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Abstract: In this paper we present a detailed 
simulation method to estimate the accuracy of 
Doppler power spectrum and mean blood velocity, 
using real CW Doppler transducers with twin-crystal 
arrangement. The method is based on dividing the 
sample volume into small cells using the statistics of 
the total power of Doppler spectrum with the same 
Doppler shift frequency, and from total power, which 
predicts errors in the mean blood velocity. Results 
show that the Doppler angle, vessel depth, and sample 
volume length are not sensitive functions for both the 
Doppler power spectrum and error in the mean blood 
velocity. However vessel diameter, displacement 
distance and blood velocity profiles have significant 
effects. Finally, comparisons between simulation and 
experiment results illustrated a good agreement for 
parabolic flow profile. These results will contribute to 
an improved understanding of Doppler power 
spectrum and error in mean blood velocity in medical 
ultrasound diagnostics. 
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I. INTRODUCTION 
 

Ultrasound Doppler is widely used to measure blood 
flow in the vessel by analyzing Doppler power spectrum 
for the diagnostic assessment of cardiovascular disease 
[1,2]. Recently, of particular interest to us is the 
application of this technique to human subjects during 
exercise. A telemetry system for measuring blood 
velocity in exercising subjects by using continues wave 
(CW) ultrasonic Doppler method has been developed in 
our laboratory [3] and used for assessing blood flow 
changes during various physical exercises [4]. Especially, 
two semicircular transducers were chosen to use in the 
telemetry system, which is generally applied for a typical 
clinical CW probe. However, for accurately evaluating 
blood velocity, it is necessary to measure blood velocity 
profile, mean velocity and volumetric flow. There was an 
unsolved problem that remained for the effect of 
semicircle transducer in the theoretical simulation study, 
which would cause distortion of the Doppler spectrum 
and errors in mean velocity in CW system Ultrasonic 
Doppler that has not been considered. Cobblod and 
Bascom [5] have provided some numerical calculation 
methods, but they assumed the transducer to be 
coincident with transmission and reception. 

The simulation studies for Doppler power spectrum 

have been performed by a number of investigators. 
Cobblod and Bascom have analyzed the effects of beam 
profile, insonation degree and spectral broadening on the 
CW Doppler ultrasound spectrum and mean velocity. Mo 
and Cobblod, and shung’s group have developed the 
effect of the scatterer’s distribution in blood. 
Consequently, there is a need to understand how both 
acoustical and physiological factors such as transmitting 
and receiving Doppler angle and distance, beam profile 
form, different transducer shape, spectral broadening and 
scatterer’s distribution, affect the distortion of the 
Doppler spectrum and error in mean velocity on the CW 
system Doppler. 

Thus, the purpose of our study is to extend the theories 
of above investigators to present a detailed simulation 
model for accurately evaluating Doppler power spectrum 
and error in mean velocity using real CW Doppler 
transducers with twin-crystal arrangement. Finally, to 
ensure a demonstration of the efficacy of our method, the 
computed power spectrum was compared to experimental 
results obtained for different tube diameter and flow 
velocity with parabolic profile. 

 
II. MATERIAL AND METHODS 

 
A. Theoretical Basis of Simulation Model 
Fig. 1 shows transducers, a blood vessel and their 
respective coordinate systems. It consists of two 
semicircle transducers at an angle θ to a blood vessel. To 
simplify the analysis axisymmetric flow inside a 
cylindrical pipe paralleled to the vessel axis and the skin 
surface is assumed. The angles α and β between the 
direction of flow velocity at the point Q and the 
transmitting and receiving beam, respectively are given 
by:  
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where the unit velocity vector ( )θθ cos,sin,0=v , 
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between the transmitting and receiving beams at the point 
Q can be written as: 
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The spatial axisymmetric velocity profile can be written 
as the following equation [6]: 

  ( ) ( )( )n
R
rvrv −= 1max          (4) 

where v(r) is the velocity, r is the distance from the center 
of the vessel of radius R, and vmax is the axial flow 
velocity. A parabolic velocity profile is described when 
n=2. Increasing the value of n makes the profile more 
blunt until plug flow is described when n=∞.  

 
Fig.1 Cartesian coordinate system used to numerically  
estimate the Doppler spectrum. 

 
B. Calculation of Total Received Power 

A semicircle transducer of 15mm in diameter 
(2Rb=15mm) for emitting ultrasound to the blood vessel 
and a same semicircle receiver of in diameter for 
receiving the reflected ultrasound containing Doppler 
shift signals. Considering the depth of the vessels and the 
size of transducers, 2.0MHz was chosen as the emitting 
frequency. Acoustic pressure field in the blood vessel has 
been calculated by dividing a transmitter into segments 
and accumulating signals reflected from every part [7]. 
The total pressure at point Q can be written as  
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where r1 is the distance from dS to observation point Q, ρ  
and c are medium density and velocity of sound, 
k=2π/λ, λ is the ultrasonic wavelength, 

⋅
U is the local 

velocity of the transmitter surface S1. The particles 
of radius a suspending in a medium with different 
acoustic properties are much smaller than the incident 
ultrasonic wavelength λ (a≪λ). The scattering of waves 
by the particles is usually known as “Rayleigh scattering”. 
The scattering cross section σ  relates to the energy 
scattered by the incident intensity. For Doppler shift 
frequency fd the scattered pressure PR (r1, r2) of red cell 
exerting on the receiving transducer surface can be 
written as [7]:  
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where r2  is the distance from an erythrocyte on the point 
Q to the receiving transducer elemental surface area, and 
dS defines integration over the receiving transducer 
surface S2 area. 

The spectrum of the scattered echo of a single particle 
can be replaced by the voltage at the transducer V(fd). 
This voltage is related to the pressure PR(r1, r2) at the 
transducer by the system response. For the scattering 
configuration where the transmitting transducer is the 
same as the receiving transducer and the scattering 
pressure PR(r1, r2) at the transducer will be transformed 
into the voltage at the transducer by the efficiency factor 
T(fd) of the transducer at the reception as following [8]: 

),()()( 21 rrPfTfV Rdd ⋅=      (8) 
In order that the flow velocity of each cell in the 

elements is treated homogeneously the sample volume is 
divided into small sector volume elements.  

The power spectrum for a certain Doppler shift 
frequency fd can be obtained by accumulating sampling 
cells corresponding to the same fd. The total received 
power P(fd) for Doppler shift frequency fd can be 
calculated: 

( ) dVNfVfP
SV dd ∫∫∫ ⋅= 2)(     (9) 

where Vs is the total volume of sampling cells and N is 
number of red cell of per unit volume. 

C. Experiment 

A flow phantom system was used to experimentally 
verify the simulation model. Two 2MHz semicircle 
transducers of 15mm diameter were used to transmit and 
receive signals. The transmitted beam angle θ=45° was 
set to and the depth of a vessel is D=24mm. The test fluid 
flows from an upper the reservoir to a lower one through 
a silicon tube of 4 and 8mm internal diameter immersed 
in a tank filled with water. The flow velocity can be 
controlled by change the height of upper reservoir. The 
Doppler test fluid (model 707-G, Generex) is a dispersion 
of plastic particles in a glycerine water mixture. The 
particle size is 30±3µm mean diameter. It was a little 
bigger than the erythrocytes but much smaller than the 
wavelengths used in the experiments. mean diameter. It 
was a little bigger than the erythrocytes but much smaller 
than the wavelengths used in the experiments. Therefore, 
a scattering is similar to the blood cells. In order to 
maintain laminar flow with a mean flow velocity v  in a 
tube of radius R with a fluid kinematic viscosity γ, the 
Reynolds number Re can be written as: 

 
γ

vR
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The threshold of Re is approximately 2000 for a silicon 
tube. In the experiment the numerical values of the 



 

 

          
Fig. 2. Ultrasonic pressure fields of the cross-sections of the blood vessel. Ultrasonic pressure fields in isobaric contours across  
the blood vessels of diameter (a) 2 mm, (b) 4 mm, (c) 6 mm, and (d) 8 mm in 24mm depth from the skin. 
 

parameters are 2R=4 and 8mm, γ=1.66±0.1 mm2/s. When 
vmax=70cm/s and 80cm/s, the Reynolds number Re is 867 
and 1960 respectively for the above diameters of tube. 
 

III  RESULTS AND DISCUSSION 

One reason of spectral distortion arises from the 
nonuniformity of the acoustic pressure field distribution 
in the vessel. The acoustic pressure field distribution will 
vary for different vessel sizes, depending on the extent 
and position of the region of the beam covering the vessel. 
Fig.2 (a)-(d) show the multiplying acoustic field for 
2-MHz semicircle transducer from vessels of diameters 
2.0 mm, 4.0 mm, 6.0 mm and 8.0 mm, respectively, in 
depth D=24mm. The results show that as increase in area 
of vessels, the nonuniformity of acoustic field distribution 
increase. 

Fig. 3 shows as sample volume size progressively 
increases the power spectrum also increases, but error in 
mean velocity decreases for parabolic flow. When sample 
volume size is more than the length of intersection of 
beam and vessel, the distortion of the power spectrum and 
error in mean velocity are very close to constant.  

In Fig. 4 the results show that as the vessel diameter 
increases both the total received power and spectral 
distortion increase, in addition, the curves for error in 
mean blood velocity show increase monotonically, 
suggesting this significant effect is due to nonuniform 
beam or incomplete insonation. 

Fig. 5 shows the received power spectrum when 
intrinsic spectral broadening is considered. As velocity 
parameter n increases the flow profile becomes blunter 
and the power spectrum approaches a spike at the higher 
frequencies, but the spectral distortion and error in mean 
velocity decrease.    

Fig. 6(a) shows the effect of beam that displaced from 
vessel central axis (d1=0) by successive 0.5mm 
increments. When the displacement of the beam from 
d1=0 causes a fall-off in the power spectrum until at 
d1=1.0mm and the Doppler power spectrum distribution 
becomes close to flat provide beam displacements cause a 
reduction in the power spectrum. Furthermore, until at 
d1=4.0mm, the power spectrum again becomes close to 
flat. This behaviour arises from beam distribution, which 
is close to uniform when displacement of beam d1 is more  

 

 
Fig.3. (a) The Doppler power spectrum distributions and (b) errors in the 
mean blood velocity obtained  for sample volume length from 12mm to 
24mm for parabolic profiles (R=2mm, D=2.4cm, θ=450, vmax=50cm/s). 

 

 
Fig.4. (a) The Doppler power spectrum distributions and (b) errors in 

the mean blood velocity obtained  for vessel diameter from 2mm to 
8mm for parabolic profiles (D=2.4cm, θ=450, vmax=50cm/s, L=21mm). 
 
 

 
Fig. 5. (a) The Doppler power spectrum distribution (b) errors in        

the mean blood velocity obtained for different values of the velocity 
parameter n (R=2mm, D=2.4cm, θ=450, vmax=50cm/s). 
 



 

 

 
Fig.6. (a) The Doppler power spectrum distributions and (b) errors in the 
mean blood velocity obtained  for displacement distance (d1) from 
0mm to 4mm for parabolic profiles (R=2mm, D=2.4cm, θ=450, 
vmax=50cm/s). 

 
Fig.7. Comparison between simulated and measured Doppler power 
spectrum for parabolic flow profile with vessel depth D=2.4cm and the 
2MHz probe oriented at 450: (a) the 4mm ID silicon tube, vmax= 70cm/s; 
(b) the 8mm ID silicon tube, vmax= 80cm/s 
 
than 4mm. On the other hand, the effect of beam shape 
and displacement on the estimated error in mean velocity 
is shown in Fig. 6. (b). For a semicircular beam the errors 
are minimum and maximum value at d1=1mm and 
d2=2.5mm. The latter result suggests that the region lying 
along the beam axis is more heavily weighted than the 
off-axis regions of vessel, which causes maximum 
distortion of power spectrum. 

Fig.7. (a) and (b) show comparisons between 
experimental and simulation results for different silicon 
tube and flow velocity. It can be seen that in each case 
measured and simulated Doppler power spectrum are 
given in good agreement for high-frequency end. The 
lack of power spectrum near the zero frequency in the 
experimental spectrum may be due to the effects of high 
pass filter and attenuation.  

From the results presented above, it can be seen that 
the first major contribution in designing our simulation 
model is that we chose the semicircular transducer for the 
first time, which is typical clinical CW system Doppler 
probe with separated twin-crystal arrangement. Thus, our 
study developed Bascom’s work, which assumed 
coincidence of the transmitting and receiving crystals [6]. 
  The second major contribution is that we considered 
more sufficiently the factors affected on the Doppler 
power spectrum and error in the mean blood velocity. 
With the change of vessel depth, sample volume length, 
and Doppler angle, the shape of the power spectrum and 
error in mean velocity remained constant since each 

component of the spectrum was changed in near the same 
manner. However, the other factors such as vessel 
diameter, velocity profile and displacement distance 
strongly affected power spectrum and error in mean 
velocity.  

IV  CONCLUSIONS 
 
This paper has considered a number of factors affected 

on Doppler power spectrum and error in the mean blood 
velocity, described a detailed simulation method for 
calculating the Doppler spectrum for a real CW 
transducer separated for the transmission and reception, 
and from the total power to predict the errors in the mean 
blood velocity. This method makes it possible to estimate 
the spectral shape for any type transducer. In particular, it 
was concluded that the Doppler power spectrum and error 
in the mean blood velocity are significantly affected by 
vessel diameter, displacement distance and blood velocity 
profile, less affected by Doppler angle, vessel depth, and 
sample volume length. In addition, it is also proved to 
compare computed spectra in good agreement with 
experiments. We believe our simulation model presented 
is general and can be applied to the more usual case of 
spatial spectrum on CW Doppler ultrasonic system. 
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