was 
presented by Guyader et al. [101,102] for determining energy flow in coupled plates is employed 
for handling strong couplings. Guyader's method involves the calculation of energy influence co- 
efficients (EICs) to relate the energy values for connected substructures. The EICs are based on the 
modes of the coupled system, and they also depend on the excitation. In the energy flow method, 
it is assumed that many of the subsystem couplings are weak, such that the SEA coupling loss fac- 
tors are sufficient to describe the power flow for these junctions. For junctions that feature strong 
coupling, the EICs are first calculated using FEA, and then the EICs are used to determine cou- 
pling loss factors. Therefore, the final SEA equations feature conventional coupling loss factors for 
weakly coupled subsystems and FEA-based coupling loss factors for strongly coupled subsystems. 
Although there was no restriction on the weakly coupled subsystems, the method was limited to 
structures with only one pair of strongly coupled subsystems. 

3.2.2   Vibrational Conductivity, Power Flow, and Energy FEA 

In SEA, a uniform energy, based on the total energy of the resonant modes, is assumed for each 
subsystem. The power flow between coupled subsystems is computed based on the difference in 
subsystem energies, as shown in Eq. (1). Lyon has pointed out that, in the SEA system model, the 
resonant modes are considered to be energy "containers" [103]. If the basic energy container is 
reduced from a subsystem to a finite element, then the energy density is allowed to vary in each 
substructure. In the limit of small elements, one retrieves a partial differential equation in which 
the flow of vibration energy is proportional to the energy gradient. Thus, the flow of mechanical 
energy is modeled as the flow of thermal energy, yielding a true heat transfer approach to power 
flow. 

The origins of this approach can be found in the Russian literature beginning in the late 1970s 
[104,105]. The first treatment in the English language archival literature seems to be that of 
Belyaev and Palmov [106], who called it the vibrational conductivity approach. Belyaev reported 
further developments in later papers [107,108]. The technique was popularized in 1989 by the 
finite element formulation of Nefske and Sung [109]. They noted that the governing equation was 
analogous to the finite element equation for heat conduction and thus could be solved by existing 
finite element software. They applied this finite element analysis to beams. Due to the influential 
work of Nefske and Sung, the approach is often called power flow finite element analysis (PFFEA) 
or energy finite element analysis (EFEA). It is important to realize that, unlike traditional FEA for 
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high-frequency vibration, EFEA does not require a fine mesh. This was explained by Sestieri in a 
recent review of high-frequency methods [89]: 

...the heat equation is a parabolic equation describing a diffusion phenomenon and 
admits solutions exponentially decaying from the source, without oscillations. On the 
contrary, the wave equation describes a propagation phenomenon and has oscillating 
solutions in space, whose wavenumbers increase in direct proportion to the exciting 
frequency. This difference permits [one] to solve the parabolic equation with a coarse 
mesh that is usually frequency independent while the wave equation requires a mesh 
that becomes more and more demanding as the frequency increase[s] and the space 
passes from one to two and three-dimensions. [89] 

The low-cost finite element formulation for the system, along with the spatially varying energy 
metric for the subsystems, make this approach appealing. In addition, power flow between con- 
nected substructures can be handled by calculating power transfer coefficients, which are analo- 
gous to the coupling loss factors used in SEA. 

Key contributions and improvements to EFEA were provided by Bernhard and co-workers 
[110-113]. Among other contributions, they made important observations on the averaging per- 
formed on the energy variable, and they extended the approach to two-dimensional structures in 
applying it to plates. Palmer et al. [114,115], Stiehl [116], and Moens et al. [117] applied EFEA 
to systems of connected beams. Moens et al. also compared the numerical results to experimental 
results, and they concluded that EFEA is a promising technique for the mid- to high-frequency 
range. 

Langley [118] provided a more general derivation and application of the vibrational conduc- 
tivity equation for two-dimensional structural components, and he examined fundamental assump- 
tions and limitations of the approach. Carcaterra and Sestieri [119] also gave careful consideration 
to the use of the thermal analogy of energy flow in structures. They noted that different authors 
had employed different averaged energies, and thus power flow methods do not necessarily lead 
to the same heat conduction equation. They also warned that "it is dangerous to use the thermal 
analogy as an almost exact approach to describe the time-averaged energy density, especially for 
complex structures." They later tried to overcome the limitations of the thermal analogy with their 
"envelope energy" models [120,121]. In 1999, Xing and Price [122] also noted the general lack 
of similarity between mechanical and thermal energy concepts, and they introduced an alternative 
power flow analysis based on the governing equations of continuum mechanics. They showed 
that "the governing equation of energy flow is a first-order partial differential equation which does 
not directly correspond to the equation describing the flow of thermal energy in a heat-conduction 
problem." 

However, these warnings are related to the modeling of the energy distribution within a sub- 
structure. Given that the energy is modeled as a locally varying quantity rather than assigning 
an averaged value, it is possible that EFEA could provide an improvement relative to SEA when 
applied to the propagation of mid-frequency vibration through complex structures. As a case in 
point, Vlahopoulos et al. [123] performed a numerical implementation and validation of EFEA for 
models of marine vessels, and they found good results relative to SEA. They also cited some key 
advantages of EFEA: 

The EFEA formulation offers advantages in three main areas: the model generation is 

15 



based on actual geometry, thus uncertainties in defining subsystems and their connec- 
tions are eliminated; the results can be displayed over the entire system; and spatial 
variation can be assigned to the design variables when studying alternative configura- 
tions for performance improvements. [123] 

Building from this work, as well as from a study on calculating power transfer coefficients [124], 
Vlahopoulos and Zhao have developed a hybrid FEA/EFEA mid-frequency technique [125-127]. 
This hybrid technique will be covered in section 4.6. Finally, it is noted that recent developments 
and applications of EFEA have been presented by Bernhard and co-workers [128-130]. 

3.2.3    Local Energy Flow Analysis 

Beginning in the mid-1990s, Jezequel, Le Bot, and co-workers presented alternative formulations 
to EFEA for modeling the local variation of high- to mid-frequency vibration energy. In 1996, 
Läse et al. [131] introduced the general energy method (GEM). To develop this method, they 
considered both the total energy density (sum of kinetic and potential energy densities) and the 
Lagrangian energy density (difference between kinetic and potential energy densities). The time- 
averaged total energy density has a hyperbolic spatial distribution. In contrast, the time-averaged 
Lagrangian energy density has a sinusoidal spatial distribution, and it vanishes for high frequencies 
or infinite structures. The authors then derived two types of energy flows. The first is the active 
energy flow, which is related to the total energy and describes the propagation of energy in the 
system. The second is the reactive energy flow, which is related to the Lagrangian energy and 
characterizes the modal behavior of the structure. They formulated both active and reactive energy 
flow balances, with the active energy flow balance being equivalent to that of EFEA. They then 
applied the general energy method to the vibration of bars and beams. For the case of bars, they 
found two second-order differential equations governing the spatial distribution of energy. For 
the case of beams, they retrieved eight second-order differential equations. Although the results 
exactly matched those of the traditional displacement solution, the general energy method clearly 
becomes computationally intensive even for simple one-dimensional systems. 

To address this problem, the authors performed spatial averaging over a wavelength. With 
spatial and time averaging, the Lagrangian energy density and reactive power flow were found to 
be zero. The total energy density was unchanged by spatial averaging, however, leaving the active 
energy flow balance as the governing relation. They called this approximation the simplified energy 
method (SEM), and the resulting equations of local energy variation were of the heat conduction 
type and equivalent to those of EFEA [109,110]. In subsequent papers, the simplified energy 
approach was applied to energy flow in plates [132] and in one-dimensional systems with multiple 
propagating wave types [133]. 

In an attempt to improve upon the heat conduction approximation, Le Bot and Jezequel recently 
introduced a local energy flow approach [134-136]. This is a wave-based approach, in which it 
is assumed that the energy density is a sum of the energy quantities of each propagative field. In 
addition, the Huygens principle is used, so that the energy is assumed to be a superposition of the 
direct field and the reverberant field. The direct field is created by primary (actual) sources in the 
domain. The reverberant field is considered to be created by secondary (Active) sources located 
at the boundary of the domain. These wave fields and sources are illustrated in Fig. 6. Based on 
this approach, the local energy results are found to be "a direct prediction of the mean values of 
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Fig. 6: From [135]: illustration of the wave fields (left) and the direct and secondary sources (right) 
assumed in the local energy flow approach. 

expected dynamical levels" [135]. The local energy flow approach has been applied to coupled 
beams [135] and coupled plates [134,136]. One interesting result is that this approach can predict 
the stopband-passband behavior for a periodic system [135]. 

The assumption of primary and secondary sources has also been used in the solution of a ran- 
dom boundary element formulation for mid- to high-frequency vibration presented by Viktorovitch 
et al. [137,138]. In this method, classical dynamic integral equations (e.g., the Green kernel) are 
modified by introducing random geometric parameters to model the effects of uncertainties as fre- 
quency increases. These equations are also multiplied by "well-chosen" kinematic variables asso- 
ciated with the boundary. The unknowns are the second order stochastic moments of the kinematic 
variables. Results have been presented for one-dimensional [137] and multi-dimensional [138] 
structures, including connected substructures. For assemblies of substructures, it is also assumed 
that a primary source for one substructure acts as a primary source for a connected substructure 
at the interface. The authors have demonstrated that their approach can capture low-frequency 
modal behavior as well as smooth, averaged high-frequency response. They have also shown that 
it can handle connected substructures with large differences in their modal densities. Therefore, 
this method seems more appropriate for mid-frequency modeling than the related local energy flow 
approach. However, given the integral formulation used as a basis, it remains to be seen whether 
this method can be generalized for arbitrary complex structures. 

3.2.4   Structural Path Analysis 

Girard and Defosse [139] employed the "frequency smoothing effect" of a structure's driving point 
mobility or flexibility as frequency increases in order to derive system frequency response func- 
tions in the mid- to high-frequency range. They noted that if the asymptotic (smoothed) property 
is used, it causes problems for a finite-element-like assembly of the stiffness matrix for a structure. 
Therefore, they developed an alternative approach, based on the inverse of the system stiffness ma- 
trix. It was shown that, after eliminating some small terms, the connection between any two nodes 
can be written as a sum of the contributions of all the "structural paths" connecting those points, 
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either direct or indirect. It was argued that for high frequencies, only the shortest structural path 
needs to be retained. For lower frequencies, longer structural paths must be included, but they can 
still be truncated. This procedure holds for a substructuring approach, but it seems to be limited to 
point couplings between substructures. 

The authors later extended this work to handle beam trusses as well as lumped masses and 
springs [140]. In this work, it seems that the number of structural paths can become daunting. For 
one pair of nodes in a 24-beam truss used as an example, the number of "topological paths" is 131, 
but for just two wave types (longitudinal and flexural) the number of structural paths is 73,000. 
The authors proposed some ways to handle the large number of paths. 

This method of frequency smoothing plus structural path analysis yields the mean frequency 
response curves for a structure—smooth curves between resonant and anti-resonant levels, similar 
to SEA. In 1997, Girard et al. [141] summarized the approach and cited two of its main advantages: 
(1) the response is given as vectors (displacements, velocities, accelerations) rather than scalar 
energy results, and (2) the path analysis shows how vibration is transmitted through the structure 
from the excitation source to response points. In addition, they showed that the smoothed FRFs 
of substructures from analysis or from experimental results can be used to assemble the smoothed 
system FRF. However, they concluded that further work was needed to improve "the accuracy of 
FRF substructuring in the medium frequency domain where classical methods generally lead to 
severe discrepancies." Therefore, while this is clever work, it seems rather limited in terms of 
mid-frequency applications. 
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4    SPECIALIZED AND HYBRID TECHNIQUES 

In this section, techniques that specifically target the mid-frequency range are covered. These 
methods are notable in that they employ hybrid techniques and/or new approaches to the modeling 
and analysis of mid-frequency vibration in complex structures. 

4.1   Fuzzy Structure Theory and Mid-Frequency Band Modeling 

4.1.1    Fuzzy Structure Theory 

Fuzzy Structure Theory was introduced by Soize et al. [142] in 1986 as a way to handle the mid- 
frequency dynamic analysis of systems with structural complexity. Since then, further develop- 
ments have been presented by Soize [143,144] and by Soize and Bjaoui [145]. Also of note is the 
work by Pierce et al. [146] and Sparrow and co-workers [147-149]. Fuzzy structure analysis has 
been summarized in a tutorial paper by Ruckman and Feit [150], in a brief paper by Soize [151], 
and in chapter 15 of the book by Ohayon and Soize [8]. 

The basic approach is to treat a structure as a combination of a primary structure and a number 
of secondary structures and attachments. The primary structure is called the master structure, and 
it is the part of the structure that can be modeled deterministically using conventional techniques 
such as finite element analysis. The complement to the master structure consists of substructures 
having complexities that cannot be easily modeled and/or properties that are not precisely known. 
For this reason, they are referred to z& fuzzy substructures. The entire system, consisting of the 
master structure plus fuzzy substructures, is called a fuzzy structure. An illustration of a fuzzy 
structure is shown in Fig. 7. 

Master, 
Structure// Equipment 

Fig. 7: From [8]: a fuzzy structure consists of a master structure (unshaded) and fuzzy substruc- 
tures (shaded). 

The key concept in fuzzy structure analysis is that fuzzy substructures act like vibration ab- 
sorbers due to high modal density above their first resonant frequency, and the corresponding 
transfer of energy from the master structure to the fuzzy substructures acts like added damping for 
the overall structural response. Ohayon and Soize [8] referred to this effect as "an 'apparent strong 
damping' in the master structure" for the mid-frequency range, as shown in Fig. 8. 
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Fig. 8: From [8]: response of the master structure alone (solid line) and with fuzzy substructures 
attached (dotted line). 

Note that Fig. 8 only shows the FRF of the master structure. The objective of the method is 
to predict the effect of fuzzy substructures on the response of the master structure—the response 
of the fuzzy substructures is not sought. The model thus employs a random boundary impedance 
operator, ZfU2(u), which represents the effect of the fuzzy substructures on the master structure. 
This impedance is a sum of the impedances for the L fuzzy substructures: 

Zfuz(u) = J2zl
fuz(u) 

i=i 

The equations of motion for the fuzzy structure are written as: 

iu (Z(w) + Zfuz(u)) U(w) = f (w) 

(6) 

(7) 

where Z, U, and f are the impedance, displacement, and forcing for the master structure. Note that 
the fuzzy substructures do not add degrees of freedom to the model. Soize developed a recursive 
method to find the random solution [8,142,143]. Alternatively, a solution can be found using 
Monte Carlo simulation [150]. 

4.1.2   Mid-Frequency Range Finite Element Method 

In addition to fuzzy structure analysis, Soize et al. [142] introduced a numerical method suited 
to dynamic analysis of a structure in the mid-frequency range. The method was considered and 
extended by Vasudevan and Liu [152] and by Liu et al. [153] in 1991. (As an aside, the authors 
named Liu are two different researchers.) The method was also covered in the book by Ohayon 
and Soize [8], and a "gentle introduction" was offered by Sparrow [154]. Sparrow's paper provides 

20 



a nice description of the approach and makes some insightful comments, so the interested reader 
may refer to it for a more complete overview. 

Sparrow summarized Soize's method as a combination of traditional time integration and signal 
processing techniques [154]: 

The mid-frequency range finite element method (MFR-FE) of Soize, as the method is 
denoted in the present paper, neither tries to do multiple large scale matrix solves or 
determine closely spaced eigenmodes in the MF region. The approach combines the 
traditional time integration methods available for low frequency time domain finite el- 
ement simulation with standard demodulation/modulation signal processing (SP) tech- 
niques. It is the combination of the FE methods of numerical simulation with SP that 
forms the MFR-FE technique. [154] 

Here, the method is also referred to as MFR-FE. 
The basic approach of MFR-FE is to break up the mid-frequency region into a set of narrow 

frequency bands. For each narrow band, the mid-frequency response problem is transformed to the 
low-frequency range using a Fourier transform and demodulation. This leads to a low-frequency 
time-domain problem, which is solved using a conventional time integration technique. The solu- 
tion is then sampled at a set of discrete points in time, and a Fourier transform and modulation are 
used to transform back to the solution for the mid-frequency band. 

The derivation is now briefly summarized. For simplicity, a finite element discretization is 
assumed, but this is not restrictive. For a more general and detailed treatment, see chapter 7 of 
Ohayon and Soize [8]. 

To start, the mid-frequency range is considered as a union of narrow frequency bands. A narrow 
mid-frequency band is defined as: 

B„ = [üv - Aw/2, n„ + AUJ/2] (8) 

where $7„ is the center frequency and Aw is the width of band B„. In order for this band to be 
considered narrow, the condition is: 

Aw/fi„ < 1 (9) 

Along with B„, an associated low-frequency band is also defined: 

B0 = [-Aw/2, Aw/2] (10) 

In addition, two time scales are introduced: 

"Hong = 27T/Aw    , rshort = 27r/n„ (11) 

Note that the low-frequency band, B0, is associated with only one time scale, riong. 
Next, the forcing vector, F(w), is taken to be of a special form: 

F(w) - 0„(w)B (12) 

subject to the condition 0„(w) = 0 for frequencies outside of the band B„. The inverse Fourier 
transform of 0„(w) is a mid-frequency narrow band signal, 9„(t). An associated low-frequency 
signal is defined by 

&o(t) = OvWe-«1-* (13) 
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The Fourier transform of Eq. (13) is 

0o(w) = 6„{u + Qv) (14) 

subject to the condition 90(UJ) = 0 for frequencies outside of the band B0. 
Using the special form of the excitation given in Eq. (12), the equations of motion are 

{-LJ
2
[M} + iuj[D(u)} + [K(tv)])U(u) = 0v(w)B (15) 

Next, the damping and stiffness matrices are approximated as constant over the band B„ by taking 
their values at the center frequency 

[Dv} = [D(Üv)]    ,        [Kv] = [K(Slu)\ (16) 

The equations of motion for the mid-frequency band are now written as 

(-w2[M] + iu[Dv] + \Kv])Vv{u) = 0„(w)B (17) 

where VV(UJ) approximates the solution for the displacement field U(w). This approximation will 
be more accurate for a narrower frequency band. 

Equation (17) can be written as 

[AV(LJ)]UV(U) = 0„MB (18) 

where [A,(w)] is the dynamic stiffness matrix. Then the transform shown in Eq. (14) is used and 
also applied to the displacement, yielding the associated low-frequency equations of motion: 

[Av(u> + fi,)]U,(w) - e0(u)B (19) 

Taking the inverse Fourier transform yields the differential equations 

[M]U0(i) + [A,]Uo(*) + [Kv]U0{t) = e0(t)B (20) 

where _ 
[Du] = [D„] + 2inv[M]       ,        [Kv] = -Sll[M] + iQv[D,,] + [Kv] (21) 

Equation (20) can now be solved using a numerical time integration method. The time integration 
is performed from an initial time U = m;Ai to a final time tf = m/At, where rrii is a negative 
integer, mj is a positive integer, and At is defined as 

At = 2TT/AU , (22) 

In addition, the initial conditions for the displacement and velocity are taken to be zero, and the 
time step for the integration is 6t = At/p where p is a positive integer. 

After numerical integration, the low-frequency solution is time-sampled, the Fourier transform 
is taken, and the solution is transformed back to the mid-frequency band B„. This yields the 
solution: 

TTlf 

U„(w) ~ At ]T U0(mAt)e-imAt(a;-n-)       Vw € B„ (23) 
m=mi 

22 



The solution is only valid for this narrow band, such that 

U„(w) = 0       Vu; i B„ (24) 

The process can be repeated for many narrow bands to find an approximate solution for the 
mid-frequency range. This allows the response to be found by sampling narrow bands of fre- 
quency rather than sampling individual frequencies, which greatly improves the efficiency of a 
mid-frequency finite element analysis. 

Note that the MFR-FE approach could be used for the master structure in a fuzzy structure, and 
in this sense it is a complement to the fuzzy structure analysis covered in section 4.1.1. However, it 
is separate from fuzzy structure theory, so it can be applied in a general sense to accelerate a mid- 
frequency vibration analysis. An example of this is the recent work of Savin [155], who applied the 
MFR-FE technique to the complex structure shown in Fig. 9 and compared the numerical results 

yy/ *rgm   m &T' 

Fig. 9: From [155]: CAD drawing of the experimental structure, with several outer plates removed 
to show the internal geometry. 

with experimental results. The finite element model had about 87,000 DOF, and the frequency 
range 100-1000 Hz was split into 24 narrow bands for the MFR-FE analysis. The FRF (acceleration 
and phase) at the excitation point for a harmonic point load is shown in Fig. 10. It can be seen that 
the numerical results match well with the experimental results up to 700 Hz. Furthermore, Savin 
noted that the MFR-FE analysis was about 10 times faster than conventional FEA. (Savin did not 
compare the accuracy of the numerical results with conventional FEA.) 

Recently, Soize proposed a method for generating reduced models in the mid-frequency range 
[156,157]. Arguing that a modal basis is not appropriate for the mid-frequency range, Soize in- 
troduced an energy operator associated with a frequency band.   He showed that the dominant 
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Fig. 10: From [155], comparison of numerical and experimental results for the response of the 
experimental structure at the excitation point for a harmonic point load. 

eigenspace is spanned by the eigenfunctions associated with the highest eigenvalues of the energy 
operator. This allows a Ritz-Galerkin approach to be used to generate a reduced model for the fre- 
quency band. In 2000, Soize and Mziou [158] extended this technique by developing an alternative 
implementation of the Craig-Bampton component mode synthesis method [21] that employs the 
eigenfunctions of the energy operator rather than structural modes. 

Soize seems to have been the first to recognize the need for mid-frequency analysis methods 
and the first to offer solutions for the mid-frequency gap. His work is notable in that the techniques 
were honed for specific problems, but they are still generally applicable to real engineering struc- 
tures. The fuzzy structure theory seems well suited to handle certain classes of problems, although 
it will not fit the needs of many analysts. However, the mid-frequency range finite element method 
is compelling in that it is designed to accelerate FEA for mid-frequency analysis. Sparrow noted 
that the MFR-FE technique has been largely overlooked, and argued that it should be more widely 
adopted [154]: 

...the ease with which the MFR-FE technique can be programmed implies that it should 
be able to be implemented in large scale commercial FEM programs with no problem. 
The MFR-FE method as applied to interior noise problems should be viewed as a 
supplement to low frequency modal methods and high frequency statistical energy 
methods, filling the gap in between. Soize's approach will allow us to make accurate 
structural vibration and interior noise predictions at much highfer] frequencies than 
we can now. [154] 

As mid-frequency problems become more prevalent in automotive vehicles and other structures, 
Soize's contributions deserve to be re-visited. 
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4.2 Power Flow Analysis 

In 1987, Cuschieri [17] specifically proposed using power flow analysis as a complement to FEA 
and SEA for the mid-frequency range: 

In the mid-frequency range, a number of resonances exist which make FEA too costly 
and possibly not computationally feasible while SEA will only predict an average level 
of the response from which significant deviations can occur at the resonances of the 
structure. In this mid-frequency range an alternative is to use power flow techniques 
where the input and flow of vibrational power to excited and coupled structural com- 
ponents can be expressed in terms of input and transfer mobilities. [17] 

He cited Pinnington and White [159] for the basic power flow technique. In a later paper [160], 
he referred to the technique as Mobility Power Flow (MPF), since mobility functions are used 
to capture the input power and the power flow between substructures. In the 1987 paper [17], 
the technique was demonstrated using an example of an L-shaped beam. Cuschieri showed that 
the power flow results tend to match the FEA results at low frequencies and are asymptotically 
equal to the SEA results at high frequencies. He argued that the approach has an advantage over 
FEA because substructuring is used to reduce the computational costs, and an advantage over SEA 
because the resonant structural response can be retained in the mobility functions. 

In 1990, Cuschieri extended the MPF technique to periodic structures [161], using a multi-span 
beam as the example system, as well as to structures with line joints [160] rather than just point 
coupling, using an L-shaped plate as the example system. He also noted the advantages of the 
MPF approach: 

The agreement with FEA results is good at low frequencies. However, the power- 
flow technique has an improved computational efficiency as the frequency increases. 
Compared to the SEA results, the power-flow results show a closer representation of 
the actual modal response of the coupled structure. [160] 

McCollum and Cuschieri [162] also applied MPF to an L-shaped plate system with thick plates, 
with rotary inertia and shear deformation effects included in the analysis; and Cuschieri and Mc- 
Collum [163] considered the power flow contributions of in-plane waves, which were neglected in 
previous studies of the L-shaped plate. 

This sort of power flow approach may be a good strategy for the mid-frequency range as a 
compromise between FEA and SEA. However, the MPF technique is limited in that it is not for- 
mulated for general complex structures. An alternative is to use a finite-element-based reduced 
model for calculating the power flow, such as the methods covered in section 3.1.3. It should be 
emphasized that these power flow methods can be combined with uncertainty propagation anal- 
ysis, in order to account for the effects of parameter uncertainties on the mid-frequency system 
response [39,41,74]. 

4.3 Variational Theory of Complex Rays 

In 1996, Ladeveze [164] introduced the variational theory of complex rays (VTCR) for the mid- 
frequency vibration of weakly damped elastic structures. This paper was written in French, though 
an abridged English version was included. In a recent paper written in English [165], Ladeveze et 
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al. covered VTCR in more detail and provided some numerical examples. They characterize the 
method by describing three basic features, which are summarized as follows: 

1. A new variational formulation of the reference problem is used, in which substructure ap- 
proximations are independent and thus do not necessarily satisfy the displacement and stress 
transmission conditions at the interfaces between substructures. In [165], the reference prob- 
lem is an assembly of two connected structures subject to harmonic vibration at a fixed fre- 
quency, ui. 

2. "Two-scale approximations" are used, with a "slow" (long-wavelength) variable, X, and a 
"fast" (small-wavelength) variable, Y_. The solution is assumed to be well described locally 
as the superposition of an infinite number of local vibration modes that satisfy the laws of 
dynamics for an infinite medium. The solution for the displacement is thus of the form 
UiK.1 Y.,P) — W(X_,Y_,P) ■ exp(iujP ■ Y) where P is a vector characterizing the local 
vibration mode. The modes are defined explicitly in terms of the fast variable so that the 
unknowns are discretized amplitudes with relatively large wavelength. 

3. From the calculated discretized amplitudes, only "effective quantities related to the elastic 
energy, kinetic energy, the dissipation work, etc." are retained. 

In addition, Ladeveze et al. define "complex rays" to seek a solution for the mid-frequency 
vibration problem. They define interior, corner, and edge complex rays. The interior complex rays 
are "vibration modes in an infinite domain with the same mechanical properties" as the homoge- 
neous substructure with which they are associated. A complex ray for the displacement may be 
expressed as: 

U(K, Y, P) = W(X, P) ■ exp(c^P • 20 ■ exp{iuP ■ Y) (25) 

where the generalized amplitude W is an nth-order polynomial in X_ and 5 is a small damping 
factor. 

The authors refer to VTCR as a "true 'medium-frequency' method" because effective quantities 
are used for the time and space scales considered, rather than retaining "phenomena associated with 
small-length variations" that lead to "results which are very sensitive to data errors" [165]. In fact, 
the authors claim that the "spatial distribution of the solution has no 'physical meaning' from the 
mechanical point of view." Therefore, for quantity q{X_, Y), a corresponding effective quantity is 
defined: 

q{X) = —2 dYj dY2q(X,Y) (26) 
J — L—X\ J—h—X'i. 

where L is the characteristic dimension of the domain of the substructure. This approach, which 
is the third feature listed above, seems to account for the averaging effects of uncertainties on the 
response in the mid-frequency range. 

Three numerical examples are considered in [165]: a square plate, a triangular plate, and an 
assembly of 18 rectangular plates. For the square plate, the results at 600 Hz from modal analysis 
(1600 modes) and VTCR (64 DOF) are shown in Fig 11. The average displacement for the plate 
in the frequency range around 6000 Hz is plotted for each solution in Fig. 12. For the 18-plate 
assembly, the results are shown in Fig. 13 for the VTCR solution of the displacement and the 
effective displacement. 
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Fig. 11: From [165]: forced response of a simply-supported plate at 600 Hz calculated by modal 
analysis using 1600 modes (left) and VTCR using 64 DOF (right). 
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Fig. 12: From [165]: Results for the average plate displacement around 600 Hz calculated by 
modal analysis ("analytical solution") and VTCR ("approached solution"). 
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Fig. 13: From [165]: VTCR solution (left) and the post-processed effective quantities (right) for 
the vibration of a plate assembly. 
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The VTCR approach seems limited to systems with simple, homogeneous substructures. It 
appears that it would difficult to apply the approach to a structure with a complex geometry, though 
it is possible that a library of basic substructures could be used, as is done in SEA codes. It should 
also be noted that the boundary conditions for the substructures are satisfied only in an average 
sense, which might have a detrimental impact on power flow approximations as well as on general 
modeling accuracy. However, more work needs to be done before the status or even the prom.se of 
this approach can be fully assessed. 

4.4   Principal Components Analysis 

Hasselman and co-workers [18,166] have introduced a probabilistic approach to vibration anal- 
ysis, called principal components analysis, which combines elements of both FEA and SEA. In 
particular, in [18], the authors started with the equations of motion for two coupled multi-DOF 
subsystems modeled by the finite element method. Assuming stationary ergodic random exci- 
tation, "energy-type metrics" were derived from a "singular value decomposition of a frequency 
response matrix constructed by forming an array of discretized frequency response functions". The 
singular value decomposition leads to the form 

#(fi) = $£>7(fi) (27) 

where $ is a matrix of "spatial mode shapes," D is a diagonal matrix of singular values, and 7 is a 
matrix of "frequency response characteristics." It was shown that 

HHT = $D2$T (28) 

The authors then stated: 

...the trace of (HHT) is related to the total energy, Eu of Component 1, and equals 
the sum of the elements of the diagonal matrix, D2. The elements of D are ordered 
from largest to smallest so that most of the energy is associated with the first few 
modes. Thus, the modal decomposition represented by [Eq. (27)] results in energy- 
based modes. The contention of this paper is that the energy-based modes constitute 
a more appropriate basis for characterizing structural response in the mid-to-high fre- 
quency range than the classical normal modes which are highly sensitive to modeling 
error. [18] 

They quantified modeling uncertainty in terms of the "statistical differences between test measure- 
ments and analytical predictions based on a mathematical model," where the mathematical model 
was the finite element model. They then outlined a procedure for including the uncertainty in the 
frequency response analysis, employing metrics based on the correlation of modal analysis and 
test data. This approach was covered in detail in a more recent work by Hasselman [167]. 

In [18], the authors applied principal components analysis to an example system of an L-shaped 
plate. They showed FRFs at nine locations for single-point excitation, as well as the corresponding 
first right eigenvector 71 (fü), for different frequency bands. One result is shown in Fig. 14. It can be 
seen that the eigenvector is representative of the FRFs for the system. In fact, the right eigenvectors 
are themselves FRFs; they are the principal FRFs ordered by decreasing energy contributions. For 
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(a) Frequency response functions (b) Scaled first right principal vector 

Fig. 14: From [18]: FRFs and the corresponding first principal eigenvector for an L-shaped plate. 

this case, it was found that the corresponding energy represented by (if, the square of the first 
singular value, was over 80% of the total energy. 

The authors concluded the development of the method by saying [18]: 

The Principal Components approach ... places FEA and SEA on a common theoretical 
basis. Although different from classical SEA, the proposed approach is both statis- 
tical and energy-based, and therefore is considered to be a form of statistical energy 
analysis. [18] 

More recently, Hasselman and co-workers [9] took the association of principal components anal- 
ysis with SEA even further, when they introduced an approach called principal components-based 
statistical energy analysis (PC/SEA). In PC/SEA, the principal components method is used to de- 
termine damping and coupling loss factors for SEA. The purpose of this strategy is to take advan- 
tage of finely-meshed finite element models to improve the SEA results in the mid-frequency range. 
Two example models were considered, each with two connected plates: a flat plate configuration 
and an L-plate configuration. It was found that the PC/SEA results agreed well with benchmark 
numerical results, but differed by as much as an order of magnitude from the conventional SEA 
results. An important conclusion from this work was: 

These results indicate superiority of finely-meshed finite element analysis combined 
with power flow methods for vibro-acoustic analysis in the mid-frequency range where 
neither conventional FEA nor conventional SEA have proven to be reliable in the past. 
[9] 

It is interesting to note that although they adopted an SEA approach, Hasselman et al. emphasized 
the use of FEA as a starting point for an effective mid-frequency power flow analysis. 

4.5   Hybrid FEA/SEA Formulations 

In order to bridge the gap between FEA and SEA, it seems reasonable to seek a hybrid method 
in which some components are modeled by FEA and some by SEA. This type of approach was 
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pursued by Lu in a 1990 paper [168]. Considering a system of two components, he found that the 
main difficulty with using an FEA model for one substructure and an SEA model for the other was 
in trying to enforce displacement compatibility at the interface. In particular, he noted that phase 
information is not preserved in the SEA model, leading to more unknowns than equations in the 
combined formulation. Therefore, Lu imposed the power balance condition for the coupled system 
that the input power equals the dissipated power: Ilin = Udamped- Then, he used an optimization 
technique with the design variables being the complex boundary forces and the objective function 
set to min (Uin — Udamped)- In this way, the displacements at the interface were forced to converge. 

In 1999, Langley and Bremner [19] introduced an approach to modeling mid-frequency vi- 
bration that combines both a low-frequency deterministic approach for the global structure and 
a high-frequency SEA approach for certain substructures. In addition, elements of fuzzy struc- 
ture theory [143,146] and Belyaev's smooth function approach [106,169,170] are incorporated. 
Further developments of this hybrid technique have been reported by Shorter and Langley [171] 
and Shorter et al. [172]. The technique is called the Resound method [172] after the research 
consortium of the same name that led to its development. 

Langley and Bremner took the view that the crux of the mid-frequency problem is the mixture 
of short- and long-wavelength response for structures that have beam-like frames with plate-like 
panels attached, such as the simple example shown in Fig. 15 [173]. In the mid-frequency range, 
the frame has long-wavelength behavior characterized by global vibration that can be modeled 
deterministically, whereas the attached plate has short-wavelength behavior characterized by local 
vibration that is significantly influenced by the effects of uncertainties. For illustration of this type 
of mixed vibration field, the 20th mode of the example system is shown on the right in Fig. 15. 

Fig. 15: From [173]: the frame-plate example system (left) and its 20th mode shape (right). 

Langley and Bremner introduced a partitioning scheme based on wavelength to separate the 
degrees of freedom into a global set and a local set [19]: 

The system response is partitioned into two components, corresponding to long wave- 
length and short wavelength deformations. The long wavelength component is mod- 
eled deterministically, while the short wavelength component is modeled by using 
SEA. The interaction between the two components is considered in some detail, and 
it is shown that results similar to those yielded by fuzzy structure theory are obtained. 
Two analogies with the previously mentioned work are drawn: the long wavelength 
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deformation can be identified with the master structure in fuzzy structure theory, or 
alternatively with the smooth response in the Belyaev approach. [19] 

The use of deterministic modeling for the global structure with SEA modeling for the local sub- 
structures, with approximations of the interaction between the two types of components, comprises 
the framework of the Resound approach. 

The basic derivation presented by Shorter et al. [172] is summarized as follows. Based on 
the wavelength partitioning scheme to separate global (g) and local (I) degrees of freedom, the 
equations of motion for a complex structure can be written as: 

(29) 

where D is the dynamic stiffness matrix, q is a vector of displacements, f is a force vector. 
In order to perform a deterministic analysis of the global system, the above equations are 

approximated by uncoupled sets of global and local equations of motion with appropriate pertur- 
bations due to the influence of the complementary subsystem: 

[Dsp-ADsp]qs = fg-Afp (30) 

Baqi = ft - Aft (31) 

where ADPS and Aft, are the perturbations to the global structure caused by the local subsystem, 
and Aft is the perturbation to the forcing on the local subsystem due to the global subsystem. 

The perturbation to element mn of the global dynamic stiffness matrix is: 

(ADgs)mn = £aA™ (32) 
j 

where the summation is for all local component modes j in all short wavelength substructures. 
The term a is complex and accounts for frequency effects; it depends on the distribution of local 
natural frequencies, Uj, about the excitation frequency, u. The term ß is real and accounts for 
spatial effects; it depends on the wavelength (or wavenumber) content of the local and global 
mode shapes. 

The summation in Eq. (32) can be approximated by contributions from mass-controlled modes 
(ujj < UJ) and resonant modes (UJ « u). The contribution from stiffness-controlled modes is 
assumed to be small and is neglected. By assuming a uniform distribution of natural frequencies 
over the frequency range of interest, Aw, an average value of a can be obtained for the resonant 
and mass-controlled modes: 

(">re. ~ -*W/2Au;        (a)mass« -u? (33) 

It is interesting to note that since {a)Tes is imaginary, the resonant local modes provide damping to 
the global structure, which is in accordance with fuzzy structure theory [143]. (Lyon also showed 
that this fuzzy structure result can be retrieved with SEA [174].) 

There are two approaches to the asymptotic evaluation of the term ß. The first is a spatial 
correlation approach [171] that accounts for the expected spatial correlation between two points 
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in a mode when averaged over many local modes. The spatial correlation can be computed deter- 
ministically, though this can be computationally expensive. Asymptotic estimates may be derived 
by using a wave approach that neglects edge effects. In Fig. 16, the asymptotic and finite element 
results are shown for the correlation pattern of the resonant modes for the transverse displacement 
of a simply supported rectangular plate. The edge effects can be seen in the finite element results. 
The second approach to the asymptotic evaluation of ß is to use an asymptotic modes approach, 
which has given similar results to the spatial correlation method for validation examples [172]. 

Fig. 16: From [171]: spatial correlation patterns of the resonant modes for transverse displacement 
of a simply supported rectangular plate, asymptotic results (left) and finite element results (right). 

The above accounts for the perturbation to the global dynamic stiffness matrix due to the local 
modes of the fuzzy subsystems. The perturbation to the global forcing, Afs, accounts for addi- 
tional forcing on the global structure from the generalized forces acting on the local coordinate 
set. Various approximations were covered in [19]. One method for obtaining the modified global 
forcing is to estimate the "blocked" local response, or the response of the local subsystem when 
the global response is held fixed. 

The perturbation to the local forcing, Afj, is more straightforward. Recall that the local reso- 
nant modes lead to a damping effect in the global response, which is consistent with fuzzy structure 
theory. The energy that leaves the global degrees of freedom due to this damping effect is the en- 
ergy that is injected into the local system from the global system. 

Therefore, the local response can be solved using SEA, where the input power for the local 
system is the sum of the direct input power on the local coordinates plus the power transmitted 
from the global system due to fuzzy damping effects. The global response is obtained by inverting 
the modified dynamic stiffness matrix of Eq. (30). 

To date, the Resound method has only been validated for simple example systems such as 
coupled rods [19] and plate structures [171]. It remains to be seen if this approach can be applied 
systematically to general complex structures. 
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4.6   Hybrid Conventional/Energy FEA 

In the last section, hybrid FEA/SEA techniques were reviewed. If one is to employ such a hybrid 
approach in which some parts of the structure are modeled with FEA and some are modeled with 
a high-frequency method, another good candidate for the high-frequency method is Energy FEA 
[109-113,123]. EFEA is arguably a more natural fit with conventional FEA, since it is a finite 
element formulation. 

In 1999, Vlahopoulos and Zhao [125] presented a hybrid conventional/energy FEA method for 
mid-frequency structural vibration. In this hybrid formulation, it is assumed that a complex struc- 
ture is divided into "long" components that have relatively high-frequency vibration, and "short" 
components that have relatively low-frequency vibration. The terms "long" and "short" refer to 
the scale of the characteristic length of the component relative to the wavelength of vibration: a 
short component has only a few wavelengths over its length, while a long component has many 
wavelengths. 

In their initial development [125], Vlahopoulos and Zhao considered only systems of coupled, 
colinear beams with the excitation applied on long components, such as the system shown in 
Fig. 17. The key challenge was in capturing the energy transfer at junctions between long and 

*- Member 1 Member 2 >- Member 3 
(longl) (short) (long2) 

Fig. 17: From [125]: system of long and short beams with excitation on a long component. 

short components. They handled this by relating the displacement and slope in the conventional 
finite element formulation to the amplitude of the impinging wave in the energy finite element 
formulation for each junction between long and short components. This so-called hybrid joint 
leads to the EFEA power transfer coefficients at long-short junctions that complement the power 
transfer coefficients at long-long junctions. The latter are calculated analytically by modeling 
a long component as a semi-infinite structure. The solution process was then to calculate the 
response of the long members first, and then calculate the response of the short members, subject 
to incoherent excitation at the short-long joints, using conventional FEA. A flow chart illustrating 
the hybrid FEA/EFEA computational process is shown in Fig. 18. For the systems considered, the 
hybrid results showed good agreement with analytical results. In contrast, the results from EFEA 
applied to all components were inaccurate, because the resonant behavior of the short components 
was not captured by EFEA alone. 

In 2000, Zhao and Vlahopoulos [126] extended this approach by allowing for the case of exci- 
tation applied to short members. This required enhancing the computational process by including 
an iterative solution for the interface system of equations in the hybrid joint formulation. After 
convergence of the solution for the hybrid interfaces, the power flow into the long components and 
the boundary conditions for the short components were used to solve the system response. 
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Fig. 18: From [125]: flow chart of the hybrid FEA/EFEA computational process for a system with 
excitation on long components. 

In 2001, Vlahopoulos and Zhao [127] used the hybrid FEA formulation to investigate power 
flow in systems of colinear beams. They examined phenomena such as power re-injection [175, 
176], when power reflected from a joint back into a short component eventually impinges the joint 
again and is partially transmitted. The hybrid method showed good agreement with analytical 
solutions. 

To date, this hybrid FEA method has only been applied to systems of colinear beams. However, 
Zhao and Vlahopoulos noted that in the theoretical development "no assumptions are made that 
would prohibit the extension of this work to members with multiple types of waves or to members 
connected at arbitrary angles" [126]. Nevertheless, the process of mating conventional and energy 
FEA formulations at hybrid junctions could become cumbersome for more complex connections, 
and it remains to be seen whether this approach can be extended to arbitrary connections between 
components in general complex structures. 
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5    COMMENTS ON THE STATE OF THE ART 
Considered as a whole, some clear trends can be seen in mid-frequency structural dynamics re- 
search to date. First, power flow is a recurring theme, and there is a growing consensus that some 
form of power flow analysis should be employed, at least as a complement to a more traditional vi- 
bration analysis. Second, most mid-frequency methods to date are substructure-based approaches. 
Of course, this is not surprising, since the nature of a complex structure is such that it is defined as 
an assembly of simpler structures. In addition, analysis techniques are inherently more accurate for 
predicting the vibration response of components than the response of combinations of components. 

In fact, it appears that the major modeling issues for the mid-frequency range are primarily 
related to the coupling between the components of a complex structure. Consider these examples 
from the array of methods that have been reviewed: 

• Hybrid methods are focused on enforcing compatibility between different modeling methods 
at component interfaces, and the attendant complications have limited these techniques to 
simple structures 

• The applicable range of component mode synthesis models can be pushed into the mid- 
frequency region via component interface reduction methods, which increase the computa- 
tional efficiency and enable power flow analysis 

• The fidelity of a wave-based approximation depends largely on the handling of scattering 
and transmission of waves at substructure junctions 

• An important—and limiting—premise of the variational theory of complex rays is that the 
component boundary conditions are satisfied only in an approximate sense 

Thus, it is seen that the treatment of component interfaces constitutes the major challenge for most 
mid-frequency techniques, and the accuracy and applicability of each method is highly correlated 
with how the interface issues are handled. 

There is no clear leader among mid-frequency techniques presented to date, though several are 
promising. However, it should be noted that significant research progress has been made in the 
area of reducing the cost for finite-element-based analysis, thus increasing the range of application 
up into the mid-frequency range. Notable methods in this area include the mid-frequency range 
finite element method of Soize [8,142,154], the automated multi-level substructuring technique of 
Bennighof [65-71], and the characteristic constraint mode approach of Pierre [36-40,75]. These 
methods address a second key challenge posed by the mid-frequency range, that of handling the 
computational difficulties associated with this region. 

In addition to interface and computational issues, the effect of parameter uncertainties is a 
significant concern in the mid-frequency range. This is the third main area of difficulty for mid- 
frequency analysis. One observation on this front is that information should not be thrown out too 
early in the process by imposing broad assumptions from the start. For instance, phase information 
and/or spatial distribution of energy within each substructure may not be kept in the final results, 
but it may still be a crucial factor for determining the overall response before averaging out due to 
uncertainties. 

Overall, most mid-frequency methods to date seem rather limited in their scope of application. 
Many are restricted to very simple models, such as beams and plates. The need for methods that 

35 



may be used for general complex structures was pointed out by Savin, who noted that "the pro- 
posed numerical methods should be applicable to arbitrary, complex configurations and topologies 
that exhibit the most characteristic features and difficulties raised by midfrequency vibration pre- 
dictions" [155]. In assessing the state of the art, one must agree that there is a surprising lack 
of even basic mid-frequency analysis tools for complex structural systems. It is clear that more 
research effort must be placed on developing mid-frequency methods that can be employed by 
engineers for complex structures. 
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6   FUTURE RESEARCH DIRECTIONS 

Based on the issues and challenges noted above, some ideas for future research are now presented. 
This list of topics and suggestions is by no means exhaustive. Nevertheless, it is hoped that this 
coverage will help spark further work and new initiatives. 

6.1 Tailored Finite Element Models and Methods 

To start, it is worth considering what can be done in finite element analysis in order to help enable 
the treatment of mid-frequency problems. After all, one reason that FEA is so successful is that 
one provides basic information about the system—geometry, material properties, forcing—and 
then there is a very systematic way to generate and solve the corresponding numerical model. 
Furthermore, there is an excellent foundation of commercial software for performing the analysis. 

Certainly, some specialized finite element methods already exist. Notable examples include 
power flow / energy FEA of Nefske and Sung [109] and the mid-frequency range FEA of Soize [8, 
142,154]. Implementations and further developments of these techniques should be examined. In 
addition, other approaches to narrow-band, energy-based, or wave-based FEA should be pursued. 

More fundamental issues should also be explored, such as the use of alternative elements with 
local basis functions tailored to vibration modeling, and the incorporation of probabilistic analysis 
related to the effects of parameter uncertainties. Another option is to increase the superelement 
capabilities of existing software. Just as traditional FEA is based on elements and assembly of 
global equations from local representations, mid-frequency FEA could be based on superelements 
and coupling of superelement models at interfaces. Alternatively, decomposition and reduction 
techniques could be used to essentially post-process finite element models for the mid-frequency 
range. This is discussed next. 

6.2 Domain Decomposition and Reduced Order Modeling 

It is natural to treat a complex structure as an assembly of substructures. However, partitioning 
a finite element model or some other geometric representation into component structures is not 
necessarily straightforward or easy. There are already many domain decomposition techniques, but 
these are likely to favor partitioning into components based on factors such as minimal connectivity 
or similar component sizes. Instead, it would be preferable to develop a physics-based domain 
decomposition technique for mid-frequency analysis. Such an approach could be designed to have 
some important advantages. First, it would identify each component based on an assessment of the 
subdomain characteristics, thus enabling an appropriate modeling technique for that substructure 
as well as enhancing the convergence of the solution. Second, it would help ensure that the results 
are correlated with the parameters of key components of the system. Third, it could be tailored to 
a particular hybrid or specialized mid-frequency analysis approach for the full structure. 

In addition to decomposition, more work can be done in reduced order modeling. Finite- 
element-based reduced order modeling and power flow analysis methods are very promising. Of 
course, as computers become faster and more powerful, the frequency limits of FEA will be pushed 
higher, and the need for reduced models may be questioned. However, specialized and approximate 
methods that yield reduced models will always have a place in mid-frequency analysis, and in 
structural dynamics analysis in general. These methods increase the simulation space even for the 

37 



fastest computers, thereby increasing the design space. Furthermore, these methods are important 
because they enhance understanding of the physics of the system. They allow one to isolate key 
system parameters, to distill and interpret the results, and to consider parameter uncertainties and 
the propagation of uncertainty in the response. These are all crucial to evaluating and improving a 
design. Thus, reduced order modeling methods enable virtual prototyping and design optimization, 
including for the mid-frequency range. 

Finally, a combination of decomposition and reduced modeling techniques can be envisioned. 
In particular, for mid-frequency methods that are applicable only to systems with simple substruc- 
ture models, the decomposition could include identification of the subsystem model type and the 
corresponding model parameters for each substructure. This would be useful as a pre-processor for 
any system modeling software that employs a library of subsystems, such as a commercial SEA 
code. 

6.3 Smart Hybrid Methods 

In a similar vein to reduced models, hybrid models are a natural fit for the mid-frequency range. 
In fact, several hybrid mid-frequency methods have been reviewed. One interesting possibility 
would be to develop "smart" hybrid methods that could be combined with a domain decomposition 
technique to automatically assign one of two or more modeling approaches for each identified 
component. This assignment could be varied according to the frequency range of interest, loading 
conditions, and so forth. Savin [155] noted that the dynamic behavior changes in the mid-frequency 
range, and therefore varying a combination of models may be required: 

In the intermediate-frequency range there is a transition between two dynamic behav- 
ior patterns; therefore, there should be a transition of numerical models as well. [155] 

It should be noted that the Resound method [19,172] does incorporate a system for identifying 
the "fuzzy" substructures according to frequency. As the frequency of vibration is increased, more 
substructures are treated as fuzzy substructures [172]. One can envision a more comprehensive im- 
plementation of this approach, though, incorporating the decomposition methods suggested above 
as well as special interface models. 

6.4 Improved Modeling of Interfaces and Joints 

As mentioned earlier, the primary modeling challenges of the mid-frequency range appear to be 
those related to the junctions between component structures. Therefore, improved modeling of 
interfaces between substructures must be considered a crucial area for future research. Examples 
include: 

• the treatment of transmission and scattering of waves at component interfaces 

• the hybridization of two different approaches for substructure modeling 

• the detailed representation of joints or complex connections that may include friction and 
other nonlinear effects 
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Certainly, the first two examples are related to the limiting factors of several mid-frequency meth- 
ods presented to date. In particular, for hybrid methods, the different modeling methods must be 
resolved through an appropriate interface model. This seems to be a rich topic for further work, 
with potential for big payoffs in engineering applications. 

With respect to the third item, it is clear that complex connections and joints between substruc- 
tures have not received much attention in the mid-frequency literature. This is probably due to 
the fact that, even with ideal representations of interfaces, the inherent discontinuities at junctions 
lead to significant complexities in the analysis. However, it is important to realize that in the mid- 
frequency range, the wavelengths can be sufficiently small that additional modeling challenges 
are encountered at interfaces. For example, in recent experimental studies, Buehrle et al. [7] and 
Savin [155] noted modeling discrepancies at higher frequencies due to local effects around rivets. 
Buehrle et al. pointed out the need for refined interface modeling: 

Predicted frequencies for the plate stiffener model with rivet line attachment were 
consistently lower than the measured natural frequencies. This indicates that further 
refinement of the model of the attachment interface is required. [7] 

In addition, Cudney [177] made this general comment about the treatment of joints: 

Overall, a problem which plagues solution of mid- to high-frequency structural dy- 
namics design and analysis problems is that our modeling is greatly influenced by our 
assumptions about damping at joints. The response predictions are highly sensitive to 
these modeling assumptions. [177] 

Thus, it is clear that this topic should receive more attention in the future. 
One strategy would be to conduct experimental studies for specific types of joints. Then, 

empirical results could be combined with substructure models as a sort of hybrid approach. A 
similar strategy would be treat joints and interfaces as special classes of substructures. Specialized 
models could then be incorporated into "part libraries" for a given analysis technique. This type of 
approach is already employed for subsystem modeling in SEA software. 

6.5   Applications and Benchmarks 

As noted earlier, mid-frequency techniques have mostly been applied only to simple structures, 
such as assemblies of beams or plates. There is a need for more realistic applications in order to test 
the capabilities of existing techniques, to assess the promise of various approaches, and to identify 
critical unresolved issues as well as possible solutions. Numerical and/or experimental studies for 
realistic complex structures in the mid-frequency range should be one of the top priorities for future 
research, at least as part of a larger development effort. It should be noted that there has been some 
progress in this area in the last few years, such as the numerical/experimental studies of Buehrle 
et al. [7] and Savin [155], and the applications to vehicle structures by Pierre and co-workers 
[38,40,75]. 

In a similar vein, the need for mid-frequency benchmarks was pointed out by Cudney [177] in 
summarizing the discussions at the "Structural Dynamics @ 2000" forum: 

What must be done? We should develop systematic benchmarks of predictions of 
modes and response, and communicate these to educators in the field. [177] 
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A set of benchmarks, perhaps ranging from simple structures to representative complex structures, 
would help establish the accuracy, applicability, and scalability of mid-frequency techniques. 

6.6 Optimized Methods for Special Classes of Structures 

In keeping with the theme of applications described above, it should be emphasized that certain 
classes of complex structures can be handled by methods tailored for the unique characteristics of 
the system. Thus, optimized methods for certain classes of structures should be pursued where 
possible. A notable example of this is the recent work on reduced order modeling of the vibration 
of mistuned bladed disks [178-182]. Bladed disks used in turbomachinery (e.g., jet engine ro- 
tors) can suffer significant vibration problems under certain operating conditions due to the small 
discrepancies among the blades, called mistuning. By many standards, this is a mid-frequency 
vibration problem: the vibration problems are usually in a region of high modal density, and may 
occur beyond the first several hundred system modes, yet individual system modes are still of 
interest; the small uncertainties in the system have a large effect on the response and must be 
considered for meaningful predictions; and the computational costs of using FEA to predict the 
statistics of the mistuned response are prohibitively high. However, by taking advantage of the 
cyclic symmetry of the nominal system, reduced models can be developed that provide efficient 
yet accurate predictions of the free and forced response. There may be other types of structures—or 
substructures, connected components, joints, etc.—that would benefit from a similarly customized 
implementation of mid-frequency vibration analysis. 

6.7 A New Approach 

Ultimately, an ideal mid-frequency technique could be imagined as a fundamentally new approach 
for the mid-frequency range that serves the same kind of role as FEA in the low-frequency range 
and SEA in the high-frequency range. While it is difficult to speculate on the details of such an 
ultimate mid-frequency (UM) technique, it is possible to consider some general themes that might 
be incorporated. For instance, the UM technique would take good ideas from both FEA and SEA. 
From FEA: clear requirements for representing the system, systematic approach to model gen- 
eration, and capture of appropriate details/resonances in the solution. From SEA: calculation of 
power flow between subsystems, simple representation of results in terms of key system parame- 
ters, and accounting for uncertainty. Furthermore, the UM technique might embrace the inherent 
wave-mode duality in the mid-frequency range, positioning it as a hybrid or pseudo-hybrid method. 
Finally, the UM technique would most likely be able to handle low-frequency and high-frequency 
analysis, although it would lose accuracy relative to FEA at the low end and lose efficiency relative 
to SEA at the high end of the frequency spectrum. 
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7    CONCLUSIONS 
In this paper, approaches for handling the mid-frequency vibration analysis of complex structures 
were reviewed. It was found that the mid-frequency range poses significant challenges in three 
main areas: 

• Connection: The treatment of a complex structure as an assembly of connected component 
structures is both a natural starting block and a natural stumbling block in the mid-frequency 
range. For instance, different component structures may be best described by qualitatively 
different models for the same load case: one substructure may have relatively high modal 
density, the other low modal density. Also, the wave-mode duality of structural vibration 
is especially important in the mid-frequency range. Incompatibilities between a modal ap- 
proach and a wave- or energy-based approach must be resolved if one is to consider hybrid 
methods that employ both types of analysis. Even if a hybrid approach is not taken, each 
interface between components involves vibration, wave, and energy transmission issues that 
are not easily resolved. Furthermore, complicated and/or jointed connections require special- 
ized modeling. In terms of problem formulation, the partitioning of the model into appropri- 
ate substructures is a crucial step and may not always be obvious or convenient, particularly 
with respect to specialized mid-frequency analysis methods. 

• Computation: There is a critical accuracy versus efficiency trade-off in the mid-frequency 
range. From a low-frequency perspective, refining a finite element mesh, running the finite 
element analysis, and extracting key results from the analysis can be prohibitively expen- 
sive as frequency increases. Therefore, approximate methods must be adopted. From a 
high-frequency perspective, the situation is reversed. The simplifying assumptions that en- 
able efficient analysis methods in the high-frequency range may not be appropriate for the 
mid-frequency range, leading to a quantitative and even qualitative breakdown in modeling 
accuracy as frequency decreases. 

• Prediction: As the frequency of vibration increases from the low- to mid-frequency range, 
parameter uncertainties have a greater influence on the response, especially as the wave- 
length decreases to the scale of random structural variations (e.g., manufacturing tolerances). 
At some point in the mid-frequency range, a deterministic model represents at best one mem- 
ber in the population of structures with the same nominal design, such that uncertainty in 
the system must be considered in order to predict the response. Estimated parameters and 
unmodeled structural complexities provide additional sources of uncertainty. Furthermore, 
from an engineering perspective, it is important not only to predict the response for a partic- 
ular design, but also to predict the effect of design changes on that response. 

Of these three main areas, it was determined that the primary challenges of the mid-frequency 
range are related to the first area, the handling of substructure connections. It was also found 
that the best progress to date has been achieved in the second area—specifically, in improving 
the computational efficiency of finite-element-based analysis so as to push its range of application 
higher, into the mid-frequency range. 

A major shortcoming of most mid-frequency techniques is that they are either restricted to 
simple structures, or they cannot be readily applied to realistic complex structures. Therefore, it is 
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clear that more effort needs to be expended on delivering tools that can be employed by engineers 
to solve real problems. This does not imply that fundamental research in this area is not important 
or instructive; rather, basic research must be complemented by and/or guided by applications. In 
addition, it is important to consider how a method enables not only the analysis but also the design 
of complex structures. 

Overall, when evaluating the potential of a mid-frequency technique, it is good to keep in mind 
the observation made by G. E. P. Box on scientific model building: "All models are wrong but some 
are useful" [183]. In the present context, "useful" is taken to mean that a model can be applied 
systematically to the analysis of a complex structure in order to predict the vibration response, to 
evaluate the design, and to assess the effect of design changes. Ultimately, the structural dynamics 
research community must meet a single engineering challenge: finding mid-frequency modeling 
and analysis techniques that are useful. 
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