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1    Introduction 

This project dealt with computational methods for inverse problems related 
to light propagation through the earth's atmosphere. In this section we 
describe three important applications: 

1. Image deblurring. 

2. Estimation of phase and object from phase diversity data. 

3. Estimation of the volume refractive index profile of the atmosphere 
from wavefront sensor data. 

Of fundamental importance in each application is the aperture-plane 
phase, or wavefront aberration, 0(x, y). This can be interpreted as the devi- 
ation from planarity of the wavefront of light, at planar incidence at the top 
of the earth's atmosphere, after it has propagated through the atmosphere 
[10]. From the phase, one can compute the point spread function (PSF) for 
a ground-based telescope. Assuming no imperfections in the optics of the 
telescope and an incoherent light source, the on-axis PSF takes the form 

s=\F(Aei*)\2, (1) 

where T denotes the two-dimensional Fourier transform, i = \f—l, and A 
denotes the aperture function. For an ideal telescope, A = 1 inside the 
telescope aperture, and A = 0 outside the aperture. 

From the PSF, one can formulate a simple model for the blurred, noisy, 
pixelated image recorded by a charge coupled device (CCD) array attached 
to a telescope, 

dij = J J s(xi - x', yj - y') f(x', y) dx'dy' +?fo. (2) 

(S/)(xil%) 

Here / denotes the light source, or object, and %• represents stochastic noise 
in the image formation process. The indices i, j denote position in the pixel 
array. 

We can now describe several important inverse problems arising in atmo- 
spheric optics. Perhaps the simplest is image deblurring, i.e., the estimation 
of the object / in (2) given pixelated image data d^. Due to the ill-posedness 



of inverse of the underlying convolution integral operator S defined in equa- 
tion (2), the image deblurring problem is highly ill-conditioned. For this 
reason, regularization (see [11]) must be applied. This results in a large- 
scale, mildly ill-conditioned optimization problem. If prior information like 
nonnegativity of the object is incorporated, the problem becomes constrained 
and much more difficult to solve numerically. 

In practice, the PSF s in the model (2) as well as the object / may be 
unknown. In this case, one may use phase diversity [7, 9] to simultaneously 
estimate both the phase (f> and the object /. The key idea is to collect suitable 
additional data. Denote the data in model (2) by 

d = s[(f>]*f + r)- (3)- 

Here s = s[<j>] denotes the dependence of the PSF on the phase <f> in equation 
(1), and • denotes convolution product. In two-channel, single frame phase 
diversity, one collects additional data 

d' = s[^ + 0]*/ + »/. (4) 

Here 6 denotes a known phase aberration, for example, aperture plane de- 
focus, imposed before the second image is formed. From the two images d 
and d', one can estimate both the phase <j) and the object /. From (1) the 
dependence of PSF s on phase <j> is nonlinear. Hence, the phase diversity 
inverse problem is nonlinear. It is also ill-posed. 

When imaging over relatively wide fields of view, the situation is even 
more complicated in that the PSF s may depend on the viewing direction 6 
(the model (l)-(2) is accurate only for narrow fields of view). The aperture 
plane phase in the direction 6 can be described as a line integral 

cf>(x, y; 6) = [* n(x(z; 0), y(z; 6), z) dz. (5) 
Jz=0 

Here n = n(x,y,z) denotes the refractive index of the atmosphere, and 
(x(z;0),y(z;O),z) denotes a light ray path from the top of the atmosphere 
(z = H) to the bottom (z = 0). A device called a wavefront sensor measures 
the gradient of <f>. The inverse problem is to estimate the volume refractive 
index profile n(x, y, z) from wavefront sensor measurements in several direc- 
tions 9. This is a limited angle tomography problem, and is ill-posed. Prior 
information can make this problem much more tractable. The atmospheric 
refractive index profile is highly correlated with atmospheric turbulence. At- 
mospheric turbulence is concentrated in a few thin layers, and it can be 
accurately modeled using Kolmogorov statistics. See [8]. 



2 Objectives 

The broad objective of this project was the development of efficient com- 
putational algorithms to solve inverse problems that arise in atmospheric 
optics. We focused on the three specific application problems enumerated in 
the introduction. 

These three problems share several features. Each is ill-posed, so regular- 
ization is required to obtain accurate solutions. Each problem has solutions 
which are functions of two or three spatial variables. When discretized, these 
yield ill-conditioned systems with very large numbers of unknowns. In the 
case of phase diversity, these systems are nonlinear, and in the case of image 
deblurring, the incorporation of prior knowledge makes these systems non- 
negatively constrained. In summary, we needed to numerically solve large, 
ill-conditioned, possibly constrained, and possibly nonlinear systems of equa- 
tions. 

To compute solutions to these systems, there are several fairly general 
"tricks of the trade", e.g., quasi-Newton methods for nonlinear systems, pro- 
jected Newton methods for nonnegatively constrained systems, and the con- 
jugate gradient (CG) method for large linear systems. To gain robustness 
and efficiency, we were forced to develop very special preconditioners. Pre- 
conditioners can be viewed as transformations that take advantage of special 
problem structure. Our preconditioners are described in the next section. 

3 Major Accomplishments and New Findings 

Major accomplishments of this project included 

• The development of efficient nonnegatively constrained optimization 
algorithms for image deblurring. This includes a new preconditioner 
based on a sparse approximation to the blurring operator. See [1, 2] 
for details. 

• The development of efficient preconditioners for the joint phase and 
object estimation problem in phase diversity. These preconditioners 
were based on the Hessian of the (quadratic) regularization terms. See 
[4]. This paper also contains a careful numerical study and comparison 
of trust region vs. limited memory BFGS methods for the numerical 
solution to optimization problems arising in phase diversity estimation. 



• 

Data for this study was obtained from the US Air Force Maui Space 
Surveillance Complex in collaboration with Dr. David Tyler. 

The development of multigrid preconditioned conjugate gradient schemes 
for volume refractive index (turbulence) estimation. See [3, 5, 6]. These 
schemes make efficient use of the layered structure of the atmospheric 
turbulence profiles. This layered structure gave rise to block-structured 
matrices. We employed a block analogue of symmetric Gauss-Seidel it- 
eration as our multigrid smoother. 

The publication of a research monograph entitled "Computational Meth- 
ods for Inverse Problems" [11]. This publication presents both the gen- 
eral theory and specific algorithms for the solution of inverse problems. 
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7    Collaborative Research and Transactions at 
US Air Force Laboratories 

During the course of this project, the PI visited Air Force research facilities 
on the island of Maui, Hawaii, four times. Three of these visits were to at- 
tend annual workshops and meet with fellow researchers at the Maui High 
Performance Computing Center (MHPCC). The fourth visit was to present 
a short course on multiconjugate adaptive optics at the Maui Scientific Re- 
search Center (MSRC), which is next door to the MHPCC. The Pi's MSRC 
contact was Dr. Stuart Jeffries. 

The PI also collaborated with Dr. David Tyler in the analysis of phase 
diversity data. This data was collected by Dr. Tyler at the US Air Force 
Maui Space Surveillance Complex on Mt. Halleakala. Results are described 
in publication [5] above. 
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8 Inventions or Patent Disclosures 

None. 

9 Summary 

This project dealt with computational methods for inverse problems related 
to light propagation through the earth's atmosphere. It dealt specifically 
with the following applications: (1) image deblurring; (2) the simultaneous 
recovery of object and phase from phase diversity data; and (3) The estima- 
tion of the volume refractive index profile of the atmosphere from wavefront 
sensor data. 

Each of these three application problems was ill-posed, and regularization 
was required for their accurate solution. In each case, the implementation of 
regularization gave rise to optimization problems which were large and ill- 
conditioned. In addition, the image deblurring problem was nonnegatively 
constrained, and the phase diversity problem was nonlinear. These properties 
made the optimization problems very difficult to solve. 

Several fairly general numerical techniques were available for these prob- 
lems. These included trust region and limited memory BFGS nonlinear opti- 
mization methods and conjugate gradient iteration to solve the third problem 
(volume refractive index estimation) and to solve linear subproblems arising 
in the other two applications. The key to obtaining robust, efficient solutions 
was to employ an approach called preconditioning. The PI and his collab- 
orators developed very effective special-purpose preconditioners for each of 
the three specific applications. 

The PI collaborated with several AFOSR-sponsored researchers on the 
island of Maui, Hawaii during this project. The PI applied the computational 
techniques that he developed to image data collected at the US Air Force 
Maui Space Surveillance Complex by Dr. David Tyler. The PI also presented 
a short course on the topic of multiconjugate adaptive optics at the Maui 
Scientific Research Center. 

A total of 9 peer-reviewed scientific journal articles were prepared under 
this project. A PhD thesis was also written by a student directed by the PI 
and supported under this project. In addition, a research monograph entitled 
"Computational Methods for Inverse Problems" was written by the PI. This 
monograph was recently published by the Society for Industrial and Applied 
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Mathematics. 
Preprints and reprints of papers prepared under this project can be down- 

loaded directly from the Pi's web site at 

http://www.math.montana.edu/~vogel/ 
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