
 

 

Abstract- Joint interval histogram (JIH) and power spectrum 
density (PSD) of GIa unitary discharges were obtained while 
muscle of an anesthetized cat was stretched steadily.  The PSD  
curve was approximated three lines in the following frequency 
band, below 15Hz, 15 to 35Hz and above 35Hz.  The gradient 
between 15 to 35 Hz was steep and corresponds to how much the 
intrafusal fibers were activated. In a pattern of JIH, Ia 
discharges distributed wide in general. But, interval was regular 
and histogram made a group when intrafusal fibers were 
activated by electric stimulation on the ventral rootlet.  In 
particular conditions, peaks were observed around 50 to 60 Hz 
in PSD. 
Keywords - Joint interval histogram, a power spectrum density, 
muscle spindle, intrafusal muscle fibers 

 
I. INTRODUCTION 

 
  Mizote has found two types in afferent discharges of a 

shortened cat muscle by a combination of steady stretch and 
vibratory stretch. One is a discharge which comes from a 
dynamic nuclear bag fiber and the other comes from a static 
nuclear bag fiber or a nuclear chain fiber [1], [2].  But, 
response pattern of afferent fibers to vibratory stretches is 
varied as the muscle is extended and the separation in the 
afferent discharges was impossible because many impulses 
with several kinds of amplitude were recruited. 

We have estimated quantitatively the sensitivity of cat 
intrafusal muscle fibers to the muscle stretch by the joint 
interval histogram and by the power spectrum density of inter 
spike interval of spindle discharges. 
 

II. METHODOLOGY 
 
A. Subjects  
 

 Experimental data, which had already been reported [1] 
and had been recorded on a magnetic tape, were used for 
analyses of inter spike interval of cats muscle spindle 
discharges. Cats were anesthetized intraperitoneally and 
muscles were dissected free of surrounding tissue, while 
keeping the blood supply intact as much as possible. All other 
nerves in the hindlimb were cut except the gastrocnemius and 
soleus nerves. A laminectomy was performed to expose the 
dorsal and ventral roots between L5 and S1. They were cut at 
the entry into the spinal cord. The dorsal root was split into 
fine filaments for the isolation of single primary afferent fiber, 
which were identified as spindle endings by their behavior 
during twitch contractions of the muscle elicited by 
stimulating its nerve. The initial muscle length was 
determined by the single shock stimulus of ventral root. The 
muscle tendon through a steel hook was stretched steadily.  
Muscle was stretched to several mm till spindle discharges 
kept firing.  Inter spike interval of the tonic discharges of 
muscle spindle was analyzed.   

Ventral root L7 was separated into six bundles. Each 
bundle was used as gamma fusimotor stimulation.  Extrafusal 
muscle fibers were immobilized by gallamine injection, while 
respiration was kept by a respirator. 

Because original recordings of experimental data included 
responses to the vibratory stimuli or (and) to the electric 
stimulation of ventral rootlet, discharges during vibrations or 
during ventral stimulations were ejected for the analyses.   

 
B. Analysis  

 
1) Conversion: Recorded impulses were replayed at a rate 

of one 8th or one 16th of original recorded tape speed and 
were converted into digital signal (ADX-98, Canopus) at a 
sampling frequency of 1kHz.  Each peak value of the impulse 
discharges was detected and was saved as a file in a personal 
computer.    

2) The joint inter-spike interval histogram (JIH): The 
joint inter-spike interval histogram was obtained as the joint 
distribution of two successive inter-spike intervals(tn, tn+1 )[3]. 

3) Power spectrum density (PSD): The time interval 
between nth impulse occurrence and the following (n+1)th 
impulse was converted into the amplitude at the time of 
(n+1)th  impulse occurrence. The treatments were repeated 
over all the inter-spike intervals. Adjacent peaks were 
connected each other by a line till all peaks were connected, 
and a line graph was produced. The line graph was sampled 
by sampling frequency of 1kHz for a power spectrum density 
(PSD) analysis [4],[5].  
    

III. RESULTS 
 
A. The joint inter-spike interval histogram 
 

The pattern of the joint inter-spike interval histograms 
shows distributions of the tonic discharges to the steady 
stretch around the short intervals and is scattered wider as the 
interval is longer, when the muscle is stretched by a steady 
stretching or by a ramp and hold stretching.  In Fig.1, there is 
not much difference between (1) 3mm stretches and (2) 5mm 
stretches. But, as shown in Fig.2 left rows, the pattern of JIH 
is changeable. Three different Ia discharges are compared 
simultaneously at 10mm steady stretch for about 15sec.  

In Fig.3 left rows, the patterns of JIH are varied. Fig.3c 
shows the joint interval of the histogram is plotted on the 
regular intervals as if the inter spike interval is synchronized.   
The histogram shows presence of periodical firings (about 30, 
40, 50, 60ms). 

Ia discharges are synchronized by a phase of sinusoidal 
stretches while vibratory stimulation is repeated [1], [2]. But, 
the discharges had not been driven after the vibratory 
stimulations. The firing pattern of JIH implies that Ia 
discharge is effected by oscillation of intrafusal muscle fibers. 
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Fig.1, JIH (uppermost), PSD (middle) and instantaneous 
frequencygram (bottom) of inter-spike interval of Ia are shown 
when muscle is stretched 3mm(1) and 5mm(2).  Thin lines of 
PSD in the middle of the figure are regression lines between 0 
and 35Hz. 

 
 

B.  A power spectrum density of inter spike intervals 
 
Inclination of the relation curve between PSD and 

frequency shows 1/fn.  The inclination is also approximated 
by three gradients depending on the frequency band.  The 
gradient of the relation curve is shown in n value.  The mean 
and standard deviation of n value is as follows: 

1) Below 15 Hz, n = 0.99±0.38. 
2) Between 15 Hz to 35 Hz,  n= 2 to  6 (changeable). 
3)   Above 35Hz, n = 1.8±0.56. 
 

The second gradient between 15Hz and 35Hz in PSD; 
PSD is shown in the right rows of all the figures.  As the 

gradient in 5mm stretch is different from the gradient of 3mm 
stretch ( Fig.1),  the second gradient of PSD between 15Hz 
and 35Hz changes when the muscle length changes and when 
intrafusal fibers are stimulated electrically. It implies the 
second gradient shows how much intrafusal muscle fibers are  
activated,  probably  in  the  static  type  of intrafusal muscle 

 

 
Fig.2; JIH (left) and PSD (right) of the three different Ia 
discharges are compared simultaneously by the stretch. The 
sensitivity of muscle spindle is not same. 

 
 
fibers like static nuclear chain fibers and a static nuclear bag 
fiber [9],[10].  
    We confirm the change of the gradient of PSD by three 
physiological methods; 
1) The muscle stretch by a ramp and hold stretching (Fig.1). 
2) Comparison of inter-spike intervals of three Ia fibers, 
while the muscle is steadily stretched by 10mm from the 
initial muscle length (Fig2). 
3) Separated ventral rootlet to the left gastrocnemius muscle 
is stimulated by 100Hz electric pulses while the muscle is 
stretched before and after gallamine injection (Fig.3). 
   Before ventral root (VR) stimulation, the gradient is about 2 
(Fig.3a). But, it is 3 after VR stimulation (Fig.3c). Fig.3b and 
Fig.3e shows PSD before and after gallamine injection while 
VR root is stimulated by 100Hz. Then gradient (n) is about 6. 

 
IV. DISCUSSION 

 
Mizote has separated dynamic responses from static 

responses in the afferent discharges to sinusoidal vibratory 
stimulus  threshold [1],[2].   It was shown that  intrafusal 
muscle fibers were slack or were kinked because muscle was 
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Fig.3; Changes in JIH (left) and PSD (right) of the Ia discharges 
by VR stimulations or/and with effect of muscle contraction. a; 
Before VR stimulation, b; During VR stimulation, c; After VR 
stimulation, rhythmic interval in JIH is observed. d; Before VR 
stimulation and gallamine injection, e; During VR stimulation 
after gallamine injection. Peak is observed at 62Hz in PSD.   

 
 

dissected free of surrounding tissues and was also shortened 
by an electric shock stimulation to the motor nerve [6],[7]. 

Steady stretch to the muscle extends intrafusal muscle 
fibers and vibratory sensitivity to the intrafusal muscle fibers 
goes up.  
    In this study, muscle is stretched by 3mm, 5mm or 10 mm 
from the initial muscle length and unitary afferent discharges 
also keep firing spontaneously for a while.  After contraction 
of intrafusal muscle fibers by the stimulation, static 
sensitivity of muscle spindle to the steady stretching is 
highest. The sensitivity itself does not change even after 
gallamine injection. It means that the sensitivity of muscle 
spindle to the static stretch is highest while ventral root is 
stimulated.   

In the power spectrum, the second gradient between 10 to 
35 Hz is various corresponding to how large the muscle is 
stretched and to how much intrafusal fibers are activated.  
    In the joint interval histogram, spontaneous discharges 
between vibratory stimuli are distributed at the particular 
interval time although the vibration already stops. It is 
implied that intrafusal muscle fibers themselves are oscillated 
for a while after the vibratory stimulation stops.   
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