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Abstract- This paper quantifies the system characteristics for a 
pediatric foot and ankle biomechanical model.  While orientated 
along the Z-axis the static system resolution is computed at 0.32 ±±±± 
0.29 mm with 99.9% accuracy.  Dynamic resolution and accuracy 
are 0.43 ±±±± 0.39 mm and 99.8%, respectively.  Angular dynamic 
resolution computes to 0.52 ±±±± 3.36 degrees at 99.6% accuracy.  
These calculations are comparable to the Milwaukee adult foot 
and ankle model.    
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I. INTRODUCTION  
 

The foot and ankle is a complex structural system.  Motions 
at joints during gait are a function of bony repositioning.  The 
foot serves to support and propel the body, transfer forces 
from the ground, and provide rotation for adaptations on 
uneven terrain. Dysfunctions of the foot have numerous 
origins broadly categorized as either injury or pathology.  It is 
crucial to properly treat foot and ankle dysfunction, as it may 
lead to pain, further dysfunction, and erosion of proximal 
ability. 

A currently accepted approach to quantifying foot and ankle 
kinematics is to represent the entire foot as a single rigid body 
with a revolute ankle joint.  While useful for overall sagittal 
plane studies, this method is inadequate for portraying true 3-
D motion. More sophisticated models that segment the foot 
further and provide multi-planar rotation offer valuable insight 
into the segmental foot kinematics. 

Few models include multi-segmental kinematics during 
both the stance and swing periods of gait.   More typically, the 
biomechanical foot model is constrained to a limited number 
of segments and includes rotational limitations that restrict 
joint motion to a single axis of rotation [2], [5], [6], [7].  Such 
rotational limitations are unable to track well documented, 
multi-axis joint rotations [3]-[5], [7], [8].   

With regard to the pediatric population, there are very few 
biomechanical models that assess foot and ankle motion.  As 
with the adult populations of interest, pediatric models of the 
foot and ankle strive to accurately describe the complex 
kinematics of foot motion in order to better understand 
kinematic pathology and to improve treatment.  Challenges in 
developing appropriate pediatric foot models include small 
foot sizes and close marker spacing, which frequently exceeds 
the capabilities of the motion analysis system.   

The objective of this study was to develop an accurate 
biomechanical foot and ankle model to describe the kinematics 
of pediatric gait during both stance and swing.  It was 
hypothesized that the pediatric system could function with 
equivalent or greater resolution, accuracy, and reliability when 
compared to existing adult foot and ankle model systems.   
 

 

II. METHODOLOGY 
 

A. Foot and Ankle Model 
 

The biomechanical model defines the foot and ankle as four 
distinct segments: 1) tibia and fibula, 2) talus and calcaneus, 3) 
distal tarsals and metatarsals, and 4) hallux (Fig. 1).  Each 
rigid body segment is coupled by an unrestricted 3-D joint to 
the next distal segment. 

 
B. Instrumentation 
 

A 15 camera VICON 524 (Oxford Metrics, Oxford, 
England) motion analysis system was used to acquire 3-D 
marker data at 120 Hz. The capture volume was defined with 
dimensions of 1.3 m (height) by 1.0 m (width) by 4.9 m 
(length).  This volume ensured collection of complete stance 
and swing phase gait data.  Three markers were placed on 
bony landmarks (Fig. 2) to define each segment of the model.  
The markers are small (d= 14.5mm), lightweight, and covered 
with reflective tape.   

For the dynamic testing procedures, a Biodex System 3 
(Biodex Medical Systems, Inc., New York, USA) was used to 
generate defined angular rotations.   
 
C. Validation Protocol 
 

Resolution and accuracy of the foot and ankle system was 
determined both statically and dynamically [1], [3], [26].  For 
static linear testing, four markers were placed on a dummy 
segment representing the approximate shortest and longest 
inter-marker distances of the pediatric foot and ankle model.  
A mid-point distance was also explored.  The marker positions 
were measured with a vernier caliper (± 0.02 mm tolerance).  
The dummy segment was placed in the capture volume and 
oriented  

Segment 1: Tibia and fibula 
Segment 2: Talus and calcaneus 
Segment 3: Distal tarsals and metatarsals 
Segment 4: Hallux 

t 
Fig. 1. Bones of the foot and ankle with their associated model segmen
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along either the x, y, or z global reference system axis.  Data 
was collected for 6 trials of 3 sec duration for each orientation.  
The testing procedures were then repeated two days later.   
  Dynamic linear testing was done by taking the same dummy 
segment and moving it through the capture volume at an 
average gait speed.  Finally, dynamic angular testing was done 
by using the Biodex System 3 (accuracy = 0.67%) to rotate 
through a known range.  The system provided the required 
angular output over time and was compared to the 
biomechanical model output at various positions in the range.   

System resolution was calculated from the following 
equation [3]: 

 

      
With D = measured distance 

n = total number of samples 
di = computed distance 
t = t-test coefficient (from statistical tables [10]) 
s = sample standard deviation 
εr = round-off error = (5/10m) 
εm = measurement error, based on micrometer resolution 
 (±0.02 mm). 
m= number of significant digits. 

 
System accuracy was computed as [3]: 
 

 
With A= percentage system accuracy 
  xw = �worst� data point. 
 
The biomechanical model used a series of Euler rotations to 

determine the angle of the dummy segment rotating with respect 
to the Biodex.  The order of rotation was chosen to be in the 
sagittal, coronal, and then transverse planes of motion.  Each 
segment was assigned its own axis system.  For instance, the 
dummy left tibia segment is defined as: 

 
 

   (M2x + M3x)/2 
t origin=     (M2y + M3y)/2 

   (M2z + M3z)/2 
 

 M3x - t origin,x 
  t�2 =      M3y - t origin,y 

   M3z - t origin,z 
 

     M1x - t origin,x 
t�1 =  t�   r      M1y - t origin,y 

M1z - t origin,z 
 

t�3 = t�1 r  t�2   T = [t�1 t�2 t�3]. 
 
T is the 3x3 rotation matrix for the left tibia segment 

comprised of the three unit vectors, t�1 t�2 and t�3.  One segment 
can be expressed relative to the adjacent segment by multiplying 
the transpose 3x3 rotation matrix of the proximal segment by that 
of the distal segment. 

III. RESULTS 
 

The results of the static linear testing are shown in Table I.  
Markers placed at 140.7 mm represent the long distance, 70.5 
mm represent the mid distance, and 39.9 mm represent the 
shortest distance.  For comparative statistical purposes, t-test 
coefficients were selected at the 0.05 and 0.01 levels of 
significance.  Table II summarizes the results of the dynamic 
linear testing.  The markers were oriented along the Z-axis for 
the trials.  Table III shows the computations of resolution and 
accuracy for the dynamic angular testing.  The Biodex was 
programmed to rotate at a rate of 180 deg/sec.  The positions of 
rotation were measured at a constant angular velocity of 180 
deg/sec.   
 

ORIENTATION MARKER 
POSITION 

ACCURACY RESOLUTION 
(MM) 

P-VALUE 

.30 ± .141 .05 Short 100 % 

.30 ± .236 .01 

.50 ± .141 .05 Mid 100 % 

.50 ± .236 .01 
.417 ± .175 .05 

 
 
 

X-axis 

Long 99.98 % 
.417 ± .291 .01 
.60 ± .141 .05 Short 100 % 
.60 ± .236 .01 
.533 ± .184 .05 Mid 99.90 % 
.533 ± .306 .01 
.10 ± .141 .05 

 
 

 
Y-axis 

Long 100 % 
.10 ± .236 .01 
.183 ± .175 .05 Short 99.95 % 
.183 ± .291 .01 
.317 ± .174 .05 Mid 99.88 % 
.317 ± .292 .01 
.483 ± .175 .05 

 
 
 

Z-axis 

Long 99.94 % 
.483 ± .292 .01 

Table I. Static Linear Resolution and Accuracy Testing Results 
 
 

MARKER POSITION ACCURACY RESOLUTION (MM) P-VALUE 
0.533 ± .189 .05 Short 99.84 % 
0.533 ± .315 .01 
0.433 ± .236 .05 Mid 99.81 % 
0.433 ± .394 .01 
0.233 ± .236 .05 Long 99.91 % 
0.233 ± .394 .01 

Table II. Dynamic Linear Resolution and Accuracy Testing Results 
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 X-AXIS Y-AXIS Z-AXIS 

 
POSITION 

Resolution 
(mm) 

Accuracy Resolution 
(mm) 

Accuracy Resolution 
(mm) 

Accuracy 

1 .828 ± 3.56 99.39% .412 ± 3.50 99.19 % .22 ± 3.57 99.18 % 
2 .288 ± 3.42 99.66 % .248 ± 3.58 99.56 % .091 ± 3.90 98.92 % 
3 1.03 ± 3.35 99.77 % .556 ± 3.54 99.64 % .518 ± 3.36 99.75 % 
4 1.17 ± 3.81 99.81 % .932 ± 3.43 99.81 % .108 ± 3.35 99.87 % 
5 .99 ± 3.50 99.82 % 2.32 ± 3.62 99.67 % 2.96 ± 3.53 99.83 % 

Table III. Dynamic Angular Test Results with Biodex velocity = 
180°/sec and p=. 01 level of significance. 
 

IV. DISCUSSION 
 

For the results of the linear static testing, the resolution was 
slightly greater when the segment was oriented along the Z-axis.  
Accuracy values are acceptable regardless of orientation or 
testing procedure. The comparable adult foot and ankle system 
reported static resolution as 0.01 ± 1.20 mm with an accuracy of 
99.4% (assuming a 0.01 level of significance) in the sagittal 
plane [3].  The coronal resolution for the adult model was 0.6 ± 
1.10 mm with 99.5% accuracy.  Transverse plane information 
was not provided.  For the dynamic testing, resolution increased 
with decreasing marker distance.  This result is typical of most 
imaging systems.  However, the resolution for the short marker 
separation is still in a satisfactory range.  Results from Kidder et 
al. document average resolution along the X-axis as 0.65 ± 0.07 
mm and average accuracy as 98.9% [3].  Y and Z-axis resolution 
and accuracy are 0.95 ± 0.08 at 98.8% and 0.98 ± 0.13 at 99.0%, 
respectively, at a 0.05 level of significance [3].   

 
V. CONCLUSION 

 
The static and dynamic test results confirm the system 

accuracy and ability to track 3-D motion during pediatric gait.  
The resolution and accuracy computations are comparable, and 
even surpass similar measurements for an existing adult foot and 
ankle model.  The dynamic angular test results also verify the 
ability of the biomechanical model to track rotations accurately.  
(Few models publish this measurement, so a comparison is not 
obtainable.)  In light of the current study results, the model is 
considered sufficient for further application in a pilot clinical 

study of pediatric foot and ankle motion.  It is hoped that 
quantification of normal and pathological pediatric gait will 
ultimately lead to improved characterization, rehabilitation, and  
surgical treatment. 
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