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1. Overview 
This document is the final report for QuOIN, the Quorum distributed Object Integration project.  This 
DARPA project, with additional funding from the Air Force Research Laboratory, ran from June 1998 
through December 2001, under contract No. F30602-98-C-0187.  During its lifetime, QuOIN focused 
on three separate technology aspects: 
• An architecture and design for a multi-layer, middleware based model and implementation for 

providing and managing adaptive end-to-end QoS in a distributed object applications, 
• An integration of a variety of Quorum technologies into this architecture and design as a proof of 

concept for a number of specific QoS dimensions, 
• Test, evaluation and transition activities using the proof of concept implementation on real world, 

domain specific problems, providing leave behind Quorum products in the application domain, and 
providing useful feedback on the continuing design and implementation. 

BBN Technologies (BBN) was the prime contractor for the QuOIN project. Washington University in 
St. Louis (WUSTL), the University of California, Irvine (UCI), the University of Illinois, and 
OOMWorks Inc. were subcontractors to BBN for this effort.  In addition, a number of other Quorum 
program participants have integrated their ideas and technologies with the evolving QuOIN software 
as part of the Quorum integration activities, and still other Quorum participants have participated in 
QuOIN transition, test and evaluation activities. 
 
The Quorum program is revolutionizing the way that people approach network-centric computing in 
the 21st century. The primary element in Quorum’s strategy of transformation is focusing on 
middleware based architectures built around adaptive approaches to Quality of Service (QoS). 
 
The Quorum Distributed Object Integration (QuOIN) project was a key component of the Quorum 
program by building advanced middleware that introduces adaptive QoS capabilities into the 
distributed object computing (DOC) software development model. This new QoS-enhanced DOC 
middleware is based on a combination of existing commercial-off-the-shelf (COTS) software and 
emerging technology currently under development by the Quorum research community. By integrating 
these software capabilities, QuOIN has produced a DOC environment with emerging managed QoS 
properties in the following areas: 
• Reserved/managed network bandwidth 
• Availability  
• Real-time behavior  
• Security (access control) 
 
Highlights of the results from the recently concluded QuOIN activity include: 
1. An architecture for integrated, end-to-end adaptive QoS 
2. Detailed design and implementation of a middleware based service layer for constructing adaptive 

applications (QuO) 
3. Detailed design and implementation of a QoS property (dependability) within the evolving 

adaptive QoS architecture (AquA) 
4. Progress in the evolution of a realtime Corba ORB and its services, focused on end-to-end adaptive 

behavior 
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5. Progress on adaptive management of security and network bandwidth 
6. 3 major releases of the QuOIN software to the Quorum community, available as open source 
7. Cooperative development of two exemplar applications as concept demonstrations and technology 

transition vehicles 
8. Organizing and carrying out a series of Quorum working groups as a means of focusing the various 

Principal Investigator participants around technical topic areas of interest 
9. Demonstrations of the technology and the transition applications for technologists at PI meetings, 

adopters at Quorum technology forums and DARPATech and for users as part of transition 
activities 

10. Numerous journal and conference papers, presentations and theses to promote the ideas and 
educational dissemination objectives of the program 

The most significant summarizing result from all of these (and related) activities is that the adaptive, 
integrated middleware based approach to building network-centric, responsive systems is now firmly 
entrenched in the technical community as a cohesive technical research agenda, and initial parts of the 
required technology base are already being transitioned into real use cases.  Acceptance and early 
adoption has been most visible in those (DoD) application domains involving precision and rapid 
reaction in volatile, mobile distributed environments. 
 
This report summarizes the activities, progress made and impact of the QuOIN project on its technical 
and transition agenda, as well as new visions for carrying this work forward.  It is organized as 
follows: Section 2 presents an overview of Quorum and the architecture, design and 
technologies/capabilities which formed the basis for QuOIN, including references to additional sources 
of information about these technologies and examples of applications constructed with the emerging 
technology base which serve as the vehicles for technical transition activities.  Section 3 presents a 
detailed overview of a dependability architecture and implementation (called AQuA) which has been 
integrated into the QuOIN family of projects, first as a companion Quorum activity to QuOIN, and 
then as a subdevelopment of QuOIN itself. Section 4 describes experimentation with standardized 
middleware mechanisms for controlling real-time behavior in the context of one of our technology 
transition vehicles. Section 5 provides a synopsis of the 3 major releases of the QuOIN software as 
open source release to the community. Section 6 presents a detailed plan for taking these ideas further 
in future R&D activities. Section 7 provides a chronological review of project activities during its 
lifetime. Section 8 provides a selected list of publications, presentations, and public demonstrations 
related to or developed under QuOIN.  



 

 

 

3

2. Quorum and QuOIN Technical Summary 
Quorum: Toward Middleware-centric Adaptive Quality of Service for 
Distributed and Embedded Real-time Systems 
 
Complex computing systems are predominantly networked. As a result, they must operate under 
increasingly unpredictable and changeable conditions. This problem occurs at multiple levels, ranging 
from distributed applications that are geographically dispersed to applications that are embedded and 
componentized.  Both types of applications pose similar problems and issues, and lend themselves to 
similar solutions using strategies, algorithms, and optimizations at various levels of granularity.  In 
particular, they require predictable mission-critical levels of service end-to-end.  Adaptive distributed 
object computing (DOC) middleware is a promising approach to provide these end-to-end services by 
coordinating lower-level mechanisms that coordinate application- or user-centric tradeoffs. 
However, the current generation of commercial-off-the-shelf (COTS) middleware lacks adequate 
support for real-time applications with stringent quality of service (QoS) requirements.  Moreover, 
there is a pressing need to coordinate individual advances in the solution space being addressed by 
different parts of the research community.  The problems faced by distributed and embedded real-time 
application developers are particularly challenging, with many interlocking aspects.  Unless pieces of 
the emerging solution are available as coordinated, integrated packages, the value of middleware is 
severely diminished and may in fact make matters worse instead of better, thereby being unacceptable 
to system developers and integrators.  This section describes how the DARPA Quorum research 
program is investigating the technologies, issues, and integration activities that must be resolved to 
realize the goal of adaptive middleware using QoS-enabled frameworks, patterns, and components, 
and how these technologies are being used in developing real world applications for test and 
evaluation and transition. 

2.1. Introduction 
One side-effect of the rapid growth and deployment of highly networked and interconnected 
distributed and embedded applications is the requirement for more attention to usability, efficiency, 
predictability, scalability, and control of the communication mechanisms that underly these 
applications. It is often hard or impossible to predict a priori even approximate configurations or 
workload mixes in environments composed of highly distributed and embedded components. 
Therefore, potential solutions must be sufficiently flexible to support varying, yet highly predictable, 
behavior at different times during an application’s lifecycle.  Quality of Service (QoS) is a widely 
accepted term that describes a loosely organized collection of activities and technology initiatives 
designed to improve and control communication-oriented resource management based on mounting 
R&D experience with distributed and embedded real-time applications and systems. 
 
Providing effective QoS has always been a factor influencing the usability of applications and systems. 
It is only recently, however, that QoS as a set of named aspects [12, 16] has become the focus as user-
controllable properties of distributed system infrastructure enhancements.  Increased user control is in 
contrast to the level of service that has been traditionally fixed, identically and uncontrollably for all 
users and application use-cases, during system conception.  The recent focus on user-controlled QoS 
aspects stems from technology advances in historically challenging research areas, such as static 



 

 

 

4

allocation policies established during design time, unsynchronized media streams in distributed 
multimedia applications, or the lack of assured communication resources for high-priority users during 
high-demand periods.  In general, the focus on QoS aspects has led the computing and communication 
research community to devise a number of proposed and implemented improvements to commonly 
available distributed computing infrastructures. 
 
Viewed in their narrowest form, these recent QoS advances address the capabilities and control 
mechanisms that are available within the network itself.  For instance, multimedia research has 
focused on the problems of synchronizing various streams of media as they traverse the network 
independently [31, 39], and on reserving necessary communication capacity [38].  However, our 
experience from developing suites of integrated, networked planning and scheduling applications 
reveals other key factors that affect QoS, beyond timely communication services. In its broadest sense, 
therefore, QoS involves a multitude of aspects that transcend the specific functional behavior of a 
particular distributed or embedded real-time application.  Examples of these broader QoS aspects 
include real-time performance characteristics, dependability, and security, with adaptive “design once, 
run anywhere” behavior that can adjust to various changing environments and QoS requirements.   
 
A growing class of mission-critical distributed systems, including defense avionics mission 
computing, commercial aerospace, manufacturing process control systems, and tactical command and 
control systems, require end-to-end support for flexible and adaptive end-to-end QoS.   In addition, 
these mission-critical distributed systems typically require seamless interoperability, distribution over 
multiple nodes, and the sharing of information in support of rapidly organized joint and coalition 
missions. Moreover, to reduce development cycle time and level of effort, these types of systems are 
increasingly composed of commercial-off-the-shelf (COTS) assets consisting of diverse capabilities 
that are often deployed in environments subject to significant change and stress.  
 
Unfortunately, conventional COTS technology emphasizes functional interoperability with virtually no 
assurance of, or control over, mission-critical QoS aspects, such as timeliness, precision, reliability, 
and security. Moreover, conventional COTS implementations do not enable acceptable tradeoffs 
among these QoS aspects. Exacerbating this problem is the fact that much of the commercial world 
has adopted a model of "distributed" computing based on least-common-denominator desktop 
operating systems.  These trends are particularly problematic because COTS-based distributed systems 
are becoming enabling technologies for projects in competitive industries where deregulation, global 
competition, and shrinking R&D budgets motivate the need for increased software productivity, 
quality, and cost-effectiveness. Unfortunately, no single system integrator or solution provider yet 
supplies technologies that span the full range of infrastructure required to meet the QoS demands of 
mission-critical distributed and embedded real-time applications and systems.  
 
The forces and trends outlined above motivate the need to construct systems that operate effectively at 
the intersection of the following attributes: integrated QoS tradeoffs, adaptive behavior, middleware-
driven end-to-end behavior and reusable COTS infrastructure.  In this paper, we present strategies for 
organizing these activities and report progress from the DARPA Quorum research program that is 
exploring adaptive QoS from a COTS infrastructure and middleware perspective.  
 
The remainder of this section is organized as follows.  Section 2.2 outlines a solution to the challenges 
enumerated above based on adaptive COTS middleware; Section 2.3 summarizes recent advances in 
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this direction within the DARPA Quorum research program; Section 2.4 and 2.5 outline Quorum 
program concepts and the organizing technical themes; Section 2.6 describes the collection of 
technologies being developed and integrated under Quorum and QuOIN; Section 2.7 describes two 
examples of adaptive applications that were developed as technology test, evaluation and transition 
vehicles; Section 2.8 discusses some additional areas of investigation that remain and Section 2.9 
provides some concluding remarks. 

2.2. Candidate Solution: Adaptive COTS Middleware 
Requirements for faster development cycles, decreased effort, and reusable solutions motivate the use 
of middleware.  Middleware is software that resides between applications and the underlying operating 
systems, protocol stacks, and hardware to enable or simplify how these components are connected and 
interoperate. The role of middleware, such as Sun's Jini [33], Java RMI [37], and EJB [34] 
frameworks, Microsoft's DCOM [1], and the Object Management Group (OMG) CORBA [20, 19, 18] 
middleware, is to decrease the cycle-time and level of effort required to develop high-quality, flexible, 
and interoperable distributed and embedded systems using reusable software infrastructure component 
services, rather than building systems entirely from scratch for each use.  In general, middleware 
provides the following benefits: (1) it shields software developers from low-level, tedious, and error-
prone details, such as socket-level programming [28], (2) it provides a consistent set of higher-level 
network-oriented abstractions for developing distributed and embedded systems and (3) it amortizes 
software lifecycle costs by leveraging previous development expertise and capturing implementations 
of key design patterns [2, 7] in reusable frameworks, rather than rebuilding them manually for each 
use.  
 
When middleware is commonly available for acquisition or purchase, it becomes COTS.  While it is 
possible in theory to develop complex systems from scratch, i.e., without using COTS middleware, 
contemporary economic and organizational constraints, as well as competitive and interoperability 
pressures, are making it implausible to do so in practice.  Thus, COTS middleware plays an 
increasingly strategic role in software intensive, mission-critical distributed and embedded real-time 
systems, which is why we base our adaptive QoS-centric R&D activities on COTS middleware. 
 
Distributed object computing (DOC) is the most advanced, mature, and field-tested middleware 
paradigm available today in which to achieve this flexible adaptive behavior.   DOC software 
architectures are composed of relatively autonomous objects that can be distributed or collocated 
throughout a wide range of networks and interconnects.  Clients invoke operations on target objects to 
perform interactions and functionality needed to achieve application goals.   Within the family of 
distributed object computing models, we are initially focusing activities on CORBA because it is 
heterogeneous and because it has a well-established, successful, and open standardization process. 
Moreover, an increasing number of standards-compliant CORBA implementations [29] are now 
available for use in mission-critical distributed and embedded systems. 
 
Due to constraints on footprint, performance, and weight/power consumption, development of 
mission-critical distributed and embedded real-time systems has historically lagged behind mainstream 
software development methodologies by a considerable amount.  As a result, these types of software 
systems are extremely expensive and time-consuming to develop, validate, optimize, deploy, maintain 
and upgrade.  Moreover, they are often so specialized and tightly coupled to their current 
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configurations and operating environments that they cannot be readily adapted to new market 
opportunities, technology innovations or changes in run-time situational environments. 
 
In addition to the development methodology and system lifecycle constraints mentioned above, 
designers of mission-critical distributed and embedded real-time systems have historically used 
relatively static methods when allocating resources to system components, which often possess 
competing real-time requirements.  For instance, flight-qualified avionics mission computing systems 
[10] have traditionally established the priorities for all resource allocation and scheduling decisions 
very early in the system lifecycle, i.e., well before run-time.  Static strategies have been used for 
mission-critical distributed and embedded real-time applications because (1) system resources were 
insufficient for more computationally intensive on-line approaches and (2) simplifying analysis and 
validation was essential to remain on budget and on schedule, particularly when systems were 
designed from scratch using low-level, proprietary languages, operating systems, interconnects, and 
software tools. 
 
The next-generation of mission-critical distributed and embedded real-time systems require an 
increasingly wide range of features, while at the same time minimizing costs.  For instance, next-
generation avionics mission computing systems [11] must collaborate with remote command and 
control systems, provide on-demand browsing capabilities for human operators, and flexibly respond 
to unanticipated situational factors that arise in run-time environments.  Moreover, these systems must 
perform unobtrusively, shielding human operators from unnecessary details, while simultaneously 
communicating and responding to mission-critical information at an accelerated operational tempo. 
The characteristics of next-generation systems present QoS requirements for shared resources and 
workloads that can vary significantly at run-time.  In turn, this increases the demands on end-to-end 
system resource management and control, which make it hard to simultaneously (1) create effective 
resource managers using traditional statically constrained allocators and schedulers, (2) achieve 
reasonable resource utilization and (3) meet the individual application needs for tradeoff preferences. 
In addition, the mission-critical aspects of these systems require that they respond adequately to both 
anticipated and unanticipated operational changes in their run-time environment and ensure critical 
components can acquire available resources [8]. 
 
Meeting the increasing QoS demands of next-generation real-time systems motivates the need for 
adaptive middleware-centric abstractions and techniques, such as the automated reconfiguration, 
layered resource management, and dynamic scheduling techniques being explored in the context of the 
DARPA Quorum program [4], which we describe in the following section. 

2.3. Recent Advances in Adaptive Middleware: the DARPA Quorum 
Program 

To investigate and transition many of the capabilities required to provide end-to-end QoS to mission-
critical distributed and real-time systems, DARPA established the Quorum research program.  This 
DARPA program focuses on Quality of Service (QoS) in the broader meaning of the term, i.e., as an 
organizing concept for integrated, adaptive resource management for mission-critical distributed 
computing applications. 
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The Quorum program is developing the technologies, as well as assembling them into an integrated, 
distributed infrastructure environment, that are necessary to support the QoS requirements of next-
generation mission-critical applications, such as those described in section G.  A fundamental premise 
of Quorum is that adaptive QoS management is a key organizing paradigm for providing applications 
with the end-to-end assurances necessary to guarantee mission success in highly dynamic, 
unpredictable, heterogeneous networked environments, both for embedded contexts and the more 
widely dispersed collaborative use cases. While emerging network-level QoS mechanisms, such as 
RSVP and Internet2, are an essential enabling technology for Quorum, they are not sufficient in 
isolation because they are limited to QoS at the communication layer. In contrast, Quorum defines 
"end-to-end" as being the quality-of-service seen by the application, which calls for coordinated QoS 
management across middleware, operating system, network, and other communication layers. 

2.4. Quorum Program Concepts 
An overview of the Quorum program concept is shown in Figure 2.1.  The top half of the figure 
illustrates the concept for the technology needed to provide adaptive feedback paths that maintain and 
adjust the quality delivered to applications end-to-end.  The “drilling” that penetrates the layers below 
depicts the need to coordinate the information and control flow between layers according to the end-
to-end QoS needs. The lower part of the figure connotes the multiple, early transition targets for these 
technologies, ranging from a focus on embedded computing to integrated command and control 
systems. 
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Figure 2.1: Quorum Program Organization 
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The Quorum program is structured according to the following interrelated technology development 
tasks and the integration and demonstration task. 
 
Quality-of-Service (QoS) Framework 
This task focuses on developing the end-to-end QoS management technologies that define the 
innovative architectural principles of Quorum. QoS is broadly defined to encompass not only 
performance measures such as bandwidth, latency and throughput, but also mission-critical aspects 
such as real-time constraints, dependability and security. 
 
Translucent System Layers 
This task focuses on developing the innovative system software layers needed to populate the QoS 
framework architecture. In contrast to the classical ideal of “layered functional transparency” in 
distributed computing, in which implementation decisions that impact mission-critical QoS aspects are 
invisible to the user and frustratingly uncontrollable, this task pursues the concept of translucency. 
Translucent services preserve the benefits of functional transparency, but are dynamically responsive 
to QoS constraints imposed by higher layers (or feedback from lower layers or the environment). This 
design principle allows these services to adapt their behavior through selection or specialization of 
alternative implementations, policies or mechanisms in accordance to changing requirements and 
environments.  
 
Adaptive Resource Management 
This task focuses on developing the resource management strategies necessary to dynamically 
discover, allocate and schedule resources in accordance with QoS constraints negotiated by 
applications and the system infrastructure.  Associated issues include collection and maintenance of a 
consistent global view of resource status, as well as dynamic resource allocation algorithms that 
support adaptation in response to workload demands, failures or crisis mode behavior. 
 
Integration, Demonstration and Validation 
Realizing the ambitious Quorum vision requires coordinated development of the constituent 
technologies outlined in the preceding three bullets, together with their integration into a series of 
concept demonstration reference implementations of successively greater capability, as well as their 
evaluation and demonstration in the context of production-quality mission-critical applications.   
Currently available parts of the Quorum technology base have already been used successfully in a 
range of applications and demonstrations including avionics mission computing at Boeing [6] and 
video control for a simulated unmanned aerial vehicle with adaptive real-time behavior [41]. 
 
The QuOIN activity operates across all four of these task areas.   

2.5. Organizing Technical Themes 
For a significant number of mission critical systems, both the current operating environment and 
information processing requirements can be expected to change during operation. This often implies 
the need to adapt to changing conditions.  One Quorum challenge is to design a distributed system 
infrastructure-based architecture and reify this architecture into a concrete reusable middleware 
framework for building adaptive applications. As shown in Figure 2.2, the Quorum architectural 
framework is organized around QoS-oriented specification, feedback, negotiation and control  
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Figure 2.2: Key Quorum Program Technical Challenges 
 
mechanisms that can be applied to the wide range of QoS aspects currently under investigation in 
Quorum. 
 
Quorum is developing advanced, reusable middleware that can enable a new generation of flexible 
distributed and embedded applications.  These new applications will have more explicit control over 
their resource management strategies.  As a result, they will be more easily reconfigurable and 
adaptive in response to dynamic changes in network and computing environments.   In particular, they 
will have a wider operating range than the conventional prevailing binary mode between “working” 
and “broken.”   
 
From one perspective, Quorum is developing an extensible software development framework, built on 
a distributed object (DOC) middleware infrastructure that simplifies the support of dynamic run-time 
adaptation to changing configurations, requirements or availability of resources.  From a 
complementary perspective, it is an evolving architecture with a growing base of components and 
mechanisms filling out this architecture to support an integrated QoS concept for managing collections 
of system aspects and the tradeoffs among these aspects to support varying operating objectives.  

2.6. Technical Integration 
In any DOC middleware architecture, the functional path is the flow of information between a client's 
invocation to a remote object and back. The middleware is responsible for exchanging this information 
efficiently, predictably, scalably and securely between the remote entities by utilizing the capabilities 
of the underlying network and endsystems.  The information itself is largely application-specific and 
determined solely by the functionality being provided (hence the term “functional path”).  The 
functional path deals with the “what” of the client object interaction from the perspective of the 
application, e.g., what function is to be requested for that object, what arguments will be provided and 
what results, if any, will be returned to the client.   
 
In addition to providing middleware that supports the functional path, Quorum adds a system path 
(a.k.a., the “QoS path”) that handles issues regarding “how well” the functional interactions behave 
end-to-end. Thus, Quorum middleware is also intimately concerned with the non-functional aspects of 
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distributed and embedded application development. For example, this involves the resources 
committed to client  object interaction and possibly subsequent interactions, proper behavior when 
ideal resources are not available, the level of security needed, the recovery strategy for detected faults, 
etc.  A significant portion of the Quorum middleware is dedicated to facilitating the collection, 
organization and dissemination of the information required to manage how well the functional 
interaction occurs, and to enable the decision making and adaptation needed under changing 
conditions to support these non-functional “how well” QoS aspects.  
 
Quorum separates the non-functional QoS requirements from the functional requirements for the 
following two reasons: 
• To allow for the possibility that these requirements will change independently e.g., over different 

resource configurations for the same applications; and 
• Based on the expectation that the non-functional aspects will be developed, configured and 

managed by a different set of specialists than those customarily responsible for programming the 
functional aspects of an application. 

In its most useful forms, the non-functional QoS aspects extend end-to-end.  Thus, they have elements 
applicable to the network substrate, the platform operating systems, the distributed system services and 
the programming system in which they are developed, the applications themselves, as well as the 
middleware that integrates all these elements together.  Thus, the following two basic premises underly 
adaptive middleware: 
• Different levels of service are possible and desirable under different conditions and costs, and 
• The levels of service in one dimension may need to be coordinated with and/or traded off against 

the levels of service in other dimensions to achieve the intended overall result. 
 
There are three complementary parts to Quorum’s middleware organization:   
• The first part deals with the features and components needed to introduce the concepts for 

predictable and adaptable behavior into the application program development environment, 
including specification of desired levels of QoS aspects. 

• The second part deals with providing run-time middleware to ensure appropriate behavior, 
including collecting information and coordinating any needed changes in behavior.  

• The third part deals with inserting the mechanisms for achieving and controlling each particular 
aspect of QoS that is to be managed, including aggregate allocation, scheduling and control 
policies. 

Integrating these facets and inserting sample mechanisms and behavior is a significant integration job.  
Therefore, the Quorum Object Integration (QuOIN) activity is combining technology developed or 
derived from a number of individual Quroum projects to demonstrate both how and how well various 
layers interact. 
 
Figure 2.3 illustrates our general concept of middleware and some of the key layers we are using to 
organize our QuOIN technology integration activities. Based on our prototyping and benchmarking 
activities to date [6, 17], the integrated QuOIN components enable an unprecedented degree of 
application level control and adaptability to varying conditions typically found in both embedded and 
Internet environments, as they are occurring.  In turn, these integrated capabilities enable a new 
generation of applications that are designed to be easily customized in their resource management, 
without the need to make the task of the application developer significantly more complex or risky.   
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Figure 2.3: Simplified System Model 
 
In the remainder of this section, we highlight the QuOIN project activities we are using to populate the 
Quorum adaptable system vision in order to complete the necessary infrastructure components and 
specific QoS property mechanisms.  Our intent is to provide a brief overview of the Quorum 
components being integrated by QuOIN.  Each of these activities has been described in more detail 
elsewhere, and we provide pointers to the individual project web sites for additional information on the 
particular technologies. 

2.6.1. The TAO Real-time ORB 
The TAO ORB was developed at Washington University, St. Louis and the University of California, 
Irvine to provide an open-source implementation for a CORBA-compliant, real-time, COTS 
middleware ORB and related ORB services.  The TAO ORB endsystem contains the network 
interface, OS, communication protocol and CORBA-compliant middleware components and services 
illustrated in Figure 2.4. 
 
TAO supports the standard OMG CORBA reference model and Real-time CORBA specification [19], 
with enhancements to ensure predictable QoS behavior for real-time applications.  In particular, TAO 
provides a real-time object adapter, run-time schedulers for both static and dynamic real-time  
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Figure 2.4: Real-time CORBA ORB and Related Subsystems 
 
scheduling strategies [30], and a real-time event service [10], which enables applications to utilize a 
publish/subscribe pattern of real-time development within a CORBA context.  

2.6.2. Quality Objects (QuO) 
The Quality Objects (QuO) [40, 35, 15] CORBA-based middleware framework was developed at BBN 
to facilitate the creation and integration of distributed and embedded applications that can specify (1) 
their QoS requirements, (2) the system elements that must be monitored and controlled to measure and 
provide QoS and (3) the behavior for adapting to QoS variations that occur at run-time.  QuO adds the 
abstractions of a QoS contract that summarizes the service requirements of the possible states the 
system might be in and actions to take when changes occur, system condition objects that measure and 
control behavior, and delegates that are packaged adaptive behaviors.  In addition, QuO introduces the 
concept of an Object Gateway [26], which is a means for integrating a wide variety of transport level 
QoS mechanisms into the DOC middleware paradigm.  Figure 2.5 highlights the components of the 
QuO framework and their relationship to other parts of the Quorum adaptive QoS environment, such 
as the TAO real-time ORB.  
 
Figure 2.6 highlights the layering of adaptive QoS middleware over the integrated QuO and TAO real-
time CORBA DOC environment.  In this view, the task of interfacing to the application is assigned to 
the adaptive middleware layer, which tracks the progress and changes the control parameters 
accordingly for the enforcement mechanisms provided by the real-time DOC middleware layer.   The  
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Figure 2.5: QuO Adaptive QoS Framework Components 

 
adaptive QoS management functions as a higher level of middleware that can interoperate with both 
the application-specific requirements and the lower-level middleware control mechanisms to produce 
the desired behavior under varying circumstances.  Real-time CORBA mechanisms, such as 
prioritization and filtering, can be modified dynamically to better match the current application 
requirements with the current operating conditions, as measured and evaluated by the adaptive layer.  

2.6.3. Proteus Dependability Manager 
Figure 2.7 highlights the design for the dependability aspects in QuOIN.  Developed primarily at the 
University of Illinois, this design is based on using off-the-shelf group communication mechanisms 
(Ensemble) to control the consistency of object replicas.  It provides a prototype property 
(dependability) manager component, named Proteus, which coordinates the number and location of 
object replicas, as well as coordinating the selection of replica control strategy, from among a growing 
class of supported strategies with various footprint and fault coverage capabilities.   For more details 
on the design for dependability see [3, 25] and [18] for the emerging CORBA Fault Tolerance 
standard which this work has influenced. 
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Figure 2.6: Adaptive Real-Time Behavior 
 

2.6.4. Remos and Darwin Network Measurement and Control Functions 
Measurement and control of network resources form an important part of the bandwidth management 
QoS capability.  Two components from Carnegie Mellon University, REMOS and DARWIN, are 
being developed in Quorum to provide advanced bandwidth management capabilities. REMOS is a 
subsystem for acquiring and disseminating information about network (and host) resource utilization, 
and an emerging capability for predicting future use.  DARWIN [23] is a subsystem for hierarchically 
managing network resources, and provides a resource reservation mechanism capability to the QuOIN 
integration.  Figure 2.8 illustrates how these two technologies integrate with other components in the 
Quorum DOC framework. 

2.6.5. Object-Oriented Domain Type Enforcement Access Control 
Adaptive security is supported in the QuOIN environment through another Quorum technology called 
Sigma, being developed by Network Associates/TIS Labs.  Sigma is a DOC-based access control 
mechanism and policy language that employs a domain type enforcement model.  Introducing Sigma 
into the QuOIN environment involves providing adaptive security policies, enforceable through the 
ORB and the Object gateway.  In addition, it provides a response mechanism that can be connected to 
a variety of triggers, such as variations in delivered QoS or specific Intrusion Detection Systems 
(IDS), to form the basis of defensive actions taken under suspicious circumstances.  Figure 2.9 
illustrates the concept integrated with DOC.  For more details on the adaptive security aspects of this 
work, see [32, 17, 36]. 
 
There is a substantial amount of information about QuOIN and the QoS mechanisms developed by our 
research partners available via the Web.  Below we list a sampling of pertinent URLs. 
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Figure 2.7: Dependability Management Using Group Communication 
 
For information on the Quality Objects (QuO) adaptive QoS middleware framework, visit BBN's QuO 
site at http://www.dist-systems.bbn.com/tech/QuO/. 
 
Copies of many of the QuO technical publications are available at http://www.dist-
systems.bbn.com/papers/. 
 
TAO (The ACE ORB) is the high-performance, real-time middleware underlying much of the Quorum 
CORBA infrastructure; it provides QuOIN's real-time aspects.  For information on ACE and TAO 
(The ACE ORB), visit Washington University's web site at 
http://www.cs.wustl.edu/~schmidt/TAO.html. 
 
The AQuA project, a joint effort of BBN and University of Illinois, with support from Cornell 
University, has developed QuOIN's dependability module.  For additional information on AQuA, visit 
the AQuA web site at http://www.crhc.uiuc.edu/PERFORM/AquA.html. 
 
The RSVP managed bandwidth capability grows out of joint research by BBN and Columbia 
University conducted under the DIRM project. Additional information on this research is available at 
BBN's DIRM site at http://www.dist-systems.bbn.com/projects/DIRM/. 
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Figure 2.8: Network Status and Control 
 
The QOSockets capability that underlies the RSVP managed bandwidth property is described in more 
detail at Columbia's QOSockets site at http://www.cs.columbia.edu/dcc/qosockets/. 
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Figure 2.9: Adaptable Access Control Policy Components 
 
For additional information on CMU's Remos project, which supports QuOIN's status monitoring 
capability, visit CMU's Remos site at http://www.cs.cmu.edu/~cmcl/remulac/remos.html. 
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Some of our work in the managed bandwidth area is based on CMU's Darwin project.  For more 
information visit http://www.cs.cmu.edu/~darwin/. 
 
For additional information on Network Associates/TIS Labs' SIGMA research, which forms the initial 
basis of the QuOIN security / access control capability, visit 
http://www.nai.com/products/security/tis_research/applied/arse_corba.asp. 
 
The Quorum technologies selected for integration were chosen carefully because they focus on 
complementary parts of the end-to-end solution for different QoS aspects, and because they had 
already self-selected toward common COTS middleware implementation base.  However, integration 
at the level of large-scale technology investigation projects is very hard.  Part of the difficulty stems 
from the simultaneous investigation and development of both the common integrating environment, as 
well as the individual technology focus.   Since these are both leading-edge activities, key new 
developments from each often must be factored into the others. Therefore, one of the key lessons 
we’ve learned so far is that it has been very effective to have an overall middleware integration 
framework that can incorporate the key ideas from a variety of QoS dimensions.  However, the 
complementary lesson learned is that integration boundaries must be fluid and are generally nominal, 
pending a multi-way negotiation to mediate between the individual technology needs and the need for 
common integration.   We have found that CORBA provides an effective middleware integration 
framework to suit many of the needs of QuOIN. 
 
It is (and has been) significantly less effective to attempt to integrate blackbox solutions.  Rather, in 
the most effective cases, the integration itself has been the focus for development activities to 
accommodate changes in the QoS mechanisms to account for integration, and changes in the common 
environment to account for the individual needs of the QoS mechanism.  The degree of change can be 
expected to diminish with experience.   However, in our opinion, there will be constantly evolving 
boundaries as insights and innovation occur across the individual mechanisms and the integrating 
medium.  

2.7. Examples of Distributed, Realtime Embedded Applications Using 
Adaptive Middleware for Demonstration and Technology Transition 

This section discusses two example DRE applications we’ve built, evaluated and experimented with as 
part of our investigation of managing QoS and adaptive behavior to meet mission requirements under 
varying and changing operating conditions, while simultaneously testing and evaluating emerging 
Quorum technologies.  The first of these applications (WSOA) is part of a fielded concept of operation 
in conjunction with the Boeing Company and AFRL supporting dynamic inflight replanning.  The 
second (UAV) represents a real-time video sensor capture, dissemination and processing capability 
with feedback, linking mobile and fixed assets, operating over shared resources. 

2.7.1. Weapons System Open Architecture (WSOA) 
The Weapons System Open Architecture (WSOA) [42] program has explored the possibility of 
building an open-systems testbed environment in which legacy embedded systems in the avionics  
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Figure 2.10: WSOA dynamic replanning system architecture 
 
domain can be integrated within a next-generation middleware quality of service (QoS) management 
context to provide unprecedented capabilities for time-critical target prosecution.   The major feature 
areas provided by the WSOA framework (Figure 2.10) are as follows: 
• Tactical communication links, using legacy Link 16 technology to connect mission computers on 

an F-15 aircraft with imagery terminal servers on a command-and-control (C2) aircraft. 
• Collaborative planning between F-15 and C2 personnel during a mission. 
• Giving F-15 personnel information-mining capabilities on the C2 imagery libraries, via a browser-

like interface using standard F-15 cockpit equipment. 
• Link bandwidth optimization, using contract-based evaluation of application requirements and 

system resources and loads. 
• Adaptive and dynamic QoS management, to ensure maintenance of critical assurances, while 

optimizing and tuning non-critical performance. 
 
This discussion highlights the last two feature areas: link bandwidth optimization and adaptive and 
dynamic QoS management. To provide assurances and optimization of key QoS system properties, 
coordinating diverse approaches to a number of QoS management areas is fundamental.  In particular, 
we have integrated several forms of advanced middleware capabilities within the WSOA testbed, 
including the following technologies that constitute layered middleware architecture (Figure 2.11): 
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Figure 2.11:  Layered resource management 
• QuO, an end-to-end QoS management middleware framework developed at BBN Technologies, 
• RT-ARM [45], a real-time adaptive resource manager developed at Honeywell Technologies, 
• Kokyu [46], a real-time scheduling and dispatching framework developed at Washington 

University in St. Louis, 
• TAO, a high-performance and real-time CORBA-compliant object request broker (ORB) 

developed at Washington University in St. Louis and the University of California, Irvine. 
 
In this subsection we consider how the WSOA project provides insights into the nature of resource 
management, dependability and adaptivity in heterogeneous systems with demanding QoS 
requirements.  Of particular interest is how the balance of (1) strict assurances for critical system 
behavior and (2) adaptive tuning and optimization of non-critical behavior is achieved.  Each 
middleware layer addresses separate concerns, and yet those concerns must be woven seamlessly end-
to-end and layer-to-layer to achieve robust and dependable system performance in complex mission-
critical systems, such as the WSOA testbed framework. 

2.7.1.1. Robust behavior during overload 
One key area in which dependability must be considered is whether skillful management of resources 
can allow a more robust response to scarcity in worst-case conditions, as well as giving better overall 
performance in the average case.  In WSOA, real-world constraints on power consumption, weight and 
frequency of processor upgrades limit the ability to offer sufficient resources through excessive over-
provisioning.  For example, the complexity of the environment in which WSOA is expected to operate 
combined with the further complexity of systems-of-systems integration end-to-end, means that 
explicit testing of all possibilities is not possible.  Instead, other techniques, such as combining testing 
and model-based analysis must be pursued. 
 
While the total system requirements for the WSOA testbed are both high in quantity and variable in 
the face of environmental variations, a key insight is that systems of this kind may still be engineered 
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so that a critical subset of the total requirements can be implemented so that they are both (1) lower in 
quantity and (2) more predictable in both time and in interaction with other system features.  For 
example, operations can be designed in a way similar to the imprecise computations model in that a 
fixed sufficient number of computation steps could be performed by a single critical operation, with 
additional desirable computation steps being performed by a sequence of non-critical operations 
whose execution is not assured.  This means that resources must be provisioned to assure the 
maximum critical requirements can be met, and that additional processing be managed dynamically 
and adaptively with remaining resources. 

2.7.1.2. The changing nature of proper functioning 
In an avionics mission-computing environment, such as WSOA, operations may exhibit different 
degrees of criticality, depending on the environmental and system context.  For example, consider 
computing the next segment of a navigation route, with each segment going between two waypoints.  
In some situations, such as under low-threat conditions, the first two segments from the aircraft’s 
current position may be the only ones considered critical, and others can be designated non-critical to 
reduce the demands of the critical subset of processing. In other situations, such as egress from a high-
threat environment, more route planning may be considered critical, so that additional navigation 
operations must be added to – and presumably other kinds of processing can be removed from – the 
critical subset. 
 
Interestingly, non-critical processing may also be made more dependable through context-aware 
adaptive management.  For example, if a non-critical navigation route segment cannot be computed on 
time, the application might retry the computation rather than proceed to compute the next segment, 
whose origin would depend on the one that was not computed.  As a similar example, imagery is 
downloaded as a sequence of tiles of varying quality, radially from a point of interest in the image.  
WSOA uses the QuO middleware to monitor download progress, and tune image tile compression 
upward as necessary to fit within the specified image transmission time (Figure 2.12).  Clearly, image 
tiles near the point of interest must be kept at as low compression as possible to improve image quality 
– however, additional surrounding context in the image may still be of sufficient resolution at lower 
quality to be useful.  
 

0

50

100

Start Deadline

Time

%
 Im

ag
e 

P
ro

ce
ss

ed

Early

Late

On Time

• Request more bandwidth on next tile

• Request higher priority

• Request lower Q level on next tile

• Notify application 

• Request higher Q level on next tile

• Finish early

Image A

Image B

 
Figure 2.12: A QuO contract monitors the progress of image download and adapts to keep it 
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The issue of timeliness for imagery download is interesting in the WSOA context due to the 
complexity of the libraries themselves, and the degree to which compression levels depend on the 
contents of the images. While a QuO contract may request a level of compression matching 
expectations of timely download and sufficient quality, the image itself may result in discrete 
alternative compression levels for each tile.  Moreover, system load, user inputs and other factors may 
further perturb the conditions under which QoS is managed. 
 
A control-centric QoS management architecture is therefore necessary to maintain dependable system 
behavior in the face of unanticipated conditions.  QuO monitors and adjusts its perception of system 
behavior regularly, so that it maintains a clear picture of the actual conditions under which it is 
controlling system QoS.  RTARM monitors a different set of conditions, such as whether it is 
succeeding in meeting control boundaries for processing (decompression, storage and delivery) tiles 
that arrive at the F-15 endsystem, and when it cannot feasibly schedule that processing either directs 
Kokyu to reschedule the CPU with some operations at lower ranges of available rates, or reports back 
to QuO that it cannot meet its obligations and QuO can respond accordingly.  What is most important 
here is that the control loop is closed even though it crosses multiple QoS management layers. 

2.7.1.3. Moving design and resource management decisions to later in the software 
engineering cycle 

In the Bold Stroke domain-specific middleware, upon which the WSOA framework is based, late 
binding was applied initially to software, in an evolution from handcrafted assembly language, to an 
object-oriented component-based CORBA approach written in C++.  The effect of this evolution was 
that the point in the software lifecycle at which functionality could be applied was pushed significantly 
later.  For example, in the handcrafted version, all functionality had to be defined before the design of 
a cyclic executive that ran the components.  In the initial CORBA version, rate monotonic scheduling 
was done at system build time, and through careful design of system modes, the set of objects that was 
active could be selected at run-time. 
 
WSOA takes this idea of late binding to another level, particularly in the area of QoS management.  
Hybrid static/dynamic scheduling and adaptive selection of execution rates was applied by Kokyu to 
defer operation scheduling until run-time.  The RTARM performed adaptive monitoring and 
adjustment of available rates to maintain system operating conditions within specified limits.  QuO 
used contract-based monitoring and evaluation to integrate diverse resource management techniques 
(e.g., image compression levels and rates of execution for the decompression operation) and to ensure 
that QoS requirements were met end-to-end. 

2.7.1.4. Knitting the different perspectives into a unified management capability 
The various capabilities described above need to be integrated together to form a cohesive system-
level solution, which involves information sharing across and between these views.  Each of the three 
levels of adaptive QoS management described above, QuO, RTARM and Kokyu, operates on a 
different time scale.  QuO can make image compression adjustments on a per-tile basis, with a 
maximum rate on the order of seconds. RTARM also bases its decisions on rate selection, and its 
maximum responsiveness is therefore also on the order of seconds.  Note that QuO might make both a 
compression level decision and handle a report of failure to maintain the given QoS limits from 
RTARM in the same interval, though such case are expected to be infrequent.   The Kokyu scheduler 
makes operations scheduling decisions whenever requested by RTARM, so its rate is naturally tied to 
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the RTARM.  As noted below, however, Kokyu is designed to minimize the fraction of that interval 
that it uses, to minimize overhead of adaptive responsiveness and improve the possible responsiveness, 
e.g., if the RTARM were calibrated to run at a faster rate.  Finally, the Kokyu dispatcher makes 
dynamic scheduling decisions and multiplexes dispatch requests onto prioritized threads, on the order 
of ten microseconds. As a result, as little overhead is added to the in-band (as compared to Kokyu 
scheduling, RTARM and QuO adaptation, which operate out-of-band) path as possible.  

 
 

 
 

Figure 2.13: The UAV concept includes information dissemination from, and control of, UAVs 
 

2.7.1.5. Experimentation 
To measure the benefits of multi-layer adaptive management, we are in the process of conducting 
experiments within a realistic F-15 OFP hardware and software environment.  We have instrumented 
the adaptation paths through the application to collect time stamps around the following activities:  
• QuO contract evaluation  
• QuO-triggered adaptation of compression levels 
• QuO-triggered adaptation of available rates of execution for image tile processing operations  
• RTARM in-region evaluation  
• RTARM-triggered adaptation of available rates for image tile processing operations and 
• Kokyu scheduler adaptive rescheduling of operations.   
In addition, we have instrumented the image tile request-download-decompression-delivery path to 
assess the impact of adaptive management on application performance.  We will run three major 
experiments, with repeated trials of each: (a) full compression, without adaptation, (b) no compression, 
without adaptation, and (c) variable compression, using adaptation.  
 
By obtaining and analyzing these data, we will achieve a clear profile of the following key factors for 
multi-layer adaptive resource management:  
• Coupling of layers in time and in overhead  
• Interactions of adaptation at different time-scales  
• Overhead measures for adaptation at each layer  
• Impact of adaptation on application performance – particularly how adaptation provides acceptable 

quality and timeliness of imagery, compared to over-compressed or under-compressed approaches 
without adaptation. 
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2.7.2. The Unmanned Aerial Vehicle (UAV) Application 
A second example we’ve developed is an unmanned aerial vehicle (UAV) [43] demonstration.  As part 
of an activity for the US Navy, DARPA and the US Air Force, we have been developing a DRE 
system centered on the concept of information dissemination from, and control of, UAVs, as 
illustrated in Figure 2.13. In this application we are concerned with managing the QoS requirements 
for (a) the delivery of video from UAVs to a command and control (C2) platform (e.g., a shipboard 
environment, ground station, or air C2 node) and (b) the delivery of control signals from the C2 
platform back to the UAVs. This QoS management includes trading off video quality and timeliness, 
and coordinating resource usage from end-to-end and among competing UAVs to satisfy changing 
mission requirements under dynamic, and potentially hostile, environmental conditions. 
 
Figure 2.14 illustrates the architecture of the demonstration. It is a three-stage pipeline, with simulated 
UAVs or live UAV surrogates (such as airships with mounted cameras) sending video to processes 
(distributors) that distribute the video to the proper control stations. The UAVs in our prototypes are 
implemented by two different types of processes.  The first reads MPEG video from a file simulating 
high frame rate video capture devices. The second is capturing video from a live camera feed, which 
adds realism to the prototype and provides the ability to manipulate the raw video, but produces frame 
rates limited by the camera’s capabilities. Our prototype also uses both wired and wireless Ethernet 
connections to simulate the data links from the UAVs to the distributor host. We use the TAO A/V 
Streaming Service, an implementation of the CORBA Audio/Video Streams standard, to manage the 
transmission of video between hosts. The wireless links from the second and third UAV surrogates 
contend for the same wireless Ethernet connection and provide a forum for experimenting with 
wireless video adaptation strategies. The wired Ethernet connection provides a higher bandwidth 
connection simulating current and emerging higher-capacity wireless transports. 
 
The video distributor processes send the video streams to control stations on a land- or ship-based 
network. The control stations include video display processes and other video processing applications 
(the current demonstration includes an automatic target recognition – ATR – application), each with 
their own mission requirements. 
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Figure 2.14: Architecture of the Current UAV Demonstration 
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2.7.2.1. UAV adaptivity strategies 
Adaptation is used as part of an overall system concept to provide load-invariant performance. The 
video displays throughout the ship must present the current images observed by the UAV with 
acceptable fidelity, regardless of the network and host load, in order for the control station operators to 
achieve their missions, e.g., flying the UAV or tracking a target. To accomplish this, QuO system 
condition objects monitor the frame rates and the host load on the distributor and video display hosts. 
As the frame rate declines and/or the host loads exceeds a threshold, they cause region transitions, 
which trigger the following adaptations: 
• If the network is the constrained resource, send a reduced amount of data, for example by dropping 

frames or compressing the video at the sender or the distributor. 
• If the land-based network is the constrained resource, use a bandwidth reservation protocol to 

ensure that the distributor is able to send the necessary data to the viewers through the network, 
even when the network is congested. 

• If the distributor CPU is the constrained resource, move the distributor to a different host where 
more resources are available. 

In addition, the ATR and other video processing applications must receive a sufficient frame rate and 
amount of critical data content to fulfill their missions, e.g., to recognize threats and targets in the 
video images. To accomplish this, QuO contracts on the UAV video sources coordinate to share the 
wireless link. For example, the current prototype scales and compresses the video destined for the 
ATR process while it filters those destined for human display as described above. This maintains a 
high rate of frames with sufficient information (but not necessarily enough for viewing) for the ATR 
and a smooth, viewable video for the human operators.  
 
Adaptation is also used to respond to changing mission requirements and to dynamic conditions. For 
example, in the current UAV prototype, when the ATR process recognizes a target, it changes the 
mission requirements of the corresponding UAVs. Whereas previously they only needed to make sure 
a high rate of the critical data needed by the ATR made it through, once a target has been detected the 
UAV must provide human viewable video so that a commander can make a decision, an operator can 
track the target, etc. To accomplish this, a contract associated with the ATR host reacts to target 
recognition by propagating that information upstream to contracts on the UAV sources. The contracts 
on the UAV coordinate to achieve the new mission, i.e., providing high quality video at a high rate 
from the targeting UAV in the following manners: 
• The targeting UAV shuts off its scaling and compression of the video. 
• To accommodate the greater amount of data on the wireless link from the UAV that spotted the 

target, the other UAVs will reduce their frame rate to the minimal acceptable rate. 
• The current prototype includes diversity in the video format (MPEG and PPM), network transport 

(wireless, LAN, and WAN), and mission requirements (video viewing and ATR) to support a 
number of experiments in dynamic adaptation.  

• The TAO A/V Streaming Service provides the flow connection between the various processes. 
This is an implementation of the CORBA A/V Streaming Service [47], which supports multimedia 
applications.  

• The CORBA A/V Streaming Service uses RSVP as its bandwidth reservation mechanism. 
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2.7.2.2. Robust behavior under overload 
Similarly to the WSOA application, the UAV prototype has requirements for dependability even in the 
presence of load or variations in the availability of resources. Also similarly to WSOA, these include 
both network resources and CPU resources. The C2 components (whether shipboard or ground-based) 
that are the target for the UAV video data do not typically face the same constraints on power 
consumption and weight as the WSOA avionics platform, although the UAVs themselves will 
frequently face even more strict constraints in these areas. Moreover, the current instantiation of the 
UAV prototype requires resource management in two dimensions: 
• Horizontal, or end-to-end, to achieve requirements of video delivery from any particular UAV to 

the control stations that use it (and control signals from the control stations back to the UAVs).  
• Vertical, or coordinated, to mediate the conflicting requirements of multiple UAVs, multiple 

distributors and multiple control stations in any stage of the pipeline, competing for a set of 
resources, e.g., CPU, network and data. 

2.7.2.3. The changing nature of proper functioning 
In the UAV platform, mission requirements can change from control station to control station and 
from moment to moment, based upon environmental conditions. In normal operation, certain control 
station functions, such as piloting the UAV, may take priority over other functions, such as non-critical 
observation. The presence of threats or targets, however, might make the priorities of functions change 
rapidly. Context-aware adaptation can trade off less important functionality to maintain the 
requirements of important functionality. For example, we might choose to scale back the video frame 
rate from a UAV to minimize the latency of the video for a control station that is piloting the UAV. A 
similar adaptation can be used to maximize the data content of the particular video frames for a 
targeting officer who must have a high-fidelity image to make command decisions. 
 
The conflicting demands of functional requirements can limit the types of adaptations that are possible 
and the places at which they occur. For example, if the piloting control station above triggers frame 
filtering at a UAV source to achieve lower latency, it can affect other stations that are counting on high 
data content, such as a collector of surveillance data for off-line analysis. A better strategy might be to 
reserve network resources so that both stations can achieve their requirements: low latency and high 
data content. While some adaptation decisions can be made based only on local information, mission-
wide strategies must constrain the adaptation choices available. This is why it is crucial for these 
adaptation strategies to be programmed in middleware, where they can consider both application-level 
requirements and system-level mechanisms. 

2.7.2.4. Separation of concerns and late binding of adaptation strategies 
The UAV prototype application was developed using the QuO middleware to separate the functional 
concerns of the application from the adaptation, QoS and dependability concerns. This enabled the 
functional behavior of the application – video capture, distribution, display and control – to be 
developed without entangling information about the platform in which the application will be hosted. 
The development of the UAV “system” then becomes a “construction” process, combining functional 
components and QoS components into an overall system suitable for the functional requirements, 
dependability requirements and the characteristics of the target platform once it is known. For 
example, network resource reservation (which is a reusable component in our UAV prototype) is 
suitable only if the application requirements can make use of it (i.e., the application needs high 
bandwidth, low latency) and the platform can support it (i.e., the network supports bandwidth 
reservation). 
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This advanced separation of concerns enables us to create an application that is sufficiently flexible 
and efficient for the requirements and environment for which it is targeted. The alternative, i.e., to 
encode the adaptation in the functional code of the application, would result in either a tremendously 
complex and inefficient application that covered every possible contingency in a large set of 
environments or a more efficient, but brittle application that is dependable only in a small set of 
environments. 

2.7.2.5. Using middleware to knit together a unified capability 
The current UAV prototype pulls together QuO adaptation, along with adaptation strategies written in 
the QuO toolkit, and resource reservations using RSVP. In one deployment of the UAV prototype, i.e., 
in the NSWC HiPer-D testbed, we integrated with a global resource manager capability. We have also 
begun exploring using Real-time CORBA, which is a first step towards incorporating an integrated 
CPU/network resource management capability as part of a complete end-to-end and scalable solution. 

2.7.2.6. Experimental Results 
We have installed two versions of the UAV prototype application in the Hiper-D lab at the Naval 
Surface Warfare Center (NSWC) and have evaluated them in the Hiper-D 2000 and 2001 series of 
integrated advanced concept demonstrations for the Naval Surface Ship domain. These versions have 
been described in earlier papers [43, 44]. The current version described in this paper is being provided 
as an open-source release to researchers investigating related issues. The Hiper-D 2000 version used 
TCP and an earlier, less functional MPEG viewer, and illustrated the use of frame dropping and 
migration of the distributor in response to excessive processor loads. The Hiper-D 2001 version uses 
the CORBA A/V Streaming Service, UDP and DVDView, and combines bandwidth reservation, 
frame dropping and load balancing. The current version is the one described in this paper and adds 
wireless networks, live camera feeds, video processing, control feedback and contract-controlled 
coordination between UAVs. We ran an experiment on the second version of the UAV software, using 
the CORBA A/V Streaming Service over UDP, to informally evaluate the effectiveness of the 
adaptability strategy in focusing available resources when they are constrained.   We ran a total of 
three runs: 
• A control run, with no adaptation 
• A second run, where adaptation is implemented by frame dropping and 
• A third run, which utilized both frame dropped and RSVP bandwidth management.  
The trials were run with the sender and distributor on the same Pentium III 933 MHz processor and 
512 MB of RAM, and with the receiver on a separate laptop, with a Pentium II 200 MHz processor 
and 144 MB of RAM, all running Linux, with a 10 Mbps link between them. We started the video 
running. After 60 seconds, we applied a load to the network link for 60 seconds then removed the load. 
After another 180 seconds, 300 seconds in all, the experiment terminated. The data collector recorded 
each MPEG I frame (2 per second, 600 in all) that was sent from the sender, and each that was 
received at the receiver, and the time elapsed from send to receive. The results of each test run are 
described below. 
Test run 1, which as the control run without any adaptation, lost 119 of the 121 I frames sent while the 
system was under load, i.e., only 481 of the 600 I frames sent made it through. The average delay of 
the frames that made it through was 56.58 ms, with a median delay of 55 ms, a minimum delay of 38 
ms and a maximum delay of 121 ms. The average delay of the frames sent through when the system 
was not under load was 56.33 ms, with a median of 55 ms, a minimum of 38 ms and a maximum of 67 
ms. 1.65 percent of the I frames sent made it through when the system was under load (2 out of 121), 
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with 98.35% of the I frames being lost by the UDP transport. The average delay of the two that did 
make it through under load was 115.5 ms. 
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Figure 2.15: QuO adaptation ensured successful delivery of all video under load 
 
Test run 2, with frame dropping as its only adaptation, got all 600 of its I frames through despite the 
load on the system. The average delay of all the frames was 70.01 ms, with a median delay of 57 ms, a 
minimum delay of 50 ms and a maximum delay of 143 ms. The average delay of the frames sent 
through when the system was not under load was 57.01 ms, with a median of 55 ms, a minimum of 50 
ms and a maximum of 68 ms. 100 percent of the I frames sent made it through when the system was 
under load (120 out of 120), with 0% of the I frames being lost by the UDP transport. The average 
delay of the frames delivered while the system was under load was 122.15 ms. Test run 3, with 
adaptation using both frame dropping and network reservation (RSVP), also got all 600 of its I frames 
through despite the load on the system. The average delay of all the frames was 64.2 ms, with a 
median delay of 59 ms, a minimum delay of 52 ms and a maximum delay of 106 ms. The average 
delay of the frames sent through when the system was not under load was 58.1 ms, with a median of 
56 ms, a minimum of 52 ms and a maximum of 71 ms. 100 percent of the I frames sent made it 
through when the system was under load (120 out of 120), with 0% of the I frames being lost by the 
UDP transport. The average delay of the frames delivered while the system was under load was 
significantly lower than the other two runs, 88.5 ms. Figure 2.15 illustrates the improvements afforded 
by the adaptation under load. The test runs that included QuO adaptation were able to recover from the 
load imposed on the system to keep the video flowing and not lose any important (i.e., I) frames. The 
video stream that did not have adaptive control lost nearly all the video sent during the time when load 
was imposed on the system. 

2.8. Open Research Issues: Strategies and Tactics for Developing 
Adaptive COTS Middleware with Real-time Attributes 

Quorum and QuOIN have addressed many QoS aspects during the past 3 plus years.  However, many 
key open research issues remain.  Among them are the following: 
 
Although some operating systems, networks and protocols now support real-time scheduling, they do 
not provide integrated end-to-end solutions.  In particular, QoS research on networks and operating 
systems has not addressed key requirements and end-to-end usage characteristics of mission-critical 
real-time systems developed using COTS middleware, such as CORBA.  The solutions developed 
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have generally focused on either specific signaling and enforcement mechanisms or broadly based 
resource allocation techniques.  These approaches have not focused on providing both a vertically (i.e., 
network interface  application layer) and horizontally (i.e., end-to-end) integrated solution that 
provides a higher level service model, or global policy framework, to developers and end-users.  
For instance, research on QoS for ATM networks has focused largely on policies and mechanisms for 
allocating network bandwidth on a per-connection basis.  Recent research on Internet2 topics has 
developed resource allocation signaling protocols, such as RSVP, and global resource sharing 
techniques, such as Differentiated Services.  Likewise, research on real-time operating systems has 
focused largely on avoiding priority inversions and non-determinism in synchronization and 
scheduling mechanisms for multi-threaded applications. While these research activities are important 
building blocks, they tend to yield point solutions that emphasize relatively fixed or static policies and 
mechanisms. 
 
Introducing application-level awareness of changes to expected and delivered QoS is a new direction 
for inserting adaptive behavior into distributed applications.  Adaptation can occur at any and all of the 
various layers of the system, including customized approaches in the application itself and standard 
service (re) configurations within the supporting middleware infrastructure.  An example of an 
application-level adaptation might be moving from full motion video to audio and still imagery to text-
only interactions.   An example of a service-level adaptation might be acquiring additional bandwidth 
by preempting a lower priority user or automatically instantiating additional resource replicas when 
another one becomes unreachable.  The keys to success in these adaptations lies in developing paths 
through the system layers that can effectively coordinate the otherwise independent activities so they 
provide maximum utility to developers and users without conflicting behavior that might result from a 
series of independent or transparent actions. 
 
Determining how to map the results from existing QoS research on global policies and local 
enforcement techniques onto adaptive real-time COTS middleware is an important open research 
issue.  Thus, to meet the research challenges and resolve the key design issues it is necessary to ensure 
that the benefits of each independent research area are preserved in the resulting architectural 
framework, while relaxing some of the assumptions that are specific to the context in which the results 
were obtained.  In addition, some of the resource management strategies that are effective in small, 
self-contained environments will likely require extensions or alternate approaches for more open-
ended environments of significantly larger scale.  There are continuing investigations in this area. 

2.9.  Concluding Remarks 
Adaptive COTS middleware is a promising solution for some key challenges facing researchers and 
developers of distributed and embedded real-time mission-critical systems.  However, meeting the 
QoS requirements of the next-generation of these systems requires more than higher-level design and 
programming techniques, such as encapsulation and separation of concerns, associated with 
conventional COTS middleware.  In addition, it requires an integrated architecture, based on adaptive 
middleware that can deliver end-to-end QoS support at multiple levels in distributed and embedded 
real-time systems. 
 
Supporting this adaptive middleware architecture effectively requires powerful dynamic and adaptive 
resource management techniques that extend existing static resource management techniques.  By 
preserving the key capabilities of the static approaches, and generalizing those capabilities to include 
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dynamic and hybrid static/dynamic capabilities, adaptive real-time mission-critical systems can be 
built to address the needs of a broad class of applications.  The key is to support a multi-dimensional 
end-to-end QoS framework that allows middleware and application developers to more easily control 
and coordinate the collection of lower-level mechanisms that come into play, using techniques that are 
simple to use, understand and validate.  The Quorum program and QuOIN integration activity has 
provided a running start on this agenda. 
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3. Dependability as a QoS Aspect: Detailed Design and 
Implementation  

AQuA Dependability Management 
 
University of Illinois investigators: 
 
William H. Sanders (PI), Ramesh Chandra, Tod Courtney, Michel Cukier, Harpreet S. Duggal, David 
Henke, Kaustubh Joshi, Sudha Krishnamurthy, Ryan M. Lefever, Jessica Pistole,  
Yansong (Jennifer) Ren, Paul Rubel, Chetan Sabnis, and Mouna Seri 

3.1. Background and Summary 
This section describes the technical accomplishments and impacts of the AQuA Project, which was 
supported by a subcontract to the University of Illinois.  The AQuA project builds on previous work 
which was funded in part by two previous DARPA contracts within the Quorum program, as well as 
by UIUC institutional funds.  The project has succeeded in creating an adaptable simple-to-use 
middleware for creating dependable CORBA-based distributed applications that must satisfy particular 
dependability and soft real-time constraints. 
 
Using the framework, a user is able to make standard CORBA distributed applications dependable by 
adding high-level QoS-request calls to specify the desired dependability and real-time characteristics 
of remote method invocations, and by using the AQuA gateway and AQuA dependability manager to 
manage the application at run-time.  These two key components manage the in-band remote method 
invocations that an application makes and its desired quality of service, respectively.  In particular, the 
AQuA gateway, a major innovation of the project, acts as a smart proxy for remote objects, managing 
request invocations in a way that provides the desired quality of service to an application.  Its actions 
include sending the request to a set of remote method replicas to provide dependability or probabilistic 
real-time guarantees and managing crash, value, and timing faults in a nearly transparent way with 
respect to the application. The AQuA dependability manager reacts to changes in the desired quality of 
service of a set of applications and to crash, value, and timing faults that occur, reconfiguring the 
system to maintain the desired quality of service level. 
 
The developed middleware has been demonstrated on numerous occasions, and has been transferred 
and used at the US Government Naval Surface Warfare Center, Combat Systems Technologies Branch 
(Dahlgren Division), and at Boeing Corporation (in St. Louis).  This use has provided us with valuable 
feedback, and enabled us to make significant improvements to the usability of the software.  Given this 
use and feedback, we now plan to make an open-source release of the AQuA middleware, and make it 
available to other academic and industrial users.  In its current form, the AQuA middleware is mature, 
is ready to be used by others, and greatly simplifies the construction of dependable distributed 
applications. 
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3.2. Motivation 
Providing fault tolerance to distributed applications is a challenging and important goal.  In many 
applications, the cost of a custom hardware solution is prohibitive.  Even if custom hardware is used, 
the flexibility that software can provide makes it a natural choice for implementing a significant 
portion of the fault tolerance of dependable distributed systems.  Furthermore, when the dependability 
and soft real-time requirements change during the execution of an application, the fault tolerance 
approach must be adaptive in the sense that the mechanisms used to provide fault tolerance may 
change at runtime.  Together, these requirements argue for a software solution that can reconfigure a 
system based both on the levels of dependability and soft real-time constraints desired by a distributed 
system during its execution and on the faults that occur. 
 
The AQuA architecture provides a flexible approach for building dependable, distributed, object-
oriented systems that support adaptation in response to both faults and changes in an application’s 
dependability and soft real-time requirements.  It provides a simple high-level way for applications to 
specify the levels of dependability and soft real-time constraints they desire and the type of faults that 
should be tolerated. 
 
The AQuA dependability manager (which we reference as Proteus) provides fault tolerance in AQuA 
by dynamically managing replicated distributed objects to make them dependable.  It does this by 
configuring the system in response to faults and changes in desired dependability and soft real-time 
requirements.  The choice of how to provide fault tolerance involves choosing the types of faults to 
tolerate, the styles of replication to use, the degrees of replication to use and the location of the 
replicas, among other factors.  The replication protocols in Proteus assume the existence of an 
underlying group communication system that provides reliable multicast, total ordering and virtual 
synchrony [Bir96].  For our implementation, we have used the Maestro/Ensemble [Bir96, Hay98, 
Vay98] group communication system.  Communication between all architecture components is done 
using gateways, which translate CORBA object invocations into messages that are transmitted via 
Ensemble, and contain mechanisms to implement a chosen fault tolerance scheme. 
 
Several other projects have similar aims.  These projects can be classified into three categories.  The 
first approach is to create a fault-tolerant ORB.  Both Electra [Maf95, Maf97] and Maestro fall into 
this category.  The second category involves providing fault tolerance through a CORBA service, 
above the CORBA Object Request Broker (ORB).  The OpenDREAMS [Fel96] project and Arjuna 
[Mor99] take this approach.  A third method is to intercept messages from the ORB; this is the 
approach taken by Eternal [Mos98, Nar97, Nar99b, Nar00, Nar01]. 

3.3. AQuA Description 
The AQuA architecture [Ren01a, Ren01b, Rub00] is a framework for building dependable, distributed, 
object-oriented systems that support adaptation to both faults and changes in an application’s 
dependability requirements.  It was developed concurrently with, but independently from, the CORBA 
fault tolerance standard.  It provides the types of fault tolerance specified by the standard. Moreover, 
AQuA currently is able to provide services that are not specified in the fault tolerance standard, such 
as support for any standard CORBA applications, without the limitation of requiring the replicated 
server objects to use the same ORB, and including support for protection against value faults in the 
body of the IIOP message. 
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Figure 3.1:  Overview of the AQuA Architecture 

 
Figure 3.1 shows the different components of the AQuA architecture in one particular configuration.  
These components can be assigned to hosts in many different ways, depending on an application’s 
desired level of dependability. 
 
In AQuA, fault tolerance is achieved through the replication of objects.  All replicas of an object form 
a group.  Messages communicated among different objects are sent through groups.  To provide fault 
tolerance at the most basic level, the AQuA system uses the Ensemble group communication system: 
to ensure reliable communication between groups of processes, to ensure that totally ordered messages 
are delivered to the members in a group, to maintain group membership based on the virtual synchrony 
model and to detect and exclude from the group members that fail by crashing.  Ensemble assumes 
that process failures are fail-silent (or crash failures), and detects process failures through the use of “I 
am alive” messages.  The AQuA architecture uses this detection mechanism to detect crash failures, 
and provides input to Proteus to aid in recovery.  
 
An application can specify its dependability requirements via a Quality Object (QuO) [Loy98a, 
Loy98b, Zin97].  It allows distributed applications to process and invoke dependability requests, and 
to receive information regarding the level of dependability that is being provided by the current 
system.  QuO allows distributed object-oriented applications to specify dynamic QoS requirements.  In 
the AQuA approach, QuO is used to transmit applications’ dependability requirements to Proteus, 
which attempts to configure the system to achieve the desired level of dependability.  QuO also 
provides an adaptation mechanism that is used when Proteus is unable to provide the specified level of 
dependability or meet the specified soft real-time constraints. 
 
In AQuA, Proteus provides adaptive fault tolerance.  It consists of a replicated dependability manager, 
a set of object factories and gateway handlers.  The dependability manager determines a system 
configuration based on reports of faults and desires of application objects.  An object factory that 
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resides on each host is used to create and kill objects, as well as to provide load and other information 
about the host to the dependability manager. 
 
Communication between all architecture components (i.e., applications, the QuO runtime, object 
factories and dependability managers) is done using gateways, which translate CORBA object 
invocations into messages that are transmitted via Maestro/Ensemble.  Furthermore, the handlers in a 
gateway implement multiple replication schemes and communication mechanisms.  The handlers are 
also used to detect application value faults, and to report value faults and group membership changes 
to the dependability managers.  Before discussing the AQuA group structure and gateway architecture, 
we review Proteus. 

3.4. Proteus Overview 
Most group communication systems, including Ensemble, are based on the assumption that processes 
fail by crashing, but no mechanism is implemented to ensure that processes fail only by crashing.  
Furthermore, recovery by automatic start of new processes on the same or different hosts is not 
implemented in the protocol stack.  Instead, it is left to the application.  A fault tolerance framework is 
thus necessary to tolerate other fault types and provide recovery mechanisms that are more 
sophisticated than process exclusion.  The framework could be implemented at the process level 
through an implementation of further fault tolerance in Ensemble.  However, in order to be 
independent of any particular group communication system and to fully use the features offered by 
CORBA applications, we have provided additional fault tolerance above the group communication 
infrastructure.  The framework we have developed is able to tolerate crash failures of processes and 
hosts, as well as value faults and timing failures of CORBA objects.  In addition to the fault tolerance 
mechanisms themselves, two types of replication can be used: active and passive.  Active replication 
includes pass-first, leader-only and majority voting schemes.  Passive replication includes stable 
storage and state cast schemes. Finally, a replication scheme combining both replication types is used 
for managing soft real-time constraints. 

3.5. Groups in the AQuA Architecture 
In AQuA, we use a general object model rather than the more restrictive client/server model.  The 
model of computation is thus based on interactions between objects that can be replicated.  Objects can 
initiate requests (acting as clients) and respond to requests (acting as servers).  In the AQuA 
architecture, the basic unit of replication is a two- or three-process pair, consisting of either an 
application and gateway or application, gateway and QuO runtime.  A QuO runtime is included if an 
object contained in the application process makes a remote invocation of another object and wishes to 
specify a quality of service for that object.  A basic replication unit may contain one or more 
distributed objects, but to simplify the following discussion, we refer to it as an “AQuA object.”  
Furthermore, when we say that an “object joins a group” we mean that the gateway process of the 
object joins the group.  Mechanisms are provided to ensure that if one of the processes in the object 
crashes, the others are killed, thus allowing us to consider the object as a single entity that we want to 
make dependable. 
 
Using this terminology, we can now describe the group structure and mechanism used in the AQuA 
architecture, including replication groups and connection groups.  By defining multiple replication and 
connection groups, we can avoid the communication overhead that would occur if a single large group 
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were used.  A replication group is composed of one or more replicas of an AQuA object.  These 
objects may be transient or persistent members of the group.  Persistent members join the group when 
they are created, and remain in the group.  Transient members join a replication group only when they 
need to multicast a message to the replicas in the group.  After sending a message, these objects leave 
the group.  A replication group has one persistent object that is designated as its leader and may 
perform special functions. Each persistent object in the group has the capacity to become the object 
group leader, and a protocol is provided to ensure that a new leader is elected when the current leader 
fails. 
 
A connection group is a group consisting of the persistent members of two replication groups that wish 
to communicate.  It provides reliable message communication from one CORBA object to another 
CORBA object. 
 
As specified above, each replicated object is located inside a replication group.  AQuA provides two 
methods of reliable communication between objects that are in two different replication groups.  One 
way is to use a connection group, which is done if the sending object is a persistent member of its 
replication group, and hence is in a connection group shared by the destination replicated object.  In 
that case, a replicated object that is inside a replication group multicasts messages within a connection 
group to forward them to the other replicated object.  Using that approach, two different objects are 
able to communicate using both one-way and synchronous remote method invocations.  This approach 
requires that there be a pre-established connection group before objects send messages to each other. 
In the second method of reliable communication, the sending object becomes a transient member of a 
replication group with which it wishes to communicate.  The invocations made by transient members 
can only be one-way. In addition, only the leader of a sender replication group is allowed to become a 
transient member of another replication group, and the leader is responsible for making invocations on 
behalf of the sender replication group.  The method is only suitable for situations in which duplicate 
messages are allowable (at-least-once semantics).  Communication through a transient group member 
is useful in situations in which communication is fairly infrequent.  In such cases, the overhead in 
joining and leaving a replication group is small relative to that of maintaining a connection group 
between two replication groups. 
 
Consider Figure 3.2 for an illustration of the possible use of replication groups and connection groups.  
Solid lines define the replication and connection groups.  The dashed oval represents the occurrence of 
a transient member joining a replication group.  We see in Figure 3.2 that even though a connection 
group is composed of two replication groups, a member of a replication group can be included in 
several connection groups.  For example, the replicas in replication group 3 communicate with the 
replicas in replication group 1 through connection group 1, and they communicate with the replicas in 
replication group 2 through connection group 2.  The leader of replication group 2 becomes a transient 
group member of replication group 1 in order to send messages to the replicas in replication group 2. 
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Figure 3.2: Example Group Structure in AQuA 

3.6. AQuA Gateway 
The AQuA gateway is a process that is associated with each CORBA application.  The AQuA gateway 
provides fault tolerance by implementing different communication schemes and replication protocols. 
These fault-tolerance mechanisms provide reliable remote method invocations, no matter when and 
where server object replicas fail before the client receives the replies.  To achieve this dependability, 
each CORBA client’s invocation is forwarded by its gateway to a set of replicated CORBA server 
objects, and only one copy of the reply message is allowed to return to the client object.  The AQuA 
gateway is responsible for finding a set of replicated objects that can implement the request, passing 
them the parameters, invoking their methods and returning the results.  The client does not know 
where the server objects are located, or how many replicated server objects process the invocations. 
 
Figure 3.3 shows the physical structure of a gateway.  It contains a gateway ORB, a naming service, a 
handler factory, a set of handlers and a DII processor.  The gateway ORB is a standard ORB (the TAO 
ORB [TAO] is used in our implementation).  It works as a normal ORB to communicate with standard 
CORBA applications using IIOP messages.  In that way, the AQuA gateway is able to communicate 
with different commercial ORBs to provide ORB transparency. 
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Figure 3.3: AQuA Gateway 
 
The naming service maps object names to object references.  It is a local naming service in a gateway, 
and provides a way for the CORBA application to communicate with the gateway handlers.  In 
particular, in the client gateway, the naming service associates the remote server objects’ names with 
the handlers’ object references to direct all of the client’s invocations to the gateway handlers instead 
of allowing them to go directly to remote server objects.  In the server gateway, the naming server 
helps the gateway handlers locate the server objects. 
 
The handler factory is responsible for creating handlers.  It includes a handler repository that provides 
a set of different types of handlers.  The handlers can be classified into two categories: static and 
dynamic. Static handlers have persistent group memberships.  These handlers remain in the 
appropriate Ensemble process groups once they have been created and joined the groups.  They are 
used to implement replication schemes, and are therefore also called “replication handlers.” The 
replication handlers can be further classified into active replication, passive replication and soft-
realtime handlers.  The active replication handlers are used to implement the active replication 
schemes. They include: the pass-first handler, the leader-only handler and the majority-voting handler.  
The passive replication handlers are used to implement the passive replication schemes.  They include 
the state cast handler and the stable storage handler.   
 
Dynamic handlers, the second category of handlers, are transient replication group members. 
Each handler is responsible for sending and receiving messages for a particular replicated object.  
When a gateway handler receives an invocation, it will first remove the IIOP header, and then 



 

 41 

construct a gateway message that will carry the CORBA invocation to the gateways of the remote 
replicated servers.  Each gateway message includes two parts: a message header and a payload of a 
CORBA IIOP message.  The message header contains information used by replication schemes to 
process and deliver messages correctly.  Each header has several fields: sender, receiver, is_oneway, 
sequence number, ID and opcode.  Each field has a special purpose related to the communication 
scheme.  The sender and receiver fields specify the source and destination of an invocation. The 
is_oneway field indicates whether the invocation is an asynchronous (one-way) or synchronous 
CORBA message.  The sequence number is an integer that is assigned to each invocation and is 
uniquely associated with a sender and receiver pair.  The ID indicates which replica generated the 
message.  The opcode is used for implementing replication steps. 
 
After constructing a gateway message, the handler will encapsulate it into a Maestro/Ensemble group 
communication message so that it can be sent over the network to the replicated server gateways.  If an 
invocation is a synchronous CORBA message, the handler is also responsible for receiving the reply 
from the group communication system. In the replicated server gateways, once a handler receives a 
group communication message, it will first unencapsulate the received Maestro message to get the 
gateway message.  It will then remove the gateway header and get the name of the operation and the 
arguments for the original IIOP invocation from the gateway message payload.  Next, it will construct 
a new dynamic invocation based on the information from the gateway message, and forward the 
invocation to the DII processor. 
 
The DII processor is used to deliver invocations received from the handlers to the application object. 
In order to ensure strong data consistency among replicas, the DII processor contains a synchronous 
queue that ensures that the incoming invocations are delivered to the application in the order in which 
they were received from the group communication system.  If the invocation is a synchronous CORBA 
message, the DII processor will wait for a reply, and then return the reply to the server gateway 
handler that is responsible for forwarding the reply to the client object.  Since all of the replicated 
server objects generate replies, the server gateway handlers will allow only one copy of the replies to 
be sent back to the handler servant in each client’s gateway, to ensure that there are no duplicate 
replies. 

3.7. QoS Requests / Programming Interface 
An application or QuO programmer interacts with the Proteus dependability manager (1) to request a 
particular level of dependability and soft real-time constraints, (2) to be notified when that level is no 
longer met, (3) to obtain information concerning hosts managed by Proteus and give advice about 
which hosts the dependability manager should place replicas on and (4) to obtain detailed information 
regarding decisions that the dependability manager makes and the faults that it detects.  The interface 
to the dependability manager can be divided into two sets of methods: those used to communicate with 
the components in the AQuA system core (composed of the dependability manager, the gateway 
handlers and the object factories), and those used by one or more AQuA objects to request and observe 
QoS, to observe the state of the dependability manager and to observe and control hosts.  Proteus 
supports the development of three types of objects that can make QoS requests from the dependability 
manager and also observe its actions.  One of these object types, called the “QoS observer/requester,” 
can be used to make QoS requests to the dependability managers and can receive callbacks regarding 
the ability of the dependability manager to satisfy the requester’s requests.  (An example of an 
application that may contain a QoS observer/requester is QuO itself.)  Furthermore, since the 
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dependability manager supports a standard, well-defined interface, an application object can also make 
QoS requests directly to the dependability manager.  The second type of object the dependability 
manager supports is advisor observers.  Advisor observers can “subscribe” to a variety of information 
used by the dependability manager to make decisions, including information about faults detected and 
fine-grained information regarding actions taken by the manager.  Proteus also supports the 
development of a third type of objects, called “host observer/controllers,” that receive information 
regarding the status of hosts that may be used to execute object replicas, and that can be used to 
specify particular hosts for the execution of replicas.  In particular, host observers/controllers can be 
used by an application or QuO to specify hosts that should not be used to execute replicas, if the 
application or QuO has information that leads it to believe that the host should not be used. 

3.8. Replication Protocols Supported  
In AQuA, five types of replication techniques have been developed: active replication with pass-first, 
active replication with majority voting, active replication with leader-only, passive replication and one 
combination of replication types for providing soft real-time constraints.  The different replication 
techniques enable the tolerance of different types of faults, provide different recovery strategies, use 
different communication schemes and support different types of object replicas (deterministic or 
nondeterministic).  On the other hand, all of the replication techniques must provide the ability to (1) 
ensure reliable transmission of each CORBA message from one replicated object to another so that 
messages will not be lost even if replicas crash, (2) guarantee strong data consistency among all object 
replicas, (3) guarantee that no duplicate messages are delivered to the replicated objects and (4) react 
correctly when the number of replicas in a replication group changes.  In addition, all of the replication 
techniques require the use of the group communication system to provide reliable multicast, totally 
ordered message delivery, group membership services and virtual synchrony.  The types of replication 
techniques can be divided into three categories: active replication, passive replication and a 
combination of replication types.  

3.8.1. Active Replication 
In active replication, all members of the object group independently execute the methods invoked on 
the object, so that if a fault prevents one member from operating correctly, the other members will 
produce the required messages.  This technique requires that the CORBA ORB and the object replicas 
be deterministic to ensure that incoming messages are dispatched from the ORB to the replicas in the 
same order, and that the replicas process the messages in the same order.  There are three types of 
active replication schemes: 
1. Active Replication with Pass-First Scheme: In this scheme, each replica in the replication group 

executes each invocation independently and sends each request/reply to the leader of the group.  
The leader is responsible for forwarding the first received request/reply to the destination object 
group. This scheme can be used to tolerate process crash failures. 

2. Active Replication with Leader-Only Scheme: In this scheme, the leader processes input messages 
and sends its output messages to the destination object group.  The other members will process 
input messages and generate output messages that are suppressed unless the member takes over for 
the leader (if the leader fails).  Through use of this scheme, process crash failures can be tolerated. 

3. Active Replication with Majority Voting Scheme: In this scheme, each replica in the replication 
group executes each invocation independently and multicasts its request/reply in the replication 
group.  The requests/replies from the members of the source object group is voted on; if and only if 
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a majority of the requests/replies are identical, the majority values are delivered to the members of 
the destination object group.  The leader is responsible for forwarding the voting results to the 
destination group. Each replica executes majority-voting algorithms independently in order to take 
over from the leader if it fails. 

In all three active replication schemes, in the event that one replica fails, the application can continue 
with results from another replica without waiting for fault detection and recovery.  

3.8.2. Passive Replication 
In passive replication, during fault-free operation, only one member of the object group, the leader, 
executes the method invoked on the group.  The gateways of the other replicas store the sequence of 
method invocations in a buffer but do not deliver the messages to their applications, and thus do not 
process the request.  Periodically, the state of the leader is transferred to the other members (the 
backup replicas) or to stable storage. In the presence of a leader crash, a backup member becomes the 
new leader of the group and updates its state.  The state of the new leader is made identical to the state 
of the old leader through application of the request messages recorded in the new leader’s gateway 
buffer. Passive replication can be used to tolerate process crash failures. 
 
There are two types of passive replication schemes: the passive replication with state cast scheme and 
the passive replication with stable storage scheme.  In the first scheme, the leader multicasts its state to 
the backup replicas.  This scheme provides a way for the backup replicas to access the state 
immediately during fault recovery.  However, it requires that more messages be transmitted over the 
network. In the second scheme, the leader stores its state in stable storage.  When the original leader 
fails, the new leader will take over from the original leader by getting the state from stable storage.  
Compared to the state cast scheme, this scheme reduces the number of messages transmitted over the 
network.  However, the recovery time could be longer than for the state cast scheme, because the new 
leader needs time to get the state from stable storage.  The extra recovery time includes both the time 
required for disk access and the time spent on the network. 
 
In both of the passive replication schemes, two strategies: every-message and periodic, can be used to 
capture the state of the leader.  Every-message state transfer happens whenever the leader sends a 
message to the outside world.  For that reason, output messages will not need to be resent if the leader 
already sent them out before it failed.  Thus, with every-message state transfer, replicas are not 
required to be deterministic.  Periodic state transfer occurs when the leader sends out a certain number 
of messages.  In that scenario, if the leader fails, the backup replica that takes over for it might send 
out duplicate messages that must be suppressed.  Thus, with periodic state transfer, replicas are 
required to be deterministic, so that the new leader produces messages that are the same as those 
produced by the original leader before its failure. 

3.8.3. Probabilistic temporal guaranties using replication 
We have developed not only handlers to provide strong data consistency through active and passive 
replication, but also a handler for providing probabilistic temporal guaranties using replication.  The 
goal of this handler is to prevent timing failures by dynamically selecting the replicas that can satisfy a 
client’s timing requirement, even when the quality of service is degraded due to replica failures and 
excess load on the server.  The approach we use estimates a replica’s response time distribution based 
on performance measurements regularly broadcast by the replica.  An online model uses these 
measurements to predict the probability with which a replica can prevent a timing failure for a client.  
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A selection algorithm then uses this prediction to choose a subset of replicas that can together meet the 
client’s timing constraints with at least the probability requested by the client. 

3.9. Conclusions and Future Work 
This section of the final project report presented an overview of the AQuA middleware, which 
provides a flexible and extensible approach to building dependable, object-oriented distributed 
systems.  Systems built using AQuA support adaptation to changes in system resources due to both 
faults in the environment and changes in an application’s dependability and soft real-time 
requirements.  The software is mature, easy-to-use and documented, making it possible for others to 
directly benefit from the research results from this part of the project. 
 
AQuA provides a flexible infrastructure for providing adaptive fault tolerance to CORBA applications.  
Its design permits an application to change the level of dependability and soft real-time constraints that 
it requires, including the type of faults that should be tolerated dynamically during its execution.  In 
order to make this possible, we have designed AQuA in a modular way, developing a scalable group 
structure and a set of communication algorithms that preserve needed communication properties 
during intergroup communication.  Gateways were designed that make use of this group structure and 
support multiple replication and communication schemes through the use of different handlers.  The 
implementation includes support for multiple handlers to tolerate crash, value and timing faults and a 
dependability manager policy that permits changing the degree of replication and placement of 
replicas during execution based on the dependability desires of an application.  In addition, a graphical 
user interface for the dependability manager and object factories was developed to allow the 
functioning of AQuA to be monitored as it responds to dependability requests from applications and 
faults that occur.  A user can monitor changes in membership that occur in replication and connection 
groups and in assignment of objects to hosts.  Extensive performance measurements have been taken 
of the system and are documented in Yansong (Jennifer) Ren’s Ph.D. thesis. The results show that 
AQuA has the ability to detect failures quickly, to recover from them, and to have short replica 
blocking times. 
 
In addition to providing results that can be used immediately, the AQuA project provided inspiration 
for future work in property management in Quality-of-Service middleware.  In particular, one major 
research direction that we are currently pursuing is the development of a middleware-based intrusion 
tolerance approach that helps applications survive certain kinds of attacks.  Our approach is similar to 
that taken in AQuA, in that it makes use of a gateway and management infrastructure, but differs 
greatly in the details, since toleration of malicious attacks requires much more sophisticated 
algorithms, at all levels of the middleware (group communication, gateway, and manager), than those 
needed to tolerate crash, value, and timing faults.  To achieve this functionality, we plan to use 
process- and object-level intrusion-tolerant group communication, integrate a set of COTS security 
tools that together with information from the group communication system itself, detect corrupt 
processes, and provide a decentralized replica management facility that decides what to do (in a 
possibly unpredictable way) when intrusions occur.  In doing so, we will assume that as a result of an 
attack, replicas and management entities can fail in arbitrary ways. 
 
A second major research direction we intend to pursue is the use of on-line models to facilitate 
adaptation, at multiple levels of granularity, of systems that employ quality-of-service middleware.  
Our work on building soft-real-time handlers in the AQuA gateway has shown that one can create 
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simple, but effective, predictive probabilistic models that can make adaptation decisions on each 
method invocation, with an overhead ranging from a few hundred microseconds to about a 
millisecond, depending on a system’s configuration.  This suggests that computing power has 
increased to the point that it might be possible to use on-line models to make intelligent, autonomic, 
adaptation decisions in QoS-driven adaptable distributed systems.  However, many issues remain 
before we can create such systems, including issues related to the mechanics and statistics of data 
collection, the extraction of appropriate model input parameter values from the collected data, the 
creation of models that are accurate enough to be useful but efficient enough in their solution to be 
solved quickly, and methods to insure the stability of the recommended sequence of adaptation.  
Furthermore, since a single monolithic model will not suffice to control a large distributed system, 
techniques need to be developed to coordinate the actions of multiple adaptation models present in a 
system in a coordinated way, without requiring the exchange of an unreasonable amount of state data. 
The AQuA project has created the theory, algorithms and implementations necessary to build 
dependable distributed systems, and also provided inspiration for intrusion-tolerant and model-driven 
quality-of service-enabling middleware. 
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4. Real-Time CORBA: Experimental Results and Applicability to 
the A/V Streaming Service 

 
OOMWorks investigators: 
Pradeep Gore, Irfan Pyarali, Yamuna Krishnamurthy 

4.1. Introduction 
One of the emerging off-the-shelf mechanisms for helping to control real-time behavior in a 
standardized way is the real-time CORBA specification.  We are experimenting with an 
implementation of RT-CORBA based on the TAO CORBA ORB.  This section consists of a 
description of results from experimenting with that implementation of RT-CORBA and proposal of 
how RT-CORBA capabilities could be incorporated directly into the A/V Streaming Service and 
indirectly into the UAV application to help effect and control better real time behavior.  The purpose of 
this QuOIN experimentation was to assess the suitability of available capabilities in RT-CORBA for 
embedded applications such as UAV with stringent real time requirements. 
 

4.2. Real-Time CORBA  
The Real-Time CORBA specification, illustrated in Figure 4.1, provides a high level API for 
programmers to write distributed applications in which the priority of a “distributed thread” of 
execution is maintained across separate hosts with potentially different operating systems.  It also 
provides support for explicit binding, standard synchronizers and the ability to modify transport 
protocol properties and thread pools as a standard. 
In this experiment we show the effect of maintaining end-to-end priorities. 
The experiment consists of the following participants: 
• Job – A CORBA servant object that performs CPU intensive work. The amount of work depends 

on a load factor that is conveyed to the object per invocation as an argument.  
• Periodic Task – A periodic task is a thread of execution that is associated with a Job. A Task 

periodically invokes the Job after a period of time specified by the user. 
• Activity – An activity is a collection of Job’s and Tasks hosted in a single process. An activity 

reads a configuration file that can be used to initialize in many ways such as a client or server. 
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Figure 4.1: The RT CORBA Specification 

 

4.3. Experimental setup 
Figure 4.2 illustrates the setup for the experiments, with the following characteristics: 
 
Hardware Profile 
OS: Linux 2.4 (Redhat 7.1) 
Processor (2): Intel Pentium III 930 MHz 
Memory: 500 Megabytes 
CPU Cache: 256 KB 
 
Threads Profile 
ORBSchedPolicy: SCHED_FIFO 
ORBScopePolicy: SYSTEM 
ORBPriorityMapping: linear 
 
Test Bed Profile 
Base Work: 30 
Base Invocation Rate: 151 
 
Priority Profile 
High Priority Lane 32767 
Medium Priority Lane 21844 
Low Priority Lane 10922 
Best Effort Lane 0 
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Figure 4.2: Experimental setup for the RTCORBA experiments 
 

4.4. Summary of results 
As shown in figure 4.3(a), when the load is minimal, all tasks complete their run at the same time with 
the same throughput and latencies. A similar graph (not shown here) would be obtained if the threads 
were not assigned priorities. The thread priorities show no effect as the load is very small and hence 
each thread manages to get its share of the CPU. 
 
As shown in figure 4.3(b), when the load is significantly higher (load = 1000), the highest priority 
task’s thread gets to run the most and hence completes before the other tasks. While the highest 
priority task is running, the other tasks get very few chances to run and exhibit very high latencies 
during that time. The results in the end show the experimental runs of all the loads.  
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Figure 4.3: Summary of experimental results 

4.5. Applying RT-CORBA concepts to A/V Streaming 
The UAV Demo architecture, illustrated in Figure 4.4, simulates the streaming of video data from a 
UAV to a distributor host on the nearest ship. From the distributor the same data is streamed to 
multiple displays within the ship. In the UAV demo we have three processes- sender, distributor and 
receiver. The sender reads data from a file and sends it to the distributor (simulating the data streamed 
from the UAV). The distributor process in turn streams the data to the multiple receiver processes that 
display the video. The streaming between the sender and distributor, and between the distributor and 
host is done with the TAO AV Service.  
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Figure 4.4: Overview of the UAV demo architecture 

(a) Load = 0 (b) Load = 1000 
 



 

 51 

 
The TAO AV Streaming Service is an implementation of OMG's CORBA A/V Streaming Service. 
This service enables the control, connection and streaming of audio/video streams between multimedia 
devices through standardized API's. The TAO AV Service allows streaming data over different 
transport and flow protocols like TCP, UDP, and RTP etc. However, as it exists AV Service is 
currently not distinguished from any other processes that may be running on the same system. What 
this implies is that the AVStreams Service has to contend with other processes on the system for 
resources and it would be scheduled on best effort. As it exists RT-CORBA cannot be applied to 
differentiate the relative priorities of the multiple data streams of the AV Service. This is because the 
AVStreams data streaming is out-of-band. 
 
In order to circumvent the above problem and schedule the AV Service more predictably we propose 
to integrate the RT-CORBA capabilities into the AV Service. Also we would like to incorporate the 
RT-CORBA features as demonstrated by the above experiments into the UAV demo directly. 

4.5.1. Use Cases 
As mentioned above we could use RT-CORBA to set priority on AV process and hence make it more 
predictable.  As it exists now the UAV demo is able to adapt to CPU loads after the load has been 
detected. By incorporating RT-CORBA we could prevent such CPU loading by prioritizing the AV 
Service and hence preempting other processes.  
 
Also the UAV may need to transmit other kinds of periodic data - e.g. Global Position System (GPS), 
Inertial Navigation Set (INS), and Forward Looking Infrared Radar. This data is represented suitably 
as structured information hence CORBA could be used to transfer this data. We could use RT-CORBA 
capabilities to prioritize these data streams. For example, if we have GPS and INS data being 
transmitted we could prioritize the GPS data over INS using RT-CORBA. When there is resource 
contention then GPS will get preferential treatment. 
 
We could also use RT-CORBA to prioritize the receivers who are connecting to the distributor.  
Further, we could map RT CORBA priorities to diffserv type of service thereby ensuring true end-to-
end priority preservation. 
 
By integrating RT-CORBA with AV Service we would be able to prioritize the multiple data streams 
of the AV Service. This may require making the AV Service multi-threaded and dealing appropriately 
with the acceptors, connectors and reactors created for streaming data. If this is in place we would be 
able to prioritize the multiple streams entering and leaving the distributor and receiver in the UAV 
Demo. 

4.6. Sample Results from Experiments 

4.6.1. Experiment 1: Increasing Work in CORBA without RT-CORBA 
Experiment 
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Figure 4.5: Experiment 1: Increasing Work in CORBA without RT-CORBA Setup 

 
• Measure the disruption caused by Increasing Work in CORBA without RT priorities 
• Increasing Priority =>Increasing RateServer 
3 threads  
 
Client 
• 3 Rates Based Invocation threads 

o High => 75 Hz 
o Medium => 50 Hz 
o Low => 25 Hz 

• Work fixed at 30 
 
Result 

 
Conclusion 
• As work increases and system capacity decreases, the high priority 75 Hertz client is effected first, 

followed by the medium priority 50 Hertz client, and finally by the low priority 25 Hertz client 
• The above behavior is because all clients are treated equally by the server 
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Figure 4.6: Experiment 2: Increasing Work in RT-CORBA With Lanes 

 

4.6.2. Experiment 2: Increasing Work in RT-CORBA With Lanes (Increasing Priority => 
Increasing Rate) 
Experiment 
•  Measure the disruption caused by Increasing Work in RT-CORBA With Lanes 
• Increasing Priority => Increasing Rate 
 
Server 
• 3 thread lanes 
• High / Medium / Low 
 
Client 
• 3 Rates Based Invocation threads 

o High => 75 Hz 
o Medium => 50 Hz 
o Low => 25 Hz 

• Work fixed at 30 
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Result 

 
Conclusion 
• As work increases and system capacity decreases, the low priority 25 Hertz client is effected first, 

followed by the medium priority 50 Hertz client, and finally by the high priority 75 Hertz client 
• The above behavior is because higher priority clients are given preference over lower priority 

clients by the server 
 

4.6.3. Experiment 3: Increasing Work in RT-CORBA With Lanes (Increasing Priority =>  
Decreasing Rate) 
 

 
 

Figure 4.7: Experiment 3: Increasing Work in RT-CORBA With Lanes 
 
 
Experiment 
• Measure the effect of Increasing Invocation Rate in Test Bed 
• Increasing Priority => Decreasing Rate 
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• 3 thread lanes 
• High / Medium / Low 
Client 
• 3 Rates Based Invocation threads 

o High => 75 Hz 
o Medium => 50 Hz 
o Low => 25 Hz 

• Work fixed at 30 
 
 
Result 

Conclusion 
• As work increases and system capacity decreases, the low priority 75 Hertz client is effected first, 

followed by the medium priority 50 Hertz client, and finally by the high priority 25 Hertz client 
• The above behavior is because higher priority clients are given preference over lower priority 

clients by the server 
 
 

4.6.4 Experiment 4: Increasing Best Effort Work in CORBA without RT-CORBA 
Experiment 
• Measure the disruption caused by the Increasing Best Effort Work in vanilla CORBA 
• Increasing Priority => Increasing Rate 
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Figure 4.8: Experiment 4: Increasing Best Effort Work in CORBA without RT-CORBA 

 
Server 
• 4 threads  
 
Client 
• 3 Rates Based Invocation threads 

o High => 75 Hertz 
o Medium => 50 Hertz 
o Low => 25 Hertz 

• Several Best Effort threads => Continuous Invocations 
 
Notes 
System is running at capacity => Any progress made by Best Effort threads will cause disruptions 
Result 

 
Conclusion 
• All three priority based clients suffer as the number of best effort clients are added to the system 
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• The above behavior is because all client threads are treated equally by the server 

4.6.5 Experiment 5: Increasing Best Effort Work in RT-CORBA With Lanes 
Experiment 
• Measure the disruption caused by Increasing Best Effort Work in RT-CORBA With Lanes 
• Increasing Priority =>Increasing Rate 
 

 
 

Figure 4.9: Experiment 5: Increasing Best Effort Work in RT-CORBA With Lanes 
 
 
Server 
• 4 thread lanes 
• High / Medium / Low / Best Effort 
 
Client 
• 3 Rates Based Invocation threads 

o High => 75 Hertz 
o Medium => 50 Hertz 
o Low => 25 Hertz 

• Several Best Effort threads => Continuous Invocations 
 
Notes 
• System is running at two levels 
• At capacity => Any progress by Best Effort threads will cause disruptions 
• Just below capacity => Best Effort threads should be able to capture any slack in the system 
 
 
 
Result A: Increasing Best Effort Work in RT-CORBA With Lanes 
System Running at Capacity (Work = 30) 
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Result B: Increasing Best Effort Work in RT-CORBA With Lanes 
System Running Slightly Below Capacity (Work = 28) 
 

 
Conclusion 
• Increasing Best Effort Work in RT-CORBA With Lanes 
• Addition of best-effort client threads did not effect any of the three priority based clients 
• Best-effort client threads were limited to picking up slack left in the system 
• As the number of best-effort client threads increase, throughput per best-effort client thread 

decreases, but the collective best-effort client throughput remains constant 
 

4.6.6  Experiment 6: Increasing Work in RT-CORBA Without Lanes 
Experiment 
• Measure the disruption caused by Increasing Work in RT-CORBA Without Lanes 
• Increasing Priority => Increasing Rate 
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Figure 4.10: Experiment 6: Increasing Work in RT-CORBA Without Lanes 
 
Server 
• 3 threads in pool 
 
Client 
• 3 Rates Based Invocation threads 

o High => 25 Hertz 
o Medium => 50 Hertz 
o Low => 75 Hertz 

Notes 
• Server pool priority will be varied 
Low / Medium / High 
Result A: Increasing Work in RT-CORBA Without Lanes, Server Pool Priority = Low 
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Result B: Increasing Work in RT-CORBA Without Lanes 
Server Pool Priority = Medium 

Result C: Increasing Work in RT-CORBA Without Lanes 
Server Pool Priority = High 
 
Conclusion 
• When the server pool is running at low priority, a pool thread cannot preempt an upcall thread 

when a new request arrives from a client thread of higher priority.  Therefore, all three client 
threads receive similar service from the server 

• When the server pool is running at medium priority, a pool thread can only preempt an upcall 
thread running at low priority when a new request arrives from a client thread of medium or high 
priority.  Therefore, the medium and high priority client threads receive similar service from the 
server 

When the server pool is running at high priority, a pool thread can preempt upcall threads running at 
low and medium priorities when a new request arrives from a client thread of high priority.  Therefore, 
the high priority client thread receives the best service from the server 
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5. Synopsis of the 3 Major QuOIN Software Releases to the 
Quorum Technical Community 

QuO/QuOIN Software Release History 
 
One of the major accomplishments of the QuOIN activity has been the formalized collection, release 
and support of integrated software packages of Quorum technology centered around the distributed 
object framework into the Quorum community and for transition application development.  There have 
been three major release cycles, with the third ushering in a more dynamic strategy of daily builds and 
frequent minor releases in place of less frequent major releases.  Beginning with the third major 
release cycle, most of thre available software has been made available via the open-source licensing 
model.  The following table is a chronological release history of the QuO software and accompanying 
QuOIN integration components.  This is followed by a brief description of the increasing components 
and capabilities associated with each of the three major software releases. 
 

December 2001  QuO/QuOIN release 3.0.9 
October 2001   QuO/QuOIN release 3.0.8 
October 2001   QuO/QuOIN release 3.0.7 
September 2001  QuO/QuOIN release 3.0.6 
July 2001   QuO/QuOIN release 3.0.5 
June 2001   QuO/QuOIN release 3.0.4 
May 2001   QuO/QuOIN release 3.0 
December 1999  QuO/QuOIN release 2.1 
May 1999   QuO/QuOIN release 2.0 
September 1998  QuO/QuOIN release 1.0 

 
 
 

5.1. Release 1.0 Contents and Environment 
September 1998 
 
This QuO release assumes the following software: 
ORB: 
• Visigenic’s VisiBroker 3.2 (CORBA 2.1; IIOP 1.0) 
 
Languages: 
• Java (JDK 1.1.5) 
• C++ (GNU and Sun) 
 
OSs: 
• Solaris 2.5 
• Red Hat Linux 5.0 (Hurricane), Kernel 2.0.32 on an i686 (Pentium) 
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This QuO release provides the following: 
QuO Base: 
• QuO Kernel 
• QuO System Condition Object Library (initial release) 
• QuO Compilers for CDL, SDL 
• Sample QuO Contracts 
• Preliminary Instrumentation 
 
Mechanisms: 
• RSVP Gateway 
• Replication Gateway 
• Proteus Dependability Manager 
Note: the mechanisms are currently provided “as is” for purposes of edification and elucidation only.  
They will be released in two separate files (one for DIRM, one for AQuA), along with the AQuA and 
DIRM demos, and will be supported in later releases. 
 
Demo Applications: 
• Simple (Java and C++ client) 
• Slideshow (Java; originally demonstrated at the (DARPA ITO) July ’98 Quorum PI Meeting) 
• AQuA Slideshow (Slideshow above, but with replication management) 
• DIRM Slideshow (Slideshow above, but with bandwidth management) 
Note that the AQuA and DIRM Slideshow demos are released in separate distributions from this 
release. They are described here, however, to help QuO users better understand what using 
mechanisms to “reserve” properties such as replication and communication entail. 
 
Packaging and Documentation 
QuO Toolkit 1.0 Overview as well as the following documents is provided with this release: 
• QuO’s Structure Description Language (SDL) 
• QuO’s Contract Description Language (CDL) 
• How to Write a System Condition Object 
• How to Write a Connection Object 
• QuO Packages 
• QuO Kernel GUI 

5.2. Release 2.0 Contents and Environment 
May 1999 
 
QuO version 1.0, released September 1998, included the QuO runtime kernel, Contract Description 
Language and Structure Description Language and their code generators, system condition object 
library, concept demonstration gateway, example applications including a network bandwidth resource 
reservation example and documentation. 
QuOIN Version 2.0 included: 
• Improved QuO language and contract support 
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• A connector language for automating the hookup of delegates, contracts and system condition 
objects with objects and clients 

• Instrumentation support including Remos  
• A revised general gateway design1 
• Quorum Distributed Object individual QoS property incremental results: 
• Real time support using the TAO ORB and schedulable event channels 
• Bandwidth management using QosME, RSVP & Beagle1 
• Dependability using Proteus and Ensemble 
• Adaptive caching 
• Object security using OODTE ORB based access control with dynamic security policy1 

QuOIN Release V2 
Languages: Java (Visigenic, JDK), C++ (Visigenic, TAO) 
OS: Solaris 2.7, Linux Redhat 5.2 and NT 3.51 
 
Middleware: 
Corba v2.2; including use of POA; Name Server 
Orb: Interoperable set selected from Visigenic v3.3, TAO v1.0 (**), JDK v.1.2 Orb (some attributes 
may be Orb specific) 
IDL compiler: Orb specific, plus FLICK emerging as common tool (currently only for TAO)  
 
QuO V2 including: 
* Multiple contract support 

- The code generators will generate nested delegates, each delegate corresponding to a contract. 
Revised generated QuO Runtime code to support multiple contracts 

 
*Extended QDL including CDL, SDL and ConnDL 

- A single quogen, which works on a connection language specification, instead of separate 
quogen-contract and quogen-delegate 
- Connection language (CSL or ConnDL), which specifies the IDL, CDL, and SDL files 
involved in a QuO application, the objects that are involved in the application, and how to hook 
them up.  The processing of this code by the quogen executable would generate the contract 
and delegate code, plus the connection code that was previously written by hand. 
-Improved SDL, with local variable declarations, multiple bindings, more powerful adaptation 
descriptions and support for instrumentation 

 
*Instrumentation package 
 
*Reuseable QuO Gateway shell using Corba pluggable protocols (James) improved runtime kernel 
including GUI, enhanced SysCon library, all bugs and deficiencies with version 1 reported to QuO 
help fixed 
 
Mechanisms (***):  

                                                           
1 Released as part of interim release 2.1; see below 
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*Extended Bandwidth management capability (new gateway shell with embedded RSVP, REMOS 
data collection, Darwin reservations, SMARTS event management, Qosme socket management) 
 
*Real time support (TAO specialized real time ORB+RIDL support, TAO specific Real-time 
Scheduling Service for rate monotonic event queues and schedulers, and dynamic scheduling 
strategies, such as MUF, EDF and MLF) 
 
*AQuA dependability management capability including Proteus property manager, selections of off-
the-shelf handlers for customized operation and customization interfaces via new handler development 

-passive replication strategy in addition to active 
-Dynamic, run-time configuration of client-server relationships 

First level of this is that we know what services each client wants at compile 
time, we just don't decide on the port numbers etc. until run time (so we can for 
example use transitory rather than persistent IORs) 

 
*Inter-ORB access control (using SIGMA OO-DTE interceptors) 
 
Other accessories: 
Substitutable Real Time OS for use with TAO RT ORB 
Testing and validation suite: Embedded validation through region monitoring Gui, reports and logs, 
and through Loki fault injector testing tool 
 
Demonstration applications including delegates, sysconds, handlers, controlling and providing 
adaptability for dependability, real time control, bandwidth mgmt, dynamic security properties and an 
interim integrated suite 
 
Packaging with revised configuration management, and revised documentation, including concept of 
operation and programming examples  
UML like Design spec, Quorum interfacing spec and use examples 
 
Notes: 
 (**) The TAO ORB comes with the following set of CORBA services: 
All CORBA 2.2 features except for Interface Repository, plus pluggable transport protocols, multiple 
threading models (such as Thread Pool, Thread-per-Request, Thread-per-Connection and Reactive 
models), support for OMG Object Services including Naming Service, Trading Service, Property 
Service, Events Service, Audio/Video Streaming Service, Concurrency Service, Lifecycle Service and 
Time Service 
(***) For this version, embedded mechanisms (RSVP, Ensemble, Proteus, Remos) may not run on NT 
and others (OO-DTE) may not run on Solaris. 

5.3. Release 3.0 Contents and Environment 
May 2001 
 
The 3.0 release of the Quality Objects framework for distributed system development (QuO 3.0) was 
made available in May 2001. This release is based around the QuO toolkit, which includes the 
following features:  
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• QuO runtime kernel, including GUI visualization capability  
• QuO code generators for Quality Description Languages (QDL), including the Contract 

Description Language 
• (CDL) and the Aspect Structure Language (ASL) components  
• Support for built-in and user-specified instrumentation for QuO-enhanced CORBA or RMI 

applications  
• Support for Java and C++ applications  
• Support for CORBA and Java RMI distributed object middleware  
• A library of sample QuO system condition objects  
• Several application and QoS property examples that demonstrate how to build applications and 

QoS mechanisms 
• Using the QuO framework  
• A gateway mechanism for hooking in special purpose transport layers below the ORB  
• On-line documentation and how-to descriptions  
 
QuO 3.0 adds the following new capabilities and features, as well as significant improvements to each 
of the separate modules for the QoS attribute integration activities:  
• Qoskets: mechanism for bundling QoS adaptive code for reuse  
• C++ integrated QuO Kernel  
• Java RMI support  
• Aspect SDL (ASL):  
• Language independent (C++ and Java) with Java-like syntax  
• Multiple ASL files can be woven together  
• ASL Templates to indirect Method signatures.  
• State Machine Representation for Regions in CDL  
• Resource Status Service: Unified architecture for monitoring the status of external resources from 

inside an application  
• Default resource configurations published on web pages  
• QuO Status Typed Event Channel push technology for getting host load and capacity  
• Direct interface to Remos, for network monitoring  
• Reusable in-band instrumentation, i.e., an instrumentation Qosket allows instrumentation 

independent of the Business interface  
• Example Adaptive Code for Resource Monitoring with Client-side adaption (RSS and in-band 

instr)  
• Bandwidth Reservation (RSVP)  
• Security (Authentication)  
• Easy to install Linux RPMs  

 
The QuO release consists of the following components:  

• QuoCore 
-The QuO base system, including the codegenerator and runtime kernels 

• quoDoc 
-Written documentation including the Users' and Reference Guide Doxygen and 
Javadoc generated documentation for examples 
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• quoOODTE  
-Security service based on OODTE from NAI  

• quoRemos  
-Resource management service based on Remos  

• quoRsvporb  
-Bandwidth reservation service based on Rsvp  

• quoAqua  
-Replication Service based on AQuA  

• quoUAV  
-Unmanned Airborne Vehicle (UAV) distributed QoS video application  

 
Supported Platforms for QuO V.3: 
The QuO v.3 QDL language processors and code generators are distributed in binaries for RedHat 6.2, 
RedHat 7.1, SunOS 5.6 and Windows NT 4.0. They generate Java and C++ code for CORBA and Java 
code for Java RMI. They support CORBA 2.4, specifically Visibroker 4.51, JacORB 1.3.30 for Java 
and TAO 1.1 for C++.  
 
QuO software is now open-source. The QuO software is released under an open-source license. By 
downloading the software you agree to the terms of this license. 
 

5.4. AQuA Dependability Module Implementation Status 
The current implementation of AQuA is documented with its own User’s/Programmer’s Manual.  The 
current version runs on both Unix (Solaris SPARC and Intel x86) and Windows 2000 (Intel x86) 
operating systems, and with VisiBroker, TAO, and JacORB ORBs.  A typical configuration would 
include multiple machines connected via an Ethernet.   
The required infrastructure for this version of AQuA is: 
Solaris 2.7 for Sun Sparc, RedHat Linux 6.2, Windows NT/2000 
ACE - TAO 5.2.1 
Ensemble version 1.20-AQuA (provided) 
VisiBroker for Java 4.5.1 
JacORB 1.4 
Java version 1.2.2 or Java version 1.3 
gcc version 2.95.2 
 
For more information, see the User’s/Programmer’s Manual or the AQuA website at 
www.crhc.uiuc.edu/PERFORM/AQuA.html. 



 

 67 

6. An R&D Plan for Moving Forward 
In this section we speculate on where these types of adaptive QoS middleware activities are or ought 
to be headed, based on experience gained from the Quorum and QuOIN activities.  In doing so, we 
take a broader view of the challenges we face in constructing the new generation of Distributed Real-
Time Embedded (DRE) systems, going well beyond the relatively simple examples developed to date 
in Quorum.  In our view, the key research challenges for the next several years will involve the 
integration and augmentation of the following capabilities: 
• Contracts and adaptive meta-programming – Information must be gathered for particular 

applications or application families regarding user requirements, resource requirements and system 
conditions. Multiple system behaviors must be made available based on what is best under the 
various conditions. This information provides the basis for the contracts between users and the 
underlying system substrate. These contracts provide not only the means to specify the degree of 
assurance of a certain level of service, but also provide a well defined, high-level middleware 
abstraction to improve the visibility of adaptive changes in the mandated behavior.  A crucial (and 
currently missing) capability involves the ability to change strategies rapidly and with few negative 
side effects. 

• Graceful degradation – Adaptive meta-programming mechanisms must also be devised to monitor 
the system and enforce contracts, providing feedback loops so that application services can degrade 
gracefully (or augment) as conditions change, according to a prearranged contract governing that 
activity.  The initial challenge here is to establish the idea in developers’ and users’ minds that 
multiple behaviors are both feasible and desirable. The next step is to put into place the additional 
middleware support–including connecting to lower level network and operating system enforcement 
mechanisms–necessary to provide the right behavior effectively and efficiently given current system 
conditions.  

• Prioritization and physical world constrained load invariant performance – Some systems are 
highly correlated with physical constraints and have little flexibility in some of their requirements 
for computing assets, including QoS. Deviation from requirements beyond a narrowly defined error 
tolerance can sometimes result in catastrophic failure of the system.   The challenge is in meeting 
these invariants under varying load conditions. This often means guaranteeing access to some 
resources, while other resources may need to be diverted to insure proper operation.  Generally 
collections of such components will need to be resource managed from a system (aggregate) 
perspective in addition to a component (individual) perspective. 

Although it is possible to satisfy contracts, achieve graceful degradation and globally manage some 
system resources to a limited degree in a limited range of systems today, much R&D work remains. 
The research strategies needed to deliver these goals can be divided into the seven areas described 
below. 
1. Individual QoS Requirements – Individual QoS deals with developing the mechanisms relating to 
the end-to-end QoS needs from the perspective of a single user or DRE application.  The specification 
requirements include multiple contracts, negotiation and domain specificity.  Multiple contracts are 
needed to handle requirements that change over time and to associate several contracts with a single 
perspective, each governing a portion of an activity.  Different users running the same application may 
have different QoS requirements emphasizing different benefits and tradeoffs, often depending on 
current configuration.  Even the same user running the same application at different times may have 
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different QoS requirements, e.g., depending on current mode of operation and other external factors.  
Such dynamic behavior must be taken into account and introduced seamlessly into next-generation 
distributed systems. 
 
General negotiation capabilities that offer convenient mechanisms to enter into and control a 
negotiated behavior (as contrasted with the service being negotiated) need to be available as COTS 
middleware packages.  The most effective way for such negotiation-based adaptation mechanisms to 
become an integral part of QoS is for them to be “user friendly,” e.g., requiring a user or administrator 
to simply provide a list of preferences.   This is an area that is likely to become domain-specific and 
even user-specific.  Other challenges that must be addressed as part of delivering QoS to individual 
applications include:  
• Translation of requests for service among and between the various entities on the distributed end-

to-end path, 
•  Managing the definition and selection of appropriate application functionality and system resource 

tradeoffs within a “fuzzy” environment and  
• Maintaining the appropriate behavior under composability.  

Translation addresses the fact that complex network-centric systems are being built in layers. At 
various levels in a layered architecture the user-oriented QoS must be translated into requests for other 
resources at a lower level.  The challenge is how to accomplish this translation from user requirements 
to system services.  A logical place to begin is at the application/middleware boundary, which closely 
relates to the problem of matching application resources to appropriate distributed system resources.  
As system resources change in significant ways, either due to anomalies or load, tradeoffs between 
QoS attributes (such as timeliness, precision and accuracy) may need to be (re)-evaluated to ensure an 
effective level of QoS, given the circumstances. Mechanisms need to be developed to identify and 
perform these tradeoffs at the appropriate time.  Last, but certainly not least, a theory of effectively 
composing systems from individual components in a way that maintains application-centric end-to-end 
properties needs to be developed, along with efficient implementable realizations of the theory.  

 
2. Run-time Requirements – From a system lifecycle perspective, decisions for managing QoS are 
made at design time, at configuration/deployment time and/or at run-time.  Of these, the run-time 
requirements are the most challenging since they have the shortest time scales for decision-making, 
and collectively we have the least experience with developing appropriate solutions. They are also the 
areas most closely related to advanced middleware concepts. This area of research addresses the need 
for run-time monitoring, feedback and transition mechanisms to change application and system 
behavior, e.g., through dynamic reconfiguration, orchestrating degraded behavior or even off-line 
recompilation.  The primary requirements here are measurement, reporting, control, feedback and 
stability.  Each of these plays a significant role in delivering end-to-end QoS, not only for an 
individual application, but also for an aggregate system.  A key part of a run-time environment centers 
on a permanent and highly tunable measurement and resource status service as a common middleware 
service, oriented to various granularities for different time epochs and with abstractions and 
aggregations appropriate to its use for run-time adaptation.   
 
In addition to providing the capabilities for enabling graceful degradation, these same underlying 
mechanisms also hold the promise to provide flexibility that supports a variety of possible behaviors, 
without changing the basic implementation structure of applications.  This reflective flexibility 
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diminishes the importance of many initial design decisions by offering late- and run-time-binding 
options to accommodate actual operating environments at the time of deployment, instead of only 
anticipated operating environments at design time.  In addition, it anticipates changes in these bindings 
to accommodate new behavior.  

 
3. Aggregate Requirements – This area of research deals with the system view of collecting necessary 
information over the set of resources across the system, and providing resource management 
mechanisms and policies that are aligned with the goals of the system as a whole. While middleware 
itself cannot manage system-level resources directly (except through interfaces provided by lower 
level resource management and enforcement mechanisms), it can provide the coordinating 
mechanisms and policies that drive the individual resource managers into domain-wide coherence.  
With regards to such resource management, policies need to be in place to guide the decision-making 
process and the mechanisms to carry out these policy decisions.   
 
Areas of particular R&D interest include:  
• Reservations, which allow resources to be reserved to assure certain levels of service 
• Admission control mechanisms, which allow or reject certain users access to system resources 
• Enforcement mechanisms with appropriate scale, granularity and performance and  
• Coordinated strategies and policies to allocate distributed resources that optimize various 

properties.   
Moreover, policy decisions need to be made to allow for varying levels of QoS, including whether 
each application receives guaranteed, best-effort, conditional or statistical levels of service.  Managing 
property composition is essential for delivering individual QoS for component based applications, and 
is of even greater concern in the aggregate case, particularly in the form of layered resource 
management within and across domains. 

 
4. Integration Requirements  – Integration requirements address the need to develop interfaces with 
key building blocks for system construction, including the OS, network management, security and data 
management.  Many of these areas have partial QoS solutions underway from their individual 
perspectives.  The problem today is that these partial results must be integrated into a common 
interface so that users and application developers can tap into each, identify which viewpoint will be 
dominant under which conditions and support the tradeoff management across boundaries to get the 
right mix of attributes.  Currently, object-oriented tools working with distributed object computing 
middleware provide end-to-end syntactic interoperation, and relatively seamless linkage across the 
networks and subsystems.  There is no managed QoS, however, making these tools and middleware 
useful only for resource rich, best-effort environments.   
 
To meet varying requirements for integrated behavior, advanced tools and mechanisms are needed that 
permit requests for different levels of attributes with different tradeoffs governing this interoperation.  
The system would then either provide the requested end-to-end QoS, reconfigure to provide it or 
indicate the inability to deliver that level of service, perhaps offering to support an alternative QoS, or 
triggering application-level adaptation.  For all of this to work together properly, multiple dimensions 
of the QoS requests must be understood within a common framework to translate and communicate 
those requests and services at each relevant interface.  Advanced integration middleware provides this 
common framework to enable the right mix of underlying capabilities. 
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5. Adaptivity Requirements – Many of the advanced capabilities in next-generation DRE system 
environments will require adaptive behavior to meet user expectations and smooth the imbalances 
between demands and changing environments. Adaptive behavior can be enabled through the 
appropriate organization and interoperation of the capabilities of the previous four areas. There are two 
fundamental types of adaptation required: 
1. Changes beneath the applications to continue to meet the required service levels despite changes in 

resource availability and  
2. Changes at the application level to either react to currently available levels of service or request 

new ones under changed circumstances.    
In both instances, the system must determine if it needs to (or can) reallocate resources or change 
strategies to achieve the desired QoS.  Applications need to be built in such a way that they can change 
their QoS demands as the conditions under which they operate change.  Mechanisms for 
reconfiguration need to be put into place to implement new levels of QoS as required, mindful of both 
the individual and the aggregate points of view, and the conflicts that they may represent.  In 
particular, fundamental concern in performing adaptive resource management is to reduce overhead 
and improve predictability of adaptation.  If too much of the resource budget is spent monitoring and 
performing adaptive functions, therefore, adaptation can prove ineffective or even detrimental to 
system performance. 
 
Part of the effort required to achieve these goals involves continuously gathering and instantaneously 
analyzing pertinent resource information collected as mentioned above. A complementary part is 
providing the algorithms and control mechanisms needed to deal with rapidly changing demands and 
resource availability profiles and configuring these mechanisms with varying service strategies and 
policies tuned for different environments. Ideally, such changes can be dynamic and flexible in 
handling a wide range of conditions, occur intelligently in an automated manner and can handle 
complex issues arising from composition of adaptable components. Coordinating the tools and 
methodologies for these capabilities into an effective adaptive middleware should be a high R&D 
priority. 

 
6. System Engineering Methodologies and Tools – Advanced middleware by itself will not deliver 
the capabilities envisioned for next-generation embedded environments.   We must also advance the 
state of the system engineering discipline and tools that come with these advanced environments used 
to build complex distributed computing systems.  This area of research specifically addresses the 
immediate need for system engineering approaches and tools to augment advanced middleware 
solutions.  These include:  
• View-oriented or aspect-oriented programming techniques, to support the isolation (for 

specialization and focus) and the composition (to mesh the isolates into a whole) of different 
projections or views of the properties the system must have. The ability to isolate, and subsequently 
integrate, the implementation of different, interacting features will be needed to support adapting to 
changing requirements. 

• Design time tools and models, to assist system developers in understanding their designs, in an 
effort to avoid costly changes after systems are already in place (this is partially obviated by the 
late binding for some QoS decisions referenced earlier). 
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• Interactive tuning tools, to overcome the challenges associated with the need for individual pieces 
of the system to work together in a seamless manner. 

• Composability tools, to analyze resulting QoS from combining two or more individual 
components. 

• Modeling tools for developing system performance models as adjunct means (both online and 
offline) to monitor and understand resource management, in order to reduce the costs associated 
with trial and error. 

• Debugging tools, to address inevitable problems. 

7.  Reliability, Trust, Validation, and Certifiability – The dynamically changing behaviors we 
envision for next-generation large-scale, network-centric systems are quite different from what we 
currently build, use and have gained some degrees of confidence in.  In particular, since adaptive 
meta-programming mechanisms must monitor and respond to externally induced stimuli, they are 
vulnerable to malicious behavior. Considerable effort must therefore be focused on assuring the 
validity of inputs and administrative operations, validating the correct functioning of the adaptive 
behavior and on understanding the properties of large-scale systems that try to change their behavior 
according to their own assessment of current conditions, before they can be deployed.  But even before 
that, longstanding issues of adequate reliability and trust factored into our methodologies and designs 
using off-the-shelf components have not reached full maturity and common usage, and must therefore 
continue to improve.  The current strategies organized around anticipation of long life cycles with 
minimal change and exhaustive test case analysis are clearly inadequate for next-generation dynamic 
systems with stringent QoS requirements. 
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7. Chronological Review of QuOIN Activities 
Chronological Synopsis of QuOIN activities by month, since inception: 

June 1998 
During June 1998, effort was devoted primarily to contract startup activities, and to preparation for the 
Quorum Principal Investigators' meeting in July 1998.  BBN and WUSTL intend to use the PI meeting 
as an opportunity to acquaint Quorum researchers with recent developments in BBN’s Quality Objects 
(QuO) research projects and to conduct an informal kickoff of QuOIN activities with the Quorum 
research community. 
 
We completed definition of QuO demonstrations to be conducted at the Quorum PI meeting in San 
Diego.  One basic demonstration application, the “Bette Davis Slideshow,” will be used to 
demonstrate the basics of the QuO development environment, as well as specific QuO mechanisms 
developed under the AQuA and DIRM projects. 
 
We selected the demonstration and integration environment.  Basic components are Linux (RedHat 
5.0), Java (JDK 1.1.5) and CORBA (VisiBroker 3.0). 
 
We began working with DARPA and other Quorum researchers to define the charter of a Quorum 
distributed object working group.  This group will provide technical input for ongoing QuOIN efforts 
and will provide an opportunity for Quorum researchers to participate in QuOIN efforts. 
BBN participated in preliminary meetings with the Quorum integration contractor team (Teknowledge 
and The Open Group [TOG]).  Discussion topics included arriving at common integration goals and 
rationalization of schedules between the QuOIN and QUITE teams. We also worked with 
representatives of TOG and Honeywell to support TOG’s Quorum Integration Jumpstart integration 
demonstration. 
 

July 1998 
During July 1998, our greatest efforts were devoted to activities surrounding the Quorum PI meeting 
in San Diego.  BBN and WUSTL made presentations, led and participated in working groups and 
participated in discussions in support of the QuOIN effort.  We made significant progress toward 
defining goals and recruiting research partners for the next year’s Quorum distributed object 
integration effort. 
 
We completed implementation and conducted demonstrations of QuO software at the Quorum PI 
meeting in San Diego.  These demonstrations highlighted developments under QuOIN and related 
projects, including the AQuA, DIRM and Open Implementation Toolkit projects.  Capabilities 
demonstrated included the following: 
• The QuO development environment, including runtime kernel and QDL code generators 
• Ability to augment a standard CORBA application (the “Bette Davis Slideshow”) with different 

QoS properties, including basic implementations of managed network bandwidth (via RSVP, 
based on DIRM project research) and object replication (via Ensemble/Proteus, based on AQuA 
project research) 
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• Instrumentation for measuring performance of DOC software running under QuO 
 

At the Quorum PI meeting, we led two working groups on Distributed Objects and QoS Specification, 
respectively.  We used the Distributed Objects working group as an unofficial kickoff venue for the 
QuOIN effort.  We identified several key integration partners and established initial technical agendas 
for each of the key QoS properties to be investigated under QuOIN. 

August 1998 
August 1998 was chiefly devoted to project technical planning and coordination.  We conducted a 
project kickoff meeting and reached agreement on an initial project technical plan. We hosted a formal 
project kickoff meeting at BBN Technologies, Cambridge on 12 August 1998. We refined the QuOIN 
project plan and reviewed it with DARPA and AFRL customer representatives at the project kickoff 
meeting 12 August 1998.  Highlights of the plan include the following: 
• Identification of QoS dimensions to be addressed in QuOIN project (real-time behavior, security 

via access control, bandwidth management, availability) and candidate software mechanisms to be 
integrated 

• Semi-annual releases of integrated QuO software incorporating incremental additional QoS 
capabilities, beginning with QuO release 1.0 in September 1998 

• Semi-annual “release preview demonstrations” nominally on a staggered schedule between 
software releases 

 
We participated in ongoing meetings and discussions with the Quorum lead integration team.  We 
discussed QuOIN and QUITE schedules and expected capabilities for use in Quorum integration 
products. 
 
We began identification of steps towards integration of QuO and TAO, for support of real-time 
behavior in QuOIN.  Initial phases focus on modifying TAO, with the intent of porting QuO to TAO in 
the next few months.  Specific TAO tasks addressed during this period include the following: 
• We are enhancing the TAO IDL compiler to generate code that supports either CORBA-style or 

native C++ exceptions. 
• We began enhancements of the TAO portable object adapter (POA) to support the Dynamic 

Skeleton Interface.  This feature will be useful in implementing the QuO gateway. 
• We are enhancing the real-time components and applications in TAO to visualize the behavior of a 

variety of real-time scheduling algorithms, including rate monotonic scheduling (RMS), earliest 
deadline first (EDF), minimal laxity first (MLF) and maximal urgency first (MUF). 

 
We continued working towards planned September 1998 initial release of QuO software to Quorum 
community. 
 
We attended and participated in a DARPA/Microsoft workshop on the use of Windows NT in research 
projects. 

September 1998 
The highlight of September 1998 was the first release of QuO software, QuO version 1.0. 
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We completed the release of QuO version 1.0.  The release was coordinated with a simultaneous 
release of software from the Dynamic Integrated Resource Management (DIRM) project, which 
provides an initial managed bandwidth capability for QuO.   Key elements of QuO version 1.0 include 
the following: 
• QuO runtime kernel, including GUI visualization capability 
• QuO code generators for Quality Description Language (QDL), including Contract Definition 

Language (CDL) and Structure Definition Language (SDL) components 
• Built-in instrumentation for QuO-enhanced CORBA applications 
• Support for Java and C++ applications 
• Library of sample QuO system condition objects 
• Several application and QoS property examples that demonstrate how to build applications and 

QoS mechanisms using the QuO framework 
• On-line documentation and how-to descriptions 
 
We continued our interactions with the Quorum lead integration team.  Items of interest include the 
following: 
• We submitted a QUITE component nomination form for QuOIN to the integration team 
• We hosted several informal meetings with the QUITE team’s designated technical representative 

for QuOIN technology (Bill LaForge of The Open Group).  We introduced him to QuO concepts, 
familiarized him with QuO plans and discussed possible applications 

• We participated in discussions regarding QUITE validation 
 
We continued design and development efforts towards integration of QuO and TAO, for support of 
real-time behavior in QuOIN.  Specific TAO tasks addressed during this period include the following: 
• We continued work on enhancing the TAO IDL compiler to generate code that supports either 

CORBA-style or native C++ exceptions. 
• We began enhancements of the protocol engine to support dynamic anys, which will be useful in 

implementation of incremental demarshaling in the QuO gateway. 
• We completed enhancements of the TAO portable object adapter (POA) to support the Dynamic 

Skeleton Interface.  This feature will be useful in implementing the QuO gateway. 
• We continued work on enhancing the real-time components and applications in TAO to visualize 

the behavior of a variety of real-time scheduling algorithms. 
 
October 1998 
Our primary focus during October 1998 was the exploration of techniques for implementing TAO-
based versions of various components of the QuO framework. 
 
We identified key research threads for the next version of the QuO framework.  In general these 
threads address issues related to integration with TAO and/or generalizing QuO interfaces to facilitate 
integration with a larger set of QuO mechanism developers.  Important areas identified for 
investigation include the following: 
• Naming:  Current CORBA naming facilities are not adequate for describing QoS attributes of 

remote objects or communication channels, nor do they work well for naming some types of QuO 
objects, such as the replicated objects used in the AQuA availability software. 
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• QuO Gateway:  There are several TAO capabilities that would substantially reduce the effort 
required to integrate new transport mechanisms with the QuO gateway. 

 
We delivered QuO version 1.0 to the Quorum lead integration team and worked with them to assist 
them in familiarization with it. We worked closely with the integration team’s QuOIN technical 
representative to walk through the components of the release, including documentation and sample 
applications. We discussed desirable technical attributes of applications for this winter’s planned 
QUITE demonstration that will make best use of QuO and the AQuA availability capabilities. 
 
We continued design and development efforts towards integration of QuO and TAO, for support of 
real-time behavior in QuOIN.  Specific TAO tasks addressed during this period include the following: 
• We completed enhancements of the TAO IDL compiler to generate code that supports either 

CORBA-style or native C++ exceptions.  This feature is necessary to support the existing QuO 1.0 
code base. 

• We completed enhancements of the protocol engine to support dynamic anys, which will be useful 
in implementation of incremental demarshaling in the QuO gateway. 

• We held a multi-day internal QuO/TAO cross-fertilization meeting in St. Louis where we devised 
specific strategies for incorporating TAO features into QuO capabilities. 

• We continued work on enhancing the real-time components and applications in TAO to visualize 
the behavior of a variety of real-time scheduling algorithms. 

 
We had brief discussions with Trusted Information Systems to begin developing a plan for integration 
of access control specification with QuO. 
 
We made QuO version 1.0 available to several other Quorum researchers who are investigating the use 
of QuO in their research. 

November 1998 
Our primary focus during November 1998 was coordinating with additional likely research partners to 
establish integration goals and schedules. 
 
We continued identification of modifications to the QuO framework that will be required for 
integration progress. We identified deficiencies in the current QuO implementation that will need to be 
corrected for integration with The ACE ORB (TAO). We identified additional capabilities needed in 
QuO to support extended instrumentation capabilities planned for delivery as part the next release of 
the QuO framework. 
 
We completed a brief investigation of Jewel for potential use in conjunction with QuO 
instrumentation.  We decided that Jewel integration is more appropriate at the overall Quorum project 
level and put this activity on hold, pending any possible QUITE team action. 
 
Representatives of BBN and Washington University visited the University of Utah and met with the 
Flick research team to identify potential integration approaches.  We identified the following short-
term and long-term goals: 
• Integrate Flick with TAO as the preferred code generator for C++ stubs and skeletons. 
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• Evaluate performance improvements resulting from use of Flick’s optimized code generation. 
• To the extent possible, move towards the use of Flick as a common IDL compiler throughout 

QuOIN.  Given the current state of Flick development (particularly language support), exclusive 
use of Flick will not be achieved soon; the goal is to maximize appropriate use. 

 
A representative of BBN visited the University of Oregon to discuss possible collaborative efforts.  
Researchers at the University of Oregon plan to investigate the integration of QuO into their ongoing 
ASSERT effort.  By automatically generating QoS specifications, using QuO’s Quality Description 
Language (QDL) as the output language and ASSERT specifications as input, U. Oregon hopes to 
develop the capability to use ASSERT’s capabilities to perform formal reasoning on QuO contracts. 

December 1998 
Our primary focus during December 1998 was to continue several of the early integration activities we 
have recently initiated with other Quorum researchers. 
 
We conducted initial experiments to verify operation of the QuO runtime under the Windows NT 
operating system. Initial experiments covering exclusively the QuO runtime components were 
successful.  We tested the QuO runtime by building the basic Bette Davis slideshow application under 
Linux and executing the resulting program in NT-only and mixed NT/Linux environments.  The 
experiments verified that the basic QuO runtime components (written in Java) operate correctly 
without modification in the Windows NT environment. Future experiments will be required to 
determine the extent of modifications that may be required to the QuO development toolkit (e.g. code 
generators) to support development of QuO applications under NT. 
 
We held an internal QuOIN security integration kickoff meeting in Cambridge with Franklin Webber.  
Through Mr. Webber, we continued our review of TIS’s SIGMA research, with an eye towards 
identifying potential integration approaches. 
 
We provided as-needed support to the Quorum integration team, as they prepared for an initial QUITE 
system demonstration.  QuOIN-delivered components demonstrated include the core QuO capability 
and the AQuA availability mechanism. We reviewed QUITE demonstration plans and offered 
suggested modifications to make better use of QuOIN-provided components, particularly the AQuA 
availability capability.  
 
We began planning, both internally and jointly with representatives of Teknowledge and The Open 
Group, to maximize the effectiveness of our participation in the Quorum/HCC PI meeting planned for 
February 1999 in Atlanta. 
 
We continued our discussions with ASSERT researchers at the University of Oregon, investigating 
possible approaches for translating their SCR descriptions into QuO’s CDL. 
 
We began discussions with Quorum researchers at Carnegie-Mellon University about possible 
integration of QuOIN with CMU’s ongoing Darwin and Remos projects. 

January 1999 
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Our primary focus during January 1999 was to prepare for the upcoming Quorum/HCC Principal 
Investigators’ meeting.  At this meeting, we participated through presentations, working groups and a 
software demonstration. 
 
Representatives of BBN Technologies visited Carnegie-Mellon University (CMU) to discuss possible 
integration activities involving QuOIN, Darwin and Remos.  The following integration activities were 
initiated: 
• Develop a QuO reserved network bandwidth capability based on Darwin reservations, and 

integrate this capability with ongoing research at CMU and BBN facilities 
• Develop QuO system conditions that provide an interface to system load measurements and 

predictions (CPU load and network bandwidth) and integrate these measurements with example 
QuO applications 

 
We began in earnest preparation for the Quorum/High-Performance Computing Principal 
Investigators’ meeting, scheduled for 17-18 February 1999 in Atlanta. We planned the QuO and 
QuOIN demonstration capabilities to be presented at the PI meeting.  These capabilities will include 
the following: 
• Real-time event delivery through TAO event channels 
• Support for caching as an alternate availability mechanism, using software developed at Georgia 

Institute of Technology 
• The ability to trade off real-time performance for other system QoS properties (e.g. caching 

timeliness), under control of a QuO contract and delegate 
• Automated “bottleneck” detection and response, based on QuO instrumentation capabilities and 

AQuA’s RSVP managed network bandwidth mechanism 
 
We worked with DARPA and the QUITE team to refine the agenda for the PI meeting.  BBN/WUSTL 
plan to lead a working group covering the distributed objects research area. We supported the QUITE 
team in defining their demonstration capability.  The QUITE team is planning a live or videotaped 
demonstration at the PI meeting, which will include demonstrations of QuO and AQuA availability 
software. 

February 1999 
We attended the Quorum/High-Performance Computing Principal Investigators’ meeting in Atlanta, 
17-18 February 1999. In advance of the meeting, we conducted e-mail discussions with DARPA and 
QUITE representatives to help plan and coordinate working group and presentation material. At the 
meeting, we made presentations on QuO and QuOIN, demonstrated the QuOIN software and led a 
working group on distributed object integration. 
 
We worked with researchers at the University of Utah to complete an initial integration of TAO with 
the Flick code generator. This capability uses Flick to generate C++ stubs for TAO. Because Flick 
stubs are highly optimized, we expect to observe significant performance improvements when we 
complete performance benchmarks. 
 
We worked with researchers at CMU to complete a version of the QuO “bottleneck” example, using 
Darwin reservations as the mechanism for reserving network bandwidth. The bottleneck example is a 
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variation on the “Bette Davis Slideshow,” in which instrumentation is used to diagnose whether slow 
responses are due to delays in the network or in the remote server. If network delays are identified, the 
application attempts to correct the problem by reserving additional network resources.  In performance 
tests at CMU, a full-blast UDP stream was used as competing network traffic. Without reservations, 
the bottleneck application made no measurable progress. With reservations, the image flow was 
unaffected by the UDP flow. 
 
We also worked with researchers at CMU to complete an initial integration of QuO with Remos’ status 
collection capability, but using a non-standard Remos API.  The integrated product is a set of QuO 
system conditions that exports Remos’ estimates of expected CPU load and measured network 
bandwidth. 
 
We got an early start on our Technology Transition activities, scheduled to start in June 1999, during 
the reporting period. We delivered the QuO/QuOIN software to The Open Group, members of the 
Quorum Integration (Quite) team and worked closely with them to get it running in the Quite testbed. 
 
In another Technology Transition activity, we helped University of Oregon researchers integrate QuO 
and ASSERT, their formal specification language. They integrated QuO into their testbed and began 
work on generating QDL from ASSERT specifications, from which they can prove safety and liveness 
properties. 

March 1999 
During March, we planned the upcoming QuO v2.0 release, scheduled for May 1999, and identified 
the QuO capabilities to be included.  Important new features include the following: 
• Initial connection language (CSL), which enables QuO to automatically build “bind-time” 

connections based on CSL specifications, without the need for application developers to hand-code 
connection routines 

• An instrumentation package, for non-intrusively instrumenting the method call/return path and 
transparently passing information along with the method call/return 

• An improved QuO gateway, with instantiations for real-time (using TAO), group communication 
(using Ensemble) and resource reservation (using RSVP and Darwin) 

 
We identified the necessary hardware and software environment required to perform QuO integration 
with CMU’s Remos and Darwin efforts at BBN.  We have obtained portions of the required software 
from CMU and begun integration at BBN. 
 
We also followed up on the Distributed Objects Working Group we led in Atlanta last month, 
distributing summaries to all participants and inviting their participation in future activities. 
 
We coordinated with The Open Group (TOG) to provide access to the QuO/TAO integration software 
for installation in the Quite testbed. We also met with TOG to plan support for instrumentation in 
QuO/QuOIN and to plan the upcoming QuOIN release. 
 
In a move to transition some of the QuOIN efforts to standards efforts, we wrote and submitted a paper 
to a workshop on XML. 
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April 1999 
We continued development of QuO functionality including bug fixes and updates to the QuO kernel 
and the code generators, and improving the functionality of the initial gateway prototype. We also 
worked on various pieces of the QuOIN functionality, including integrating the TAO real-time ORB 
and developing an example application using TAO real-time features under QuO control.  
 
We also integrated OODTE access control into QuO. OODTE is technology developed at Network 
Associates, Inc. (NAI) and provides authentication and access control at the level of CORBA methods.  
Its integration into QuO means that QuO applications and the QuO kernel can now prohibit 
unauthorized use of their methods and can define authorized use according to a security policy.  This 
provides a basic form of security for QuO applications. 
 
We released QuO v.1.2.5 to The Open Group (TOG), member of the Quorum Integration (Quite) team. 
We also worked closely with TOG to help them develop a demo of the AQuA availability software in 
the Quite testbed. We also attended a meeting with STD/C and the Quite team. 

May 1999 
During May, we received Darwin routers and installed them in the QuO testbed. We also setup CMU’s 
Remos and Smarts InCharge in the QuO testbed. We created demos using QuO instrumentation to 
automatically detect network capacity and using Columbia’s RSVP ORB and CMU’s Remos. 
 
We also improved our real-time demo, which illustrated the integration of the TAO ORB’s real-time 
event channels with the QuO framework. We developed a real-time setup language, which simplified 
the application’s setup of real-time event channels, event suppliers and event consumers, and 
generated the TAO code to implement it. 
 
We also developed an air traffic control (ATC) example using the integrated QuO/OODTE tools.  The 
example shows the ATC application using access control and modifying its behavior in response to 
security-relevant changes to its environment.   
 
We helped The Open Group (TOG), member of the Quorum Integration (Quite) team, investigate 
integrating AQuA and DeSiDeRaTa, from the University of Texas, Arlington. We also helped 
Teknowledge, lead of the Quite team, get the QuO/TAO integrated software running in the Quite 
testbed. We also helped the University of Oregon debug their QuO/ASSERT integration. 
 
We attended and presented a paper at ISORC ’99, where we discussed QuOIN integration with SRI 
and discussed plans to integrate their bandwidth management component into QuOIN v3. 

June 1999 
We hosted a QuOIN review for DARPA in which we demonstrated the QuOIN integration efforts, 
including the Bottleneck example using Darwin, Remos and RSVP, the real-time example using TAO, 
the dependability example using Proteus and Ensemble and the ATC example using OODTE. 
 
At the same time of the QuOIN review, we held a planning meeting for a possible Advanced Tactical 
Demonstration (ATD) with MITRE, The Open Group (TOG), AFRL and NSWC. This ATD is a 
possible technology transition opportunity for QuOIN. 
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Our major accomplishment during June 1999 was release of QuO and QuOIN version 2.0. This release 
included a vastly improved QuO Toolkit, including new and improved QDL languages (such as the 
first instantiation of the Connector Setup Language, CSL) and code generators, a more robust QuO 
kernel, the QuO instrumentation package and the first instantiation of the QuO gateway. QuOIN 
version 2.0 includes the following integration software packages: 
• Availability, with the Proteus dependability manager and Ensemble group communication 

mechanism integrated into the QuO framework 
• Resource management, with integrated Columbia’s RSVP ORB, CMU’s Remos, and CMU’s 

Darwin 
• Real-time, with QuO controlling and simplifying the use of TAO’s real-time event channels 
• Caching, from Georgia Tech 
 
We attended a meeting in Dahlgren, Virginia, with the QUITE team and the HiPer-D research and 
development team from NSWC. During this meeting, we planned QuOIN 2.0 and QUITE R2A 
integration and transition to NSWC HiPer-D. We followed up on this meeting with NSWC personnel 
to provide more information on QuOIN and answer some of their questions. 
 
We attended a workshop on XML and presented our QuO/QuOIN work and an integration plan with 
XML standardization efforts. 

July 1999 
During July 1999, we released QuO and QuOIN version 2.0.1. This release fixed some bugs reported 
by users of version 2.0 and included minor functionality improvements. 
 
We also met with Washington University, St. Louis, to plan the contents of QuOIN versions 2.1 and 
3.0 and to schedule the efforts moving forward. We developed the plan for QuOIN v3 and elicited the 
participation of other Quorum researchers. We submitted this plan to DARPA for review and 
feedback. 
 
We worked with members of The Open Group (TOG), QUITE team member, at our Cambridge 
facilities to get their QuO/Recon Simulator demonstration software running. 

August 1999 
During August 1999, we began implementing a general-purpose version of the QuO gateway, based 
upon CORBA’s pluggable protocols, as implemented in TAO. We developed an initial example using 
a simple transport mechanism. This version of the gateway should support instantiations of different 
gateways with less effort than the current gateway. 
 
We also began planning the release of QuOIN version 2.1 and initiating plans for the functionality in 
QuOIN version 3. 
 
We visited Kane Kim at UC-Davis to plan his QuOIN version 3 participation.  
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We also started talking to Boeing about integrating QuO into the Boeing OFP software under the 
Weapon System Open Architecture (WSOA) project. This software was already using TAO for real 
time event scheduling. 

September 1999 
In September 1999, we executed a source code agreement with The Open Group (TOG). Under the 
terms of this agreement, we delivered portions of QuO and QuOIN source code for them to port to NT. 
 
We also hosted a meeting for NSWC personnel from the Hiper-D program, University of Illinois, and 
TOG. We presented QuO, QuOIN, and the dependability work, and showed a number of QuOIN 
demonstrations. We also held discussions of how they might be able to transition QuOIN results into 
their environment and programs. We also released to them a copy of the QuO and QuOIN software. 
 
Also during September, we worked on almost every aspect of QuOIN, in anticipation of an early 
October release of version 2.1. We made major strides in the development of the QuO gateway, as 
well as improvements in resource management.  
 
Washington University released TAO version 1.0, the commercialized, Open Source version of TAO. 
This version of TAO is the stable version on which we will base QuOIN 2.1.  
 
We also began working on a couple of conference papers, one for ISORC 2000 and one for 
Middleware 2000. 

October 1999 
Much of October 1999 was spent preparing for the Quorum PI meeting held at the end of October. 
This included developing ideas for working groups that were held at the PI meeting and coordinating 
the working group planning with the leaders of several of the groups. 
 
We continued development of version 2.1 of QuOIN aiming for an October release of the software. As 
part of this we continued working on the QuO gateway shell, which was developed using TAO’s 
pluggable protocol mechanism. WUStL developed improvements to TAO’s Dynamic Skeleton 
Interface (DSI) and Dynamic Invocation Interface (DII) components to support the QuO gateway. We 
developed a version of the RSVP gateway using the new pluggable protocol gateway shell. 
 
We also installed, tested, and documented a new version of the QuOIN dependability component, 
which included three replication schemes: 
• Active replication with pass first 
• Active replication with majority voting 
• Passive replication 
 
We integrated CMU’s Darwin resource reservation manager into the QuO testbed, developed adaptive 
QuO example applications using it and experimented with the results under changing network 
conditions. Darwin provides an alternative to the RSVP resource reservation mechanism that had 
previously been integrated with QuO. We also integrated and experimented with CMU’s Remos 1.2 
status monitor. The integrated Darwin and the new version of Remos became components of the 
QuOIN 2.1 release. 
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We installed the new version of TAO, TAO version 1.0, the commercialized, Open Source version. 
We also began updating the QuO C++ examples and the real-time integrated event channel example to 
work with TAO version 1.0, which has a different event channel service. 
 
We also created, installed and documented a stable version of the QuOIN security component, which 
integrated QuO and NAI’s OO-DTE software. This security component became a new component of 
the QuOIN 2.1 release. 
 
We submitted a paper on the QuO connector language and the special configuration needs of QuO 
applications to ISORC 2000. 
 
We helped The Open Group get the QuO version 2.0.1 software installed and running in their testbed. 
We also hosted a meeting with Bill la Forge (TOG) to discuss the QUITE team’s idea for approaching 
framework development. 
 
We attended and presented at the Quorum PI meeting in San Francisco on October 25-29. We made 
formal presentations on the AQuA dependability parts of QuOIN, on the Bandwidth Management 
dimension of QuOIN, and presented an update on the QuOIN Distributed Object Integration efforts.   
 
We also led and participated in a number of the working groups. QuOIN project members led and 
assisted with the following working groups: 
• Adaptive Real Time Systems group (Doug Schmidt, WUStL) 
• Disseminating Network Resource Information group (John Zinky, BBN, and Peter Steenkiste, 

CMU) 
• Dependability and Failure Management (Bill Sanders, UIUC) 
• Software Engineering and Tools (Stuart Faulk, UOregon, and Joe Loyall, BBN) 
 
We also had informal discussions with a number of researchers and participants, including Bryan 
Doerr and the group from the Weapon Systems Open Architecture (WSOA) project at Boeing. Bryan 
and we discussed plans for using the QuO adaptive architecture as a critical piece of the WSOA 
architecture. 

November 1999 
We released QuO/QuOIN version 2.1 on November 12 and announced it to the Quorum community 
via e-mail.  QuO/QuOIN 2.1 includes the following modules: 
• The QuO toolkit module (developed under the Open Implementation Toolkit project) provides the 

software for the QuO framework, development environment and documentation.  This module 
includes the QuO runtime kernel, the QuO Quality Description Languages (QDL), the QuO 
graphical user interface (GUI), libraries of system condition objects and instrumentation support.  
The QuO toolkit works with the Visibroker and TAO ORBs. 

• The QuO gateway provides software for plugging in transport-layer protocols and mechanisms and 
controlling them. 

• The DIRM module provides capabilities for monitoring and managing network bandwidth. 
• The AQuA module provides capabilities for monitoring and managing dependability. 
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• The Real-Time module provides capabilities for interfacing and controlling the real-time features 
of the TAO ORB and services. 

• The Security module provides access control. 
 
QuO/QuOIN version 2.1 includes software from BBN, Washington University St. Louis, the 
University of Illinois, Columbia University, Cornell University, Carnegie-Mellon University and the 
University of Utah (Flick 2.1 provides an alternate IDL compiler for TAO 1.0).  Important new 
capabilities in this release included the following: 
• Improvements to the QuO toolkit software, including to the QDL languages, instrumentation and 

error reporting (developed under the Open Implementation Toolkit project) 
• Integration with TAO v1.0, the commercially available version of TAO, providing a real-time 

performance property 
• A QuO gateway for integrating different transport layer protocols, mechanisms, and controls, plus 

an example gateway instantiation for the RSVP bandwidth management protocol 
• Simplified interfaces for AQuA, plus additional replication strategies, including passive replication 

and active replication with voting 
• Support for survivability, using AQuA-based notification interfaces to recognize anomalous 

situations (developed under the Open Implementation Toolkit project) 
• Support for reserved bandwidth through either RSVP or CMU’s Darwin system 
• Network status monitoring, through integration with CMU’s Remos V1.2 
• Integration with Network Associates’ Object-Oriented Domain Type Enforcement (OO-DTE) 

access-control software, providing a QuO-controlled security component 
• A demonstration of high-performance CORBA stub generation, through integration with Flick 
• More examples, demonstrations and documentation 
 
Also during November 1999, we attended a day long teleconference with the WSOA participants, 
including Boeing, WUStL and Honeywell. The purpose of the teleconference was to firm up the 
requirements for the WSOA system and to define the roles of the different participants and 
components, such as TAO (WUStL), RTARM (Honeywell) and QuO (BBN), in it.  We followed up 
the teleconference with individual interactions with Bryan Doerr from Boeing, Chris Gill from WUStL 
and John Shackleton from Honeywell to sketch out the requirements, design and scenarios of the 
WSOA system and the benefit that QuO can add to it. 
 
We began writing a paper, entitled “Flexible and Adaptive Control of Real-Time Distributed Object 
Middleware”, for submission to Real-Time Systems, The International Journal of Time-Critical 
Computing Systems, Special Issue on Flexible Scheduling of Real-Time Systems. This paper described 
the integration of the QuO adaptive computing architecture and the TAO real-time ORB, and the way 
in which QuO can provide higher level control and adaptation of TAO real-time mechanisms. 

December 1999 
We concluded the paper, entitled “Flexible and Adaptive Control of Real-Time Distributed Object 
Middleware”, and submitted it to Real-Time Systems, The International Journal of Time-Critical 
Computing Systems, Special Issue on Flexible Scheduling of Real-Time Systems. This paper describes 
the integration of the QuO adaptive computing architecture and the TAO real-time ORB, and the way 
in which QuO can provide higher level control and adaptation of TAO real-time mechanisms.  
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We began preparation for the DARPA Quorum demonstrations in Washington held in February 2000. 
We planned a demo consisting of an integrated system showcasing managed bandwidth and resource 
reservation, real-time, dependability and security all within the adaptive QuO framework.  We began 
developing the demonstration using BBN’s OpenMap™ software as a QuO application. 
 
We performed some initial timing measurements of the RSVP instantiation of the QuO gateway.  
These were performed with no optimization and with debugging enabled. The gateway added about 
30% performance overhead. In addition, we began design of a naming scheme to work with the QuO 
gateways. The naming scheme supports the existing CORBA references (IORs) on the client and 
server side, but enables finding and registering QuO objects, such as gateways, so that client-side 
references to remote objects get delivered transparently to gateways and routed to the proper server-
side gateway. 
 
We also participated in WSOA teleconferences and architecture reviews during the month of 
December. Boeing’s Weapon System Open Architecture (WSOA) is a technology transition target for 
the Quorum program. QuO and TAO are two of the primary planned components for the WSOA 
architecture. We participated in requirements and design of WSOA to a) simplify Boeing’s efforts to 
use and integrate QuO and TAO and b) to help extract WSOA requirements that focus QuO and 
QuOIN research and design. 

January 2000 
During January 2000, we continued development of BBN’s planned demonstration at the DARPA 
Quorum Technology Demonstration in Washington on 7-11 February 2000. The demonstration was 
structured as a single client application, based upon BBN’s OpenMap™ application 
(http://openmap.bbn.com), connected to a number of server objects using the QuO middleware. The 
OpenMap requested and received mapping data from the server objects, each of which exhibited 
specific QoS characteristics and control. 
 
During January 2000, we achieved the following for the demonstration system: 
• We designed the architecture of the demonstration system 
• We identified the hardware and software components required 
• We began developing the OpenMap client application 
• We acquired the newest versions of the component software, including the TAO ORB, CMU’s 

Darwin and Remos, UIllinois’ Proteus and NAI’s OO-DTE and began integrating them into the 
QuO framework within the context in which earlier versions have been integrated 

 
We also began working on preparations for the other parts of the Quorum Technology Demonstration, 
including our QuOIN presentations and posters that will accompany our demonstration. 
 
We continued to work with Boeing for transition of the QuOIN technology to the WSOA project. 
Boeing was in the requirements phase at that time and was working on a firm requirements document 
and preliminary schedule. We participated in these, identifying requirements for QuO/QuOIN 
components of the WSOA architecture and a preliminary schedule for providing and integrating them. 
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Finally, we also worked on firming up plans for the QuO/QuOIN version 3 components, research and 
integration.  

February 2000 
The primary activities in February 2000 centered around our preparation for and participation in the 
DARPA Quorum Technology Demonstration in Washington on 7-11 February 2000. During the 
course of these days, we presented several hour long and half-hour long demonstrations of the 
integrated QuOIN environment, as well as formal QuOIN presentations and posters illustrating the 
QuOIN architecture, the demonstration application and the Quorum components illustrated by the 
demonstration. 
 
Our demonstration scenario illustrated a command and control application from the point of view of an 
AWACS aircraft mapping a battlefield. The AWACS aircraft queried remote tracking systems for 
position data and displayed the data on a map. The QuO framework software was used to integrate the 
client application and server objects and to manage QoS between the CORBA components of the 
system. For the demonstration, each tracking system exhibited a different QoS property, as described 
below. 
 
The demo client application was based on OpenMap™, a geographic map display program 
(http://openmap.bbn.com).  OpenMap makes CORBA calls to a layer-server and receives lists of 
glyph-objects to display on the map. Basically, the OpenMap client asked which glyph-objects the 
layer-server had within a particular rectangle (in lat/long coordinates). The layer-server returned the 
list of glyph-objects, which contained the coordinates and shapes (i.e., bitmaps).  The OpenMap client 
integrated multiple layers into a single map, by drawing the layers over one another. 
 
The demonstration architecture demonstrated heterogeneity in operating systems (Solaris and Linux), 
languages (Java and C++), ORBs (Visibroker and TAO) and network resources (1 Mbps, 10 Mbps and 
100 Mbps links). The application demonstrated the fusing of data from remote sensors across a wide-
area network (WAN) into a single, integrated map. The OpenMap client continuously requested data 
from the layer-servers (representing remote sensors) and redrew the map. 
 
The terrain map layer demonstrated managed bandwidth. The terrain data server lay several hops from 
the client, separated by several routers and different bandwidth network segments. During the 
demonstration we flooded one of the 10 MB links along the path with cross-traffic data, reducing the 
bandwidth available to respond to the terrain requests. Our demonstration system detected the 
bottleneck (using CMU’s Remos system) and illustrated two types of responses. First, the application 
responded by requesting lower bandwidth terrain data (with lower resolution). Also, when it was able, 
the application reserved bandwidth to transport the terrain data using CMU’s Darwin system. 
 
A layer displaying ground troops illustrated dependability. The ground troops were protecting a bridge 
and were tracked by replicated sensors on five different remote machines. To demonstrate the 
dependability and fault tolerance of the system, we killed some of the sensor processes and injected 
erroneous data into some of the sensors. In every case, the mapping client continued to update the 
ground troop data accurately and the system recovered by restarting killed sensors and killing and 
restarting malfunctioning sensor processes. 
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A layer displaying air traffic illustrated security. Simulated air traffic control sensors tracking aircraft 
positions were protected behind an OO-DTE access control firewall. Intrusion detection systems 
(IDSs) reported unauthorized data access (e.g., manipulation of sensor data) and sensor penetration 
(e.g., corruption of the sensors themselves). When the IDSs triggered alerts, QuO triggered changes in 
OO-DTE access control policy to protect against unauthorized access. 
 
A set of F-15s illustrated real-time QoS. We used the TAO real-time event channel to deliver position 
events tracking the location of two F-15s. We flooded the event channel with other events and used 
QuO to change the priority of one of the F-15’s events to higher priority so that they pre-empted the 
lower-priority events and the position continued to be calculated and updated accurately. 
 
In addition to the structured demonstration which we showed to Government and industry personnel 
many times over the 2½ days of the technology demonstration, we displayed several posters 
illustrating our research and integration, gave a formal presentation and participated in many informal 
discussions with attendees and other researchers.  
 
Included in these were discussions with personnel from NSWC, with whom we are targeting inclusion 
of QuOIN components in their 2000 demonstration system. We talked to Mike Masters, Leslie 
Madden and Paul Werme about how we can support their efforts. 
 
In addition to the Quorum Technology Demonstration, we also continued working with Boeing for 
transition of the QuOIN technology to the WSOA project. We agreed on a set of requirements for 
QuO’s inclusion in the WSOA demonstration system and a schedule for providing it. We have been 
working very closely with Boeing for months to help develop the requirements for their system, the 
schedule and to identify the roles for QuOIN technology in it. 
 
The weeks leading up to the Quorum Technology Demonstration were filled with efforts ranging from 
development of presentation and poster material, technical integration of software from the University 
of Illinois, CMU, Cornell, Washington University and NAI (during which we worked tirelessly with 
the teams from these organizations) and scenario and demonstration development. 

March 2000 
The primary activities during March 2000 centered on beginning development efforts in support of 
transition to the Weapon Systems Open Architecture (WSOA) project, writing a submission to a 
journal and planning for QuOIN v.3. 
 
Transition to the WSOA project.  Boeing is transitioning three pieces of Quorum software into their 
WSOA ground demonstration in January 2001 and air demonstration in January 2002. They are the 
QuO adaptive framework from BBN, the TAO real-time ORB from WUStL and RT-ARM from 
Honeywell. Figure 6.1 illustrates how QuO contracts (the parallelogram), QuO system condition 
objects (the pentagons), QuO delegates (the sideways pentagon), the TAO ORB and the RT-ARM 
Resource Manager fit into the WSOA architecture. 
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Figure 6.1: WSOA Architecture 
 
In support of these activities, BBN, WUStL and Boeing developed a set of requirements needed from 
the QuO software. Many of these requirements, described in the following tables, already exist in the 
current implementation of QuO (indicated by a No in the New/modified for WSOA column). Others 
require modification to, or enhancement of, the existing QuO software (indicated by a Yes in the 
New/modified for WSOA column). 
 
General QuO Framework Requirements 
Requirement New/modified for 

WSOA 
The QuO framework shall compile and execute in C++. Yes 
The QuO framework shall be functionally optimized. Yes 
The QuO framework shall use ACE to encapsulate all OS 
services. 

Yes 

 
QuO Delegate Requirements 
Requirement New/modified for 

WSOA 
The delegate shall provide the same interfaces as the remote 
object it represents. 

No 

The delegate shall trigger contract evaluation upon each method 
call on the remote object (pre-method evaluation). 

No 

The delegate shall use the current operating region returned from 
contract evaluation to choose how to continue processing the 
method call on the remote object. 

No 

The delegate shall be able to perform adaptive behavior when 
processing a method call on the remote object. 

No 
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The delegate shall be capable of providing an interface for 
periodic dispatch. 

No 

 
QuO Contract Requirements 
Requirement New/modified for 

WSOA 
The contract shall provide the current operating region. No 
The contract shall provide transition behavior to invoke upon 
switching operating regions. 

No 

The contract shall define the operating regions possible and their 
boundaries. 

No 

 
QuO System Condition Object Requirements 
Requirement New/modified for 

WSOA 
A system condition object shall provide storage of a current 
value. 

No 

A system condition object shall provide an interface for retrieval 
of its value. 

No 

A system condition object shall provide an interface for updating 
of its value. 

No 

A system condition object shall provide an interface for 
initializing its value. 

No 

A system condition object shall be either observed or non-
observed. 

No 

An observed system condition object shall notify the passive 
QuO kernel upon a change in its value. 

Yes 

 
The original version of QuO was developed with the following goals: rapid prototyping, maximum 
flexibility and maximum functionality. The resulting implementation was written in Java, distributed 
and multi-threaded. As indicated in the above tables of requirements, WSOA requires: complete 
control over threading, a small footprint and low overhead and a complete C++ implementation. 
 
During March 2000, we began designing a passive QuO Kernel to fulfill these requirements. This 
kernel does not contain any separate threads, i.e., it runs in the thread of the caller, which should be 
either a delegate evaluating a contract during a method call (synchronous or in-band) or an observed 
system condition object whose value has changed (asynchronous or out-of-band).  
 
We also wrote and submitted a paper entitled “Coordinated Middleware-Based End-to-End Qos 
Management for Next-Generation Distributed Applications” and submitted it for publication in the 
Computer Communications special issue on QoS-Sensitive Network Applications and Systems. This 
paper describes some of the issues involved in our work in the areas of end-to-end adaptive real-time 
behavior using TAO and QuO and presents some of our results to date.  
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We also began our planning for the QuOIN v.3 release. We plan to improve the usability of the QuO 
toolkit software, enhanced bandwidth, resource management capabilities, dependability and real-time 
capabilities, and combinations of security and dependability, among other capabilities.  
 

April 2000 
During April 2000, we continued development efforts in support of transition to the WSOA project. In 
April, Boeing identified another Quorum component that they planned to transition into WSOA, 
identifying Oregon Graduate Institute’s (OGI) Quasar project to provide network resource 
management on the C2 side of the demonstration. 
 
During the month of April, we began developing the passive, completely C++ version of the QuO 
infrastructure, i.e., the kernel, contracts and system condition objects that we designed in March.  
 
Also during the month of April, we prepared for the May 2000 Quorum PI meeting in Seattle, WA. 
We made plans to present, along with Boeing, Honeywell, WUStL, UCI and OGI, information about 
the WSOA technology transition effort. During April, we began coordinating and preparing this 
presentation.  

May 2000 
During May 2000, we continued development efforts in support of transition to the Weapon Systems 
Open Architecture (WSOA) project. We participated in meetings to focus technology transition efforts 
to the NSWC HiPer-D program. Finally, we attended and participated in the Quorum PI meeting in 
Seattle, WA, May 8-11, 2000. 
 
WSOA Transition. During May, we continued the development of the passive C++ version of QuO. 
This version of QuO fulfills the requirements that WSOA has for the QuO adaptive engine: smaller 
footprint, higher performance, C++ implementation and no threading. We completed initial 
development and began testing this version of QuO in anticipation of delivery to Boeing early June 
2000. 
  
NSWC Transition. We hosted a visit by Gary Koob, DARPA Quorum program manager, and Todd 
Carr to BBN during May 2000 to discuss technology transition efforts to the HiPer-D program 
(NSWC). This meeting was followed with a brainstorming meeting at STDC in Herndon VA, which 
we attended and participated in, and which was also attended by representatives of DARPA, NSWC, 
and the QUITE integration team (Teknowledge, OpenGroup, and STDC). This meeting identified a 
group of candidate technology transition efforts, some of which were already underway. 
 
We are primarily involved in two of the technology transition efforts: AQuA for fault tolerance and the 
UAV scenario. The AQuA transition is ongoing and involves Leslie Madden and Tracy McDonald 
from NSWC, BBN, and the University of Illinois. One major focus currently is AQuA support for 
multi-threaded applications.  
 
The UAV scenario is a streaming video application in which a video feed from an off-board unmanned 
autonomous vehicle (UAV) is distributed to multiple on-board video displays and QoS of the video 
images is maintained using QuO and resource management based on DeSiDeRaTa. We talked to Paul 
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Werme (NSWC) during the meeting in Herndon about the basic concepts, followed it up with a 
preliminary architecture document that we sent to Paul after the Herndon meeting and then held 
detailed architecture discussions with Paul and others at the Quorum PI meeting. 
 
Also during the month of May, we finished our coordinated presentation for the Quorum PI meeting 
with Boeing, Honeywell, WUStL, UCIrvine and OGI. We presented this talk, describing the WSOA 
technology transition effort, during the Quorum PI meeting on May 9, 2000 in Seattle WA. 
 
Also at the Quorum PI meeting, we participated in a number of working groups including leading the 
Portability and co-leading the Failure Notification working groups. We also participated in the 
Layered Resource Management working group, where we helped develop the UAV scenario, which 
will integrate QuO and DeSiDeRaTa within the HiPer-D testbed. Finally, we also attended the QoS 
Open Testbed working group. 
 

June 2000 
During June 2000, we continued development efforts in support of transition to the Weapon Systems 
Open Architecture (WSOA) project. We commenced development efforts in support of transition to 
the NSWC HiPer-D program. Finally, we continued planning and development on QuOIN version 3. 
 
WSOA Transition. During June 2000, we delivered an initial version of the QuO/C++ (passive) 
implementation, with an example, to Boeing. In the process of testing this code in the Boeing 
environment, we discovered an issue with differences in the versions of ACE and TAO being used in 
the WSOA effort and those being used by BBN in the development of QuO and QuOIN. BBN used 
the latest (ACE 5.1.4 and TAO 1.1.4) versions of ACE and TAO to develop the QuO kernel, while 
Boeing is using a modified version of ACE 5.0.7 and TAO 1.0.7. This resulted in the CORBA stubs 
used by the Boeing code to access QuO kernel features (generated by TAO 1.0.7) being incompatible 
with the stubs used internally by the QuO kernel (generated by TAO 1.1.4). We explored options for 
overcoming this with Boeing and settled on a process in which they provided BBN with their 
environment (i.e., the modified ACE 5.0.7 and TAO 1.0.7 libraries and code). BBN continued core 
development using the latest code, but builds Boeing special-purpose releases in their environment. 
The first time we did this, however, we encountered run-time errors using the Boeing environment that 
do not occur in the BBN environment. These errors turned out to be configuration problems and 
known errors that we corrected and worked around in close cooperation with Boeing. 
 
NSWC Transition. Also during June 2000, we began efforts to develop the UAV scenario, code and 
demonstration for the NSWCDD HiPer-D testbed. We followed up our discussions with NSWC at the 
Quorum PI meeting with e-mail and voice exchanges to iterate over an architecture and scenario for 
the UAV portion of the demonstration. At the same time, we began identifying and acquiring 
candidate video applications that could serve as a basis. The AV streaming service of the TAO code 
includes an example application based upon the OGI Quasar MPEG player. The TAO AV streams 
code adds a CORBA control interface to the Quasar application. However, the TAO AV streams 
example had not been maintained, so it was no longer working. BBN and WUStL worked together to 
get the application up to date and to fix the bugs in it. By the end of June, we had the MPEG player 
working and had portions of QuO integrated into it. 
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We also provided a schedule to NSWCDD, including a planned visit to deliver, install and 
demonstrate an initial capability in mid-July, followed by discussions planning the rest of the scenario 
and demonstration development. 
 
Also during June 2000, we continued work on bandwidth management, gateway shell and 
infrastructure improvements for QuOIN version 3. We visited UIUC to work on common development 
of the common gateway shell based on ACE/TAO and the specific handlers needed for AQuA 
dependability. We also began implementing the ACE/TAO version of the AQuA gateway for Maestro. 
 
July 2000 
During July, we continued development efforts in support of transition to the Weapon Systems Open 
Architecture (WSOA) project and to the NSWC HiPer-D program and continued development on 
QuOIN version 3. 
 
WSOA Transition. During July, we discovered the source of the runtime anomalies that we were 
encountering in our QuO example running in Boeing’s environment. These were due to two problems, 
which we were able to fix and to work around. First, server objects in the Boeing-tailored version of 
TAO needed to have the –ORBEndpoint command line argument explicitly set. Second, the Boeing-
tailored version of TAO did not exit from the orb->run() loop gracefully. In each case, Boeing helped 
identify the known problem and indicate to us a way to work around it. 
 
Upon overcoming this hurdle, we were able to deliver a new version of the QuO runtime 
implementation and example that Boeing was able to install and run out of the box. 
 
NSWC Transition. During the month of July, we continued development of software in support of the 
NSWCDD HiPer-D UAV demonstration. We developed an improved version of a streams-based video 
distribution and player with a CORBA control layer, and a QuO control engine that synched up two 
video displays when one falls behind the other (e.g., if one video display machine becomes 
overloaded). We visited NSWC, installed and demonstrated this software. We also held discussions to 
focus the following month of effort towards developing the proper software for their demonstration. 
These discussions and interactions were fruitful and we entered the last part of July with a plan to 
proceed for the month of August. This plan was detailed by e-mails exchanged between BBN and 
NSWC and copied to DARPA. 
 
QuOIN version 3 Development. We made major strides toward QuOIN version 3, and toward QuOIN 
goals during July. First, we developed the first full implementation of the QuO code generators that 
runs on Windows NT. This, along with the Windows NT version of the QuO C++ kernel reported last 
month (and above), means that we now have a full version of QuO for the Windows NT platform. We 
delivered the code generators to Boeing, who installed and ran them successfully. 
 
We also continued working on solutions for a new AQuA gateway, based upon the QuO gateway 
shell, which in turn is based upon TAO’s pluggable protocols. The old AQuA gateway includes 
handler code that is tightly intertwined with the old gateway code. We are working on a solution that 
abstracts the handler code so that it can be plugged into the new gateway. We also built a 
performance-test harness for the QuO gateway, and collected initial performance numbers, which 
indicated that the gateway imposes less than a one millisecond overhead. We also planned another 
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visit to the University of Illinois to work closely together with them on this AQuA gateway 
implementation. 
 
Two new releases of CMU Remos (1.3, 1.4) were integrated into the QuOIN Bandwidth management. 
We conducted extensive testing of both the Remos SNMP and WAN pollers and incorporated bug 
fixes into Remos Release 1.4.  The goal of the Remos testing is to make a system that is capable of 
monitoring a small Enterprise-size network, i.e., 20 hosts at 5 sites separated by a Wide Area Network.  
 
Finally, we designed some major improvements to the QuO QDL languages, targeting their 
implementation for QuO/QuOIN version 3. 
 
August 2000 
During August, we continued development efforts in support of transition to the Weapon Systems 
Open Architecture (WSOA) project and to the NSWC HiPer-D program and continued development 
on QuOIN version 3. 
 
WSOA Transition. During August, we attended the WSOA quarterly review meeting at Boeing in St. 
Louis, Missouri. As part of this, we prepared and presented the part of the quarterly review briefing 
dealing with the QuO adaptation middleware and QoS control. We also stayed for a few days at 
Boeing to help develop the QuO contract, delegate, and connector code for WSOA. Honeywell and 
WUStL were also at these meetings and the working sessions, working on the RT-ARM resource 
manager and TAO adaptive scheduler, respectively. This gave us the opportunity to discuss and design 
some of the interfaces between QuO and these parts and to build the software (i.e., system condition 
objects) implementing these interfaces. 
 
NSWC Transition. During the month of August, we proceeded implementing the pieces of software for 
the NSWC UAV demonstration software that we had agreed upon during and immediately following 
the visit to NSWC during July. As a result of these meetings with NSWC, we started working on the 
following tasks: 
• Install 3 stage pipeline (video source, video distribution, video displays)  

-Get video displays to read MPEG from a stream instead of files 
-Get video distribution process to send out two streams 
-Get video distribution process to get its input from a stream 
-Get video distribution process to drop frames along one stream 

• Provide 4 Linux PCs in test bed  
• Develop QuO contracts, system condition objects, and delegates  

-For video displays 
-For video distribution 

• Support for NSWC instrumentation and RM adaptation 
-Make sure that video distribution process can be killed gracefully 
-Make sure that video distribution process can be restarted 

• Develop load mechanism/procedures for video distribution and displays 
• Visit NSWC to install and demo software 
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QuOIN version 3 Development. During August, we continued development of a new AQuA gateway, 
based upon the QuO gateway shell, which in turn is based upon TAO’s pluggable protocols. The old 
AQuA gateway includes handler code that is tightly intertwined with the old gateway code. We are 
working on a solution that abstracts the handler code so that it can be plugged into the new gateway. 
We visited the University of Illinois for another joint development meeting, during which we finalized 
a number of design issues, demonstrated a TAO+Maestro application with improved performance and 
coded most of a gateway shell capable of running the CORBA-forwarding handler and loading it 
dynamically. 
 
September 2000 
During September, we continued development efforts in support of transition to the Weapon Systems 
Open Architecture (WSOA) project and to the NSWC HiPer-D program and continued development 
on QuOIN version 3. 
 
WSOA Transition. During September, we made further enhancements to the QuO infrastructure to 
support the WSOA technology transition. We protected the QuO contract execution in the passive C++ 
kernel with ACE locks. This enables the QuO developer to choose to use contracts that are shared by 
different execution threads while avoiding race conditions. We also developed a stubbed-out version 
of the WSOA application at BBN so that we could test the QuO functionality in a WSOA context, 
without the Boeing- and Honeywell-specific components. This was to ease the debugging burden on 
Boeing upon integration of QuO into the WSOA environment. We also enhanced the QDL code 
generator to generate additional code required for the WSOA application. 
 
NSWC Transition. We visited NSWC during August 22-24 to install and transition a new version of 
the UAV demonstration software. This new version addressed all of the issues in the development 
schedule discussed in last month’s report. It included a 3-stage pipeline (video source, video 
distribution, video displays), which sends MPEG video as a stream. It included QuO contracts and 
system condition objects that recognized excessive load on the hosts in the second and third stages of 
the pipeline (i.e., the distributor and the video displays) and adapted the distributor and displays to 
drop frames to compensate. The software also had the capability to gracefully kill the distributor 
process and restart it on another host under conditions of unacceptably excessive load. 
 
During installation and demonstration at NSWC, NSWC provided another, more extensive, list of 
enhancements and requirements for the UAV demonstration software.  
The major items that we were addressing during this iteration on the software involved the following: 
• Obtaining and providing direct measurements of the distributor performance to the NSWC 

instrumentation package (i.e., actual frame rate, expected frame rate, input queue size, output 
queue size and number of dropped frames each second). 

• Basing the QuO contract on the distributor host (contracts on video display hosts was no longer 
desired) on internal measurements, such as the queue length and/or actual frame rate. 

• Synchronization of the startup of a new distributor and stopping of the old distributor. 
• A number of smaller enhancements, tweaking, and minor fixes based upon testing and 

demonstrating in the NSWC HiPer-D testbed. 
We provided a new version of the software to NSWC on September 15 that addressed the list of items 
that NSWC requested. It measured queue lengths and frame rates and passed them to the NSWC 
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instrumentation. It had a contract that adapted to drop frames when the queue lengths increased and 
used CPU load improving as a trigger to discontinue frame dropping. A new distributor could be 
started and the old one stopped anytime after starting the new one. We also address the other minor 
issues that NSWC requested. We followed up the electronic delivery of this software with an on-site 
visit to NSWC to aid in integration and testing on September 21-22.  
 
QuOIN version 3 Development. During September, we continued development of the new AQuA 
gateway and on making the dependability manager dependable. This included development of the top 
part of the AQuA gateway (over the handlers). Toward the end of the reporting period, messages were 
able to flow through the new architecture of the gateway. Then we began testing the new 
implementation. At the end of the calendar month of August, we began working on the re-
implementation of the passive replication handlers in the new gateway. We first worked on the 
message flow when no failure occurs. Simultaneously to this, we worked on making the dependability 
manager dependable. This is done by slightly changing the group structure and adding new 
communication features. In order to verify the correctness of our ideas, we implemented the design in 
the former gateway architecture. 
 
We also made numerous improvements in the QuO infrastructure, including the QuO QDL languages 
and runtime support. Many of these were motivated by needs of the UAV or WSOA technology 
transition efforts. We also developed capabilities for a resource status service, for measuring and 
analyzing system information, which will become an important part of QuO/QuOIN v.3. 
 
Finally, we authored a submission, entitled “Comparing and Contrasting Adaptive Middleware 
Support in Wide-Area and Embedded Distributed Object Applications”, for the 21st IEEE 
International Conference on Distributed Computing Systems (ICDCS-21). This paper, which we co-
authored with Chris Gill of Washington University, St. Louis and Jeanna Gossett of Boeing, describes 
the technology transition efforts to the WSOA and NSWC environments. It compares and contrasts the 
different use-cases and environments in which QuO can be used and the support that we’ve developed 
in QuO for those environments. 
 
October 2000 
During October, we continued development efforts in support of transition to the Weapon Systems 
Open Architecture (WSOA) project and to the NSWC HiPer-D program and continued development 
on QuOIN version 3. 
 
On 25 and 26 September, we hosted a visit by Thomas Lawrence and Patrick Hurley of AFRL. We 
presented a review of QuOIN and other project activities, including the progress we’ve been making in 
the technology transition activities to the WSOA effort and the NSWC UAV demonstration, the 
resource status service and the dependability and gateway activities. 
 
We also hosted a visit by Doug Schmidt (DARPA/ITO) on 27 September, in which we demonstrated 
the UAV software. 
 
WSOA Transition. During October, we helped Boeing with the integration of QuO code into the F15 
application. Boeing reported success in the integration process and began integrating additional pieces 
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and testing. We made a few fixes and enhancements to the QuO code to better support the WSOA 
example. Finally, we began the process for providing Boeing access to the QuO source code to aid in 
their debugging and integration efforts. 
 
NSWC Transition. We visited NSWC again on 21-22 September to aid in integration, demonstration 
and testing the UAV software in the NSWC HiPer-D testbed. In the course of testing and 
demonstrating the software in the HiPer-D testbed, we identified a list of issues that needed to be 
addressed, which fell into three basic categories: 
• Tweaking, tuning, and debugging for specific aspects of the NSWC environment (e.g., to interface 

to their process manager, graphical package, etc.) 
• Measurements of the internal distributor behavior as reported to the instrumentation. Testing in the 

HiPer-D testbed with the NSWC graphical interface illustrated that the distributor queues were 
frequently empty and that the actual frame rates and number of dropped frames varied within a 
wide range. 

• Tuning of the contract region definitions. NSWC required that the contract regions be defined in 
terms of internal distributor measurements only, i.e., queue lengths or actual frame rate, rather than 
external measurements, such as CPU load. However, once a transition occurred because of 
something such as degraded actual frame rate, it’s necessary to have a trigger back to normal 
behavior. The actual frame rate will never improve when frames are being dropped, even if the 
source (e.g., CPU load) of the degradation disappears. Furthermore, the trigger for transitioning 
needs to eliminate frequent transitioning between regions (thrashing). We discuss below the 
solution that we developed for solving this problem and meeting NSWC’s needs. 

We addressed all of the issues in the first and second categories. The tuning of the contract definitions 
required designing a method for transitioning when conditions degrade, then back when they improve, 
while avoiding thrashing. We began designing and implementing improved contract definitions. We 
discussed several possibilities with NSWC and began implementing some of them.  
 
QuOIN version 3 Development. During October, we continued development of the AQuA gateway. 
We tested the top part of the gateway and fixed several bugs. One bug required significant effort and is 
still not fixed. Even with this remaining bug, we decided to continue the implementation. We 
implemented the active replication pass first handler during the report period. We will test the new 
handler next report period. We also continued our work on the passive handler in the new gateway. 
After the implementation of the architecture for the flow of messages, we worked on the buffers in 
order to tolerate crash failures. We decided to test the implementation at various steps.  
 
November 2000 
During November, we continued development efforts in support of transition to the Weapon Systems 
Open Architecture (WSOA) project and to the NSWC HiPer-D program and continued development 
on QuOIN version 3. 
 
WSOA Transition. During November, we continued working with Boeing on the Build 1 version of the 
WSOA software. We provided Boeing with the QuO source code, along with the support that they 
needed to build it under Windows NT. During November, Boeing successfully tested the application 
functionality in which an F-15 collaboration client getImage() call is converted by the delegate into 
getTile() calls. 
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NSWC Transition. We visited NSWC again from 17-19 October to deliver, integrate, and demonstrate 
the fixes that we made to the software to address the list of issues identified in the previous month. 
Over the three days, we worked with NSWC to install, tune and test the software. At the end, NSWC 
was satisfied that most of the issues had been resolved, with the exception of two remaining issues to 
be addressed: 
• Hysteresis - The application can get into a state in which region transitions occur frequently and 

rapidly 
• Jitter – The video player exhibits jitter, displaying frames in a burst then pausing, when some 

adaptation is performed 
We suggested several options to NSWC for controlling hysteresis. NSWC requested a solution in 
which we make sure that the contract stays in a region for a minimum amount of time before being 
allowed to transition to a more degraded region. At the same time, the contract, after being in a region 
for a specific amount of time, would try to improve things (i.e., it would try to send frames through at 
a higher rate) and would transition to a higher region if the experiment succeeds. In order to implement 
these, we began implementing timer system condition objects and contract subregions that would 
trigger the testing behavior (i.e., trying to send more frames through). 
 
We added a few features to QuO’s contract description language, CDL, to support the contract 
structure that NSWC needed for integration with HiPer-D. First of these is an until clause in regions 
(and states, described next). The until clause places a predicate on when a contract can leave a region 
once it’s entered it. The second feature is support for state declarations. States are alternatives to 
regions that implement true state machines, with predicates on transitions. Using these, we 
implemented and tested a QuO UAV contract that degraded smoothly, dropping frames along the way 
and then periodically tested whether conditions have improved, in order to move to a better region.  
 
For the jitter problem, we began conducting experiments to try to determine the source of the problem. 
We quickly determined that the source of the jitter lay within the video player itself. That is, we 
instrumented the video pipeline and ran a number of experiments in order to determine under what 
conditions the problem occurred and at what stage in the pipeline things went awry. The first two 
stages in the pipeline behaved as expected, but under certain conditions, the third stage, i.e., the video 
player appeared to get confused and enter a state in which it behaves erratically, buffering frames, then 
dumping a bunch of frames all at once, then pausing (while it buffered more frames). 
 
These experiments helped us track down the source of the jitter of the video player upon restart, and 
fix it. Basically, the video player, which is off-the-shelf software written originally to play MPEG 
files, had code in it (deep in the display code) to compensate for slow video cards (no longer an issue). 
Starting a new distributor confused it (it believed that it had fallen behind in displaying the MPEG file) 
and it entered a mode of extreme jitter. We were able to fix this and scheduled to deliver the new 
software to NSWC.  
 
QuOIN version 3 Development. During November, we continued development of the AQuA gateway. 
We continued to try to track down the bug reported in last month’s report. We began testing the new 
active replication pass first handler and continued our work on the passive handler in the new gateway. 
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We also continued work on the QuO languages, runtime support and runtime services. Key among 
these was a new organization of the QuO languages, based upon the usability lessons we’ve learned, 
and a new version of the SDL, which is more aspect-oriented. 
 
We attended the first meeting of the Quality of Service Task Force, sponsored by the Open Group, on 
25-26 October. 
 
December 2000 
During December, we continued development efforts in support of transition to the NSWC HiPer-D 
program and to the Weapon Systems Open Architecture (WSOA) project and continued development 
on QuOIN version 3. 
 
NSWC Transition. We provided fixes for the two last remaining issues NSWC had with the UAV 
software, i.e., hysteresis of contract region transitions and jitter of the video display upon distributor 
restart. We delivered the new software to NSWC electronically on 16 November. NSWC successfully 
installed the software and demonstrated it internally on 29 November. The UAV software was 
demonstrated as part of the external HiPer-D demonstration for the first time on 5 December. 
 
In addition, the University of Illinois began discussions with the HiperD Team on how to incorporate 
the AQuA framework into their 2001 demonstration. 
 
WSOA Transition. On 8 December, we attended and participated in a WSOA quarterly review at 
Boeing in St. Louis. During this meeting, we presented about the QuOIN technology transition efforts 
in WSOA and participated in a demonstration of the WSOA Build 1 software. 
 
Quorum PI meeting. We attended and participated in the Quorum PI meeting on 12-14 December in 
Orlando, FL. We gave a presentation on the QuOIN distributed object integration effort. We led the 
Middleware Working Group and participated in the other (Layered Resource Management, QoS 
testbed, and Multidimensional QoS management) working groups. In the Layered Resource 
Management working group, we led a working group breakout session on the UAV demonstration 
planning. In the System Management working group, we gave a presentation on our resource status 
service and composing QoS facets. 
 
QuOIN version 3 Development. During December, we continued development of the AQuA gateway. 
We continued to try to track down the bug reported in last month’s report. We began testing the new 
active replication pass first handler and continued our work on the passive handler in the new gateway. 
 
We also continued work on the QuO languages, runtime support and runtime services. These included 
continuing work on the new organization of the QuO languages, based upon the usability lessons 
we’ve learned, and a new version of the SDL, which is more aspect-oriented. 
 
Also during December, the University of Illinois continued working on the new AQuA gateway with 
the help of BBN. We continued testing the top part of the gateway (over the handlers), found several 
new bugs and fixed the bug reported one month ago. Another part of this period was dedicated to 
testing the active pass first handler. Preliminary performance results of the new AQuA gateway using 
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the active pass first handler show that the performance of the whole AQuA architecture will 
significantly be improved compared to the former implementation. We also continued working on the 
passive handler focusing on the features required for recovering from a crash failure.  
 
January 2001 
During January, we continued development efforts in support of a QuOIN version 3 release this 
spring. We also continued our support of transition to the NSWC HiPer-D program and to the Weapon 
Systems Open Architecture (WSOA) project. 
 
QuOIN version 3 Development. During January, we continued work on the QuO languages, runtime 
support and runtime services. These included continuing work on the new organization of the QuO 
languages, based upon the usability lessons we’ve learned, and a new version of the SDL, which is 
more aspect-oriented. We completed an initial implementation of the base aspect-oriented version of 
SDL supporting Java. We began moving our examples and demonstrations to the new language 
organization and SDL. 
 
Also during January, we continued development of the new AQuA gateway. We finished the 
implementation of the passive handler (the state is multicast in the replication group after each output 
message). We started an extensive testing phase of the current version of the AQuA system (new 
gateway with the active pass first and the passive handlers) using several applications: a simple pinger 
application, the "deet" application developed by P. Rubel, and the castle application developed at UI 
and demonstrated in several DARPA meetings. Preliminary performance results indicate that the new 
version of AQuA gives better results than the previous version. We also continued working on 
replicating the dependability manager.  
 
NSWC Transition.  We continued discussions with NSWCDD about how to incorporate the AQuA 
framework into their 2001 HiPer-D demonstration. 
 
WSOA Transition. During January, Boeing sent us the QuO code they are using in their current build 
of the WSOA software. We plan to look at updating it to the newest version of QuO next month. 
 
February 2001 
During February, we continued development efforts in support of a QuOIN version 3 release this 
spring.  
 
Our main work in February consisted of finalizing development work on QuOIN version 3 and 
updating all example applications to use the new language and runtime versions. We finished up work 
on the new language organization, which enables QoS aspects to be separately implemented as 
reusable elements, called Qoskets. We also unified the three versions of the QuO runtime kernel: C++, 
Java CORBA and Java RMI, offering the configuration choices illustrated in Table 1. 
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 Java CORBA Java RMI C++ CORBA 
Integrated Yes Yes Yes
Non-integrated Yes Yes Yes
Threaded Yes Yes No, 3.1
Non-threaded Yes Yes Yes

Table 1: Configuration choices for the QuO 3.0 kernel 
 
As indicated in this table, we provide mix-and-match versions of the QuO kernel configurations, with 
the exception of the threaded version (i.e., the kernel has its own implementation thread) for C++. We 
plan to provide this in a future version of the software. The current version of the software includes 
examples that illustrate how to achieve the effect of a threaded QuO kernel, using an observed system 
condition object to provide the threading control. 
 
We also finished up work on the Resource Status (RSS) and StatusTEC (typed event channel) services 
that are to be released with QuOIN version 3.0. We developed these two services, RSS and StatusTEC, 
to aid in the collection and dissemination of resource status information throughout a distributed 
application and the wide-area network of resources on which it can be hosted.  
 
Also during February, we continued working on the new AQuA gateway. We continued working on 
an extensive testing phase of the new version of the AQuA system (new gateway with the active pass 
first and the passive handlers) using several applications: a simple pinger application, the "deet" 
application. We plan to continue testing the system using the castle application. We also began 
working towards a release (e.g., make files, scripts).  
 
We also finished working on replicating the dependability manager. We have then proceeded with a 
testing phase. Finally, we have started analyzing the performance of the new AQuA system with the 
replicated dependability manager. The preliminary results show that the performance of the new 
AQuA system is better than the former version. Active replication also leads to a higher performance 
than passive when the state is multicast after each output message. Finally, we saw that the recovery 
process from a dependability manager failure has a performance equivalent to any replica failure 
recovery. 
 
Technology Transition. During February, we continued to work with Boeing to support their upcoming 
quarterly review and associated demonstration. We began building a version of the WSOA software 
(with many of the Boeing specific pieces stubbed out) at BBN to ease transitioning the software to 
QuOIN version 3.0. However, we postponed these activities since Boeing indicated that they didn’t 
want to move to version 3.0 until after the March quarterly review. Instead, we concentrated on 
helping Boeing make sure that the March demonstration was fully supported by the QuO software that 
Boeing already had. 
 
March 2001 
During March, we finished up development efforts in support of a QuOIN version 3 release this 
spring.  
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Our main work in March consisted of finalizing development work on QuOIN version 3, updating all 
example applications to use the new language and runtime versions, testing and packaging the release. 
We converted most of the QuO and QuOIN example code to the new language organization and tested 
it extensively. We incorporated nightly builds and regression tests of the software to ease the testing 
burden. We also produced new versions of the QuO/QuOIN users manual and reference manual for the 
v.3.0 release. 
 
We began investigating the process to release the code as Open Source.  
 
QuO/QuOIN v.3.0 has the following new features: 
• Qoskets: mechanism for bundling QoS adaptive code for REUSE 
• C++ integrated QuO Kernel 
• Java RMI support 
• Aspect SDL: 

- Language independent (C++ and Java) with Java-like syntax 
- Multiple SDL files can be woven together 
- SDL Templates to indirect Method signatures 

• State Machine Representation for Regions in CDL 
• Resource Status Service: Unified architecture for monitoring the status of external resources from 

inside an application 
- Default resource configurations published on web pages 
- QuO Status Typed Event Channel push technology for getting host load and capacity 
- Direct interface to Remos, for network monitoring 

• Reusable in-band instrumentation, i.e., an instrumentation Qosket allows instrumentation 
independent of the Business interface 

• Example Adaptive Code for: 
- Resource Monitoring with Client-side adaption (RSS and in-band instr) 
- Bandwidth Reservation (RSVP) 
- Security (Authentication) 

• Easy to install Linux RPMs 
 
During March, we continued work on AQuA, the one remaining development effort prior to release of 
QuOIN version 3.0. We continued working on the new AQuA gateway targeting inclusion with the 
QuOIN release. We continued working on an extensive testing phase of the new version of the AQuA 
system (new gateway with the active pass first and the passive handlers) using several applications: a 
simple pinger application, the "deet" application, and the castle application. We also started building 
the release structure (e.g., make files, scripts). At the end of the report period, we began installing the 
newest versions of AQuA software at BBN for testing and porting of QuOIN applications to the new 
version of AQuA.  
  
April 2001 
Our main work in April involved documentation, testing and packaging the QuOIN version 3 software. 
We instituted nightly builds and produced preliminary packages of the QuOIN software, which we 
handed off to several independent people, including people at BBN and at Washington State 
University, to test. We produced a User’s Manual, a Reference Manual, installation and build 
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instructions and README files for all the example code. By the end of calendar month April, we 
considered the non-AQuA parts of QuOIN version 3 completely packaged and ready for release. We 
postponed actual release until May so that we could try to finish up the development on AQuA and 
produce the license and infrastructure for the open-source release of QuOIN. 
 
During April, we also continued working on the new AQuA gateway. We continued working on an 
extensive testing phase of the new version of the AQuA system (new gateway with the active pass first 
and the passive handlers) using several applications: a simple pinger application, the "deet" 
application, and the castle application. The testing phase primarily focused on the implementation on 
Solaris. The University of Illinois sent a stable binary version to BBN for testing.  
 
Finally, in April, we worked with Boeing to plan the remaining tasks requiring BBN participation 
under the Quorum program in support of the WSOA project. BBN has been transitioning QuO 
technology, developed under Quorum and QuOIN to Boeing. QuO is being used to help manage 
adaptation in dynamic mission planning in avionics systems. QuO, the TAO dynamic real-time 
scheduler, and Honeywell’s RT-ARM are being used to manage the resource (i.e., CPU) contention of 
real-time operations on the aircraft. QuO is also being used to provide application adaptation in 
middleware for a dynamic collaborative planning application in the avionics platform. We scoped out 
five remaining tasks that BBN will help Boeing do under our remaining QuOIN effort to help WSOA 
get to the ground demonstration stage: 

• Update WSOA to use QuO version 3 
• Help add the interface (i.e., system condition objects) between the QuO middleware and the 

F15 network monitor 
• Extend the QuO code generator to support a few additional identified features that WSOA 

requires 
• Test the integrated WSOA QoS adaptive middleware, i.e., QuO/Dynamic Scheduler/RT ARM, 

and calibrate as necessary 
• Help Boeing compile QuO and WSOA on the VxWorks platform 

 
May 2001 
During May, we worked on finishing up the last bit of packaging and debugging of QuOIN version 3 
software and documentation, prepared the open-source license and began working on the distribution 
website.  
 
We also prepared for participating in the Quorum PI meeting held in New Orleans, LA 22-25 May. 
We led a working group on Quorum program assessment, participated in the HiPer-D transition 
working group and prepared materials and information for both of these. 
 
We also began the process of transitioning the QuO parts of the Boeing WSOA software to QuO 
version 3. We got the latest versions of WSOA code, began constructing a stand-alone test case at 
BBN and began porting the WSOA QuO code to QuO version 3. 
 
Also during May, we continued working on the new AQuA gateway. We finished working on a testing 
phase of the new version of the AQuA system implemented in Solaris (new gateway with the active 
pass first and the passive handlers) using several applications: a simple pinger application, the "deet" 
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application and the castle application. We then started testing the Linux implementation. At the end of 
the period, the Solaris implementation and the active replication in the Linux implementation passed 
our list of tests. Passive replication in the Linux implementation still had some bugs that we are 
working to remove. 
 
We also continued interacting with the HiPer-D Team on how to incorporate the AQuA framework 
into their 2001 demonstration. We interacted on the architecture of the AQuA part (presented at a high 
level during the PI meeting in New Orleans) and worked out a schedule (also presented during the PI 
meeting). 
 
June 2001 
The main milestone we reached in June was release of the QuOIN version 3 software. On June 1, we 
announced the first open-source release of the QuO and QuOIN software. The software is available at 
http://www.dist-systems.bbn.com/tech/QuO/quorelease.html. 
 
QuO/QuOIN 3.0 has the following new features:  
• Qoskets: mechanism for bundling QoS adaptive code for reuse  
• C++ integrated QuO Kernel  
• Java RMI support  
• Aspect SDL (ASL): 

− Language independent (C++ and Java) with Java-like syntax  
− Multiple ASL files can be woven together  
− ASL Templates to indirect Method signatures 

• State Machine Representation for Regions in CDL  
• Resource Status Service: Unified architecture for monitoring the status of external resources from 

inside an application: 
− Default resource configurations published on web pages  
− QuO Status Typed Event Channel push technology for getting host load and capacity  
− Direct interface to Remos, for network monitoring  

• Reusable in-band instrumentation, i.e., an instrumentation Qosket allows instrumentation 
independent of the Business interface  

• Example Adaptive Code for: 
− Resource Monitoring with Client-side adaption (RSS and in-band instrumentation)  
− Bandwidth Reservation (RSVP)  
− Security (Authentication)  

• Easy to install Linux RPMs  
Also during June, we continued working on the new AQuA gateway. We finished the testing phase of 
the new version of the AQuA system implemented in Solaris and in Linux (new gateway with the 
active pass first and the passive handlers) using several applications: a simple pinger application, the 
"deet" application and the castle application. Both implementations passed our list of tests. We also 
worked towards the release of AQuA by writing a detailed user guide and by simplifying the 
installation and the execution of the AQuA system. 
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Also during the report period we attended the Quorum PI meeting in New Orleans, LA 22-25 May. 
We presented on the QuOIN efforts including information about the QuOIN 3 open-source release, the 
WSOA technology transition efforts and the NSWC technology transition efforts. 
 
We also participated in the HiPer-D transition working group. We discussed and presented about the 
hardware and software requirements needed for a UAV demonstration in HiPer-D demo 2000. We 
identified the need for several workstations (preferably 5), running Linux (preferably Redhat 7.1) and 
some RSVP-enabled routers. We also discussed the hardware and software needs for, and plans for, 
transition of AQuA into HiPER-D demonstration 2001. 
 
After the PI meeting, we continued to interact with the HiPER-D team.  We scheduled two visits to 
NSWC, Dahlgren. The first, by the University of Illinois AQuA team, occurred on June 11 and 12. 
The goal of the visit was to install the new version of AQuA at NSWC and to customize AQuA for the 
application that will be used for the 2001 demonstration. We reached both goals by the end of the visit. 
Several components of the application still need to be developed and therefore require further 
interaction with us for a complete integration for the 2001 demonstration. 
 
The second visit was by the BBN UAV team on June 25-26. The purpose of this visit to NSWCDD 
was to bring and install the current version of the UAV software, to discuss configuration issues and to 
plan the schedule for technology transition into HiPer-D demo 2001. 
 
Shortly after the open-source release of QuO/QuOIN, we delivered a new release of code to Boeing 
for the WSOA effort. We built a standalone testcase for WSOA, with many of the Boeing, Scheduler 
and RTARM stubbed out, so that we could test the QuO part of WSOA at BBN. We upgraded the 
WSOA code in this example to work with QuO version 3, packaged up the updated application code 
and QuO version 3, and delivered it to Boeing on 13 June. We also provided Boeing with 
documentation, a detailed description of what changed and a description mapping components of the 
former (v2.1) WSOA to the new v3.0 pieces.  
 
July 2001 
We discussed the network configuration that NSWC will provide for the demonstration of the UAV 
software. NSWC will provide a network configuration that is capable of demonstrating the RSVP 
capability of the UAV application. Ideally this configuration will be provided in a non-secure lab, such 
as the DTL, to facilitate development and testing, as well as in the SCL. We discussed possible 
configurations of the network, the number and arrangement of routers, and the number and 
arrangements of subnets. We gathered information about NSWC’s capabilities and discussed it with 
the networking and RSVP experts at BBN.  
 
Also during July, we released a number of minor updates to the QuO software. Periodic updates with 
bug fixes and new functionality are available at our website at http://www.dist-
systems.bbn.com/tech/QuO. 
 
Also during July, we began to significantly enhance the AQuA framework. During this period, we 
have ported AQuA to NT, implemented a replicated dependability manager and simplified the way of 
installing and executing the AQuA system. The implementation of these features led to the decision to 
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delay the release until these features have been extensively tested (and maybe some other features 
added).  The user guide that had been finalized when these new features were absent from the AQuA 
system will be revised accordingly. 
 
August 2001 
During the report period, we continued to provide support for the NSWC HiPer-D demo 2001 and 
Boeing's Weapon System Open Architecture (WSOA) effort, and the transition of QuOIN software to 
these programs. 
 
We continued to develop the network management and middleware adaptation pieces of the UAV 
software and continued to interact with NSWCDD in preparation for a delivery for the HiPer-D 2001 
demonstration. We attended a TAO workshop held in St. Louis, Missouri on 5-6 August. While in St. 
Louis, we met with OOMWorks, who has developed the CORBA A/V Streaming Service and AQoSA 
interface that QuO utilizes in the UAV software.  
 
We also helped Boeing update the WSOA software for the WSOA quarterly review on 14 August. The 
update went smoothly, pointing out a few bugs in the QuO software that we quickly fixed. The 
capabilities of QuO version 3 in the WSOA application were demonstrated at Boeing's WSOA 
quarterly review on August 14. 
 
We attended a workshop hosted by ONR-311 / KSAFNC and DARPA at Patuxent River on 23-24 
August. At this workshop, we made a presentation about QuOIN technology, integration and transition 
activities, participated in discussions about the HiPer-D and WSOA projects and participated in 
discussions about possible interaction between these DARPA programs and Navy-sponsored 
programs. 
 
We continued to make periodic releases of the QuO and QuOIN software via our website at 
http://www.dist-systems.bbn.com/tech/QuO/quorelease.html. 
 
Also during August, we continued testing the various features of AQuA on the 3 different platforms: 
Solaris, Linux and NT. AQuA now includes a replicated dependability manager (with a new GUI for 
the dependability manager), active and passive replication (connection groups can now have a 
replication group using active replication and the other replication group using passive replication), a 
new advisor observer implementation and a simpler way to install and interface applications with 
AQuA. The detailed user guide has also been finalized and is now available.  
 
September 2001 
We continued to develop the network management and middleware adaptation pieces of the UAV 
software and continued to interact with NSWCDD in preparation for a delivery for the HiPer-D 2001 
demonstration. We worked with NSWC helping to build and test RSVP in NSWC’s network and to 
build ACE and TAO with AQoSA (RSVP) enabled. We did some further development of AQoSA, 
AVStreams and the UAV Connection_Manager, with the result being that we now have the capability 
to set RSVP reservations through a CORBA AVStreams interface and can receive information about 
changes in the RSVP reservations. We developed a QuO contract to coordinate the setup and 
maintenance of reservations along with the rest of the UAV adaptation. We performed some 
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experiments on the three-stage UAV application with network load and reservations. We plan to do 
some additional testing and experimenting with the UAV application using RSVP to determine the 
benefits of using network reservation. 
 
After the August WSOA program review, we delivered a new version of the QuO software to Boeing 
for WSOA and proceeded to help Boeing port the QuO parts of WSOA to VxWorks for the upcoming 
flight demonstration. A few minor issues arose because of specific C++ features that weren’t 
supported by VxWorks (e.g., namespaces), and ACE features that mapped to different things on 
VxWorks than on Linux and NT (e.g., the CORBA long long type). We fixed these, tested them and 
sent the patches to Boeing. 
 
Also during September, we have released a new version of AQuA to BBN and NSWC. Some issues on 
an open source version need still to be addressed before releasing an open source version that a 
broader community of users might be interested in. We also have continued stress testing AQuA in 
order to improve its performance and to ease its usage. 
 
We also have continued interacting with the HiPer-D team on how to incorporate the AQuA 
framework in their 2001 demonstration. The HiPer-D team confirmed that the incorporation of AQuA 
in new developed components of their demonstration was made simpler due to the new features 
offered by AQuA (e.g., use of improved scripts). 
 
October 2001 
During the report period, we continued to provide support for the NSWC HiPer-D demo 2001 and 
Boeing's Weapon System Open Architecture (WSOA) effort, and the transition of QuOIN software to 
these programs. We also kicked off efforts in the investigation of Differentiated Services (DiffServ) 
network management and Real-time CORBA. 
 
We visited NSWC on 24-26 September where we installed the UAV software in both the DTL (non-
secure laboratory) and the SCL (secure laboratory, where HiPer-D demonstrations are typically held). 
We also helped NSWC integrate the operation of the UAV software with their Program Control 
system.  
 
The QuO software worked successfully with the NSWCDD Instrumentation Broker and the NSWCDD 
Instrumentation Display. 
 
The following tests were executed: 
A CPU load was placed on the host where Viewer 1 was executing. Viewer 1 started dropping frames, 
and went from contract region 12 to contract region 11. As expected, the video degraded. The CPU 
load was increased and Viewer 1 dropped more frames and went from contract region 11 to contract 
region 10. There was a further degradation of the video. Viewer 2 stayed in a high contract region, and 
the video did not degrade. The CPU load was decreased, and Viewer 1 dropped fewer frames and 
entered contract region 11. The quality of the video improved. The CPU load was lifted, Viewer 1 did 
not drop any frames, and entered region 12. The quality of the video improved. 
The same test was executed where the load was placed on the host where Viewer 2 was executing with 
the same expected successful results.  
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A CPU load was placed on the hosts where Viewer 1 and Viewer 2 were executing. Viewer 1 and 
Viewer 2 started dropping frames and went from contract region 12 to contract region 11. Both of the 
videos degraded. The CPU load was increased on the hosts, and Viewer 1 and Viewer 2 dropped more 
frames and went from contract region 11 to contract region 10. Both videos degraded. The CPU load 
was decreased on the hosts and Video 1 and Video 2 dropped fewer frames, and entered contract 
region 11. The videos improved. The CPU load was lifted from the hosts, and Video 1 and Video 2 
entered contract region 12. Video 1 and Video 2 did not drop and frames, and the quality of the videos 
improved.  
 
A CPU load was placed on the host where the Distributor was executing. Viewer 1 and Viewer 2 went 
from contract region 12 to contract region 11 because of the reduced frame rate. Both videos degraded. 
The CPU load was increased on the Distributor host, and Viewer 1 and Viewer 2 went from contract 
region 11 to contract region 10 because of the further reduced frame rate. The videos degraded. The 
CPU load was decreased on the Distributor host, and Viewer 1 and Viewer 2 and entered contract 
region 11 because of the increase in frame rate. The videos improved. The CPU load was lifted from 
the Distributor host, and Viewer 1 and Viewer 2 entered contract region 12 because of the increase in 
frame rate. The videos improved. 
 
Another Distributor was executed on a different host than the original Distributor was running on. The 
new Distributor started sending video data to Video 1 and Video 2. The original Distributor was killed, 
and Video 1 and Video continued sending data to Video 1 and Video 2. 
 
The software that we delivered to NSWC includes network management capability using RSVP that 
they were not ready to demonstrate in the Hiper-D demo 2001. They are targeting demonstration of 
those capabilities later in the demo cycle, when they have the proper testbed equipment, including 
routers, and have settled on a design for the integration with the NSWC resource manager. 
 
In lieu of this, we constructed a suitable testbed at BBN and fully tested and experimented with the 
RSVP capabilities in this testbed. This demonstration, which includes three receivers: one that is 
critical and therefore gets a network reservation sufficient to maintain 30 frames per second of video, a 
second that is less critical and uses frame dropping to keep the video current when the network is 
loaded and a control video that shows what the video would look like under load with no adaptation - 
is going to be demonstrated as part of the PCES PI meeting at the end of October in Mesa, AZ. (We 
are using aspect language technology being developed under BBN’s PCES contract, AIRES, to 
implement some of the UAV capabilities.) 
 
We kicked off efforts to investigate the use of Differentiated Services (DiffServ) and Real-Time 
CORBA during the current report period. We began planning additions to the AVStreams service to 
support DiffServ. We also began looking at the implementations of RT CORBA that OOMWorks has 
been working on, plan activities to evaluate it and get it working and plan development activities to 
utilize it. 
 
We continued to make periodic releases of the QuO and QuOIN software via our website at 
http://www.dist-systems.bbn.com/tech/QuO/quorelease.html. 
 
We completed all AQuA related activities at the end of September. 
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November 2001 
During the report period, we continued investigating Differentiated Services (DiffServ) network 
management and Real-time CORBA, periodic open-source releases of the QuOIN software and 
supporting the technology transition efforts to Boeing’s WSOA program and to NSWC’s HiPer-D 
demonstration. We also kicked off an effort to use BBN’s resource status service (RSS) to get network 
resource information for the purpose of making decisions about the types of adaptation that are 
appropriate to maintain the QoS of the UAV video streams. 
 
DiffServ Network Management. We got a preliminary version of the CORBA A/V Streams Service 
supporting DiffServ to work. We modified AVStreams to enable setting of DiffServ codepoints. We 
tested this by setting DiffServ codepoints using the A/V Streams service through the passing of 
parameters to the A/V Stream Control Endpoints. Then we used the “modify_QoS” interface on 
AVStreams and verified that the Diffserv Codepoint values of the UDP/IP packets were changed 
appropriately.  
 
We did some further testing using the new DiffServ support in AVStreams in conjunction with the 
Linux traffic control utility to achieve noticeable change in network behavior. We tested this by 
starting up the UAV application with the sender, distributor and receiver on three different hosts, then 
starting additional receivers without any traffic control. After starting 5 receivers, there was 
perceptible and comparable loss in data on all the receivers. Then we set up the effective forwarding 
and best effort on the network interface of the distributor. This put constraints on the best effort traffic 
and still exhibited perceptible and comparable loss in data on all the receivers. We then set the 
DiffServ codepoints for effective forwarding on selected streams and saw that they immediately 
performed better than the best effort traffic.  
 
Real-time CORBA. During the report period, we began exploring how we can use the capabilities of 
Real-Time CORBA to preserve end-to-end QoS guarantees in the UAV application. Our plan is to 
explore the following two capabilities: (1) how the RT-CORBA priority of a scheduled task can be 
preserved as the task moves between nodes in a distributed system; and (2) how we can exploit the 
Dynamic Scheduling capabilities of RT-CORBA to use as an adaptation mechanism in response to 
various loads and threat conditions. 
 
We designed an example application to test the capabilities of RT CORBA prior to inserting it into the 
UAV application. This example tests the following RT CORBA features: 
• PriorityBandedConnectionPolicy, PriorityBands 
• threadpool, threadpool with lanes 
• PriorityModelPolicy 
• ServerProtocolPolicy 
• ClientProtocolPolicy 
• PrivateConnectionPolicy 
• create_reference_with_priority et. al 
 
Resource Status to Control Adaptation. The current QuO UAV application has three levels of 
adaptation: adaptation within the application (frame dropping/data filtering), network-level adaptation 
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(RSVP reservations) and load-balancing adaptation (distributor re-hosting). The decision to execute 
any of these adaptive mechanisms in the QuO UAV application being demonstrated by NSWC is 
determined by application level measures of performance (i.e., frame rate). The QuO contract 
adaptation decision engine can make a better decision of what type of adaptation to employ if it has 
current information about the available resources in the system e.g., whether enough bandwidth is 
available to make a reservation. The QuO Resource Status Service (RSS) is a suite of tools that can 
provide status information about the network and hosts across a distributed system. It can provide 
information, such as network bandwidth available, network load and host load to make better adaptive 
decisions, especially at the level of network adaptation. 
 
During the report period, we kicked off an effort to integrate the RSS with the current toolkits that we 
use for network level adaptation: AQoSA and AVStreams. This effort will involve developing the 
necessary interfaces into AQoSA and AVStreams to integrate the RSS information into the intelligent 
decision making capability of network-level adaptations. For example, when setting up an RSVP 
reservation using AQoSA and AVStreams, it would be highly desirable for AQoSA to query the 
network bandwidth available, and use that information to generate the parameters for an RSVP 
reservation request. 
 
Other activities. We released QuO/QuOIN 3.0.8 as open-source during the report period via our 
website at http://www.dist-systems.bbn.com/tech/QuO/quorelease.html. This version fixed some bugs 
and included some improvements, including a new example similar in some respects to the WSOA 
application and the original Bette example, but using a webcam to provide the images, enhance 
JacORB support and improvements to the Qosket component features of QuO. 
 
We demonstrated the UAV application at the PCES PI meeting as part of our AIRES activity under 
PCES. We have added some of the QoS control and adaptation in the UAV application using 
technology – including the QuO AOP languages – developed under the AIRES project. The 
demonstration focused on the software engineering and AOP technology used to program the 
capabilities, but also included all of the features developed under the QuOIN contract and 
demonstrated in the NSWC HiPer-D demo 2001. It also included the network reservation capabilities 
using RSVP that is fully functional in the NSWC software but was not included in their demonstration 
scenario. 
 
December 2001 
During the report period, we continued to work on technical efforts for the QuOIN contract, with the 
intention of wrapping them up during the next report period in anticipation of the contract’s end. We 
continued investigating Differentiated Services (DiffServ) network management and Real-time 
CORBA, continued efforts to integrate BBN’s resource status service (RSS) with the UAV software, 
continued periodic open-source releases of the QuOIN software and continued support of technology 
transition efforts to Boeing’s WSOA program and to NSWC’s HiPer-D demonstration.  
 
DiffServ Network Management. We wrapped up our QuOIN efforts on the investigation of DiffServ 
Network Management by further testing the A/V Streams methods that we developed that enable the 
setting of DiffServ codepoints. We verified that this was working using the Ethereal protocol analyzer 
and by visual confirmation of improvement in the video. We ran experiments using both FreeBSD 
ALTQ (alternative queuing) and Linux traffic control.  
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Real-time CORBA. During the last report period, we had developed a test case and ran a set of 
experiments to verify that the Real-Time CORBA (RT CORBA) implementation that is included in 
TAO 1.2 works satisfactorily. The results of these experiments indicated that TAO's RT CORBA was 
behaving as expected, so we proceeded to use it as our Real-Time CORBA implementation in an 
attempt to integrate RT CORBA features into the UAV example. We concentrated on the priority 
management facilities in RT CORBA since they represent the core functionality that it offers. 
 
To properly demonstrate RT CORBA in the UAV context we required two main system attributes: 
prioritized tasks, with associated thread priorities for performing the tasks, and scarce resources, 
typically CPU, that the tasks access using CORBA. However, the existing UAV application was not 
composed of distinctive tasks, and it was single threaded, so the first attribute was not present, and the 
core communication was done using AVStreams/UDP, not CORBA, so the second attribute wasn't 
present either. 
 
To satisfy the first requirement we separated the per-receiver frame dispatching which occurs in the 
distributor process into separate tasks and introduced a worker thread per task to perform the work, 
plus a mechanism for setting each thread's priority. To satisfy the second requirement we introduced a 
simulated CPU-intensive frame processing service that is invoked via CORBA by the frame-
dispatching task for each frame. 
 
We introduced the new behaviors into the distributor using two QuO delegates. The first handles the 
queuing of frames per receiver, creates the worker thread to do frame dispatching and manages the 
priority of the worker thread. The priority of the worker thread is maintained by a specialized QuO 
system condition object that updates the worker thread's priority when it’s value is changed. The 
second delegate introduces a call out to the frame processor object. The delegates both wrap the same 
interface and can be selected or deselected along with various other per-frame activities at runtime by 
chaining delegates together in different orders. For example, frame processing can be introduced 
before frame filtering, after frame filtering or both. By using delegates we were able to introduce the 
new system attributes with minimal impact on the base distributor code. 
 
We introduced the frame processing simulator as a separate process. The CORBA object that it 
implements returns each frame it is passed without modification after performing a configurable 
amount of busy work on it. The work performed is O(m*n*log2n), where m is the configuration 
constant and n is the size of the frame. The CORBA object is configured to use client propagated 
priority so that the servant thread in the frame processing simulator inherits the priority of the worker 
thread in the distributor. Without this policy the work being done on behalf of a high priority 
distributor task would have to compete with work done on behalf of lower priority distributor tasks, or 
it could be forced to wait for a medium priority system task, leading to priority inversion. 
 
Technology Transition. We continued to provide occasional support to Boeing in development of the 
WSOA flight and ground demonstration code. In support of the transition to the NSWC HiPer-D 
testbed, we received a brief report from Shafqat Anwar of the University of Texas, Arlington, 
describing a high level set of requirements for the integration with the NSWC resource manager. This 
was a follow-up to the discussions that we had with Lonnie Welch. 
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Other activities. We released QuO/QuOIN 3.0.9 as open-source during the report period via our 
website at http://www.dist-systems.bbn.com/tech/QuO/quorelease.html. 
 
January 2002 
During the report period, we continued to work on technical efforts for the QuOIN contract, with the 
intention of wrapping them up and begin producing the final set of contract deliverables. We wrapped 
up our investigation of Real-time CORBA and integration of BBN’s resource status service (RSS) 
with the UAV software. We also continued our periodic open-source releases of the QuOIN software 
and continued support of technology transition efforts to Boeing’s WSOA program and to NSWC’s 
HiPer-D demonstration. Finally, we began producing the documentation for the final set of contract 
deliverables. 
 
Real-time CORBA. We previously described two modifications that we made to the UAV distributor 
functionality to support the integration of Real-Time CORBA. First, we separated the per-receiver 
frame dispatching which occurs in the distributor process into separate tasks and introduced a worker 
thread per task to perform the work, plus a mechanism for setting each thread's priority. Second, we 
introduced a simulated CPU-intensive frame processing service that is invoked via CORBA by the 
frame-dispatching task for each frame. We added both of these behaviors using QuO delegates.  
 
With these in place, we were able to use Real-time CORBA to manage the priorities and priority 
propagation of tasks in the application. We tested this by modifying the value of a worker priority 
system condition on the distributor and observing (via instrumentation) that both the worker thread and 
the frame processing simulator thread were executing with the new priority, as expected. Additional 
work needs to be done to verify that priorities are properly reflected at the operating system level, and 
thread pools and connection management need to be introduced, but these should be straightforward. 
 
Resource Status to Control Adaptation.  We wrapped up the integration of RSS into the adaptive 
middleware to provide information useful in making adaptive decisions, building upon the progress we 
had made previously. We added a method to enable an endpoint to be registered with an RSS client. 
When it is poked, the RSS client will update a property with the currently available bandwidth. The 
AV Streams flow handler then looks at the available bandwidth property to determine how large a 
reservation is feasible before it makes a reservation. 
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