
Abstract- This overview presents potential applications of
nonlinear time series analysis using EEGs derived from
epilepsy patients. Apart from diagnostically oriented top-
ics including localization of epileptic foci in different ana-
tomical locations during the seizure-free interval I discuss
possibilities for seizure anticipation which is one of the
most challenging aspects of epileptology.
Keywords -  Nonlinear time series analysis, EEG, epilepsy,
seizure anticipation

I. Introduction

The disease epilepsy is characterized by a recurrent and
sudden malfunction of the brain that is termed seizure. Epi-
leptic seizures reflect the clinical signs of an excessive and/or
hypersynchronous activity of neurons in the cerebral cortex.
Depending on the extent of involvement of other brain areas
during the course of the seizure, epilepsies can be divided in
two main classes. Generalized seizures involve almost the
entire brain while focal (or partial) seizures originate from a
circumscribed region of the brain (epileptic focus) and remain
restricted to this region. Epileptic seizures might be accom-
panied by an impairment or loss of consciousness, psychic,
autonomic or sensory symptoms or motor phenomena.

Knowledge about basic mechanisms underlying the gen-
eration of seizures mainly stems from animal experiments.
Although there is a considerable bulk of literature the under-
lying electrophysiological and neurobiochemical mechanisms
are not yet fully explored. Moreover, it remains to be proven
whether these findings are fully transformable to human epi-
lepsies. Recordings of the membrane potential of neurons
under epileptic conditions indicate an enormous change,
which by far exceeds physiological changes occurring with
neuronal excitation. This phenomenon is termed paroxysmal
depolarization shift (PDS, [1, 2]) and represents a shift of the
resting membrane potential that is accompanied by a raise of
intracellular calcium and a massive burst of action potentials
(500 - 800 per second). PDSs originating from a larger corti-
cal region are associated with steep field potentials (known as
spikes) recorded in the scalp EEG. Focal seizures are assumed
to be initiated by abnormally discharging neurons (so-called
bursters [3, 4]) that recruit and entrain neighboring neurons
into a “critical mass”. This build-up might be mediated by an
increasing synchronization of neuronal activity that is accom-
panied by a loss of inhibition, or by facilitating processes that
permit seizure emergence by lowering a threshold.

Approximately 0.6 - 0.8 % of the world population suffers
from epilepsy. In about half of these patients focal seizures

originate from functional and/or morphological lesions of the
central nervous system. Antiepileptic drugs insufficiently
control or even fail to manage epilepsy in 30 - 50 % of the
cases. It can be assumed that 10 - 15 % of these cases would
profit from epilepsy surgery. Successful surgical treatment of
focal epilepsies requires exact localization of the epileptic
focus and its delineation from functionally relevant areas. For
this purpose different presurgical evaluation methodologies
are currently in use (see [5] for an overview). Neurological
and neuropsychological examinations are complemented by
neuroimaging techniques that try to identify potential mor-
phological correlates. Currently, the gold standard for an ex-
act localization of the epileptic focus, however, is to record
the patient's spontaneous habitual seizure using electroen-
cephalography. Depending on the individual occurrence of
seizures, this task requires long-lasting and continuous re-
cording of the EEG. In case of ambiguous scalp EEG findings
invasive recordings of the electrocorticogram (ECoG) or the
stereo-EEG (SEEG) via implanted electrodes are indicated.
This procedure, however, comprises a certain risk for the pa-
tient and, moreover, is time-consuming and expensive.

With the advent of the theory of nonlinear dynamics [6]
new concepts and powerful algorithms were developed to
analyze apparently irregular behavior, a distinctive feature of
the EEG. During the last decade a variety of nonlinear time
series analysis techniques nonlinear time series analysis
(NTSA) [7] has been repeatedly applied to EEG recordings
during physiological and pathological conditions. Nonlinear
measures like dimensions, Lyapunov-exponents, entropies, or
recent approaches that aim to characterize interdependencies,
synchronization, or similarities were shown to offer new in-
formation about complex brain dynamics (see [8-11] for an
overview). Today it is commonly accepted that the existence
of a deterministic and even chaotic structure underlying neu-
ronal dynamics is difficult or even impossible to prove. Nev-
ertheless, nonlinear approaches to the analysis of brain sys-
tems generate new clinical measures as well as new ways of
viewing brain electrical function, particularly with regard to
epileptic brain states. Indeed, recent results provide converg-
ing evidence that NTSA allows to reliably characterize differ-
ent states of brain function and dysfunction, provided limita-
tions of analysis techniques are taken into consideration and,
thus, results are interpreted with care (e.g., only relative
measures with respect to recording time and recording site are
assumed reliable).
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II. Localizing the epileptic focus

Several lines of evidence originating from studies of hu-
man epileptic brain tissue as well as of animal models of
chronic seizure disorders indicate that the epileptic brain,
even between seizures, is different from normal. Based on the
fact that neurons involved in the epileptic process exhibit
paroxysmal depolarization shifts that are scarcely modulated
by physiological brain activity, we hypothesized that this
highly synchronized neuronal behavior should be accompa-
nied by an intermittent loss of complexity or an increase of
nonlinear deterministic structure in the corresponding elec-
trographic signal even during the seizure free interval (inter-
ictal state) [12]. In order to characterize the spatio-temporal
dynamics of the epileptogenic process we have developed a
variety of univariate and bivariate analysis techniques [12-16]
and applied them to long-lasting interictal ECoG/SEEG re-
cordings covering different states of normal behavior and
vigilance as well as different extents of epileptiform activity.
Analyses of EEG recordings from up to now more than 300
patients indicate that nonlinear EEG analysis techniques al-
low to reliably localize epileptic foci in different cerebral
regions in more than 80 % of the cases. This holds true re-
gardless of whether or not obvious epileptiform activity is
present in the recordings.

These findings already indicate the potential relevance of
nonlinear EEG analysis to improve understanding of inter-
mittent dysfunctioning of the dynamical system brain in be-
tween seizures. Moreover, results also stress the high rele-
vance of nonlinear EEG analyses in clinical practice since
they provide potentially useful diagnostic information.

III. Can epileptic seizures be anticipated?

Anticipation of seizures is one of the most challenging as-
pects of epileptology. Although there are numerous studies
exploring basic neuronal mechanisms that are likely to be
associated with seizures, to date, no definite information is
available as to the generation of seizures in humans. In this
context the term “critical mass” might be misleading in the
sense that it just implies an increasing number of neurons that
are entrained into an abnormal discharging process. This
mass phenomenon would be easily accessible for conven-
tional EEG analyses which, however, failed to detect it. Auto-
regressive modeling of the EEG indicated that electroen-
cephalographic changes characteristic for pre-ictal states may
be detectable, at most, a few seconds before the actual seizure
onset [17]. Coherence analyses pointed to an increase of in-
ter- and intrahemispheric coupling that might occur minutes
before a seizure [18]. The relevance of brief bursts of focal
pathological neuronal activity leading to spikes in the EEG
and occurring prior to seizure onset was investigated in sev-
eral clinical studies, however with inconsistent results [19-
21].

Recent studies indicate that the seizure initiating process
should be regarded as an unfolding of an increasing number
of critical, possibly nonlinear dynamical interferences be-
tween neurons within the focal area as well as with neurons
surrounding this area. Indeed, there is converging evidence
from different laboratories that nonlinear analysis is capable
to characterize this collective behavior of neurons from the
gross brain electrical activity and hence allows to define a
critical transition state, at least for a high percentage of cases
[14, 22-31].

IV. Future aspects

Results obtained so far are promising and emphasize the
high value of nonlinear EEG analysis techniques for both
clinical practice and basic science. However, up to now find-
ings were mainly obtained from retrospective studies in well
elaborated cases and using invasive recording techniques.
Thus, on the one hand, evaluation of more complicated cases
as well as prospective studies on a larger population of pa-
tients are necessary.

The possibility of defining a critical transition state can be
regarded the most prominent contribution of nonlinear EEG
analysis to advance knowledge about seizure generation in
humans. This possibility has recently been expanded by
studies indicating accessibility of critical pre-seizure changes
from non-invasive EEG recordings [25, 28]. However, to
achieve an unequivocal definition of a critical pre-seizure
transition state from either invasive or non-invasive record-
ings, a variety of influencing factors have to be evaluated
beforehand. Despite considerable effort in characterizing the
spatio-temporal dynamics of the epileptogenic process, a va-
riety of pathologically or physiologically induced dynamical
interactions are nor yet fully understood. Among others, these
include different sleep stages, different cognitive states, as
well as daily activities that clearly vary from patient to pa-
tient. Along with these studies, nonlinear EEG analysis tech-
niques have to be further improved. New techniques are
needed that allow a better characterization of non-stationarity
and high-dimensionality in brain dynamics, techniques dis-
entangling even subtle dynamical interactions between
pathological disturbances and surrounding brain tissue as well
as refined artifact detection and elimination techniques. Since
the techniques currently available allow a differentiated char-
acterization of the epileptogenic process, the combined use of
these techniques along with appropriate classification
schemes [e.g. 32, 33] can be regarded a promising venture.

Once given an improved sensitivity and specificity of non-
linear EEG analysis techniques, broader clinical applications
on a larger population of patients, either at home or in a clini-
cal setting can be envisaged. As a future perspective one
might also consider implantable seizure anticipation and pre-
vention devices similar to devices already in use with Parkin-
sonean patients. Although optimization of algorithms under-
lying the computation of specific nonlinear measures [26, 34]



already allows, at present, to continuously track the temporal
behavior of nonlinear measures in real time, these applica-
tions still require the use of powerful computer systems, de-
pending on the number of recording channels necessary to
allow unequivocal characterization of the epileptogenic proc-
ess. Thus, further optimization and development of a minia-
turized analyzing system are definitely necessary. However,
taking into account the technologies currently available reali-
zation of such systems can be expected within the next few
years.
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