
Abstract –Analysis of heart rate variability requires the calculation 
of the mean heart rate. Adaptive methods are important for online 
and real-time parameter estimation. In this paper, we demonstrate 
the use of Kalman filtering to estimate adaptively the mean heart 
rate and remove the trend. * 
Keywords – Kalman filtering, heart rate variability, trend removal, 
adaptive estimation algorithm, non-stationarity 
 
 

 
I. INTRODUCTION 

 
Analysis of heart rate variability (HRV) requires several 
processing steps. After the QRS detection and the calculations 
of the R-to-R intervals (RRI), the mean of the RRI is removed 
and the spectrum is estimated. In case of an online and real-
time - analysis, the estimation of the mean value must be based 
on past values only, since no future sample values can be used. 
In order to improve the computational efficiency, adaptive 
algorithms are appropriate for estimating the mean value of 
HRV.  
 
 

II. METHODOLOGY 
 

Before Kalman filtering is introduced, we would like to 
review a basic adaptive algorithm. The mean can be calculated 
adaptively as follows:  

 
µk = (1-UC) . µk + UC .  yk      (1)   

 
y(t) is the actual sample value (e.g. the inverse R-R-

Interval) at sample k; UC denotes the update coefficient and 
determines the degree of adaptation. In Eq. (1), only past values 
are used and at each time instant, the previous estimate is 
updated. In essence describes Eq. (1) an adaptive smoothing 
filter.  

 
 

The state space model and Kalman filtering 
 

An alternative method to the adaptive filter is to use Kalman 
filtering. For this purpose, we introduce the state space model 
(SSM) with the system ([1] p. 102) 

 
xk = Fk . xk-1 + wk   wk = N(0, Wk)   (2a)  

                                                           
* This work was supported by the Friedrich-Schmiedl-
Foundation, Graz, Austria.  

and the measurement equation 
 

zk = Hk . xk  + vk   vk = N(0,Vk)   (2b)  
 
The properties of the state space model are determined by the 
matrices F and H. uk is the system input, wk and vk are 
uncorrelated random noise processes with covariances W and 
V, respectively. xk represents the (hidden) state vector, zk is the 
observed system output at time instant k.  
 
Kalman filtering estimates the hidden state variable xk in a 
recursive way with the following equations ([1] p. 112):  
 
State estimation extrapolation: 

Xk(-) = Fk-1 . xk-1(+)         (3a)  
Error covariance extrapolation 

Pk(-) = Fk-1 . Pk-1(+) . Fk-1
T + W k-1     (3b)  

State estimation observational update: 
xk(+) = xk-1(-)  + Kk . [zk - Hk . xk-1(-)]    (3c)  

Error covariance update 
Pk(+) = [I - Kk . Hk] . Pk-1(-)       (3d)  

Kalman gain  
 Kk = P k(-) . Hk

 T / [Hk . Pk(-) . Hk
 T + Vk]

    (3e)  
The initial conditions are determined by x0 and its covariance 
P0.  

 
In the next step, we build a state space model for the mean 

heart rate. Here, we determine the best estimate of the mean 
heart rate. Since the unknown variable xk represents the mean 
estimate: xk = µk 

There is no further information about the mean. Therefore, 
we assume the mean follows a random walk process. Hence, Fk 
= 1,  µk = µk-1 + wk  

The difference between the estimate xk and the actual 
observation zk can be assumed to be random and uncorrelated; 
hence Hk = 1. 

 
The following update equations for the adaptive estimation 

of the mean can be determined as follows:  
 

ek = zk - µk-1          (4a)  
µk = µk-1  + Kk . ek         (4b)  
P k-1 = P k-1 + W k         (4c)   

Kk = P k-1 / [P k-1 + V k]        (4d)  
P k = [ I - Kk] . P k-1        (4e)  
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V k represents the variance of the prediction error and W k 
represent variance of the random walk. Because these 
parameters are usually unknown, some assumptions about their 
behavior can be done. As shown in [2] different assumptions 
can be made, including the one below (Mode a12v3):  

 
Vk = (1-UC)         (5a)  
Wk = UC2*I         (5b)  

 
 

III. Results 
 
In this paper we tested the Kalman filter on both the 

simulated and the HRV. 
 
 

Simulation 
 
Both methods, the adaptive smoothing filter and Kalman 
filtering, were applied to the following test series. The 
simulated signal has 4 epochs with 100 samples each; each 
epoch is a white noise process with a rms=3 and a mean value 
of 60, 100, 100, and 80 for the epochs 1, 2, 3 and 4, 
respectively. In the third epoch the mean was increased linearly 
from 50 to 150.  
 
 

0 50 100 150 200 250 300 350 400
40

60

80

100

120

140

160
s im ulation

0 50 100 150 200 250 300 350 400
40

60

80

100

120

140

160

0 50 100 150 200 250 300 350 400
-100

-50

0

50

t [sam ples]

 
Fig 1: Simulation. The simulated data is display in the first plot. The second 

plots show the adaptive mean estimated with Kalman filter (dark) and 
exponential window (light). The third plot shows the one-step prediction error 

for Kalman filter (dark) and the exponential window (light). The update 
coefficient UC was in both cases 0.05.  

 
The simulated signal y was analyzed using the adaptive 
smoothing as well as Kalman filtering. In both cases an update 
coefficient UC=0.05 was used.  Fig 1 shows the simulated data, 
the estimated adaptive mean and the residual processes from 
both methods. 

 
 

Heart rate variability data 
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Figure 2: Heart rate variability (blue), adaptive mean (green) and the one-step 

prediction error (red). The prediction error is also the de-trended HRV. 
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Figure 3: Time-varying spectrum based on AAR estimates of the de-trended 

Heart-rate variability. 

 

 
In addition to the simulated data, HRV data during a tilting-

table experiment was recorded (Fig. 3). Between sample 400 



and sample 1100 passive head up tilt was applied to the subject. 
Due to passive head up tilt, the Heart Rate increased between 
samples 400 and 1100 from 0.9 to 1.2 Hz (54 to 72 bpm) (Fig. 
2).  

 
Our results based on 13 HRV data set showed that Kalman 

filtering with Mode=a12v3 and UC=0.0605 can be used to 
estimate the mean heart rate and the autoregressive parameters 
adaptively. 

 
Fig 3 shows a time-varying spectral density function of 

HRV using adaptive autoregressive (AAR) parameters. Note 
that the Nyquist frequency changes according to the mean heart 
rate since the mean heart rate can be considered as the mean 
sampling rate of the HRV. 

 
 
 

IV. DISCUSSION 
 

In this paper we have shown how Kalman filtering can be 
used to estimate adaptively the time-varying mean of non-
stationary time series. A comparison between Kalman filtering 
and exponential smoothing was done on simulated data. 
However, to compare both methods in an objective manner, the 
adaptation speed and the estimation accuracy need to be 
compared simultaneously. Furthermore, the optimal 
assumptions about the variances of the system and observation 
noise (Vk and Wk) must be made.  

 
Kalman filtering was also applied to estimate the adaptive 

mean and the de-trended heart-rate-variability. This is 
important for the on-line and real-time analysis of the HRV-
spectrum. The time-varying HRV-spectra (as shown in Fig. 3) 
can be also estimated with adaptive autoregressive methods.  

 
Kalman filtering can be used to estimate the adaptive mean 

and to remove the trend of HRV data. We believe that Kalman 
filtering can be applied to other non-stationary biological 
systems, too.  

 
 
 

ACKNOWLEDGMENT 
 
Alois Schlögl thanks Prof. G. Pfurtscheller for his support.    

 
 
 
 

REFERENCES 
 
[1] M.S. Grewal, A.P. Andrews, Kalman filtering – theory and 
practice. Prentice Hall, Englewood Cliffs, NJ, 1993.  
 
[2] A. Schlögl, The electroencephalogram and the adaptive 
autoregressive model: theory and applications. Shaker Verlag, 
Aachen, Germany, 2000.  
 


	Main Menu
	-------------------------
	Welcome Letter
	Chairman Address
	Keynote Lecture
	Plenary Talks
	Mini Symposia
	Workshops
	Theme Index
	1.Cardiovascular Systems and Engineering 
	1.1.Cardiac Electrophysiology and Mechanics 
	1.1.1 Cardiac Cellular Electrophysiology
	1.1.2 Cardiac Electrophysiology 
	1.1.3 Electrical Interactions Between Purkinje and Ventricular Cells 
	1.1.4 Arrhythmogenesis and Spiral Waves 

	1.2. Cardiac and Vascular Biomechanics 
	1.2.1 Blood Flow and Material Interactions 
	1.2.2.Cardiac Mechanics 
	1.2.3 Vascular Flow 
	1.2.4 Cardiac Mechanics/Cardiovascular Systems 
	1.2.5 Hemodynamics and Vascular Mechanics 
	1.2.6 Hemodynamic Modeling and Measurement Techniques 
	1.2.7 Modeling of Cerebrovascular Dynamics 
	1.2.8 Cerebrovascular Dynamics 

	1.3 Cardiac Activation 
	1.3.1 Optical Potential Mapping in the Heart 
	1.3.2 Mapping and Arrhythmias  
	1.3.3 Propagation of Electrical Activity in Cardiac Tissue 
	1.3.4 Forward-Inverse Problems in ECG and MCG 
	1.3.5 Electrocardiology 
	1.3.6 Electrophysiology and Ablation 

	1.4 Pulmonary System Analysis and Critical Care Medicine 
	1.4.1 Cardiopulmonary Modeling 
	1.4.2 Pulmonary and Cardiovascular Clinical Systems 
	1.4.3 Mechanical Circulatory Support 
	1.4.4 Cardiopulmonary Bypass/Extracorporeal Circulation 

	1.5 Modeling and Control of Cardiovascular and Pulmonary Systems 
	1.5.1 Heart Rate Variability I: Modeling and Clinical Aspects 
	1.5.2 Heart Rate Variability II: Nonlinear processing 
	1.5.3 Neural Control of the Cardiovascular System II 
	1.5.4 Heart Rate Variability 
	1.5.5 Neural Control of the Cardiovascular System I 


	2. Neural Systems and Engineering 
	2.1 Neural Imaging and Sensing  
	2.1.1 Brain Imaging 
	2.1.2 EEG/MEG processing

	2.2 Neural Computation: Artificial and Biological 
	2.2.1 Neural Computational Modeling Closely Based on Anatomy and Physiology 
	2.2.2 Neural Computation 

	2.3 Neural Interfacing 
	2.3.1 Neural Recording 
	2.3.2 Cultured neurons: activity patterns, adhesion & survival 
	2.3.3 Neuro-technology 

	2.4 Neural Systems: Analysis and Control 
	2.4.1 Neural Mechanisms of Visual Selection 
	2.4.2 Models of Dynamic Neural Systems 
	2.4.3 Sensory Motor Mapping 
	2.4.4 Sensory Motor Control Systems 

	2.5 Neuro-electromagnetism 
	2.5.1 Magnetic Stimulation 
	2.5.2 Neural Signals Source Localization 

	2.6 Clinical Neural Engineering 
	2.6.1 Detection and mechanisms of epileptic activity 
	2.6.2 Diagnostic Tools 

	2.7 Neuro-electrophysiology 
	2.7.1 Neural Source Mapping 
	2.7.2 Neuro-Electrophysiology 
	2.7.3 Brain Mapping 


	3. Neuromuscular Systems and Rehabilitation Engineering 
	3.1 EMG 
	3.1.1 EMG modeling 
	3.1.2 Estimation of Muscle Fiber Conduction velocity 
	3.1.3 Clinical Applications of EMG 
	3.1.4 Analysis and Interpretation of EMG 

	3. 2 Posture and Gait 
	3.2.1 Posture and Gait

	3.3.Central Control of Movement 
	3.3.1 Central Control of movement 

	3.4 Peripheral Neuromuscular Mechanisms 
	3.4.1 Peripheral Neuromuscular Mechanisms II
	3.4.2 Peripheral Neuromuscular Mechanisms I 

	3.5 Functional Electrical Stimulation 
	3.5.1 Functional Electrical Stimulation 

	3.6 Assistive Devices, Implants, and Prosthetics 
	3.6.1 Assistive Devices, Implants and Prosthetics  

	3.7 Sensory Rehabilitation 
	3.7.1 Sensory Systems and Rehabilitation:Hearing & Speech 
	3.7.2 Sensory Systems and Rehabilitation  

	3.8 Orthopedic Biomechanics 
	3.8.1 Orthopedic Biomechanics 


	4. Biomedical Signal and System Analysis 
	4.1 Nonlinear Dynamical Analysis of Biosignals: Fractal and Chaos 
	4.1.1 Nonlinear Dynamical Analysis of Biosignals I 
	4.1.2 Nonlinear Dynamical Analysis of Biosignals II 

	4.2 Intelligent Analysis of Biosignals 
	4.2.1 Neural Networks and Adaptive Systems in Biosignal Analysis 
	4.2.2 Fuzzy and Knowledge-Based Systems in Biosignal Analysis 
	4.2.3 Intelligent Systems in Speech Analysis 
	4.2.4 Knowledge-Based and Neural Network Approaches to Biosignal Analysis 
	4.2.5 Neural Network Approaches to Biosignal Analysis 
	4.2.6 Hybrid Systems in Biosignal Analysis 
	4.2.7 Intelligent Systems in ECG Analysis 
	4.2.8 Intelligent Systems in EEG Analysis 

	4.3 Analysis of Nonstationary Biosignals 
	4.3.1 Analysis of Nonstationary Biosignals:EEG Applications II 
	4.3.2 Analysis of Nonstationary Biosignals:EEG Applications I
	4.3.3 Analysis of Nonstationary Biosignals:ECG-EMG Applications I 
	4.3.4 Analysis of Nonstationary Biosignals:Acoustics Applications I 
	4.3.5 Analysis of Nonstationary Biosignals:ECG-EMG Applications II 
	4.3.6 Analysis of Nonstationary Biosignals:Acoustics Applications II 

	4.4 Statistical Analysis of Biosignals 
	4.4.1 Statistical Parameter Estimation and Information Measures of Biosignals 
	4.4.2 Detection and Classification Algorithms of Biosignals I 
	4.4.3 Special Session: Component Analysis in Biosignals 
	4.4.4 Detection and Classification Algorithms of Biosignals II 

	4.5 Mathematical Modeling of Biosignals and Biosystems 
	4.5.1 Physiological Models 
	4.5.2 Evoked Potential Signal Analysis 
	4.5.3 Auditory System Modelling 
	4.5.4 Cardiovascular Signal Analysis 

	4.6 Other Methods for Biosignal Analysis 
	4.6.1 Other Methods for Biosignal Analysis 


	5. Medical and Cellular Imaging and Systems 
	5.1 Nuclear Medicine and Imaging 
	5.1.1 Image Reconstruction and Processing 
	5.1.2 Magnetic Resonance Imaging 
	5.1.3 Imaging Systems and Applications 

	5.2 Image Compression, Fusion, and Registration 
	5.2.1 Imaging Compression 
	5.2.2 Image Filtering and Enhancement 
	5.2.3 Imaging Registration 

	5.3 Image Guided Surgery 
	5.3.1 Image-Guided Surgery 

	5.4 Image Segmentation/Quantitative Analysis 
	5.4.1 Image Analysis and Processing I 
	5.4.2 Image Segmentation 
	5.4.3 Image Analysis and Processing II 

	5.5 Infrared Imaging 
	5.5.1 Clinical Applications of IR Imaging I 
	5.5.2 Clinical Applications of IR Imaging II 
	5.5.3 IR Imaging Techniques 


	6. Molecular, Cellular and Tissue Engineering 
	6.1 Molecular and Genomic Engineering 
	6.1.1 Genomic Engineering: 1 
	6.1.2 Genomic Engineering II 

	6.2 Cell Engineering and Mechanics 
	6.2.1 Cell Engineering

	6.3 Tissue Engineering 
	6.3.1 Tissue Engineering 

	6.4. Biomaterials 
	6.4.1 Biomaterials 


	7. Biomedical Sensors and Instrumentation 
	7.1 Biomedical Sensors 
	7.1.1 Optical Biomedical Sensors 
	7.1.2 Algorithms for Biomedical Sensors 
	7.1.3 Electro-physiological Sensors 
	7.1.4 General Biomedical Sensors 
	7.1.5 Advances in Biomedical Sensors 

	7.2 Biomedical Actuators 
	7.2.1 Biomedical Actuators 

	7.3 Biomedical Instrumentation 
	7.3.1 Biomedical Instrumentation 
	7.3.2 Non-Invasive Medical Instrumentation I 
	7.3.3 Non-Invasive Medical Instrumentation II 

	7.4 Data Acquisition and Measurement 
	7.4.1 Physiological Data Acquisition 
	7.4.2 Physiological Data Acquisition Using Imaging Technology 
	7.4.3 ECG & Cardiovascular Data Acquisition 
	7.4.4 Bioimpedance 

	7.5 Nano Technology 
	7.5.1 Nanotechnology 

	7.6 Robotics and Mechatronics 
	7.6.1 Robotics and Mechatronics 


	8. Biomedical Information Engineering 
	8.1 Telemedicine and Telehealth System 
	8.1.1 Telemedicine Systems and Telecardiology 
	8.1.2 Mobile Health Systems 
	8.1.3 Medical Data Compression and Authentication 
	8.1.4 Telehealth and Homecare 
	8.1.5 Telehealth and WAP-based Systems 
	8.1.6 Telemedicine and Telehealth 

	8.2 Information Systems 
	8.2.1 Information Systems I
	8.2.2 Information Systems II 

	8.3 Virtual and Augmented Reality 
	8.3.1 Virtual and Augmented Reality I 
	8.3.2 Virtual and Augmented Reality II 

	8.4 Knowledge Based Systems 
	8.4.1 Knowledge Based Systems I 
	8.4.2 Knowledge Based Systems II 


	9. Health Care Technology and Biomedical Education 
	9.1 Emerging Technologies for Health Care Delivery 
	9.1.1 Emerging Technologies for Health Care Delivery 

	9.2 Clinical Engineering 
	9.2.1 Technology in Clinical Engineering 

	9.3 Critical Care and Intelligent Monitoring Systems 
	9.3.1 Critical Care and Intelligent Monitoring Systems 

	9.4 Ethics, Standardization and Safety 
	9.4.1 Ethics, Standardization and Safety 

	9.5 Internet Learning and Distance Learning 
	9.5.1 Technology in Biomedical Engineering Education and Training 
	9.5.2 Computer Tools Developed by Integrating Research and Education 


	10. Symposia and Plenaries 
	10.1 Opening Ceremonies 
	10.1.1 Keynote Lecture 

	10.2 Plenary Lectures 
	10.2.1 Molecular Imaging with Optical, Magnetic Resonance, and 
	10.2.2 Microbioengineering: Microbe Capture and Detection 
	10.2.3 Advanced distributed learning, Broadband Internet, and Medical Education 
	10.2.4 Cardiac and Arterial Contribution to Blood Pressure 
	10.2.5 Hepatic Tissue Engineering 
	10.2.6 High Throughput Challenges in Molecular Cell Biology: The CELL MAP

	10.3 Minisymposia 
	10.3.1 Modeling as a Tool in Neuromuscular and Rehabilitation 
	10.3.2 Nanotechnology in Biomedicine 
	10.3.3 Functional Imaging 
	10.3.4 Neural Network Dynamics 
	10.3.5 Bioinformatics 
	10.3.6 Promises and Pitfalls of Biosignal Analysis: Seizure Prediction and Management 



	Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	Ö
	P
	Q
	R
	S
	T
	U
	Ü
	V
	W
	X
	Y
	Z

	Keyword Index
	-
	¦ 
	1
	2
	3
	4
	9
	A
	B
	C
	D
	E
	F
	G
	H
	I
	i
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Committees
	Sponsors
	CD-Rom Help
	-------------------------
	Return
	Previous Page
	Next Page
	Previous View
	Next View
	Print
	-------------------------
	Query
	Query Results
	-------------------------
	Exit CD-Rom


