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1. Introduction 
 
Information filtering systems monitor document streams to find documents that match 
information needs specified by user profiles.  Information filtering is an “old” technology in the 
sense that it has been used in commercial and government software applications for more than 
thirty years.  For most of that time the main requirement was to find potentially relevant 
documents in a stream of mostly irrelevant documents.  This goal made sense when there were 
relatively few relevant documents, and when the matching technology was relatively primitive.  
However, those conditions changed dramatically in the 1990s.  The stream of documents to be 
filtered is growing exponentially, and exact-match Boolean technology is being replaced by 
more accurate statistical matching techniques.  Filtering systems are beginning to find more 
potentially relevant documents than are useful for many tasks.   
 
The coming decade will be characterized by access to document streams of a terabyte or more 
per day.  The documents a person has time to read will become a smaller fraction of the total 
document stream.  If the current generation of filtering technology is applied to such a rapidly 
growing stream of documents, the “false hits” will consume an ever larger portion of the 
analyst’s time, and many of the “true hits” will merely repeat information found in previously 
seen documents.  The occasional nugget of useful new information will become increasingly 
difficult to find. 
 
Contract F30602-98-C-0110, “Getting What You Want:  Accurate Document Filtering in a 
Terabyte World” (abbreviated here to the “Accurate Document Filtering” contract) was 
established to address this problem.  The key ideas were a transition from judging documents by 
relevance to judging them by utility, an emphasis on machine learning algorithms that learn more 
accurate descriptions of information needs, and development of optimization techniques for 
probabilistic filtering systems. The focus was primarily on techniques that require minimal 
interaction from a user, for example, analysts interacting by specifying what is good and what is 
not good about examples found by the system.  The goal was a system that interacts much as an 
intelligent human assistant would. 
 
The research was to be organized around four system requirements.  The system: 

• Might rank by relevance, but must also interact with the analyst in terms of utility 
(novelty); 

• Must learn from its successes and mistakes; 
• Must be very accurate, probably by using highly structured filtering queries; and 
• Must be efficient enough to filter a terabyte a day for several thousand profiles on a small 

number of “commodity” (UNIX workstation, or Intel) processors. 
 
This report describes the work done under the Accurate Document Filtering contract.  The next 
chapter reviews the recent history and state-of-the-art in document filtering.  Chapters 3 and 4 
discuss the research conducted under the contract.  Chapter 5 briefly describes the prototype 
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system that was created.  Chapter 6 summarizes the lessons learned during the contract research.  
Chapter 7 lists the publications created under the contract.  Chapter 8 contains references. 
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2. Adaptive Information Filtering 
 
The dominant method of filtering information for most of the last thirty five years was based on 
the Exact Match retrieval model and Boolean queries.  Exact match systems can be implemented 
easily, they can be optimized to run extremely quickly, and it is easy to explain to a user why a 
particular document was or was not matched.  Boolean queries allow people to express complex 
information needs very precisely and are popular with highly experienced users.  These 
characteristics caused many filtering systems to remain “exact match” through the 1990s, when 
most ad-hoc information retrieval systems were shifting to statistical models. 
 
It is well-known that information retrieval systems based on statistical models (vector-space 
(Buckley, et al. 1995), probabilistic (Robertson, et al., 1995), inference network (Callan, et al., 
1995), language models (Zhai and Lafferty, 2001b)) are about twice as effective as systems 
based on exact match models.  Statistical models allow “soft match” or “fuzzy match” of queries 
to documents, which makes them more forgiving of queries that don’t do exactly what their 
authors intended.  For example, the query “multimedia AND software AND NOT (Microsoft OR 
IBM OR Apple)” may be intended to express a desire for information about multimedia software 
from companies other than Microsoft, IBM or Apple, but it actually expresses a stricter 
constraint:  Matched documents can’t even mention Microsoft, IBM, or Apple.  If an exact match 
model is used, few or no documents will be matched, because many of the desired documents are 
likely to also briefly mention competing products from Microsoft, IBM, or Apple. 
 
Systems based on statistical models are also easier to use because people can express their 
information needs using free-text (phrases and sentence fragments) in addition to Boolean 
queries.  For example, an information need might be expressed as “Iran Iraq war, ‘chemical 
weapons’”. 
 
Another advantage of statistical models is that queries can be created automatically, based on 
automatic analysis of relevant and non-relevant documents.  The Tipster program and the TREC 
Routing track, both started in the early 1990s, demonstrated quite clearly that filtering 
queries/profiles1 created by automatic analysis of relevant and non-relevant documents were 
considerably more accurate than profiles created manually (Croft, et al., 1993).  These early 
efforts were based on ‘batch” analysis of large sets of documents, i.e., given a set of 300-1000 
training documents the task was to create a profile.  This approach to creating profiles modeled 
environments in which profiles changed rarely (because over a long period of time it would be 
possible to accumulate large amounts of training data for a profile).  Although less dynamic than 

                                                 
1 Profile and query are used somewhat interchangeably in the information filtering literature, but typically profile 
indicates a description of a long-term information need (e.g., in an information filtering system), and query indicates 
a description of a short-term information need (e.g., in an ad-hoc search engine).  The different terminology 
indicates that a profile is based on more information than a typical ad-hoc query, for example, it might be influenced 
by user feedback given over a period of time.  Operationally, both profiles and queries are expressed in a query 
language. 
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many users would like, it demonstrated the potential of statistical models for information 
filtering tasks. 
 
Information filtering systems based on statistical models began to appear in the mid 1990s (e.g., 
Callan, 1996).  Since then there has been a rapid transition to statistical models among 
researchers studying this area.  The best forum for research on the topic has been the TREC 
Filtering tracks during TREC-8 (Hull and Robertson, 1999), TREC-9 (Robertson and Hull, 
2001), and TREC-10 (Robertson and Soboroff, 2002). 
 
When information filtering systems are based on statistical models, a new problem arises.  Exact 
match models and Boolean queries either match a document or do not.  Statistical retrieval 
models implement a “soft” or “fuzzy” match, so many documents match many queries to some 
degree.  The match may be very strong or very weak, but often for a very large number of 
documents it is not zero.  Filtering systems based on statistical retrieval models must therefore 
decide whether the match between document and query is strong enough for the document to be 
delivered to the user.  This is usually described as a problem of setting dissemination thresholds.  
The problem is complicated for two reasons.  First, there is no clear pattern in document scores 
for different profiles.  A score of 0.4732 for one profile may be very good, but may be very bad 
for another profile.  A second reason is that different people have different needs.  One person 
may want to see every document related to a topic (“high Recall”), but another user may want to 
see only the most relevant documents (“high Precision”).  Hence, dissemination thresholds must 
be set on a per-profile, per-user basis. 
 
Information filtering systems that learn or tune profiles and thresholds over time, based upon 
periodic feedback from a person, are called adaptive information filtering systems.  Adaptive 
information filtering systems were a fairly new research area when the contract began.  Now they 
are the mainstream approach to information filtering by the research community, and they are 
beginning to be adopted commercially.  The mainstream view of adaptive filtering systems has 
also shifted from relatively unresponsive systems that updated profiles rarely based on large 
amounts of training data to very responsive systems that update profiles incrementally whenever 
information from the user becomes available. 
 
We include in our definition of adaptive filtering an additional task:  learning to recognize which 
documents are novel and which are redundant relative to documents delivered previously for a 
particular profile.  We call this task novelty detection.  Novelty detection is not ordinarily 
considered a component of an adaptive filtering system.  The current thinking is that novelty is 
an inherent property of a document; this is reflected in research on Topic Detection and Tracking 
(TDT) (Allan, 2002) and in the organization of the TREC-2002 Novelty track.  The research 
done under this contract suggests that novelty is based on a person’s interest and experience, in 
which case it cannot be learned without explicitly modeling the user.  Given a user history, 
sufficient training data, and a relatively well-defined topic a system can learn one person’s 
novelty criteria.  This more constrained approach to novelty detection, which fits easily into an 
adaptive filtering system, offers a much better chance for success than the alternatives. 
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Developing experimental systems is a challenge when it is not possible to observe the intended 
users (in this case intelligence analysts), data stream, and operational environment.  The contract 
research modeled the filtering environment with open source data provided to the research 
community by the National Institute for Standards and Technology (NIST) under its TREC 
program.   
 
A corpus of documents was sorted chronologically, to simulate a document stream (e.g., a 
newswire).  The filtering system was initialized with a set of information needs (often TREC 
topics, written by retired intelligence analysts), and sometimes with a small set of positive 
examples (relevant documents) for each information need.  The system transformed these 
automatically into filtering profiles (queries).  During filtering, documents would be considered 
one-at-a-time, in chronological order.  The filtering system would compare the document to each 
profile and make decisions about whether to deliver the document to the users associated with 
each profile.  When a particular document was disseminated for a particular profile, the system 
would receive feedback about whether its decision was correct.  The system had an opportunity 
to revise the profile based on the (positive or negative) feedback prior to receiving the next 
document.2  This process continued until each document in the stream had been considered.  The 
system’s performance over the entire stream of documents was measured using a variety of 
measures, including Precision, Recall, and various Utility metrics (Hull and Robertson, 1999; 
Robertson and Hull, 2001).  This filtering environment is not a perfect model of an operational 
environment, but it is perhaps the best that can be done in the absence of real data and real users. 
 
 
2.1 InRoute and YFilter 
 
One of the first information filtering systems based on a statistical model was the InRoute 
system, which was based on a Bayesian inference network model of information filtering 
(Callan, 1996).  The roots of the Bayesian inference network are information needs (the set of 
profiles known to the system), the internal nodes correspond to nested query operators, and the 
leaf is the document currently being filtered.  Nodes are connected by directed arcs that represent 
dependencies.  Beliefs propagate through the network, from the leaf to the roots, resulting in a 
measure of how strongly the system believes the current document is to satisfy each information 
need. 
 
Although InRoute is based on a powerful model of statistical inference, every element of the 
model can be mapped to traditional data structures and relatively simple algorithms.  A simple 
architecture diagram is shown in Figure 2.1. 
 
The contract research was initially performed with the InRoute system.  However, in 1999 the 
Principal Investigator switched universities, and this change revealed problems in the InRoute 
software license.  A new information filtering system was implemented using off-contract funds.  
The new system, called YFilter, was based on a similar model and had equivalent capabilities but 

                                                 
2 If a document was not disseminated, no feedback was given 
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no such licensing restrictions.  YFilter was used through the remainder of the contract.  YFilter 
runs under Unix (Sun Solaris) and Windows NT operating systems.  Most of the research 
described in this report was done on an ordinary single-processor personal computer running 
Windows NT. 
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Figure 2.1.  The InRoute information filtering system software architecture. 
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3. Learning Information Needs & Preferences 
 
Most people find it difficult to create accurate queries for ad-hoc search.  A typical pattern is for 
a person to tune a query to improve Precision, because “false hits” (non-relevant documents that 
were delivered) are easily observed.  Often a consequence is that the query becomes increasingly 
narrow, so that many relevant documents are not delivered.  Recall deteriorates, but the user does 
not know it, because the user does not see undelivered documents.  Studies show that people tend 
to overestimate the effectiveness of their queries, especially Boolean queries, because they can 
observe Precision increasing but cannot observe Recall decreasing.   
 
Anecdotal evidence suggests that intelligence analysts spend considerable time developing 
Boolean queries for information filtering.  However, once a query is created and tuned, it is not 
necessarily adjusted or updated often after it is put into use.  This pattern is not surprising – 
analysts are busy people with many responsibilities – but it means that the query is not 
responsive to changing language patterns. 
 
Research on text classification and on document routing has shown that when a learning 
algorithm has sufficient training data, it can usually produce probabilistic classifiers and routing 
queries that are much more accurate than the best classifiers or queries created manually.  The 
learning algorithms can identify useful patterns that an analyst might overlook, and it can be run 
automatically so that decisions about which patterns are predictive get updated on a regular 
basis. 
 
A contract goal was to develop algorithms that could learn highly accurate queries, dissemination 
thresholds, and user preferences from a moderate amount of interaction with the user.  This 
collection of information is called a profile, because it consists of more information than a 
typical ad-hoc query, and to emphasize that it represents a long-term information need.  
Improved information need representations improve the accuracy of the filtering system in 
identifying documents that a person would consider relevant to the task at hand. 
 
The research on developing more accurate filtering profiles was broadly organized around three 
approaches.  One approach was to identify efficient incremental profile-learning algorithms that 
provide the effectiveness of the “batch-oriented” query-creation algorithms used in TREC 
Routing experiments.  A second approach was to improve the effectiveness of filtering queries 
by introducing more structure, for example more use of phrase, proximity, and Boolean 
operators.  A third approach was to learn information about user preferences, for example 
dissemination thresholds that enable different users to receive different numbers of documents, 
depending upon their precision and recall needs.  Each approach is discussed in more detail 
below. 
 
3.1 Incremental Profile Learning 
 
An incremental algorithm for learning filtering profiles has two tasks: 
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• Term selection:  Select a set of terms to include in the profile; and 
• Term weighting:  Set (or adjust) the query term weights for each term in the profile. 

These tasks are sometimes accomplished with the same algorithm, for example weighting all of 
the candidate terms and then selecting the best N terms. 
 
An incremental profile learning algorithm can be invoked each time a positive or negative 
training document becomes available, or it can be invoked periodically, for example after each N 
new documents arrive.  The research conducted under this contract was based on invoking the 
algorithm immediately as soon as each training document became available.  This choice 
increases the responsiveness of the system, but it is only practical for very efficient algorithms, 
hence the research was confined to algorithms that could be implemented very efficiently. 
 
Four learning algorithms were studied during the contract: 

• Rocchio, 
• Rocchio with modified idf, 
• Mutual Information, and 
• Language Models. 

Each algorithm is described in more detail below. 
 
 
3.1.1 Rocchio 
 
The Rocchio algorithm is a version of the well-known Perceptron learning algorithm (Rocchio, 
1971).  It uses training data to determine weights for each feature in a feature vector (i.e., each 
term in a query).  The basic Rocchio algorithm addresses the term-weighting task of profile 
learning.  The basic Rocchio algorithm does not address the term selection task, however a 
common choice is to use the Rocchio weights for ranking candidate terms (e.g., the terms in the 
initial query, the relevant documents, and the non-relevant documents), and then to select the N 
terms that have the highest weights.  In the research reported here, term selection was based on 
Rocchio weights, and query length (i.e., the number of terms selected) was based on the amount 
of training data available. 
 
The Rocchio algorithm for computing term weights is usually described as a batch-oriented 
algorithm in which an initial query is adjusted using a set of labeled training examples, for 
example, documents marked relevant and not relevant.  For an initial query Q, a set R of 
documents marked relevant and a set NR of documents marked non-relevant, the Rocchio 
formula is often described as shown below: 

 
 
                                                             (3.1) 
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where d is a vector of tf.idf weights representing a document, and Q’ is the query with learned 
term weights.  Usually α + β + γ = 1; the exact mixture is determined heuristically, often based 
on the amount of training data. 
 
The Rocchio algorithm was first described in the mid 1960’s, but fell out of favor because it was 
erratic when little training data was available, as was common in most ad-hoc relevance 
feedback environments.  It came back into favor in the early 1990’s for use in document routing 
applications, where large amounts of training data are available (Buckely, et. al, 1994), and in 
information filtering applications, where eventually the amount of training data becomes large.  
Rocchio remains a competitive algorithm today.  There is a simple incremental implementation 
of Rocchio that can be applied on a per-document basis, that can be computed very efficiently, 
and that is guaranteed to produce exactly the same results as the batch-oriented version of the 
algorithm [Allan, 1996; Callan, 1998].    
 
The incremental version of Rocchio was used as the baseline condition in the research reported 
here.   
 
 
3.1.2 Rocchio and Modified IDF 
 
One of the oldest observations in information retrieval is that the most “useful” terms are those 
that appear with medium frequency (Luhn, 1958):  Common terms are not helpful for 
discriminating among documents, and very rare terms don’t occur often enough to be generally 
useful.  This hypothesis has been tested periodically, but has never yielded good results.  We 
revisited it in this contract. 
 
The inverse document frequency (idf) component of tf.idf term weights favors rare terms and 
penalizes common terms.  A new term weight called ydf was created that favored terms in the 
middle of the frequency range.  Ideally ydf is a convex function that reaches its maximum at the 
point of maximum utility in the range of term frequencies.  The ydf weight was defined as shown 
below: 
 

                                                                                                       (3.2) 
 

 
                                  (3.3)  

 
 
where Nd is the number of documents delivered before document d, dft,d is the number of 
documents containing term t, and κ is a constant controlling the point of maximal utility.  Figure 
3.1 shows the standard idf metric, and the effect of setting κ to 0.75 and 1.0. 
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The new ydf weight is an alternative to the traditional idf weight.  In the work reported here, it 
was combined with a standard Okapi-style BM25 weight to produce the final term weight. 
 

(3.4) 
 
 

(3.5) 
 
The standard incremental Rocchio algorithm was tested with the modified idf weight in the 
adaptive filtering thread of the TREC-9 Filtering track (Robertson and Hull, 2001; Zhang and 
Callan, 2001c).  The evaluation was performed using two different sets of profiles (OHSU and 
MeSH) and two different evaluation metrics (T9P, T9U).   
 
The 63 OHSUMed profiles were similar in size and complexity to profiles used in prior TREC 
Filtering tracks.  The 5,000 MesH profiles were based on MeSH (Medical Subject Headings) 
controlled vocabulary terms.  The set of 5,000 MeSH profiles was two orders of magnitude 
larger than the number of profiles ordinarily studied by researchers; it was a real test of a 
system’s ability to scale up to problems of realistic size.  Only four research groups were able to 
submit results for the complete set of MeSH profiles in the TREC-9 evaluation; the remaining 
groups, some with computationally intensive algorithms, were given the option of working with 
a 10% sample.  The set of 5,000 profiles was not a problem for the combination of the YFilter 
system and the incremental Rocchio profile-learning algorithm. 
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Figure 3.1.  Using ydf to favor words with middle range term frequencies:  The relationship between 

document frequency, idf, and two forms of ydf. 
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The document set consisted of Medline documents published over a period of about 4 years and 
9 months.  The first 9 months of documents was available to a system as training data.  Systems 
were tested on their ability to find relevant documents in the following 4 years of documents. 
 
The T9P metric required a system to deliver at least an average of one document per month for 
each profile, whether or not there were actually any relevant documents during that period.  This 
is a model of an environment in which analysts check periodically that profiles are performing as 
expected.  It also has the added benefit that profiles acquire new training data periodically.  The 
T9U metric awarded 2 points for delivering a relevant document and deducted 1 point for 
delivering a non-relevant document; a system could get a score of zero by simply not delivering 
any documents for any profiles. 
 
The experimental results for the OHSU profiles are summarized in Table 3.1.  The results for the 
YFilter system are displayed in bold, for easier identification.  YFilter did very well when its 
performance was optimized for the T9P metric.  Its performance was a little less competitive 
when optimized for the T9U metric, but the performance still compared well with all but one 
filtering system.  One reason for the differing performance was that the T9U metric did not 
require a minimum delivery ratio.  The Rocchio algorithm is more effective when it has more 
training data.  The T9P metric forced the system to disseminate documents periodically, which 
had the effect of “buying” training data even when the system did not want to.  In the long run, 
this strategy was more effective.   

 

Average Utility / Precision 
T9P Metric T9P Metric (.M field) T9U Metric 
System Score System Score System Score 
Ok9f1po 0.294 CMUDIR16 0.279 KUNa2T9U 17.3 
Ok9f2po 0.288 CMUCAT  0.224 KUNa1T9U 16.8 
CMUDIR14 0.267 IOWAF003 0.138 ok9f3uo  10.7 
FDUT9AF3 0.265   ok9f1uo  9.7 
FDUT9AF1 0.264   FDUT9AF2 9.6 
KUNa1T9P 0.258   CMUDIR15 9.3 
FDUT9AF3 0.249   reliefs1 1.1 
KUNa2T9P 0.231   IOWAF001 –5.9 
CMUCAT3 0.213   kddaf903 –35.3 
reliefs2 0.168   kddaf905 –35.5 
antadapt002 0.102   kddaf906 –35.9 
antadapt001 0.088   kddaf904 –36.4 
    pircT9U1 –55.7 
    pircT9U2 –69.1 

 
Table 3.1:  TREC-9 Adaptive Filtering Track results for the set of 63 OHSU profiles.  The CMUDIR entries 

are YFilter using the incremental Rocchio algorithm. 
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The results for the MeSH profiles are summarized in Table 3.2.  There were actually two sets of 
MeSH profiles.  The original, complete set contained nearly 5,000 profiles, each corresponding 
to a MeSH controlled vocabulary code.  During the evaluation it became clear that some systems 
would be unable to handle the entire set of 5,000 profiles, so a subset of 500 profiles was created 
(the “sample” set).  As with the OHSU profiles, YFilter did well when optimized for the T9P 
metric, and less well when its performance optimized for the T9U metric.  These results must be 
viewed with caution, however, because so few systems participated in evaluations with the 
MeSH data. 
 
Filtering systems were not evaluated specifically on efficiency, and indeed few systems reported 
their running times, except anecdotally.  The running time for YFilter, including the time 
required to learn profiles adaptively and filter documents to them, was about 5 minutes for the 
OHSU profile set and about 6 hours with the complete set of MeSH profiles.  Experiments were 
conducted on a mid-range Pentium III computer running Windows NT. 
 
Subsequent analysis indicated that, although the overall quality of the results was good, the ydf 
term weight variation had very little effect (positive or negative).  A standard idf weight yielded 
very similar results in our post-TREC experiments.  As a result, subsequent experiments used the 
standard idf term weight. 
 
 
3.1.3 Mutual Information 
 
An alternative to discriminative learning (e.g., Rocchio) is to compare the probability of seeing a 
word in a relevant document with the probability of observing it in a random document.  Terms 
that are highly correlated with relevant documents are candidate query terms; other terms are not.  
Like Rocchio, this approach uses training data to determine the strength of correlation between 
relevance and each feature in a feature vector.   
 

MeSH Profiles, Full MeSH Profiles, Sample 
T9P Metric T9P Metric T9U Metric 

System Score System Score System Score 
ok9f2pm 0.419 CMUDIR12 0.363 ok9f1us 46.5 
CMUDIR11 0.359 FDUT9AF6 0.356 ok9f3us 40.1 
FDT9AF5 0.351   FDUT9AF7  29.3 
CMUCAT2 0.303   CMUDIR13 26.7 
    IOWAF002 12.9 
 

Table 3.2:  TREC-9 Adaptive Filtering Track results for the MeSH profile set.  The CMUDIR 
entries are YFilter using the incremental Rocchio algorithm. 



 

 

 

13

The correlation between a term and relevance can be measured with the pointwise Mutual 
Information metric.    Pointwise Mutual Information (Manning & Schutze, 1999) is defined as 
shown below: 
 

)()(
),(log),(
ypxp

yxpyxI =                                                                                                   (3.6) 

 
where x represents a candidate term, and y indicates whether the document is relevant.  A mutual 
information value of 0 means that the presence of the term is completely independent of whether 
the document is relevant.  Higher values mean that the presence of a term is highly correlated 
with the document being relevant. 
 
The pointwise Mutual Information measure can be used in two ways: 
 

1. To rank candidate terms for term selection, with another method (e.g., Rocchio) used to 
calculate the weights of the selected terms, or 

2. To rank candidate terms for term selection and to calculate term weights for selected 
terms. 

 
Both approaches were explored. 
 
The Mutual Information (MI) algorithm was compared to the Rocchio algorithm in experiments 
with TREC data (e.g., 89,000 1989 AP Newswire documents, TREC Topics 51-100).  The 
profiles produced by the incremental Rocchio algorithm were always at least as accurate as 
profiles created by the incremental MI algorithm.  This result is consistent with what others have 
reported in ad-hoc retrieval environments, so this line of research was not pursued further. 
 
 
3.1.4 Language Models 
 
Probabilistic language models are used widely in speech recognition and have shown promise for 
ad-hoc information retrieval (Ponte and Croft, 1998; Lafferty and Zhai, 2001). The strong 
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Figure 3.2.   A mixture model to generate on topic documents. 
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theoretical foundation of language models enables us to build a variety of new capabilities.  
Current research on using language models for information retrieval tasks is focused on 
developing techniques similar to those used in speech recognition.  However the differing 
requirements of speech recognition and information retrieval suggest that major adaptation of 
traditional approaches to language modeling is necessary to develop algorithms that will be 
accurate in the real world.  
  
The problem of learning profiles for adaptive filtering can be addressed with a mixture of 
generative language models, which is arguably a more accurate model of the information 
filtering task. As shown in Figure 3.2, each relevant document can be assumed to be generated 
by a combination of two language models: A general English model ME, and a user-specific 
topic model MT.  For example, if the user is interested in “Star Wars”, in a relevant document we 
expect words such as “is” and “the” will come from the general English model, and words such 
as “star” and “wars” will come from the topic model. 
 
When doing user profile updating for query expansion and adjusting term weights, the filtering 
system should focus on learning MT to find words that are very informative for deciding whether 
the document is on topic or not. Given a fixed value of α (usually a very high value, such as 

(1) Calculate the General English language model: 
For each word wi  
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(2) Calculate the Topic language model using the EM algorithm to maximize the likelihood of 
all relevant documents 

a. Initialize Topic language model to a uniform model 
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Figure 3.3.   Training Algorithm for Language Model. 
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0.95), we can train ME to maximize the likelihood of all documents processed (relevant and non-
relevant), and train MT using the EM algorithm to maximize the likelihood of all the relevant 
documents processed. A sketch of the training algorithm is given in Figure 3.3. 
 
This new mixture model will pick words where P(w| relevant) / P(w | general English) is very 
high. Because the task of profile updating is to provide a profile that can separate relevant 
documents from non-relevant documents, such words ought to be more discriminative, and thus 
good candidates for being added to user profiles. Similar techniques were developed for ad-hoc 
retrieval independently (Zhai and Lafferty, 2001). 
 
This language modeling approach was evaluated in the TREC-10 Adaptive Filtering task.  The 
document stream consisted of about 800,000 documents from a 1996-1997 Reuters newswire 
corpus.  The usual types of information need profiles were not available for this corpus, so 
profiles were simulated with 84 Reuters categories.  Robertson and Soberoff (2002) provide 
more details about the evaluation environment and metrics. 
 
Four runs were submitted to the adaptive filtering task using Rocchio or the language modeling 
approach (“LM”) for profile updating, and a Maximum Likelihood Estimation method for setting 
dissemination thresholds (Section 3.3.5). The results are reported below.  
 

 Run 1 Run2 Run3 Run4 
Profile learning method Rocchio Rocchio LM LM 
Optimization metric T10SU T10F T10SU T10F 
T10SU score 0.144 0.143 0.081 0.080 
T10F score 0.273 0.275 0.158 0.163 
Number of profiles with 
scores above mean score 55 41 32 21 

 
 

The Rocchio method was more effective than the language modelling approach in these 
experiments, which was a surprise. Our hypothesis was that the language model would be more 
effective because of its stronger theoretical foundation.   
 
Analysis of the results indicated several problems. One problem was that these experiments 
combined a language-modeling approach to learning profiles with the standard Okapi BM25 
algorithm for determining how well each document matched a profile.  In retrospect it is clear 
this was a mistake.  The language-modeling approach is not biased against common words, so it 
will add words to a profile that the idf weight in the Okapi BM25 algorithm will subsequently 
discount.  The Okapi BM25 algorithm is a much better match for the Rocchio algorithm.   
 
A second problem is apparent from studying how Precision, Recall, and Utility metrics varied 
during filtering.  Precision and Recall tended to improve during filtering, but Utility decreased. 
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This means that the profiles (terms and term weights) were improving during filtering, as more 
training data was seen, but the threshold was set too high and got worse over time.  The 
threshold-updating algorithm was based on strong assumptions about the distribution of 
document scores for relevant and non-relevant documents.  These assumptions (discussed in 
Section 3.3.5) have held with other datasets (Zhang and Callan, 2001), but not with this one.  
One possibility is that the Reuters categories were not a good method of simulating filtering 
profiles.  This possibility is supported by the generally poor performance of a wide range of 
filtering systems on this dataset (Robertson and Soberoff, 2002). 
 
We conclude that the language-modeling approach has promise, but that it should only be used 
with a language-modeling algorithm for determining how well documents match each profile.  
Unfortunately, most of the current language-modeling algorithms for determining how well 
queries match documents tend to be computationally expensive, thus not appropriate for an 
adaptive filtering environment.  The combination of the Rocchio algorithm for learning profiles 
and the Okapi BM25 algorithm for determining how well documents match profiles is probably 
the best combination of effectiveness and efficiency. 
 
 
3.1.5 Assessment 
 
The learning algorithms were studied at different times during the contract, and under different 
conditions.  There was no direct comparison of all four approaches on a common dataset.  
However, one of the algorithms, Rocchio, was used as a baseline condition in experiments with 
the other three algorithms.  The use of a common baseline throughout the contract allows several 
conclusions to be drawn. 
 
The Rocchio algorithm was consistently the most effective profile-learning algorithm tested.  
This result was surprising, but it is consistent with research done by other laboratories during this 
same time period.  Rocchio is effective and computationally efficient. 
 
The language-modeling algorithm appeared to be a good fit for the filtering task, but if it is to be 
effective, it must be paired with a comparable algorithm for determining how well a document 
matches a profile.  The profiles learned by the language-modeling approach were clearly 
incompatible with the Okapi-style BM25 term weights.  Research on a language-modeling 
approach to filtering fell outside the contract, and was likely to produce a slower system, so it 
was not pursued.  However, the underlying idea, i.e. that a document can be modeled by a 
mixture of language models, is powerful.  This idea recurs in our work on novelty detection 
(Section 4). 
 
 
3.2 Structured Queries 
 
Most relevance feedback algorithms used in IR learn a linear discriminator.  These algorithms 
essentially adjust weights on a set of features in a linear classifier.  The features in an 
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information filtering task tend to be query terms, resulting in very simple, if often powerful, 
statistical classifiers.  This is sometimes called the “bag of words” or “unstructured” model of 
information needs.  However, these learning algorithms are also compatible with learning more 
structured queries, should that be required, because queries tend only to involve weights at the 
top-level of the query.  A complex structured query looks to the learning algorithm like a linear 
classifier with complex features. 
 
There is evidence that more powerful features would result in more accurate queries.  Profiles 
created by expert users, such as librarians and intelligence analysts, tend to be highly structured.  
That is, they contain a wide range of query operators, they contain multiple ways of expressing 
the same concept, they employ grouping operators such as OR and SYNONYM to indicate variant 
expressions of a concept, and they use AND and proximity operators to indicate constraints 
among the concepts in a query.  Although there has been substantial research on learning queries 
automatically, based upon user feedback about which documents were and were not relevant 
(“relevance feedback”), there has been much less work on learning highly structured queries 
similar to what people create. 
 
The contract research explored three approaches to introducing more structure into the profiles of 
an adaptive filtering system: use of phrases, use of named-entities, and use of hierarchically 
organized profiles.  All three have delivered significant improvements in accuracy in Routing or 
batch filtering environments.  The goal of the research was to develop equivalent methods that 
would work incrementally, as relevant documents are encountered in the filtering stream. 
 
 
3.2.1 Phrases 
 
Substantial research indicates that phrases and proximity operations are strongly correlated with 
filtering effectiveness.  For example, the phrase “white house” is far more specific than either the 
Boolean query ‘white AND house’ or the free text query ‘white, house’.  Very effective 
techniques have been developed for identifying important phrases and collocations in relevant 
documents, but they are all computationally complex.  They are appropriate for batch-oriented 
environments, but not for interactive filtering environments where a person wants the system to 
change its filtering behavior quickly based upon new information.   
 
An incremental approach to incorporating phrases into profiles was developed as part of the 
contract research.  Whenever a document was identified as relevant, all two-word sequences 
(“bi-grams”) that didn’t contain stopwords were considered to be candidate phrases.  For 
example, for the text fragment “…hit a home run yesterday…” the phrases “home run” and “run 
yesterday” would be generated.  The bi-grams “hit a” and “a home” would not be generated 
because “a” is a stopword.  Scores were assigned to phrases using the usual profile-learning 
algorithm (in this case, Rocchio). 
 
Tests with TREC Filtering track corpora showed no improvement with the addition of phrases.  
This result was a surprise, because prior research in the closely-related TREC Routing track 
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showed that phrases could yield significant improvements in accuracy (Allan, et al., 1996).  Post-
mortem analysis suggested that the problem was the incremental nature of the adaptive filtering 
task.  The successful use of phrases during the TREC Routing task was due in part on the ability 
to select phrases from a relatively large set of relevant documents.  During adaptive filtering no 
such set is available.  Instead, phrases are created from a very small set of relevant documents, 
and then additional relevant documents are acquired over time.  The total number of relevant 
documents available for training the profile (and for learning phrases) never approaches the 
amount of data available during TREC Routing tasks.  The statistical (bi-gram) approach to 
generating phrases is simply too “noisy” for the small amount of training data available. 
 
 
3.2.2 Named Entities 
 
Another approach to adding structure to profiles is to enable the use of named-entity features.  
Named-entities are a more abstract class of features that represent classes of concepts such as 
PERSON, ORGANIZATION, COMPANY, LOCATION, DATE, and MONEY (monetary 
amount).  Named-entity features can be recognized by a named-entity recognizer, such as BBN’s 
IdentiFinder (Bikel, et al., 1997; Bikel, et al., 1999), during document parsing.  Query operators 
can be added to the user profiles to enable matching of named-entitities in documents.  The 
combination of named-entity indexing and named-entity query operators enables profiles such as 
“hijack NEAR/20 *PERSON”, which matches any occurrence of a person name that occurs 
within 20 words of the word “hijack”. 
 
The utility of named entity tagging for adaptive information filtering was investigated under the 
contract.  YFilter was modified to recognize named-entity (ENAMEX) tags in document text, 
and to include new query language operators (*PERSON, *LOCATION, etc) that can match 
them.  These adjustments enable the use of named-entity tags in filtering profiles that are created 
manually or automatically, for example, “Oklahoma City bombing *PERSON” to find 
documents that mention people names in conjunction with the Oklahoma City bombing.  BBN 
provided a copy of its IdentiFinder software for detecting named entities in documents (Biken, et 
a., 1997; Bikel, et al., 1999).   
 
A series of experiments was conducted with TREC Filtering Track data.  Profiles were created 
initially without named-entity features, based upon TREC topics created by NIST, but the 
automatic profile-learning software was allowed to add such features if it appeared that they 
were correlated with relevance for a particular profile. 
 
In tests with a set of 50 profiles, the profile learning software added named-entity operators to 
only 10 (out of 50) profiles.  Presumably named-entities were not correlated highly with 
relevance in the other profiles.  In the 10 profiles for which they were added, named-entity 
features caused essentially no change in performance metrics for 9 of the 10 profiles, as 
measured by a wide range of metrics (e.g., Precision, Recall, F1, T9P, T9U).  One profile had a 
relatively larger improvement, in part because three named-entity operators (*DATE, 
*PERCENT, *LOCATION) were added to it. 
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This result was initially disappointing, but upon further investigation it is not surprising.  Many 
documents contain at least one named-entity of a particular type, for example, a person, so 
named-entity features tend to have low inverse document frequency (idf) weights.  They are easy 
to match, and their effect on a document score is low. 
 
The University of Massachusetts, which investigated the use of named-entity operators during its 
Tipster research in the early and mid 1990s, found that named-entity operators were most 
effective when used as arguments to proximity operators.  For example, “*PERSON” might not 
be helpful, but “*PERSON NEAR/20 bombing” (i.e., find a person name within 20 words of the 
word “bombing”) were effective. 
 
Although creating such proximity operators automatically can greatly improve accuracy, doing 
so is very computationally expensive, because a very large number of term co-occurrences must 
be considered during profile learning.  Usually every pair of terms that are fewer than N words 
apart would be considered by the profile-learning algorithm, for example, every pair of terms 
that occurs within 20 words of each other.  Hundreds of term pairs, and hence hundreds of co-
occurrence features, can be generated in an average-length document. 
 
The prior experience learning phrases for use in profiles suggested that TREC-style adaptive 
filtering environments would not contain sufficient training data to enable the profile-learning 
program to identify useful co-occurrence relationships.   
 
 
3.2.3 Hierarchical Profiles 
 
In some situations information needs are organized hierarchically.  For example, one profile 
might cover “European politics” and another one might cover “French politics”.  Any document 
that matches “French politics” could also serve as training data for “European politics”.  
Hierarchical profiles are a frequent request in commercial environments. 
 
In 2001 the TREC Filtering Track profiles were defined by Reuters newswire category codes, 
which are organized hierarchically.  This data provided an opportunity to investigate whether the 
filtering system would be more accurate if it explicitly considered the hierarchical organization 
of the filtering profiles.  For example, if a document did not match the “European region” 
profile, then it should not be considered for the “French exports” profile.  Likewise, training data 
for the “French exports” profile could also be used to train the “European region” profile, 
increasing the amount of training data for, and the accuracy of, profiles that represent relatively 
broad, high-level topics.  The research hypothesis was that this feature would improve accuracy 
in the TREC Filtering task. 
 
YFilter was modified to support hierarchically organized profiles.  Both the basic filtering 
system and the profile-learning system were modified.  When filtering hierarchically the filtering 
engine won’t consider a document for a child profile if the parent profile doesn’t match.  The 
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profile-learning system can use training data for child profiles to also train parent profiles, 
thereby leveraging training data to improve accuracy. 
 
The hierarchical approach to filtering was tested in the TREC 2001 Filtering Track.  The filtering 
profiles corresponded to Reuters categories, which are organized hierarchically.  We assumed 
that if a document belonged to a child category, it should also belong to the parent category.  We 
used the following rules to take advantage of the hierarchical relationship between profiles when 
making the decision whether to deliver a document.  If Ci is a child category of Cj, then: 
 

• When a document dt comes, first consider whether it should be delivered to Cj, and if so, 
then consider whether it should be delivered to Ci. 

 
• If the document dt was delivered to Cj and the system received negative feedback, do not 

deliver dt to Ci 
 

• If dt was not delivered to Cj previously, but was delivered to Ci and the system received a 
positive feedback, deliver dt to Cj 

 
This procedure provides more training data for some profiles. For example, profiles 17, 34, and 
45 started with 8 instead of 2 relevant training documents, which improved early stage accuracy. 
 
One problem with this hierarchical approach is that the Reuters category assignments (i.e., the 
training data) are not consistent.  Some documents are judged as relevant to a child category but 
non-relevant to the parent category.  For example, documents 135,639, 24,269, and 26,015 
belong to R18 (DOMESTIC MARKETS) but do not belong to R17 
(MARKETS/MARKETING).  It is well-known that human category assignments are not 
perfectly consistent, and any algorithm that uses them must compensate for noise in the training 
data. Using hierarchical structure of the categories helps to solve this problem to some extent 
during training, but similar mistakes in testing data will penalize the filtering system. 
 
Analysis of the TREC 2001 results suggest that hierarchical learning and filtering capabilities 
improved TREC Filtering track results for a few profiles.  For example, the system had 8 
documents for learning the Marketing profile, instead of just 2, because it was able to incorporate 
documents from profiles beneath Marketing in the classification hierarchy.  However the number 
of profiles that was affected was small, and so the overall effect on the filtering system was not 
particularly noticeable.  Participants in the track generally agreed that the Reuters categories 
were a poor substitute for real information needs, and so it is difficult to draw firm conclusions 
from this test about the effectiveness of hierarchically organized profiles in adaptive filtering. 
 
 
3.2.4 Assessment 
 
Three techniques were explored to improve the expressive power of profiles learned 
incrementally during adaptive filtering:  use of phrases, use of named-entities, and use of 
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hierarchically organized profiles.  All three were expected to work well, and have delivered 
significant improvements in accuracy in Routing or batch filtering environments.  However, 
none of them were particularly effective in the adaptive filtering experiments conducted under 
this contract. 
 
One problem with the research conducted under the contract was that it was restricted primarily 
to TREC Filtering data and the TREC filtering methodology, which may not be represent the 
conditions in government environments.  In particular, the TREC Filtering tracks have recently 
focused on use of very small amounts of training data and a relatively sparse stream of relevant 
documents, i.e., the needle in the haystack type of problem.  The lack of sufficient training data 
is clearly an obstacle to assessing the effectiveness of complex features, such as phrases and co-
occurrence relationships.  Complex features are more precise than single terms, but they are also 
much more rare, so there are fewer opportunities to learn appropriate term weights. 
 
Likewise, the Reuters 2001 corpus is probably not a good model for the use of hierarchical 
filtering profiles in government environments.  The use of hierarchical profiles clearly improved 
the amount of training data (the number of relevant and non-relevant documents) for some 
Reuters categories.  However, the Reuters 2001 categories are not a good model of information 
needs in an adaptive filtering environment, so it isn’t possible to draw firm conclusions about the 
effectiveness of hierarchical profiles. 
 
The clearest conclusion from these tests is that these methods should be tested in government 
environments to assess their effectiveness with “real world” data. 
  
 
3.3 Dissemination Thresholds 
 
Document filtering systems that rely on statistical or probabilistic models must decide how well 
a document must match a profile before it is shown to the user.  This is expressed as the problem 
of setting dissemination thresholds, i.e. the minimum score or criterion that a document must 
attain to be disseminated.  Until recently there was relatively little work on how to learn these 
from incremental relevance feedback at the same time that the profile (which determines a 
document’s score) is also being learned.   
 
Most statistical retrieval models are based on tf.idf formulas that favor query terms that i) are 
frequent in the document, and ii) are rare in the corpus.  One characteristic of tf.idf algorithms is 
that it is difficult to say in advance what a “good” document score would be for a particular 
query.  A “good” score depends on the length of the query, the particular query operators (if any) 
used in the query, and the relative frequency of the terms in the corpus.  The concept of 
“goodness” is also user-dependent.  Users don’t all want the same amount of information.  Some 
want to see everything (“high recall”), while others are more concerned about not having their 
time wasted (“high precision”).  An appropriate dissemination threshold depends upon the query 
structure, word frequency patterns in the corpus, and user preferences. 
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One way for people to express their dissemination preferences to the filtering system is as a 
desired threshold as a probability of relevance, for example “Show me every document that has 
more than a 50% chance of being relevant.”  This constraint could be indicated graphically as a 
knob or slider bar that a person adjusts to get a desired balance of Precision and Recall.  The 
system’s job is to translate this user requirement into a dissemination threshold appropriate for 
the current query and corpus. 
 
The contract research studied four types of algorithm for setting dissemination thresholds: 
 

• Up-and-Down:  Increase threshold when a non-relevant document is delivered, decrease 
it gradually otherwise; 

• Binning:  Bin documents based on their scores, learn probability-of-relevance for each 
bin, set threshold based on desired probability of relevance; 

• Regression:  Use logistic regression to learn a mapping from document scores to 
probability-of-relevance, set threshold based on desired probability of relevance; and 

• Score-modeling:  Model document scores as a mix of exponential and normal 
distributions, determine probability-of-relevance for each distribution, set threshold based 
on desired probability of relevance. 

 
In addition, research was done on the effect of using unjudged documents as training data.  Each 
of these research topics is described in detail in the following sections.   
 
 
3.3.1 Up-and-Down 
 
The Up-and-Down threshold algorithm is a very basic approach to setting dissemination 
thresholds.  It was developed primarily as a very simple baseline algorithm.  It assumes that a 
small amount of training data is available, and that a minimum delivery requirement is expected 
(e.g., the profile must deliver at least one document per month).  This algorithm was tested in 
TREC-9 (Zhang and Callan, 2000). 
 
Given the initial relevant documents, a profile is created using the Rocchio algorithm (Rocchio, 
1971).  The new profile is then used to score the other documents in the training set, without any 
feedback about whether the documents are actually relevant. The initial threshold is set to allow 
the top φ(M+δ) documents in the training dataset to be disseminated, where φ is the minimum 
delivery ratio the system must meet, M is the number of documents in the training set, and δ is an 
adjustment that lowers the initial threshold slightly so that the system will disseminate a little 
more aggressively in the beginning, thus obtaining more feedback for learning. δ was arbitrarily 
set to 2 in our experiments. 
 
During operational use, each negative feedback increases the threshold.  Otherwise, the threshold 
is always decreasing according to φ and the current profile's performance.  The magnitude of an 
increase to a threshold is limited by maxstep , which is empirically set to 0.005, so that a non-
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relevant document with an extremely high score will not push the threshold too high, thus 
controlling the effects of outliers.  Profile performance was measured with the TREC-8 F2 utility 
metric (Hull and Robertson, 1999).  If a profile's F2 utility is positive, it is regarded as a good 
profile, and, therefore its threshold is decreased comparatively faster (Figure 3.4).  The intuition 
is to disseminate more documents for good profiles, while keeping the delivery ratio for bad 
profiles just high enough to meet the minimum delivery requirement. 
 
The Up-and-Down algorithm worked reasonably well in the TREC-9 Filtering task evaluation 
(Zhang and Callan, 2001c; Robertson and Hull, 2001).  The main disadvantage of the algorithm 
is its use of so many constants, which must be set empirically.  For the TREC-9 evaluations the 
constants were set using training data from TREC-6 and TREC-8 Filtering track evaluations, 
which worked reasonably well.  However, in general this algorithm, although simple to 
understand and tune, is sufficiently ad-hoc that it would be difficult to trust in a very dynamic 
environment. 
 
 
 
3.3.2 Binning 
 
A research goal was to transform document scores into probabilities of relevance.  For example, 
instead of returning a document score of 0.463523, which might be an excellent score for one 

if (doci is delivered to profilek) and (feedback is available) 
    { 
    if (doci is not relevant) 
        threshold = 
            threshold – 
            (max (maxstep, score (doci , profilek) - threshold) / 
              sqrt (1 + number of feedback documents seen for profilek)); 
    }   
    else 
        if (current delivery ratio φ’ < minimum delivery ratio φ) 
            { 
            if  (performance(profilek) > 0) 
                decrease_step = (Threshold - 0.4)* φ  
            else 
                decrease_step = (Threshold - 0.4) * (φ – φ’); 
 
 threshold=max (threshold - decrease_step, 0.400); 
            }; 
 

Figure 3.4:  An outline of the Up-and-Down threshold updating algorithm. 
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profile and a poor score for another, one would prefer the system to indicate that there is a 65% 
probability that the document is relevant for a particular profile.  This goal could be 
accomplished by changing the underlying retrieval model to produce probabilities, which is 
difficult; or by learning a profile-specific function that maps document scores to probabilities of 
relevance (e.g., Figure 3.5).  The latter approach is the focus of this section and the following 
two sections. 
 
Perhaps the simplest approach to mapping scores to probabilities of relevance is a binning 
algorithm.  The range of potential document scores is divided into a series of bins.  For example, 
one bin may cover the range 0.4 – 0.41, the next bin may cover the range 0.41 – 0.42, and so on.  
The bin size can be based on a score range (e.g., documents with scores in the range 0.40 – 0.41) 
or as a number of documents (e.g., each bin contains between 5 and 10 documents).   
 
The binning algorithm assumes that there is an initial dissemination threshold.  Its value can be 
set arbitrarily; if it is too high, it will be reduced later; if it is too low, it will be increased later. 
 
During filtering, arriving documents are placed into the appropriate bin based on their scores.  If 
a document is disseminated, we assume that an analyst will read it (eventually) and indicate 
whether the document was relevant or not relevant.  The probability of relevance for each bin 
can be learned from this feedback. 
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Figure 3.5.  The relationship between document scores and probability of relevance for a single 
profile.  The curve indicates the underlying relationship, to be learned.  An x indicates an 
unjudged document.  A + indicates a document that a person judged relevant, and a – indicates a 
document that a person judged not relevant.  The dotted lines show how to locate a dissemination 
threshold that delivers documents with a probability of relevance greater than or equal to 60%. 
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Relevant)bin|relevant( =P  

 
The probability of relevance for documents in the i'th bin is the number of relevant documents it 
contains divided by the number of judged documents it contains.  Thus each bin has a probability 
of relevance. 
 
If bins are set initially to cover different score intervals, e.g., 0.41—0.42, then initially most bins 
will have unknown probabilities of relevance, because they do not yet contain training data.  An 
alternative is to start with a single bin that covers the entire score range, and then to divide a bin 
in half whenever it contains some number of documents, e.g., 10.  Hybrid algorithms are also 
possible. 
 
Figure 3.6 illustrates the binning algorithm.  In this simple example the probability of relevance 
increases monotonically with the document score; in practice, probability of relevance will 
fluctuate up and down due to how scores are grouped.  Such fluctuation can be handled 
heuristically, for example by choosing the lowest or highest bin that provides a desired 
probability of relevance, or by smoothing, for example using regression (covered in the next 
section). 
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Figure 3.6.  An illustration of a simple binning algorithm.  Each bin holds about 4 documents.  An 
x indicates an unjudged document, a + indicates a document judged relevant, and a – indicates a 
document judged non-relevant.  Probability of relevance is calculated for each bin.  For example, 
the probabilities of relevance are 0%, 0%, 33%, 50%, 67%, and 100% (from left to right; 
assumes unjudged documents are ignored).  The dotted lines indicate how to set a dissemination 
threshold based on a desired probability of relevance. 
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The binning method was tested in experiments on the TREC-7 Filtering track data (Hull, 1999).  
The corpus was about 240,000 1988-1990 AP newswire documents.  The profiles were TREC 
topics 1-50.  The measure of effectiveness used at that time in the TREC Filtering community 
was the number of queries that produced an “above median” F1 measure (F1 is a metric that 
combines precision and recall), as compared with the systems that participated in the TREC-7 
Filtering track.  This metric measures how well a technique compares to its peers, irrespective of 
whether a particular query is “easy” or “hard”.  Typically the best systems are consistently above 
median. 
 
The binning algorithm produced above median performance on 35-40 out of 50 queries.  These 
results are encouraging because the binning algorithm has considerably lower computational 
complexity than most of the other algorithms. 
 
A variant of the basic binning algorithm was tested in the TREC-8 Filtering task (Allan, et al., 
2000).  This variation disabled profiles that produced poor performance, and it used overlapping 
bins.  Other forms of profile learning, e.g., adjusting terms and term weights, were disabled.  The 
corpus was the 1992-1994 Financial Times.  TREC topics 351-400 served as filtering profiles.  
The results were average.  Overall, Recall was higher than for most of the other systems tested; 
Precision was a little lower.  About two thirds of the profiles produced above median results; the 
other third produced very weak performance, dragging down the overall score for the system.  
These results are strong support for the binning approach to learning dissemination thresholds 
because learning was enabled only for the thresholds.  Most of the other systems in the top group 
also dynamically adjusted the profile terms and term weights while filtering, which our system 
did not do. 
 
Binning algorithms are extremely simple to implement, computationally efficient, and relatively 
effective.  The only assumption about the transformation of document scores into probabilities of 
relevance is that it is a relatively monotonic relationship; otherwise it is a relatively non-
parametric method, which makes it very general.  The main weakness is that the lack of 
underlying assumptions about the form of the transformation (i.e., the shape of the curve) causes 
it to require more training data than some other methods.  For example a dozen relevant 
documents might be necessary before a good dissemination threshold could be found for a 
desired probability of relevance.  If a person later adjusts the desired probability of relevance, for 
example to make the profile deliver fewer documents, or more documents, the learning process 
must start again in a new document score neighborhood.  The previous learning may not transfer 
to the new neighborhood. 
 
 
3.3.3 Regression 
 
Binning algorithms have several undesirable characteristics:  They require a certain minimum 
amount of positive training data (relevant documents), they are somewhat difficult to use when 
the training data is noisy, and they are inefficient when users often change their delivery 
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preferences.  These disadvantages are caused by the “local” nature of binning algorithms.  
Binning algorithms confine their learning to a specific region, in this case, to a specific range of 
document scores. 
 
An alternative is to learn the entire function that maps document scores to probabilities of 
relevance.  Such a function would “smooth” the information learned by a binning algorithm, 
reducing the effects of noisy data, and coping more easily with users who change their delivery 
requirements often.  In this section we present a regression-based algorithm that attempts to do 
just that. 
 
The initial approach was based on sorting judged documents into bins, determining the 
probability of relevance within each bin, and then fitting a curve to a graph of probability of 
relevance vs. average score in the bin using logistic regression (Figure 3.5).  It was quite 
successful for some percentage of the profiles, but consistency was an issue. 
 
Probability of relevance is correlated with document scores for some profiles, but not others.  A 
study of TREC-8 Filtering profiles was conducted to determine the extent to which it is possible 
to set thresholds that deliver a desired level of precision.  For example, achieving 30% Precision 
is possible for nearly all profiles, given good thresholds.  Some profiles can achieve 60% 
Precision with a good threshold, but for other profiles there is no threshold that delivers such 
precision.  This problem affects all adaptive filtering systems.  For example, in the TREC-7 
Filtering track, the system from Claritech monitored its behavior and simply shut off profiles that 
could not achieve a given level of accuracy (Zhai, et al., 1999).  For these profiles, no 
dissemination threshold will deliver the desired level of accuracy.  Other modes of learning are 
required, to improve the profile terms, weights, and/or query structure. 
 
From a computational perspective, Logistic Regression is impractical to run frequently due to its 
complexity.  Our solution in operational environments was to update thresholds occasionally, 
after small batches (e.g., 1,000) documents were filtered.  This solution produced reasonably 
accurate results at an acceptable computational cost. 
 
The regression method was tested in experiments on the TREC-7 Filtering track data.  The 
corpus was about 240,000 1988-1990 AP newswire documents.  The profiles were TREC topics 
1-50.  The measure of effectiveness used at that time in the TREC Filtering community was the 
number of queries that produced an “above median” F1 measure (F1 is a metric that combines 
precision and recall), as compared with the systems that participated in the TREC-7 Filtering 
track.  This metric measures how well a technique compares to its peers, irrespective of whether 
a particular query is “easy” or “hard”.  Typically the best systems are consistently above median. 
 
When the thresholds were learned by logistic regression, InRoute produced above median 
performance on 30-35 out of 50 queries.  (The results vary within a range because measurements 
were taken after observing varying amounts of training data.)  Although these results indicate 
that the regression approach can be effective, they are not particularly strong.  The “binning” 
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algorithm delivered better results on the same dataset, and it has considerably lower 
computational complexity than logistic regression. 
 
 
3.3.4 Effect of “Near Miss” Documents 
 
Typically adaptive information filtering systems use only disseminated documents as training 
data.  Undisseminated documents may be used to learn corpus statistics such as average 
document length or inverse document frequencies (idf), but they usually are not used for profile-
specific learning.  However, unjudged document could be used for learning, for example by 
treating them as not relevant because they did not match the profile well enough to score above 
threshold.  The research described in this section studied the effects of varying the use of judged 
and unjudged documents when learning dissemination thresholds.  This research was conducted 
for the Binning and Logistic Regression threshold-learning algorithms only. 
 
It is often assumed that training on roughly equal proportions of relevant and nonrelevant 
documents delivers the most accurate results.  However, nonrelevant documents are more 
common than relevant documents, and unjudged documents (documents not disseminated for a 
particular profile) are more common still.  If more nonrelevant documents, or unjudged 
documents, could be used in learning, dissemination thresholds might be learned more quickly or 
with less user intervention. 
 
One research result was that it is not necessary to keep the numbers of judged relevant and 
nonrelevant documents balanced when learning thresholds.  This result was not surprising for the 
binning algorithm, because adding more judged nonrelevant documents just adds more bins with 
low probability of being relevant; these bins are effectively ignored by the threshold-learning 
algorithm.   
 
The more interesting result was that even for the logistic regression algorithm, adding more 
judged nonrelevant training data improved results.  Ordinarily logistic regression is most 
effective when training data is spread evenly across the entire curve.  Our hypothesis was that the 
judged nonrelevant scores tended to cluster in the vicinity where the threshold lies, hence 
providing a good fit in the region of interest, even if the mapping of scores to probabilities is 
distorted at the ends of the curve. 
 
The effects of unbalanced training sets on the quality of learned thresholds is illustrated by the 
table below.  The Precision of the average query consistently increased as additional judged non-
relevant documents were added to the training data.    
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Training Data 
Relevant : Nonrelevant 

Set3 
Precision 

Average4 
Precision 

1 : 1 0.1568 0.2519 
1 : 2 0.2385 0.3142 
1 : 4 0.3256 0.3998 
1 : 9 0.4460 0.5057 

 
 
Set precision and average precision both increased significantly when the amount of training data 
was increased only by adding additional judged non-relevant documents (and treating them as 
not relevant).  
 
A second research result was that adding large numbers of “near miss” documents to the training 
set improves overall consistency and results.  “Near miss” documents have scores just below the 
dissemination threshold, so they are not shown to the user.  If “near miss” documents are treated 
as nonrelevant training data, accuracy increases.  This result held for the Binning and Logistic 
Regression training algorithms.  The effect on Logistic Regression was larger, bringing the 
accuracy of its thresholds up to the level of the Binning algorithm.  This result is confined to 
training on documents with scores just below the dissemination threshold.  There is little value in 
training on unjudged documents that are far from the threshold.   
 
The table below summarizes the result of a representative experiment in which the goal was to 
learn profiles with an average precision of 40%.  The bottom line represents the baseline 
experiment, in which none of the unjudged documents was used for training.  The baseline 
Average Precision was 38.4% and, coincidentally, the Average Recall was similar, at 37.8%.  
The top line represents an experiment in which all of the unjudged documents were used for 
training, as was discussed above.  The Average Precision improved to 42.8% and Recall dropped 
to 30.1%. 
 

Threshold Setting Method:  Logistic Regression 
Precision target:   0.4 
Training set size:   60 judged (number of unjudged varies) 
Ratio of Relevant to 
Retrieved judged documents:  1:5  
Training corpora:   ap88, ap89 
Test corpora:    ap90 
 

 

                                                 
3 Set precision is a metric used at TREC.  It puts all of the documents disseminated by a set of profiles into a pool, 
and then measures the percentage of relevant documents in the pool.  Set precision can be skewed up or down 
dramatically based on the performance of a single good or bad profile. 
4 Average precision is determined by calculating the precision of each profile individually, and then averaging the 
precision values.  Average precision is less affected by one particularly good or bad profile. 
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% Unjudged 
Documents 

Used for 
Training 

 
 

Unjudged / 
Judged 

% Non-
relevant that 
are Unjudged

 
 

Set 
Precision

 
 

Set 
Recall

 
 

Average 
Precision 

 
 

Average 
Recall 

100.0% 65.4 98.5% 0.3699 0.2523 0.4275 0.3075 
50.0% 32.7 97.0% 0.3715 0.2431 0.4264 0.2995 
25.0% 16.3 94.2% 0.3835 0.2423 0.4685 0.3180 
20.0% 13.1 92.9% 0.3780 0.2343 0.4606 0.3097 
10.0% 6.5 86.7% 0.3789 0.2262 0.4658 0.3001 
5.0% 3.3 76.5% 0.3714 0.2048 0.4636 0.2798 
1.0% 0.6 39.2% 0.3721 0.1928 0.4657 0.2703 
0.5% 0.3 24.0% 0.3696 0.2048 0.4540 0.2810 
0.1% 0.1 5.08% 0.1397 0.2562 0.4166 0.3369 
0.0% 0.0 0.0% 0.1319 0.2852 0.3840 0.3783 

 
As the table is scanned from top to bottom, the percentage of unjudged documents that are used 
for training is reduced; only the highest scoring unjudged documents are used for training.  As 
lower-scoring unjudged documents are ignored (for training), Average Precision rises, to 46%, 
while Average Recall stays relatively constant.  When only 5% of the unjudged documents are 
used for training, Average Recall begins to fall, and when only 0.1% of the unjudged documents 
are used, Average Precision begins to fall. 
 
The target Average Precision in these experiments was 0.4, modeling a user who wanted to see 
every document that had at least a 40% chance of being relevant.  In this experiment, training on 
just a few of the best unjudged documents produced results close to what the user requested.  
Using the best “near miss” documents only increases the training costs by a small amount. 
 
One might conclude from the Average Precision metric that there is little value to training on 
unjudged documents, because training on none of them delivers Average Precision values very 
close to what the user requested.  However, metrics based on averages can mask problems in 
individual profiles.  The Set Precision and Recall metrics are more sensitive to small numbers of 
profiles that have skewed Precision/Recall values, and the Set Precision/Recall values are 
considerably lower.  Mixing a small number of unjudged documents into the training data 
produces a significant increase in the consistency of the Precision/Recall results from each 
profile, which is reflected in smaller differences between Set Precision/Recall and Average 
Precision/Recall. 
 
One likely reason for this result is the nature of the learning task.  The task is to learn a mapping 
of document scores, as determined by a particular profile, to probability of relevance.  This task 
can be accomplished with any documents.  The assumption that all unjudged documents are 
nonrelevant will be wrong occasionally, but rarely enough that the learning algorithms are not 
affected.  The benefit of additional training data far outweighs the effects of the occasional error 
that is introduced into the training data. 
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This approach was not extended to learning the profiles themselves, which means that the 
filtering system used different training data for learning profiles and thresholds.  Profile learning 
requires high-quality training data.  Lower-quality training data appears to be sufficient for 
learning thresholds. 
 
 
3.3.5 Score-Modeling 
 
Prior research showed that the distribution of document scores from a statistical retrieval model 
could be modeled as a mixture of two distinct distributions, one for relevant documents and 
another for non-relevant documents (Manmatha, et al., 2001; Arampatzis and van Hameren, 
2001).  The basic idea is simple:  Scores of relevant documents tend to fit a Gaussian (Normal) 
distribution, while scores of non-relevant documents tend to fit an Exponential distribution.  
Given a set of ranked retrieval results (e.g., from a search engine), it is possible to model the set 
of document scores as a mixture of scores drawn from the two distributions.  The result is a 
mapping of document scores to probabilities. 
 
This approach can be applied to information filtering, but the problem is somewhat different.  
Document scores are observed in an uncontrolled order, which makes the problem more 
challenging.  However, explicit relevance information for some documents is available from the 
user, which may make it possible to learn the underlying distributions from less data.  
Arampatzis adapted the basic approach to an information filtering environment and got good 
results (Arampatzis, et al., 2001).  However, this adaptation implicitly assumed that the training 
data accurately represents the distribution of relevant and non-relevant document scores.  This 
assumption is not true in an adaptive filtering environment, because relevance information is 
obtained only for documents that are actually disseminated.  This assumption produces 
thresholds that disseminate fewer documents than is optimal (i.e., Precision is maintained, but 
Recall is too low). 
 
A new algorithm was developed for setting dissemination thresholds that, like the Arampatzis 
score modeling method, assumes that relevant document scores are distributed normally and 
non-relevant document scores are distributed exponentially (Arampatzis, et al., 2001).  However, 
the new algorithm explicitly models the sampling bias, and uses the maximum likelihood 
principle to find unbiased estimates of the parameters.  It jointly estimates the parameters of the 
two density distributions and the ratio of the relevant documents in the corpus.  Experiments 
indicate that this new method produces dissemination thresholds that are significantly more 
accurate than the baseline score modeling method in some cases. 

We call this new method Maximum Likelihood Estimation (MLE) for modeling score 
distributions.  Section 3.3.5.2 describes our experimental methodology and our new algorithm 
for setting dissemination thresholds based on these score distribution. Section 3.3.5.3 reports 
experimental results. Finally, Section 3.3.5.4 summarizes the research on the use of Maximum 
Likelihood Estimation for modeling score distributions. 
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3.3.5.1 Modeling Score Distributions 

A Mathematical Model of Document Score Distributions 
Usually only a small proportion of documents is relevant.  Given an accurate model of the 
distribution of document scores for the top ranking documents (relevant and non-relevant), the 
dissemination threshold can be set accurately. 
 
Several researchers suggest modeling score distributions using a Gaussian distribution for the 
scores of relevant documents and an exponential distribution for the top ranking non-relevant 
documents (Arampatzis, et al., 2001; Manmatha, et al., 2001).  These distributions are modeled 
as: 
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where: 

u : mean of the Gaussian distribution 
σ : variance of Gaussian distribution; 
1/λ : variance of exponential distribution; and 
c : minimum score a non-relevant document can get. 
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Figure 3.7. Density of relevant (a) and non-relevant (b) document scores: Topic5. 
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Analysis of experimental results from the TREC9 Filtering Track data (OHSU topics, 
OHSUMED collection) support this approach.  Figures 3.7a and 3.8a illustrate how the normal 
distribution fits relevant document scores for two TREC9 topics. Figures 3.7b and 3.8b illustrate 
how the exponential distribution fits the top-100 non-relevant document scores for the same 
topics. 
 
This model is not perfect, especially for low scoring documents.  However, it can provide a 
relatively accurate estimate of the distribution of scores for higher-scoring documents, and we 
believe that in the information-filtering task the area of interest (i.e., the area in which thresholds 
are likely to be located) is among the higher-scoring documents. 
 
 

Problem with the Basic Parameter Estimation Method 
Given a set of scores, the basic parameter estimation method for normal and exponential 
distributions is a simple calculation of the mean and variance over training data  (Arampatzis, et 
al., 2001).  This approach to parameter estimation produces biased estimates, because in the 
information filtering task relevance information is available only for documents with scores 
above the dissemination threshold.  When training data is restricted to scores above the 
threshold, the mean of the sample scores is likely to be higher than the real mean. 
 
For example, for the profile in Figure 3.8a, the mean and variance of the Gaussian distribution 
(based on all of the relevant documents) are (0.4343, 0.0169). However, if training data is 
restricted to documents with scores above a fixed dissemination threshold ofθ  = 0.4435, the 
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Figure 3.8.  Density of relevant (a) and non-relevant (b) document scores: Topic3. 
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mean and variance calculated using the basic score modeling method are (0.4551, 0007) (Figure 
3.9). 
  

In order to get an unbiased estimate of the distribution parameters, we must take into 
consideration the sampling constraint, i.e., the dissemination threshold. In an adaptive 
information filtering, the threshold is changing over time, so the problem becomes more 
interesting. 
 

Maximum Likelihood Estimation of Score Distribution Parameters 
Maximum Likelihood Estimation, an unbiased parameter estimation method, can be used to 
solve this problem. At a certain point in the filtering process, the filtering system has already 
delivered N documents to a user and relevance judgments of delivered documents are provided 
by the user. We can treat these documents as training data. For the i th delivered document with 
user feedback, let's represent it with a triple ),,( iii ScoreR θ , where:  
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In order to describe the density distribution of the scores, 4 parameters are necessary:  (u, σ, λ, p). 
The meanings of u, σ, and λ were described above.  p is the expected ratio of relevant documents 
in the corpus according to the model.  p does not represent the ratio in the corpus as a whole, 
because the exponential model fits only the top non-relevant scores.  The model is focused on, 
and is most accurate modeling, the scores of the top-ranking documents, where thresholds are 
typically set.  Given the observed training data, which are represented by a set of triples 
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Figure 3.9.  Estimation of parameters for relevant document scores: Topic 3. 
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}  1),,,{( NtoiScoreRD iii == θ , according to Bayes theorem, the most probable value of H =  (u, σ, 
λ, p) is: 
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                                                                     (3.7) 

 
For simplicity, we first assume that there is no prior knowledge of the distribution of H and treat 
the prior probability of P(H) as uniform. (We will revisit and remove the assumption in Section 
3.3.5.2.)  Because P(D) is a constant independent of H, it can be dropped. Thus the most 
probable H is the one that maximizes the likelihood of the training data.   
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The second step of Equation 3.8 is due to the assumption that each document is independent; the 
third step is due to the fact that maximizing a function is equivalent to maximizing its logarithm; 
and the last step indicates the sampling constraints for training data. Notice that although the 
training data are not sampled randomly from the whole corpus, each individual training 
document is sampled randomly according to the conditional probability P(Score= Scorei, Ri| H, 
Score>θi). So parameters estimated based on Equation 3.8 are unbiased. 
 
For each item inside the sum operation of Equation 3.8, we have: 
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The first step in Equation 3.9 is based on the definition of conditional probability; the second 
step is due to the chain rule of probability; and the last step is due to the fact that all training 
documents must have a score higher than the threshold.  
 
For convenience, let f1(u,σ,θi) be the probability of a document getting a score above threshold θi 
if it is relevant and f2(λ, θi) be the probability of it getting a score above threshold if it is non-
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relevant.  The probability of getting a score above θi can be calculated by integrating the density 
function from θi to positive infinity. That is: 
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If we use ),,,,( ipug θλσ  to represent the probability of a document getting a score above threshold 

iθ , we get: 
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An intuitive explanation of Equation 3.12 is illustrated in Figure 3.10. If we assume the sum of 
areas under the exponential and Gaussian curves is 1, then ),,(1 iufp θσ⋅  corresponds to the area to 
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Figure 3.10.  Distribution of scores of documents for a profile. 
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the right  of iθ  and below the normal distribution curve. ),()1( 2 ifp θλ⋅−  corresponds to the area 
to the right  of iθ  and below the exponential distribution curve.   
 
From Equations 3.8-3.12, we get: 
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where for relevant documents: 
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and for non-relevant documents: 
 
        )),,,,(/)1ln(()( iii pugpcScoreLP θλσλλ −+−−=  
 
If the training data are random samples of the whole corpus (not true for filtering), θi =-∞ and 
thus ),,,,( ipug θλσ = 1.  If we replace ),,,,( ipug θλσ  in Equation 3.13 with 1, the optimal 
parameters will be the same as those proposed by (Arampatzis, et al., 2001).  In other words, the 
basic score modeling method is a maximum likelihood estimation of the parameters if the 
training data are a random sample of the dataset. However, ),,,,( ipug θλσ  is not equal to 1 
because the sample is biased during filtering. We must use Equation 3.13 to find the unbiased 
parameters. 
 

Parameter Optimization Using Conjugate Gradient Descent 
There is no closed form solution for Equation 3.13, so numerical methods must be used. One 
such method is conjugate gradient descent (abbreviated CG).  CG is an iterative minimization 
procedure for a function )(xf . A sketch of the CG algorithm is shown in Figure 3.11. At each 
step, x is the approximate solution, q is the search direction, and x is improved by searching for a 
better solution along direction q.  More detailed descriptions are available in (Press, et al., 1992; 
MacKay, 2001). 
 

 x = initial guess for the minimum 
 q = negative of gradient at x (search direction) 
 do { 

x = the minimal point along direction h 
q = a linear combination of new gradient and old q 

 } until convergence 
 

Figure 3.11.   Sketch of the CG algorithm. 
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The derivative of the right side of Equation 3.13 is used for calculating the search direction q. 
Taylor expansion is used to calculate the integration in Equation 3.10, and the Taylor expansion 
is guaranteed to converge. 
 
 

3.3.5.2 Experimental Methodology 
The baseline and unbiased ML methods of setting dissemination thresholds were evaluated in a 
series of experiments with TREC data.  The experimental methodology for the TREC Filtering 
Track changes from year to year.  In our experiments we used the TREC-9 experimental 
methodology (Robertson and Hull, 2001) in experiments with TREC-8 and TREC-9 Filtering 
data.   
 
The advantage of this approach is that experimental results obtained with different datasets can 
be compared, because they were obtained with the same experimental methodology.  However, a 
consequence is that our results with TREC-8 data are not directly comparable to results from 
systems participating in the TREC-8 Filtering Track.  The evaluation measures, datasets, and 
experimental methodology are described in more detail below. 
 

Evaluation Measure 
One commonly used evaluation measure for a filtering system is linear utility, which corresponds 
to assigning a positive value or negative cost to each element in the category (Robertson and 
Hull, 2001).   
 
 

 Relevant Non-relevant
Delivered AR /+  BN /+  
Not Delivered CR /−  DN /−  

 
-- ND RC NB  RAUtility ⋅+⋅+⋅+⋅= ++                                                                      (3.14) 

 
The variables R+, N+, R-, and N- are the number of documents in the corresponding category, and 
A, B, C and D are the benefit or cost associated with that category. 
Filtering according to a linear utility function (Equation 3.14) is equivalent to setting the 
threshold at *θ , where:   
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The solution was solved by Arampatzis, et al. (2001) by: 
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If we let (A, B, C D) = (2, 1, 0, 0), the utility becomes5: 
 

++ −⋅=′ NRUT 29                                                                                                       (3.16) 
 

which is a slightly simplified variant of the T9U utility metric used in the TREC-9 Filtering 
track.  This is the measure we used in our experiments. The corresponding delivery rule is:  
 

     deliver if 33.0)|( >= scorerRP                                                                                (3.17) 
 

Data  
Two different text corpora were used to test our algorithm: the OHSUMED dataset used in the 
TREC-9 Filtering track and the FT dataset used in the TREC-8 Filtering track. 
 
The OHSUMED data is a collection from the US National Library of Medicine's bibliographic 
database (Hersh, et al., 1994). It was previously used by the TREC9 Filtering Track (Robertson 
and Hull, 2001).  It consists of 348,566 articles from the subset of 270 journals covering the 
years 1987 to 1991. 63 OHSUMED queries and 500 MeSH headings were used to simulate user 
profiles. The relevance judgments for the OHSUMED queries were made by some medical 
librarians and physicians on the basis of output of interactive search (Hersh, et al., 1994).  For 
the MeSH headings, assignment of a heading to a document by the National Library of Medicine 
is treated as equivalent to a positive relevance judgment. 
 
In the TREC9 Filtering Track, it is assumed that the user profile descriptions arrive at the 
beginning of 1988, so the 54,709 articles from 1987 can be used to learn word occurrence (e.g., 

                                                 
5 The TREC-9 T9U measure is Max (2R+ - N+, MinU), where MinU=-100 for OHSU topics or –400 for Mesh 
topics.  T9U sets a lower bound on profile utility, limiting the impact of poor profiles on overall filtering results.  
We have no need for the lower bound in our experiments, because all of the profiles get scores above MinU, so we 
opted for the simpler definition of utility 
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idf) statistics and corpus statistics (e.g., average document length). For each user, the system 
begins with a natural language description of the information need and 2 examples of relevant 
documents. The average numbers of relevant articles in the testing data are 51 for the 
OHSUMED topics and 249 for the Mesh headings. 
 
The FT data is a collection of 210,158 articles from the 1991 to 1994 Financial Times. It was 
previously used by the TREC8 Filtering Track (Hull and Robertson, 1999).  TREC topics 351-
400 were used to simulate user profiles.  The relevance judgments were made by NIST on the 
basis of pooled output from several searches. 
 
For each profile, the system begins with two identified relevant documents and a natural 
language description of the information need, which is the title and description field of the 
corresponding TREC topic. The average number of relevant articles in the testing data is 36. 
 

Methodology 
The YFilter information filtering system (Zhang and Callan, 2001c) was used for our 
experiments.  It processes documents by first removing unusual symbols (such as punctuation 
and special characters), excluding the 418 highly frequent terms listed in the default INQUERY 
stop words list (Broglio, et al., 1995), and then stemming using the Porter (1980) stemmer. 
Processed documents are compared to each profile using the BM25 tf.idf formula (Robertson, et 
al., 1995) to measure the similarity of the document and user profile. 
 
For each topic, the filtering system created initial filtering profiles using terms from the TREC 
topic Title and Description fields, and set the initial threshold to allow the highest-scoring δ = 3 
documents in the training dataset to pass.  For simplicity, the filtering profile term weights are 
not updated while filtering. 
 
Because the first two relevant documents given to the system were not sampled under the 
constraint that their scores must exceed the dissemination threshold, their probabilities are 
simply )rR|d(P ii = , and the corresponding element of Equation 3.13 was changed to: 
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In Section 3.3.5.1, for simplicity we set the prior probability of )(ΗP  to be uniform. However, in 
the real filtering task, especially during the early stage of filtering where there are only a small 
number of samples, this may cause problems.  For example, if only non-relevant documents are 
delivered, the estimate of p will be 0 without a prior. Or, if all the relevant documents have the 
same score, the variance will be 0. Smoothing using a prior of parameters can solve these 
problems.   The prior needn't be very accurate, because as the amount of sample data increases, 
the influence of the prior decreases. In our experiments, we set the prior of p as a beta 
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distribution6: 21 )1( εε pp −⋅ , which is equal to adding 1ε  relevant documents and 2ε  non-relevant 

documents sampled randomly for smoothing. The prior of σ  is set to be ))22/(2exp( σν− , which is 
equal to adding 2ν  to the sum of the square of the variance of relevant documents 7.  We set 

005.0,001.0,001.0 21 === νεε  in our experiment, which is equivalent to adding 0.001 relevant 
documents and 0.001 non-relevant documents, and adding 0.005 to the sum of the square of the 
variance of Guassian distribution. 
 
For each query set, 4 runs were carried out. The first run (the baseline run) used the parameter 
estimation method described in (Arampatzis, 2001). The third run used our maximum likelihood 
estimation. Both runs stopped delivering documents when ∆  is negative (Equation 3.15).  This is 
especially common at the beginning of filtering, so a minimum delivery ratio was introduced to 
avoid this problem. If a profile has not achieved the minimum delivery ratio, its threshold will be 
decreased automatically. This corresponds to the second and fourth runs. In our experiments, the 
minimum delivery ratio was set to let approximately 10 documents be disseminated to each 
profile. 
 

3.3.5.3 Experimental Results 
All of the experiments discussed in this report attempt to optimize the T9U′ Utility metric, which 
is consistent with recent TREC Filtering Track evaluation methodologies.  Optimizing Utility 
can lead to higher Precision or Recall as a side-effect, but is not guaranteed to do so.  In some 
cases the best way to increase Utility is to increase Precision (higher threshold); in other cases 
the best way to increase Utility is to increase Recall (lower threshold).  We report all three 
metrics to provide greater insight into the experimental results, but we consider only Utility, the 
metric being optimized, when evaluating the results. 
 
The experimental results for the OHSUMED dataset indicate that neither algorithm works well 
without using a minimum delivery ratio (Table 3.3, columns 1 and 3). Especially at the early 
stage of filtering, with only about 2 documents delivered, it is very hard to estimate the score 
distribution correctly.  When 0<∆  in Equation 3.15, the threshold is set too high to let any future 
documents be delivered, hence no learning takes place. Introducing a minimum delivery ratio 
(i.e., forcing the system to deliver at least a certain percentage of documents) guarantees enough 
training data to enable the system to recover automatically. 
 

                                                 
6 Because the beta distribution is a conjugate prior for binomial distributions, we use it as a prior to simplify 
calculations. 
7 This is a special case of inverse gamma distribution, which is the conjugate prior for the variance of the normal 
distribution. 
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On the OHSUMED dataset, for both OHSU topics and MESH topics, using maximum likelihood 
estimation plus a minimum delivery ratio achieved the best result. Although profile updating was 
disabled while filtering, all of the runs on this dataset received a positive average utility. The 
results for Run 4 on OHSU topics are above average compared with other filtering systems in 
TREC9 adaptive filtering track. This indicates how effective the threshold-setting algorithm is, 
because the other filtering systems learned improved profiles while filtering, whereas all of our 
experiments used static filtering profiles. 
 
All four algorithms appear to perform about equally on FT data (Table 3.4).  One difference 
between the FT dataset and the OHSUMED dataset is the average number of relevant documents 
per profile in the testing set (Section 3.3.5.2).  Most of the FT filtering profiles are not good 
profiles, which means it is almost impossible to find a threshold that achieves a positive utility 
without profile updating.    Indeed, the baseline method (Runs2) sets thresholds so high for some 
profiles that no relevant documents are delivered, thus getting zero Precision and Recall on those 
profiles.  Our algorithm (Run 4) does not increase the threshold that much, which is why the 
baseline and unbiased ML methods appear similar according to the utility metric yet different 
according to the Precision and Recall metrics. 
 
When we compared the utilities of each OHSU topic on Run 4 and Run 2 (Table 3.3), we found 
that our ML method did especially well on several good profiles where the score distribution of 
relevant documents and non-relevant documents are good from the system point of view (Figure 
3.12).  For other user profiles, the difference between our method and the baseline algorithm is 
not large.  Comparison at the topic level and comparison between the OHSUMED and FT 
corpora suggests that our method works much better for good profiles, while its performance on 
other profiles are similar to the baseline method. 

Run 1 Run 2 Run 3 Run 4  
  

Basic Score 
Modeling 

Basic Score 
Modeling  + 
Min. Delivery 

 
 
ML 

 
ML + 
Min. Delivery  

T9U′ utility 1.84 3.25 2.7 8.17 
Avg. docs. delivered    
per profile 

3.83 9.65 5.73 18.40 

Precision 0.37 0.29 0.36 0.32 

O
H

SU
 to

pi
cs

 

Recall 0.036 0.080 0.052 0.137 
T9U′ utility 1.89 4.28 2.44 13.10 
Avg. docs. delivered    
per profile 

3.51 11.82 6.22 27.91 

Precision 0.42 0.39 0.40 0.34 

M
E

SH
 to

pi
cs

 

Recall 0.018 0.046 0.025 0.068 
 

Table 3.3.  Utility of each filtering run.   OHSUMED dataset. 
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The baseline method delivered fewer OHSUMED documents, on average, than the unbiased ML 
method (Figure 3.13, Table 3.3, columns 2 and 4). The average number of documents delivered 
by the baseline method was close to the minimum delivery ratio, which is empirical justification 
for our previous analysis illustrated in Figure 3.9: the Gaussian mean estimated by the baseline 
method was higher than the actual mean, thus the threshold was set too high. The final results of 
the baseline method appear to be highly influenced by the minimum delivery ratio. This is not a 
problem for the maximum likelihood method, because thresholds based on unbiased estimates of 
score distributions are more accurate. 
 
We have not focused on computational efficiency in this report, but computational efficiency is 
important in environments where the filtering system must keep pace with a high-speed 
document stream.  Although the mathematics may look complex, the unbiased ML algorithm is 
computationally efficient.  It takes about 21 minutes (“wall-clock” time) to filter 4 years of 
OHSUMED data for 64 OHSU profiles (Table 3.3, Run 4) on a 500 MHz Intel Pentium III 
processor with 256 MB of memory.  This time includes all aspects of document filtering, 
including the setting and updating of dissemination thresholds while filtering. 
 
 

3.3.5.4 Summary 
We have developed an effective algorithm for setting dissemination thresholds while filtering 
documents. Using a Gaussian distribution for the scores of relevant documents and an 
exponential distribution for the scores of non-relevant documents, a threshold that maximizes a 
given utility measure can be derived based on the parameters of the distribution.  

Due to the fact that only relevance judgments of delivered documents are available, the method 
of estimating score density parameters proposed by Arampatzis, et al. (2001) is biased and 
results in a threshold higher than optimal.  We proposed an unbiased algorithm based on the 
maximum likelihood principle to jointly estimate (i) the parameters of the two density 

Run 1 Run 2 Run 3 Run 4  
  

Basic Score 
Modeling 

Basic Score 
Modeling 
+ Min. Delivery

 
 
ML 

 
ML + Min. 
Delivery 

T9U′ utility 1.44 -0.209 0.65 0.84 
Avg. docs. delivered    
per profile 

9.58 10.44 9.05 12.27 

Precision 0.20 0.17 0.22 0.26 
Recall 0.161 0.167 0.15 0.193 

T
op

ic
s 3

51
-4

00
 

Number of Profiles 
with zero Precision 

24 22 24 10 

 
Table 3.4.  Utility of each filtering run.  FT dataset. 
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distributions, and (ii) the ratios of relevant and non-relevant documents.  The new algorithm 
explicitly models the inherent bias in the filtering environment, where training data consists only 
of documents with scores above a threshold that changes constantly. We believe this is the first 
report that solves the sample bias problem for information filtering.  Our new method obtained 
significant improvements on the TREC-9 Filtering task. 

 

In the experiments described above, filtering profiles were not updated while filtering. Although 
the effectiveness of the system is already very competitive, we believe combining threshold 
updating with profile updating will achieve better performance. One difficulty of combining our 
algorithm with profile updating is adjusting training data }1),,,{( NiScoreRD iii Λ== θ , especially iθ , 
based on new profile terms and weights.  Future research can be focused on this problem.  In the 
meantime, this new method would be expected to be superior in environments where profiles are 
updated less frequently, for example, weekly. 
 
 
3.3.6 Assessment 
 
It became clear early in the contract that an a good algorithm for learning dissemination 
thresholds would be crucial to a successful system.  Four different methods were explored in the 
contract research:  a heuristic method, a binning method, a method based on logistic regression, 
and a score modeling method.  These algorithms were developed at different times during the 
contract, and were not compared under exactly the same experimental conditions, so it is difficult 
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Figure 3.12.  Difference in number of 
documents delivered for OHSU topics:  Run4 -
Run 2.  For most of the topics, Run 4 (ML) 
delivered more documents (indicated by points 
above the horizontal line) than Run 2 (baseline 
method). 
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Figure 3.13.  Utility differences on OHSU topics: 
Run4 - Run2. For some topics, Run 4 (ML method) 
does especially better than Run 2 (baseline method) 
(indicated by points high above the horizontal line), 
while they work similar on other topics. 
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to quantify the differences among them.  Nonetheless, certain qualitative differences are 
apparent. 
 
Heuristic methods must be tuned carefully for a specific corpus and profiles with specific 
characteristics.  When tuned appropriately, they can be very effective.  However, in general they 
should be viewed as fragile. 
 
Logistic regression is based on strong parametric assumptions about the form of the function that 
maps document scores to probabilities of relevance.  In tests with relatively well-behaved 
profiles these assumptions were only true some portion of the time, perhaps 50-67% of the time.  
Although this approach is easy to understand, it should also be viewed as fragile.  This approach 
is also somewhat complex computationally, so it is impractical to use it to modify thresholds 
each time user feedback is received. 
 
The binning approach is robust and relatively effective.  It, too, has some parameters (e.g., bin 
sizes), but its only assumption about the form of the function mapping document scores to 
probabilities is that the function is monotonically increasing, i.e., a higher score should not lead 
to a lower probability of relevance.  Such a condition indicates a malformed profile in the 
extreme case, but small violations of this requirement are expected during filtering, and the 
binning algorithm must handle them.  The main disadvantages of the binning method are that it 
requires more training data than other methods, and it responds a little slowly when the user 
changes the delivery requirements because it does not generalize.  Otherwise it is effective and 
very efficient. 
 
The score modeling approach is based on strong parametric assumptions about the form of the 
function that maps document scores to probabilities of relevance.  In tests with relatively well-
behaved profiles these assumptions were usually true.  In tests with less well-behaved profiles, 
e.g., the profiles formed from Reuters categories, this algorithm performed poorly, and the 
reasons for its poor performance still aren’t clear.  The main advantages of this approach are that 
it requires relatively little training data, and it responds immediately when the user changes 
delivery requirements, because it generalizes well.  The main disadvantage of this approach is 
that it is not yet integrated with profile updating, so when the profile changes (e.g., adding or 
deleting terms or adjusting term weights), the threshold learning must begin anew. 
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4. Filtering by Utility of Information (Novelty Detection) 
 
A common complaint about information filtering systems is that they do not distinguish between 
documents that contain new relevant information and documents that contain information that is 
relevant but already known.  An information filtering system would provide better service to its 
users if it identified three categories of documents for each user profile: 
 

1. not relevant,  
2. relevant but contains no new information, and  
3. relevant and contains new information.  Users could then decide for themselves how to 

treat relevant documents that contain no new information. 
 
The decision about whether a document contains new information depends on whether the 
relevant information in the document is covered by information in documents delivered 
previously.  This complicates the filtering problem.  The relevance of a document is traditionally 
a stateless Boolean value.  A document is or is not relevant, without regard to where the 
document appears in the stream of documents.  Decisions about redundancy and novelty depend 
very much on where in the stream a document appears.  
 
Novelty detection has been studied to some extent in recent Topic Detection and Tracking (TDT) 
research.  However, our problem is somewhat different because it is set in a traditional 
information filtering environment.  We are interested in delivering documents that are relevant 
and novel with respect to a known user profile; we also deliver documents that are relevant and 
redundant, but mark them as such so that the user can decide how they should be treated.  
Nonrelevant documents are discarded.  The combination of an initial user profile and periodic 
interaction with the user also provides more information for learning than in TDT tasks. 
 
For this study we defined a task and created an evaluation dataset that contains known redundant 
documents.  We explicitly model relevance using a traditional adaptive filtering approach, and 
also explicitly model the information known by the user at a particular point in time.  We model 
relevance and redundancy separately, and use quite different similarity measures for relevancy 
and redundancy.  We also developed and tested a variety of redundancy measures.   Since 
redundancy detection while filtering is a new research topic, we developed and tested a variety of 
algorithms for redundancy detection, including set distance, geometric distance (cosine 
similarity), and distributional distance (KL-divergence of language models). 
 
4.1 Redundancy/Novelty Detection 
 
We want our filtering system to distinguish among relevant documents that contain new (novel) 
relevant information and relevant documents that don't.  When a document arrives, the system 
must determine whether it is on topic (relevancy detection), and if it is on topic, whether it is 
redundant (redundancy detection).  We define “on topic”' as meaning that the document contains 
relevant information, as is traditional in information retrieval.  We define “Redundant” to mean 
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that all of the relevant information in the document is covered by relevant documents delivered  
to the user previously.8  This definition of redundancy includes “duplicate” and “near duplicate” 
documents as well as documents that are redundant in content but very different in presentation.  
We assume that the information filtering system keeps track of which documents have been 
delivered to the user, and we assume, for simplicity, that the user views each document 
delivered. 
 
The task of identifying novel and redundant documents has not been addressed by prior work, 
because of the lack of a clear definition of redundancy, and a lack of evaluation data.  In the 
research reported here, novelty and redundancy are defined i) over the set of relevant documents, 
ii) with respect to previously seen documents, and iii) as opposite endpoints of a scale.  The latter 
point is particularly important.  When we treat novelty and redundancy as Boolean values, we 
imply a thresholding process that maps a value on a continuous redundancy/novelty scale to a 
Boolean value.  We tested our approach to novelty and redundancy by creating an evaluation 
dataset judged by undergraduate  assessors.   
 
Our experience suggests that relevance and redundancy are significantly different concepts that 
require different solutions.  A system that delivers documents that are novel and relevant must 
identify documents that are similar to previously delivered relevant documents in the sense of 
having the same topic, but also dissimilar to the previously delivered documents in the sense of 
containing new information.  If the task is to deliver relevant documents, the learning algorithm 
will try to recognize documents similar to delivered relevant documents (training data).  Indeed, 

                                                 
8 Although “duplicate” and “near duplicate” documents are included in this definition of 
redundancy, the definition also encompasses documents that are redundant in content but very  
different in presentation. 

 
 

Figure 4.1.  A system that includes traditional document filtering (for relevance) as well as second 
stage novelty/redundancy detection. 
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traditional evaluation of filtering systems (e.g., the TREC Adaptive Filtering track (Robertson 
and Soberoff, 2001) actually rewards systems for delivering redundant documents.  If the task is 
to deliver only documents containing novel information, the learning algorithm must avoid 
documents that are similar to those already delivered. These two goals are contradictory, and it 
may be unrealistic to expect a single component to satisfy them both. 
 
This observation suggests a two stage approach to the problem, as shown in Figure 4.1.  
Traditional adaptive information filtering solutions can be used for relevancy filtering.  It is less 
clear what type of algorithm should be used for redundancy filtering, and we defer discussion of 
solutions to Section 4.2 for now, we simply observe that a two-stage architecture is likely to 
simplify the problem. 
 
We use the following notation throughout the report.  All notation is defined with respect to a 
particular user profile. 
 

• A, B: sets of documents. 
• dt: a document that arrives at time t and that is being evaluated for redundancy. 
• D(t): the set of all documents delivered for the profile by the time dt arrives, not 

including dt. 
• DR(t): the set of all relevant documents delivered for the profile. DR(t) ⊆ D(t). 
• R(dt): the measure of redundancy for document dt  
• di: usually refers to a relevant document that was delivered before dt arrived. 

 
The task was formulated based on the following assumptions, and they are basis for our research 
when acquiring redundancy judgements and developing algorithms. 
 

Assumption 1: The redundancy of a new document dt depends on D(t), the documents the 
user saw before dt arrived.  We use  R(dt)=R(dt | D(t)) to measure this. 
 
Assumption 2:  R(dt | D(t)) depends on all the relevant documents DR(t) the user has seen 
when dt arrives, so R(dt | D(t)) = R(dt | DR(t)). 
 
Assumption 3:  For two documents set A, and B, if B ⊆ A and B makes dt redundant, then A 
also makes dt redundant. To make it a softer assumption:  B ⊆ A → R(dt | A) ≥ R(dt | B). 

 
Information filtering systems based on statistical retrieval models usually compute a numeric 
score indicating how well each document matches a profile; documents with scores above a 
profile-specific dissemination threshold are delivered. Similarly, the task of identifying 
redundant documents can be divided into two subtasks: calculate a score to measure how 
redundant each document is for a profile, then identify documents with scores above a profile-
specific redundancy threshold.  In our architecture (Figure 4.1), the second stage redundancy 
filter consists of two elements:  i) redundancy score calculation, and ii) redundancy threshold 
learning. 
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In an adaptive filtering system, each of these architectural components defines a different 
research agenda.  The scoring mechanism requires profile-specific “anytime” updating of 
redundancy measures.  The threshold mechanism requires a threshold updating module.  The 
former is the focus of the research described in this section.  Although thresholding is not the 
focus of this section, we did implement a simple threshold setting algorithm to make the system 
more complete, and to enable evaluation of redundancy measures in the context of an operational 
filtering system. 
 
4.2 Redundancy Measures 
 
We assume that traditional information filtering techniques are used to identify relevant 
documents; we recognize that the filtering system will make mistakes, i.e., it will deliver some 
documents that are not relevant and discard some documents that are actually relevant.  
However, for simplicity we assume that novelty/redundancy detection is performed on a stream 
of documents that are presumed to be relevant. We frame this problem as finding a measure R(dt 
| DR(t)), based on Assumption 2 in Section 4.1. 
 
One approach to novelty/redundancy detection is to cluster all previously delivered documents, 
and then to measure the redundancy of the current document by its distance to each cluster.  This 
approach is similar to solutions for the TDT First Story Detection problem.  Our concerns about 
this approach are that it is sensitive to clustering accuracy, and is based on strong assumptions 
about the nature of redundancy, which we think is 
user dependant. 
 
Another approach is to measure redundancy based on the distance between the new document 
and each previously delivered document (document-document distance).  This approach may be 
more robust than clustering, and may be a better match to how users view redundancy.  When we 
asked assessors to annotate an evaluation dataset, we found that it was easiest for them to 
identify a new document as being redundant with a specific previously seen document, and 
harder to identify it as being redundant with a set of previously seen documents.  This 
observation allows us to simplify the calculation of R(dt | DR(t)) by setting it equal to the value 
of the maximally similar value in all R(dt | di). 
 
 ( )( ) )d|R(d argmaxtDR|dR itDR(t)   dt i ∈=       
 
Although duplicate detection is not our goal, it is an instructive case because it is simple.  If dt 
and di are exact duplicates (dt = di ) then R(dt | di) should have a high value because a duplicate 
document is maximally redundant. One natural way to measure R(dt | di ) is using measures of 
similarity/distance/difference between dt and di . 
 
Document timestamps are also an important source of evidence, because documents are more 
likely to be redundant with other recently delivered documents.  During redundancy decisions 
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truncating the delivery history to the most recent N documents delivered for a profile also 
reduces the number of documents that must be considered, which reduces computational costs.  
N is set to 10 in all experiments reported in this report.  The experiments reported in this report 
considered only the 10 most recently delivered documents in redundancy comparisons. 
 
One possibly subtle problem characteristic is that redundancy is not a symmetric metric.  dj may 
cause dk to be viewed as redundant, but if the presentation order is reversed, dk and dj may both 
be viewed as containing novel information.  A simple example is a document dk that is a subset 
(e.g., a paragraph) of a longer document dj.  This problem characteristic motivates exploration of 
asymmetric forms of traditional similarity/distance/difference measures. 
 
Below we present several different approaches to redundancy detection.  The simple set distance 
measure is designed for a Boolean, set-oriented document representation.  The geometric 
distance (cosine similarity) measure is a simple metric designed for “bag of words” document 
representations.  Several variations of KL divergence and related smoothing algorithms are more 
complex metrics designed to measure differences in word distributions. 
 
 
4.2.1 Set Difference 
 
The set difference measure represents each document as a set of words.  The novelty of a new 
document d_{t} is measured by the number of new words in the smoothed set representation of 
d_{t}.  If a word w_{i} occurred frequently in document d_{t} but less frequently in an old 
document d_{i}, it is likely that new information not covered by d_{i} is covered by d_{t}. 
 
Some words are expected to be frequent in a new document because they tend to be frequent in 
the corpus, or because they tend to be frequent in all relevant documents.  “Stopwords” such as 
“the”, “a”, and “and” are examples of words that tend to be frequent in a corpus.  There may also 
be topic-related stopwords, which are words that behave like stopwords in relevant documents, 
even if they are not stopwords in the corpus as a whole.  An effective measure must compensate 
for both types of words. 
 
Our set difference measure compensates for corpus stopwords by smoothing a new document's 
word frequencies with word counts from all previously seen documents.  It compensates for 
topic stopwords by smoothing a new document's word frequencies with word counts from all 
delivered (presumed relevant) documents. 
 
Thus we have the following measure for the redundancy of current document dt with respect to 
old document di: 
 
 ( ) ||)Set(d)Set(d||d|dR itit ∩=  
 
where: 
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wj ∈ Set(d) iff Count (wj,d) > k; 
Count (wj,d) =  α1∗tf w j,d + α2∗ df w j +α3∗ rdf w j; 
tf w j,d: the frequency of word wj in document d; 
df w j: the number of filtered documents that contain wj; and 
rdf w j: the number of times word wj occurs in relevant documents the system has seen. 

 
(α1, α2, α3, k) are set to (0.8, 0.2, 0.0, 2) in our experiments;  they could also be learned from 
training data. 
 
We are not using the true difference between two sets: 
 
 ( ) ( ) ( ) ( ) ||dSetdSet||||dSetdSet|| itit ∩+∩  
 
here because the words in 
 
 ( ) ( ) ||dSetdSet|| it ∩  
 
shouldn't contribute to the novelty of dt and the optimal novelty measure should be asymmetric. 
 
4.2.2 Geometric Distance 
 
There are several different geometric distance measure, such as Manhattan distance and osine 
distance (Lee and Pereira, 1999).  Since Manhattan distance is very sensitive to document length,  
Cosine distance maybe more appropriate for our task. Prior research showed that a Cosine 
distance based measure was useful for the TDT FSD task (Carbonell, et al., 2001). 
 
Cosine distance is a symmetric measure related to the angle between two vectors (Jones and 
Furnas, 1987.)  If we represent document d as a vector d = (w1(d),w2(d),..,wn(d))T, then: 
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In our study, we used each unique word as one dimension, and set the tf.idf score as the weight 
of each dimension.   
 
 
4.2.3 Distributional Similarity 
 
Probabilistic language models have shown promise for identifying relevant documents in ad-hoc 
information retrieval tasks (e.g., Miller, et al., 2001;  Kraaij, et al., 1999; Zhai and Lafferty, 
2001).  Their strong theoretical foundation supports a variety of new capabilities, including 
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redundancy detection.  In the language model approach, a document d is represented by a 
unigram word distribution Θd.  Kullback-Leibler divergence, a distributional similarity measure, 
is one way to measure the redundancy of one document given another. 
 

 ( ) ( )
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−=

−=

i

it

 w
ti

ii
ti

ddit

d|wP
d|wPlog  d|wP

)Θ,KL(Θ)d|R(d

 

 
where Θd  is the language model for document d, and is a multinomial distribution. 
 
Θd  can be found by maximum likelihood estimation (MLE): 
 

( ) ( )
( )∑
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i d,wtf

d,wtfd|wP  

 
The problem with using MLE is that if a word never occurs in document d, it will get a zero 
probability (P(wi|d)=0). Thus a word in dt but not in di will make KL(Θdt, Θdi) = ∞. 
 
Smoothing techniques are necessary to adjust the maximum likelihood estimation so that the KL-
based measure is more appropriate. Prior research shows that retrieval performance is highly 
sensitive to smoothing parameters. Several smoothing methods have been applied to ad-hoc 
information retrieval and text classification (e.g., (Zhai and Lafferty, 2001b; McCallum, et al., 
1998)). Based on this prior research, we selected two methods:  Bayesian smoothing using 
Dirichlet priors, and shrinkage. 
 
 

4.2.3.1 Bayesian Smoothing Using Dirichlet Priors 
 
This approach to smoothing uses the conjugate prior for a multinomial distribution,     which is 
the Dirichlet distribution (Zhai and Lafferty, 2001b). For a Dirichlet distribution with parameters 
λ p(w1), λ p(w2),..., λ p(wn) the posterior distribution using Bayesian analysis for  Θd is: 
 

 ( ) ( ) ( )
( ) ( )( )∑ +

+
=

j  w jj

ii
iλ d,wλpd,wtf

d,wλpd,wtfd|wP  

 
In our experiments, if wj is in dt, we set λ p(wj)=0.5, otherwise λ p(wj)=0. 
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4.2.3.2 Smoothing Using Shrinkage 
 
This approach smooths by “shrinking” parameter estimates in sparse data towards the estimates 
in rich data (McCallum, et al., 1998). This is a special case of the more general Jelinek-Mercer 
smoothing method, which involves deleted-interpolation estimation of linearly interpolated n-
gram models (Zhai and Lafferty, 2001b).  For estimating the language model of document d, we 
can shrink its MLE estimator LMd_MLE with the MLE estimator of a language model for general 
English ΘE_MLE and the MLE estimator of a language model for the topic  ΘT_MLE: 
 
 Θd = λd Θd_MLE + λT ΘT_MLE + λE ΘE_MLE                            (4.1) 
 
where λd + λT + λE  = 1. 
 
λE can be estimated from the documents the filtering system has processed, and λT can be 
estimated from the documents the filtering system has delivered (presumed relevant documents).  
We can derive empirical optimal values for λd, λT, and λE  using “leave-one-out” cross validation 
as described in  (McCallum, 1998).  In our experiment, we used “leave-0.5-out”. 
 
 
4.2.4 A Mixture Model 
 
In this section we introduce a new algorithm based on a generative model of document creation. 
This approach uses probabilistic language models and KL distance as described above.  
However, this new mixture model measure is based on a novel view of how relevant documents 

 
 

Figure 4.2.  A mixture model for generating relevant documents. 
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are generated. We can also view it as a language model with a smoothing algorithm designed 
specifically for our task.  
 
As shown in Figure 4.2, we assume each relevant document is generated by the mixture of three 
language models: A General English language model ΘE, a user-specific Topic Model ΘT, and a 
document-specific Information Model Θd_core. Each word wi in the document is generated by 
each of the three language models with probability λE, λT and λd_core respectively: 
 
 P(wi | ΘE, ΘT, Θd_core, λE, λT, λd_core) =         (4.2) 

λE P(wi | ΘE) + λT P(wi | ΘT) + λd_core P(wi | Θd_core) 
 
where λE + λT + λd_core = 1. 
 
 For example, if information need is “Star War”', in a relevant document words such as “is” and 
“the” probably come from the general English model ΘE.  Words such as “star” and “wars” 
probably come from the Topic Model ΘT.  For a document with the title “Martin Marietta Is 
Given Contract For Star Wars Site”, the words “Martin” and  
”Marietta” are more likely to be generated from the new information model Θd_core.  ΘT  is the 
core information of a topic, while Θd_core is the core information of a particular relevant 
document.  When a filtering system uses relevance feedback to improve the user profile, it 
focuses on learning ΘT to find words that are correlated with relevance.  When doing redundancy 
detection, the filtering system must focus on finding the document information model Θd_core that 
describes new information covered by a document d.  A document with a Θd_core that is quite 
different from that of documents the user has read before is more likely to be novel.  Thus a 
mixture model similarity measure between two documents based on the core information 
contained in each document can be defined. 
 
 ( )_cored_coredit it

Θ,ΘKL)d|R(d =  
  
If we fix λE, λT, and λd_core then there exists a unique optimal value for the document core model 
Θ*

d_core that maximizes the likelihood of the document. 
 
 ( )d_coreTEd_coreTEΘ

*
d_core λ,λ,λ,Θ,Θ,Θ|dPargmaxΘ

d
=   

 
Three points are worth noting about the mixture model. 
 

• Although Equations 4.1 and 4.2 look similar, the computations performed, and the final 
model acquired and used to calculate KL divergence, are quite different.  In Equation 4.1, 
all three language models on the right side of the formula are calculated by counting; the 
interpolation weights λE, λT, and λd are the parameters that must be computed.  By 
contrast, Equation 4.2 computes the document information model Θd_core.  Equation 4.1 
uses shrinkage to increase the probability of words that occur frequently in the topic or in 
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general English if they occur less frequently in document d. Equation 4.2 uses a mixture 
model to decrease the probability of these words.  Intuitively, those words are not the 
core information of a document, and the difference between two documents dt and di due 
to them does not help in a redundancy decision.  By shrinking with ΘE_MLE and ΘT_MLE, 
shrinkage smoothing reduces the distance between two documents due to those words, 
thus reducing their effect on the redundancy measure.  With the mixture model, we 
directly decrease the probability of those words to reduce their effect. 

 
• We must fix the values of λE, λT, and λd_core.  If we train λ's and Θd_core together, we get 

λd_core = 1 and Θd_core =  Θd_MLE, which is the unsmoothed language model for document 
d; the benefit of smoothing, which decreases the effects of uninformative words, is lost.  

 
• This model intentionally focus on “what's new” in a document, thus it avoids the 

contradiction between identifying relevance and novelty.  It is inherently difficult to use 
existing algorithms to identify both relevant and redundant documents, because the two 
tasks require different approaches.  If the task is to deliver relevant documents, the 
learning algorithm will try to recognize documents similar to already delivered relevant 
documents (training data). If the task is to deliver only documents containing novel 
information, the learning algorithm must avoid documents that are similar to those 
already delivered. This model introduces ΘT and Θd_core, which means the measure of 
relevancy and redundancy are focused on different parts of a document. For relevancy, 
the system would like to focus on ΘT, while for redundancy it should focus on Θd_core. 
Thus the two tasks are no longer contradictory 

 
We can train  ΘT , Θd_score, and ΘE using the EM algorithm, which has been used by others to 
find a language model for similar problems (e.g., (Kraaij, et al., 1999; Zhai and Lafferty, 
2001b)). 
 
 
4.3 Redundancy Thresholds 
 
When we observed human assessors making redundancy decisions, we found that two annotators 
working on the same topics sometimes disagreed.  Sometimes the disagreement was due to 
differences in the assessors' internal definition of redundancy.  More often one assessor might 
feel that a document dt should be considered redundant if a previously seen document di covered 
80% of dt; the other assessor might not consider it redundant unless the coverage exceeded 95%. 
 
A person's tolerance for redundancy can be modeled with a user-dependent threshold that 
converts a redundancy score into a redundancy decision. User feedback about which documents 
are redundant serves as training data.  Over time the system can learn to estimate the probability 
that a new document with a given redundancy score would be considered redundant : P(user j 
thinks dt is redundant | R (dt |  DR(t))). 
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This two-step process first maps the document dt into a 1-dimensional space R(dt | DR(t) using a 
redundancy measure, and then learns from training data the probability of redundancy given the 
value on this dimension.  This approach is similar in spirit to how many adaptive filtering 
systems identify relevant documents (e.g., (Robertson, 2000; Zhang and Callan, 2001)). 
 
Ideally, an optimization goal should be set before deciding what kind of threshold setting 
algorithm to use. However, our first step is a very simple algorithm for setting thresholds.  Our 
solution is intentionally simple, in part because of the lack of adequate test collection labeled 
with redundant information for a given profile, and in part because this problem is not (yet) our 
research focus. 
 
The algorithm for learning redundancy thresholds is:  
 

• Initialize redundancy threshold RThreshold to a value that is so high that only very 
redundant documents (e.g., near duplicates) are considered redundant; and 

• For each document dt delivered (which means R(dt) < RThreshold when dt arrives), ask 
the user if the document is redundant. 

• If the document is redundant and if  R(dt) > R(di) for all di ∈ DR(t) 
then Rthreshold = R(dt) 
else RThreshold = Rthreshold – (Rthreshold – R(dt)) / 10. 

 
This is clearly a weak algorithm, because it only decreases the threshold.  If the threshold 
becomes too low there is no method of increasing it again.  The effectiveness of this algorithm is 
explored in Section 4.1.1.5. 
 
 
4.4 Experimental Methodology 
 
 
4.4.1 AP News & Wall Street Journal Dataset 
 
We created a one gigabyte dataset by combining AP News and Wall Street Journal data from 
TREC CDs 1, 2, and 3.  We chose these corpora because they are widely available, because 
information needs and relevance judgements are available from NIST, and because the two 
newswire corpora cover the same time period (1988 to 1990) and many of the same topics, 
guaranteeing some redundancy in the document stream.  Documents were ordered 
chronologically.  50 TREC topics (101 to 150) simulated user profiles. 
 
The decision about how to collect redundancy assessments depends in part upon how we view 
the task.  If we viewed redundancy as a relationship between document dt and a set of 
documents, for example a subset of the documents delivered for a particular profile, it would be 
impossible to collect redundancy assessments.  We would need to enumerate all of the possible 
subsets of documents delivered at time t and then ask assessors to judge whether dt is redundant 
with respect to each set.  The number of possible subsets is 2t–1, which is impractical for all but 
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very small values of t.  Although we know that in the “real world” redundancy is based on the set 
of documents delivered previously, we can only model it as a relationship among pairs of 
documents.  This is the approach we adopted when developing algorithms, but that decision was 
based in part on how we intended to collect redundancy judgements. 
 
We hired undergraduate students, who were otherwise unaffiliated with our research, to read the 
relevant documents for a profile in chronological order and to provide redundancy judgments.  
The decision to restrict their attention to relevant documents is based on assumption 2 in Section 
4.1, and is consistent with a filtering system where another component makes decisions about 
relevance. 
 
Assessors judged one topic at a time.  They were instructed to make a decision for each 
document about whether the information it contained was redundant with document(s) seen 
previously for that topic, and to identify the prior document(s).  Each topic was judged by two 
assessors and then differences were resolved by the assessors themselves. 
 
We believe that in operational environments different people will have different definitions of 
redundancy and different redundancy thresholds. We modelled this environment by not giving 
assessors a precise definition of redundance.  We provided two degrees of redundancy, 
absolutely redundant and somewhat redundant; assessors could apply them based on their 
expectations about how a good system should behave.  If the assessor thought a person would 
definitely not want to read dt because it absolutely contained no new information, dt was marked 
as absolutely redundant.  If the assessor thought that a new document had some new information 
that a person might want to read, even though much of the document was redundant with a prior 
document, the document could be marked as somewhat redundant.  Documents that were not 
completely redundant or somewhat redundant were marked as novel. 
 
An example of the redundancy assessments is shown below.  The first field is a profile id.  The 
second field is the document id of a redundant document.  Subsequent document ids are the 
documents that preceded it in the stream and that made it redundant.  A `?' indicates that a 
document is only partially redundant. 
 

• q121 AP880214-0049   ?       AP880214-0002 
if user q121 read document AP880214-0002, then  AP880214-0049 is somewhat 
redundant. 

• q121 AP880217-0031  AP880216-0137 
if user q121 read document AP880216-0137, then AP880217-0031 is absolutely 
redundant. 

• q128    AP880218-0137   AP880218-0113 AP880218-0112 
if user q128 read AP880218-0113 and AP880218-0112, then AP880218-0137 is 
absolutely redundant. 
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On average there are about 66.5 records per TREC topic (note that a single record may relate a 
document to several prior documents).  About 19.2 records per profile are absolutely redundant; 
the rest represent partial redundance. 
 
Students reported that the choice of corpus (“old”) and topics made this a dull task, so we were 
unable to collect assessments for all 50 topics.  The results in this report are based on a set of 
adjudicated assessments for 33 profiles. 
 
 
4.4.2 TREC Interactive Dataset 
 
We combined the dataset used by the TREC-6, TREC-7, and TREC-8 Interactive Tracks to 
create a test dataset containing 210,158 documents from the 1991-1994 Financial Times of 
London. There are 20 TREC topics; each one defines a user profile. For each topic, TREC 
assessors have identified several instances. Different instances are about different aspects of the 
topic. A document on a topic could be mapped to multiple instances of that topic. The mapping 
from the relevant documents to instances is provided by NIST. In our evaluation, we treated each 
instance as one aspect of the topic and assumed that a user only wants to see one document on 
each aspect.  Thus a document is redundant if the user has already seen at least one document for 
each instance this new document belongs to. 
 
Since this dataset was not created explicitly for redundancy detection, it maybe not be as well-
matched to the task as the AP News/Wall Street Journal dataset described above.  However, we 
felt that a second dataset, even one that isn't perfect, would be a useful source of information. 
 
 
4.4.3 Evaluation Methodology 
 
We believe that it is important to evaluate a particular component of a system with a metric that 
is not affected by strengths and weaknesses in other parts of system.  In this case, we would like 
to factor out how well the filtering system identifies relevant documents and sets redundancy 
thresholds.  In our experiments we assume that the filtering system identifies relevant documents 
with 100% precision and recall by evaluating redundancy filtering only on a stream of 
documents marked relevant by NIST assessors.  In some tests we also evaluate the effectiveness 
of redundancy-scoring algorithms, and factor out the effect of the redundancy threshold 
algorithm, by reporting average Precision and Recall figures for redundant documents.  Precision 
and recall are well-known metrics in IR community.  We adapt them to the redundancy detection 
task as shown below. 
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R–, R+, N–, N+ correspond to the number of documents that fall into the following categories 
 

  
 Redundant Non-Redundant
Delivered R+ N+ 
Not Delivered R– N– 

 
 
For simplicity, we will use Precision and Recall to refer to Redundancy Precision and 
Redundancy-Recall in the rest of this report. 
 
 

 
 
Figure 4.3. Comparing redundancy measures 
on AP News & Wall Street Journal data.  A 
document is considered redundant if an 
assessor marked it absolutely redundant or 
somewhat redundant. 

 
Figure 4.4.  Comparing redundancy measures 
on AP News & Wall Street Journal data.  A 
document is considered 
redundant only if an assessor marked it as 
absolutely redundant. The Language Model 
(LM) measures using Shrinkage and Dirichlet 
Prior smoothing perform equally, thus 
overlap. 
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4.5 Experimental Results 
 
The five redundancy measures described in Section 4.2 were compared on the two datasets 
described in Sections 4.1.1.4.  A redundancy score was calculated for each relevant document dt, 
based on the relevant documents di that preceded it in the document stream. The results are 
shown in Figures 4.3, 4.4, and 4.5 in the form of average Recall-Precision graphs over the set of 
redundant documents. 
 
On both datasets the Set Difference measure is the least accurate.  Representing a document as a 
set of Boolean word features, even with smoothing to add or delete additional words, was very 
ineffective. 
 
The traditional cosine-similarity metric (a geometric distance measure) was very effective.  This 
result was a small surprise, because cosine similarity is less well-justified theoretically than the 
language modelling approaches. The cosine similarity metric is also symmetric; we expected 
asymmetric measures to be a better model of this task.  However, cosine similarity has been 
demonstrated many times and over many tasks to be a robust similarity metric.  Our results add 
redundancy detection to the long list of tasks for which it is effective. 
 
The results for the three Language Modelling algorithms confirm prior research showing the 
importance of selecting a good smoothing algorithm. The mixture model approach was 
consistently more accurate than the other two smoothing algorithms on both corpora. It was also 
about as effective as the cosine similarity measure on the TREC Interactive Track dataset.  This 
approach to mixing information from corpus, topic, and a document language models provides a 
new point of view about how to model documents, and it does deliver improved effectiveness 
compared to other language modelling approaches.  This result is not completely surprising, 

 
 
Figure 4.5.  Comparing redundancy measure on TREC Interactive Track data.  A 
document about aspect(s) already covered by previously delivered documents is 
considered redundant. 
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because the algorithm explicitly models what's new in a document.  However, these results 
suggest that it is not as robust as the cosine similarity measure. 
 
We also implemented a simple threshold-setting algorithm (Section 4.1.1.3).  The threshold-
setting algorithm is simple and weak, in part because we did not set an optimization goal 
specifying the relative rewards and penalties for delivering novel and redundant documents.  
However, even a simple algorithm can be used to analyze the different redundancy measures. In 
particular, it provides a more accurate indication of what a user might see in an operational 
environment. 
 
Tables 4.1, 4.2, and 4.3 summarize the effectiveness of the five redundancy measures when used 
with the simple redundancy threshold algorithm.  Results are reported for both datasets.  (The 
metrics are described in Section 4.1.1.4.) 
 
If we evaluate the redundancy measures by the percentage of mistakes they make, the Cosine 
Similarity and Mixture Model redundancy measures are much better than the rest.   These two 
measures yields a reasonably low percentage of mistakes when a strict definition of redundancy 
is used (Table 4.2), but a less satisfying percentage when somewhat redundant documents are 

Measure Recall Precision Mistake
Set Distance 0.52 0.44 43.5% 
Cosine Distance 0.62 0.63 28.1% 
LM: Shrinkage 0.80 0.45 44.3% 
LM: Dirichlet Prior 0.76 0.47 42.4% 
LM: Mixture Model 0.56 0.67 27.4% 
 

Table 4.1.  Average performance of different redundancy measures with a simple thresholding 
algorithm, measured on 33 topics with the AP News & Wall Street Journal dataset. Both absolutely 
redundant and somewhat redundant documents are treated as redundant. 

 
Measure Recall Precision Mistake
Set Distance 0.36 0.29 28.1% 
Cosine Distance 0.48 0.33 18.7% 
LM: Shrinkage 0.375 0.45 21.0% 
LM: Dirichlet Prior 0.375 0.45 21.0% 
LM: Mixture Model 0.46 0.40 16.7% 
 

Table 4.2.  Average performance of different redundancy measures with a simple thresholding 
algorithm, measured on 33 topics with the AP News & Wall Street Journal dataset. Only absolutely 
redundant documents are treated as redundant. 
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treated as redundant (Table 4.1).  This result implies that our simple redundancy threshold 
algorithm models the user by treating somewhat redundant as novel. We know that a good 
threshold setting algorithm is important to system accuracy, and we hypothesize that threshold 
setting should depends on each user.  Table 4.2 shows that reasonably good accuracy is possible 
when the thresholding algorithm is well-matched to the task. 
 
 
4.6 Assessment 
 
The research reported here is a first step towards adaptive information filtering systems that learn 
to identify documents that are novel and redundant in addition to relevant and nonrelevant.  It 
defines a task, an evaluation methodology, and a set of novelty/redundancy measures. A reusable 
corpus was created from generally available documents, a set of adjudicated redundancy 
judgements was created, and an existing corpus was adapted to our task. 
  
The experimental results demonstrate that it is possible to identify redundant documents with 
reasonable accuracy.  They also demonstrate the importance of a suitable redundancy-threshold 
algorithm, analogous to the relevance-threshold algorithm found in many information filtering 
systems. Our results also suggest that the algorithm itself should depend on the user model of 
redundancy.  The extremely small amount of training data (less than what is available for 
relevance-based adaptive filtering) makes it a challenging problem. 
 
Five measures were proposed for assessing the redundance of a new document with respect to a 
previously seen stream of documents.  The experimental results demonstrate that the well-known 
cosine similarity metric is effective on this new task.  They also demonstrate that a new metric 
based on a mixture of language models can be as effective as the cosine similarity metric in some 
cases. 
 
We believe that the metric based on a mixture of language models is an important contribution, 
whether or not it was the most effective algorithm for this task.  We believe that viewing 
documents as a mix of information covered by corpus, topic, and “new information” models is 

Measure Recall Precision Mistake
Set Distance 0.43 0.28 46.8% 
Cosine Distance 0.45 0.44 34.5% 
LM: Shrinkage 0.79 0.33 53.3% 
LM: Dirichlet Prior 0.73 0.34 49.0% 
LM: Mixture Model 0.18 0.51 28.4% 
 

Table 4.3.  Average performance of different redundancy measures with a simple thresholding 
algorithm, measured on 20 topics with the TREC Interactive dataset. 
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an appropriate model of an information filtering task.  The results reported here are a first 
attempt to apply this approach to a realistic task; we expect to see other attempts in the future. 
 
This research is only a first attempt at redundancy/novelty detection in an adaptive filtering 
environment, so there are many open problems for future research.  Our research on profile-
specific “anytime” updating of redundancy measures just scratches the surface.  Although cosine 
similarity worked well in our experiments, we believe that the underlying redundancy 
relationship is asymmetric, and that asymmetric measures will eventually be more accurate. It is 
also likely that other features, such as timestamp, document source, phrases, and proper names 
will be important sources of evidence for novelty decisions. 
 
Our research measured redundancy based on document-document pairs, which is easy to assess 
and easy to model, but the underlying task is probably better modelled by comparing clusters of 
delivered documents to the new document.  The best choice may be problem-specific, e.g., 
depending upon corpus or profile characteristics. 
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5. Prototype System 
 
Some of the experiments described in this report, particularly the early work on dissemination 
thresholds, were done with InRoute, an adaptive information filtering system written at the 
University of Massachusetts.  Licensing restrictions made InRoute difficult to modify and 
distribute, so a new information filtering system was developed “off contract”.  The new system, 
called YFilter, was functionally similar to InRoute, but had a simpler and “cleaner” architecture.  
Most of the experiments described in this report were done using the YFilter adaptive 
information filtering system. 
 
Generally, an adaptive filtering system that can learn from user feedback has several important 
subtasks:  
 

1. Learning corpus statistics, such as the inverse document frequency (idf) of each term; 
2. Learning filtering profiles that describe desired documents, which usually means adding 

or deleting terms and adjusting term weights;  
3. Measuring the redundancy between new documents and documents delivered previously; 

and 
4. Learning dissemination thresholds that specify how closely a document must match a 

profile and how novel it must be in order to be delivered. 
 
YFilter does all of the above tasks. Given a corpus file that contains a sequence of incoming 
documents and a profile file that contains initial user profiles, YFilter can go through the corpus, 
compare each document with each profile and deliver the most relevant and novel documents to 
each user. YFilter can learn from user relevance feedback while filtering, updating profile 
descriptions and thresholds based upon user-supplied relevance judgements.  YFilter can also 
learn a person’s novelty criteria. 
 
The core filtering engine is written in C++.  YFilter was designed as a library with an application 
programmer’s interface (API), so that software engineers can embed it in a variety of application 
environments.  It is delivered with two user interfaces:  i) a graphical user interface (GUI) 
written in Java, and ii) a UNIX-style command-line interface suitable for use in scripts and batch 
files.  YFilter runs under Windows NT and the Sun Solaris version of Unix. 
 
The YFilter installation procedure, file formats, graphical user interface, batch interface, and 
example runs are described in the YFilter User Manual.  The YFilter API and internal design is 
described in the YFilter System Design Document.  Please see those documents for more 
information on the prototype system. 
 
YFilter, its documentation, and sample data files were distributed to the Air Force Research 
Laboratory on CD-ROM.  A copy is available from the Project Engineer. 
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6. Lessons Learned 
 
A variety of topics were explored during the contract research, and a variety of lessons were 
learned.  This section summarizes them briefly. 
 
The Rocchio algorithm was the most consistently effective machine learning algorithm for 
learning profiles.  Rocchio was tested across a variety of document streams, types of profiles, 
and learning conditions.  It was always the most effective.  This result is consistent with the 
research findings of other groups during the same period.  The Rocchio algorithm is also 
computationally efficient, so it is quite compatible with online adaptive filtering systems.  Most 
of the research reported here, including tests with profile sets of up to 5,000 profiles, was done 
on ordinary Intel-based personal computers running Windows NT. 
 
Three techniques were explored to improve the expressive power of profiles learned 
incrementally during adaptive filtering:  use of phrases, use of named-entities, and use of 
hierarchically organized profiles.  All three were expected to work well, and have delivered 
significant improvements in accuracy in Routing or batch filtering environments.  However, 
none of them were particularly effective in the adaptive filtering experiments conducted under 
this contract. 
 
One problem with the research conducted under the contract was that it was restricted primarily 
to TREC Filtering data and the TREC filtering methodology, which may not be represent the 
conditions in government environments.  In particular, the TREC Filtering tracks have recently 
focused on use of very small amounts of training data and a relatively sparse stream of relevant 
documents, i.e., the needle in the haystack type of problem.  The lack of sufficient training data 
is clearly an obstacle to assessing the effectiveness of complex features, such as phrases and co-
occurrence relationships.  Complex features are more precise than single terms, but they are also 
occur more rarely, so there are fewer opportunities to learn appropriate term weights.  It is likely 
that some of the techniques developed during the contract research would be more effective in 
environments that have more than a few positive examples in a 1-4 year document stream. 
 
Likewise, the Reuters 2001 corpus is probably not a good model for the use of hierarchical 
filtering profiles in government environments.  The use of hierarchical profiles clearly improved 
the amount of training data (the number of relevant and non-relevant documents) for some 
Reuters categories.  However, the Reuters 2001 categories are not a good model of information 
needs in an adaptive filtering environment, so the it isn’t possible to draw firm conclusions about 
the effectiveness of hierarchical profiles. 
 
Four different methods of learning dissemination thresholds were explored in the contract 
research:  a heuristic method, a binning method, a method based on logistic regression, and a 
score modeling method.   The heuristic and logistic regression methods are based on strong 
parametric assumptions about the form of the function that maps document scores to 
probabilities of relevance.  In tests with relatively well-behaved profiles these assumptions were 
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only true some portion of the time.  Although these approaches are easy to understand, we 
consider them fragile. 
 
The binning approach is robust and relatively effective.  It, too, has some parameters (e.g., bin 
sizes), but its only assumption about the form of the function mapping document scores to 
probabilities is that the function is monotonically increasing, i.e., a higher score should not lead 
to a lower probability of relevance.  Such a condition indicates a malformed profile in the 
extreme case, but small violations of this requirement are expected during filtering, and the 
binning algorithm must handle them.  The main disadvantages of the binning method is that it 
requires more training data than other methods, and it responds a little slowly when the user 
changes the delivery requirements because it does not generalize. 
 
The score modeling approach is based on strong parametric assumptions about the form of the 
function that maps document scores to probabilities of relevance.  In tests with relatively well-
behaved profiles these assumptions were usually true.  In tests with less well-behaved profiles, 
e.g., the profiles formed from Reuters categories, this algorithm performed poorly, and the 
reasons for its poor performance still aren’t clear.  The main advantage of this approach is that it 
requires relatively little training data, and it responds immediately when the user changes 
delivery requirements, because it generalizes well.  The main disadvantage of this approach is 
that it is not yet integrated with profile updating, so when the profile changes (e.g., adding or 
deleting terms or adjusting term weights), the threshold learning must begin anew. 
 
The research reported here included a first step towards adaptive information filtering systems 
that learn to identify documents that are novel and redundant in addition to relevant and 
nonrelevant.  It defined a task, an evaluation methodology, and a set of novelty/redundancy 
measures. A reusable corpus was created from generally available documents, a set of 
adjudicated redundancy judgements was created, and an existing corpus was adapted to our task. 
  
The experimental results demonstrate that it is possible to identify redundant documents with 
some accuracy.  Five measures were proposed for assessing the redundancy of a new document 
with respect to a previously seen stream of documents.  The experimental results demonstrate 
that the well-known cosine similarity metric is effective on this new task.  They also demonstrate 
that a new metric based on a mixture of language models can be as effective as the cosine 
similarity metric in some cases. 
 
We believe that the metric based on a mixture of language models is an important contribution, 
whether or not it was the most effective algorithm for this task.  We believe that viewing 
documents as a mix of information covered by corpus, topic, and “new information” models is 
an appropriate model of an information filtering task.  The results reported here are a first 
attempt to apply this approach to a realistic task; we expect to see other attempts in the future. 
 
Although cosine similarity worked well in our experiments, we believe that the underlying 
redundancy relationship is asymmetric, and that asymmetric measures will eventually be more 
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accurate. It is also likely that other features, such as timestamp, document source, phrases, and 
proper names will be important sources of evidence for novelty decisions. 
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7. Publications 
 
The following publications were produced under the contract. 
 
1. J. Allan, J. Callan, F. Feng, and D. Malin. (2000.)  “INQUERY and TREC-8.”  In 

Proceedings of the Eighth Text REtrieval Conference (TREC-8). National Institute of 
Standards and Technology, special publication 500-246. 

 
2. S. Luo and J. Callan.  (2001.)  “Named entity detection.”  Technical Report, Language 

Technologies Institute, Carnegie Mellon University.  February, 2001. 
 
3. Y. Zhang and J. Callan.  (2001.)  “A generative model for filtering thresholds.”  Workshop on 

Language Modeling and Information Retrieval, Carnegie Mellon University, May 31-June 1, 
2001. 

 
4. Y. Zhang and J. Callan.  (2001.) “Maximum likelihood estimation of filtering thresholds.”  In 

Proceedings of the Twenty Fourth Annual International ACM SIGIR Conference on 
Research and Development in Information Retrieval.  ACM.   

 
5. Y. Zhang and J. Callan. (2001.) “YFilter at TREC-9.” In Proceedings of the Ninth Text 

REtrieval Conference (TREC-9). National Institute of Standards and Technology, special 
publication 500-249. 

 
6. Y. Zhang and J. Callan.  (2002).  “The bias problem and language models in adaptive 

filtering.”  In Proceedings of the Tenth Text REtrieval Conference (TREC 2001). National 
Institute of Standards and Technology, special publication 500-250. 

 
7. Y. Zhang, J. Callan, and T. Minka. (2002.) “Novelty and redundancy detection in adaptive 

filtering.” In Proceedings of the Twenty Fifth Annual International ACM SIGIR Conference 
on Research and Development in Information Retrieval. Tampere, Finland: ACM.  Best 
paper award. 

 
8. Y. Zhang, W. Xu., and J. Callan. (2002.) “Exact maximum likelihood estimation for word 

mixtures.”  In ICML 2002 Workshop on Text Learning (TextML 2002). 
 
 



 

 

 

69

8. References 
 

1. J. Allan (ed).  (2002.)  Topic detection and tracking:  Event-based information organization.  
Kluwer Academic Publishers 

 
2. J. Allan. (1996.) Incremental relevance feedback for information filtering. In Proceedings of 

the Nineteenth Annual International ACM SIGIR Conference on Research and Development 
in Information Retrieval, pp. 270-278.  ACM. 

 
3. J. Allan, J. Callan, F. Feng, and D. Malin. (2000.)  “INQUERY and TREC-8.”  In 

Proceedings of the Eighth Text REtrieval Conference (TREC-8). National Institute of 
Standards and Technology, special publication 500-246. 

 
4. A. Arampatzis, J. Beney, S. H. A. Koster, and T. P. van der Weide.  (2001.)  “Incrementality, 

half-life, and threshold optimization for adaptive information filtering.  In Proceedings of the 
Ninth Text REtrieval Conference (TREC-9). National Institute of Standards and Technology, 
special publication 500-249. 

 
5. A. Arampatzis and A. van Hameren.  (2001.)  “The score-distributional threshold 

optimization for adaptive binary classification tasks.”  In Proceedings of the 24th Annual 
International ACM SIGIR Conference on Research and Development in Information 
Retrieval.  ACM. 

 
6. T.Ault, and Y. Yang. (2001.)  kNN at TREC-9: A failure analysis. In Proceeding of Ninth 

Text REtrieval Conference (TREC-9). National Institute of Standards and Technology, 
Special Publication. 

 
7. D. M. Bikel, S. Miller, R. Schwartz, and R. M. Weischedel.  (1997.)  “Nymble: A High-

Performance Learning Name-finder.  In Proceedings of the 5th Conference on Applied 
Natural Language Processing, pp. 194-201. 

 
8. D. M. Bikel, R. Schwartz, and R. M. Weischedel.  (1999.)  “An Algorithm that Learns 

What's in a Name.”  Machine Learning Journal, vol 34, pp. 211-231. 
 
9. J. Broglio, J.P. Callan, W.B. Croft, and D.W. Nachbar.  (1995.)  Document retrieval and 

routing using the INQUERY system.  In Proceeding of Third Text REtrieval Conference 
(TREC-3), pp. 29-38.  National Institute of Standards and Technology, Special Publication 
500-225. 

 
10. C. Buckley, A. Singhal, M. Mitra, and G. Salton. (1995.)  “New retrieval approaches using 

SMART.”  In Proceedings of 1995 Text REtrieval Conference  (TREC-3).  National Institute 
of Standards and Technology, special publication 

 



 

 

 

70

11. C. Buckley, J. Allan, and G. Salton. (1994.)  “Automatic routing and ad-hoc retrieval using 
SMART:  TREC-2.  In Proceedings of the Second Text REtrieval Conference (TREC-2).  
NIST Special Publication 500-215. 

 
12. J. Callan.  (1996.)  Document filtering with inference networks. In Proceedings of the 

Nineteenth Annual International ACM SIGIR Conference on Research and Development in 
Information Retrieval, pp. 262-269.  ACM. 

 
13. J., Callan. (1998.)  “Learning while filtering documents.”  In Proceedings of the Twenty First 

Annual International ACM SIGIR Conference on Research and Development in Information 
Retrieval.  ACM. 

 
14. J. Callan. (2000.)  “System and method for filtering a document stream.” U.S. Patent 

6,105,023, August 15, 2000. 
 
15. J. Callan, W.B. Croft, and J. Broglio. “TREC and TIPSTER experiments with INQUERY.” 

Information Processing and Management, 31(3):327-343, 1995 
 
16. J. Carbonell, Y. Yang, R. Brown, C. Jin, and Jian Zhang.  (2001.)  “CMU TDT Report 13-14 

Nov 2001.”  Topic Detection and Tracking Workshop Report. 
 
17. B. Croft, J. Callan, and J. Broglio. (1993). “TREC-2 routing and ad-hoc retrieval evaluation 

using the INQUERY system.” In Proceedings of the Third Text REtrieval Conference 
(TREC-3). Gaithersburg, MD: National Institute of Standards and Technology, special 
publication 500-225, pp. 29-38. 

 
18. W. Hersh, C. Buckley, T. J. Leone and D. Hickam (1994.) OHSUMED: An interactive 

retrieval evaluation and new large test collection for research. In Proceedings of the 
Seventeenth Annual International ACM SIGIR Conference on Research and Development in 
Information Retrieval, pp. 192-201.  ACM Press. 

 
19. D. A. Hull.  (1999.)  The TREC-7 Filtering track:  Description and analysis.  In The Seventh 

Text Retrieval Conference (TREC-7).  National Institute of Standards and Technology, 
Special Publication 500-242. 

 
20. D A. Hull, and S. E. Robertson.  (1999.)  The TREC-8 Filtering Track final report. In 

Proceeding of the Eighth Text REtrieval Conference (TREC-8), pp. 35-56. National Institute 
of Standards and Technology, Special Publication 500-246. 

 
21. W. P. Jones and G. W. Furnas. (1987.)  “Pictures of relevance.”  Journal of the American 

Society for Information Science.    
 



 

 

 

71

22. Y.H. Kim, S.Y. Hahn, and B.T. Zhang.  (2000.)  Text filtering by boosting Naive Bayes 
classifiers. In Proceedings of the 23rd Annual International ACM SIGIR Conference on 
Research and Development in Information Retrieval, pp. 168-175.  ACM Press. 

 
23. W. Kraaij, R. Pohlmann, and D. Hiemstra.  (1999.)  “Twenty-One at TREC-8:  Using 

language technology for information retrieval.”  In Proceedings of the Eights Text REtrieval 
Conference (TREC-8).  NIST Special Publication 500-246. 

 
24. J. Lafferty and C. Zhai.  (2001.)  “Document language models, query models, and risk 

minimization for information retrieval.”  In Proceedings of the 24th ACM SIGIR Conference 
on Research and Development in Information Retrieval (SIGIR). 

 
25. L. Lee and F. Pereira.  (1999.)  “Distributional similarity models: Clustering vs. nearest 

neighbors.”  Proceedings of the 37th Annual Meeting of the ACL, 1999. 
 
26. H. P. Luhn.  (1958.)  “The automatic creation of literature abstracts.”  IBM Journal of 

Research, vol. 2, pages 159-165. 
 
27. S. Luo and J. Callan.  (2001.)  “Named entity detection.”  Technical Report, Language 

Technologies Institute, Carnegie Mellon University.  February, 2001. 
 
28. R.D. Lyer, D.D. Lewis, R.E. Schapire, Y. Singer, and A. Singhal.  (2000.)  Boosting for 

document routing. In Proceedings of the Ninth International Conference on Information 
Knowledge Management (CIKM 2000), pp. 70-77.  ACM Press. 

 
29. D. MacKay.  (2001.)  “macopt - a nippy wee optimizer.” 

http://wol.ra.phy.cam.ac.uk/mackay/c/macopt.html. 
 
30. http://www.ccr.buffalo.edu/class-notes/hpc2-00/odes/node4.html. 
 
31. R. Manmatha, T. Rath, and F. Feng.  (2001.)  “Modeling score distributions for combining 

the outputs of search engines.”  In Proceedings of the 24th Annual International ACM SIGIR 
Conference on Research and Development in Information Retrieval.  ACM. 

 
32. C. Manning and H. Schutze.  (1999.)  Foundations of Statistical Natural Language 

Processing.  MIT Press. 
 
33. A. McCallum, R. Rosenfeld, T. Mitchell, and A. Y. Ng.  (1998.)  “Improving Text 

Classification by Shrinkage in a Hierarchy of Classes.”  Proceedings of the Eighteenth 
International Conference on Machine Learning. 

 
34. D. R. H. Miller, T. Leek, and R. Schwartz.  (2001.)  “A hidden Markov model information 

retrieval system.”  Proceedings of the 22th Annual International ACM SIGIR Conferenc eon 
Research and Development in Information Retrieval.”  Pp. 214-221. 



 

 

 

72

 
35. J. Ponte and W. B. Croft.  (1998.)  “A language modeling approach to information retrieval.”  

In Proceedings of the 21st Annual International ACM SIGIR Conference on Research and 
Development in Information Retrieval, pp. 275-281. 

 
36. M. F. Porter. (1980.) An algorithm for suffix stripping.  Program, 14 (3), pp. 130-137. 
 
37. W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery.  (1992.)  Numerical 

Recipes in C:  The Art of Scientific Computing, pp. 420-425. Cambridge University Press. 
 
38. S.E. Robertson.  (2001.) Threshold setting in adaptive filtering.  Journal of Documentation. 
 
39. S. E. Robertson, and D. A. Hull.  (2001.)  Guidelines for the TREC-9 Filtering Track.  

Proceeding of Ninth Text REtrieval Conference (TREC-9). National Institute of Standards 
and Technology, Special Publication. 

 
40. S. Robertson and I. Soberoff.   (2002.)  “The TREC 2001 Filtering Track report.”  

Proceedings of the Tenth Text REtrieval Conference (TREC 2001). National Institute of 
Standards and Technology, special publication 500-250. 

 
41. S.E. Robertson, and S. Walker. (2001.)  Microsoft Cambridge at TREC-9: Filtering track. In 

Proceeding of Ninth Text REtrieval Conference (TREC-9). National Institute of Standards 
and Technology, Special Publication. 

 
42. S. E. Robertson, S. Walker, M. M. Beaulieu, and M. Gatford, A. Payne.  (1995.)  Okapi at 

TREC-4.  In Proceeding of Fourth Text REtrieval Conference (TREC-4).   National Institute 
of Standards and Technology, Special Publication 500-236. 

 
43. J. J. Rocchio.  (1971.)  “Relevance feedback in information retrieva.”  In G. Salton, editor, 

The SMART retrieval system – Experiments in automatic document processing, chapter 14.  
Prentice Hall. 

 
44. R.E. Schapire, Y. Singer, and A. Singhal. (1998.)  Boosting and Rocchio applied to text 

filtering. In Proceedings of the 21st Annual International ACM SIGIR Conference on 
Research and Development in Information Retrieval, pp.  215-223.  ACM. 

 
45. C. Zhai, P. Jansen, N. Roma, E. Stoica, and D.A. Evans.  (1999.)  Optimization in CLARIT 

adaptive filtering. In Proceeding of the Eighth Text REtrieval Conference (TREC-8), pp. 253-
258. National Institute of Standards and Technology, Special Publication 500-246. 

 
46. C. Zhai, P. Jansen, E. Stoica, N. Grot, and D. A. Evans.  (1999.)  “Threshold calibration in 

CLARIT adaptive filtering.  In Proceedings of the Seventh Text REtrieval Conference 
(TREC-7).  NIST Special Publication 500-242. 

 



 

 

 

73

47. C. Zhai and J. Lafferty.  (2001.)  “Model-based feedback in the language modeling approach 
to information retrieval.”  In Proceedings of the Tenth International Conference on 
Information and Knowledge Management.  

 
48. C. Zhai and J. Lafferty.  (2001b.)  “A study of smoothing methods for language models 

applied to ad-hoc information retrieval.”  Proceedings of the 24th Annual Int'l ACM SIGIR 
Conferenc eon Research and Development in Information Retrieval, pp. 334-342.    

  
49. Y. Zhang and J. Callan.  (2001a.)  “A generative model for filtering thresholds.”  Workshop 

on Language Modeling and Information Retrieval, Carnegie Mellon University, May 31-June 
1, 2001. 

 
50. Y. Zhang and J. Callan.  (2001b.) “Maximum likelihood estimation of filtering thresholds.”  

In Proceedings of the Twenty Fourth Annual International ACM SIGIR Conference on 
Research and Development in Information Retrieval.  ACM.   

 
51. Y. Zhang and J. Callan. (2001c.) “YFilter at TREC-9.” In Proceedings of the Ninth Text 

REtrieval Conference (TREC-9). National Institute of Standards and Technology, special 
publication 500-249. 

 
52. Y. Zhang and J. Callan.  (2002).  “The bias problem and language models in adaptive 

filtering.”  In Proceedings of the Tenth Text REtrieval Conference (TREC 2001). National 
Institute of Standards and Technology, special publication 500-250. 

 
53. Y. Zhang, J. Callan, and T. Minka. (2002.) “Novelty and redundancy detection in adaptive 

filtering.” In Proceedings of the Twenty Fifth Annual International ACM SIGIR Conference 
on Research and Development in Information Retrieval. Tampere, Finland: ACM. 

 
54. Y. Zhang, W. Xu., and J. Callan. (2002.) “Exact maximum likelihood estimation for word 

mixtures.”  In ICML 2002 Workshop on Text Learning (TextML 2002). 


