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Detection of autoregulation in the brain of premature infants
using a novel subspace-based technique

G. Morren1, P. Lemmerling1, S. Van Huffel1, G. Naulaers2, H. Devlieger2 and P. Casaer2

1SISTA/COSIC Division, Electrical Engineering Dept. (ESAT), K.U.Leuven, Belgium
2Neonatal Intensive Care Unit, Dept. of Paediatrics, University Hospital Leuven, Belgium

Abstract—A recent study [1] suggests that, under certain
circumstances, concordant changes in cerebral intravascu-
lar oxygenation and mean arterial blood pressure reflect
impaired cerebrovascular autoregulation. In this paper,
we propose a new measure to quantitate this concordance,
derived from the common subspace of these signals. The
method is compared to correlation and coherence analysis
with respect to our application, but it is also suited for
other biomedical signals. Furthermore, this model-based
approach is not restricted to applications involving only 2
signals.

Keywords— subspace-based modeling, correlation, coher-
ence, cerebrovascular autoregulation, near-infrared spec-
troscopy

I. Introduction

The most important forms of brain injury in pre-
mature infants (germinal matrix-intraventricular hem-
orrhage (GMH-IVH) and periventricular leukomalacia
(PVL)) are caused in considerable part by disturbances in
cerebral blood flow (CBF). Premature infants have a par-
ticular propensity for development of disturbances in CBF
for 2 major reasons. First, because alterations in mean
arterial blood pressure (MAP) are very common in such
infants. And second, because cerebral autoregulation, the
mechanism by which CBF is maintained constant despite
alterations in MAP, is either defective or absent in at least
some infants. So, there is a relationship between impaired
autoregulation and the occurence of brain injury.

Two studies [2] [3] showed a relationship between
CBF and MAP and concluded that autoregulation may
be defective in some premature infants. Different au-
thors did not find any correlation between CBF and
MAP, however they used singular measurements and not
continuous measurements. A recent study suggests [1]
that concordant changes in cerebral intravascular oxy-
genation (HbD) and MAP reflect impaired cerebrovas-
cular autoregulation in continuous measurements. A
previous study [4] showed a strong correlation between
HbD, measured non-invasively by near-infrared spec-
troscopy (NIRS) as the difference between the concen-
tration changes of oxygenated hemoglobin (HbO2) and
deoxygenated hemoglobin (Hb), and volemic CBF, deter-
mined by radioactive microspheres if the arterial oxygen
saturation (SaO2) does not change appreciably during the
measurement. Thus, under such conditions, HbD is a
measure of CBF.

Consequently, premature infants with impaired cere-
brovascular autoregulation could be identified by simul-
taneous, continuous measurements of HbD, assessed by

NIRS, and MAP, assessed by intravascular catheterisa-
tion. If, in this way, infants at high risk for GMH-
IVH/PVL can be identified before the occurence of the
lesions, it might be possible to correct the cerebral circu-
latory disturbance and prevent the lesions.

The mathematical problem is thus the quantitation of
the concordance between HbD and MAP. For this pur-
pose, three different measures are described and com-
pared. Furthermore, some preliminary results obtained
from measured data are given.

II. Methods

A. Correlation

The most straightforward way to quantitate the concor-
dance between two signals x(t) and y(t) is the correlation
coefficient COR, estimated as:

COR =
∑N
t=1(x(t)− x̄)(y(t)− ȳ)√∑N

t=1(x(t)− x̄)2
∑N
t=1(y(t)− ȳ)2

(1)

where N is the number of samples considered and x̄, ȳ
stands for the mean of x(t), respectively y(t). If one is
only interested in the correlation in a specific frequency
band, the signals should be filtered with a band-pass filter
containing the frequency band of interest before calculat-
ing the correlation coefficient.

B. Coherence

Another way to quantitate the correlation in a fre-
quency specific manner is based on the coherence func-
tion, defined as:

Cxy(f) =
|Pxy(f)|2

Pxx(f)Pyy(f)
(2)

where Pxy(f) is the cross power spectral density of x(t)
and y(t), and Pxx(f), Pyy(f) the power spectral densities
of x(t), respectively y(t). The spectral density functions
are estimated using Welch’s method [5] as follows:
• x(t), y(t) are divided in overlapping sections of n points;
• each section is detrended and windowed;
• the length n fast Fourier transform (FFT) is calculated
of each section (these FFTs are called periodograms);
• the pointwise products of the spectra of x(t) and y(t)
are averaged over the overlapping sections to form Pxy(f);
• the pointwise squared FFTs of x(t) and y(t) are aver-
aged over the sections to form Pxx(f), respectively Pyy(f);
• Cxy is calculated by means of (2).
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The coherence function is a measure of the linear depen-
dance between the signals x(t) and y(t) at a given fre-
quency. A coherence of 1 indicates perfect frequency spe-
cific correlation, a coherence 0 indicates a complete lack of
frequency specific correlation. To obtain a measure of the
coherence over a specific frequency band, the coherence
function is averaged over that frequency band.

C. HTLS-SEP

This method was first described in [6] and is briefly
described in this section. The goal of the HTLS-SEP
method is to fit one linear model to two signals. Only if
the two signals have the same dynamical properties (or, in
other words, have common signal poles), the determined
system will be able to explain both signals sufficiently
well. Let us start from the hypothesis that the two sig-
nals have the same dynamical properties. Mathematically
this is reflected in the proposed model of x(t) and y(t) as
follows:

x(t) =
K∑
k=1

cxkz
t
k + n1(t), t = 0, 1, . . . , N − 1 (3)

y(t) =
K∑
k=1

cykz
t
k + n2(t), t = 0, 1, . . . , N − 1 (4)

where n1(t) and n2(t) represent the noise, and
zk, k = 1, . . . ,K the so-called signal poles:

zk = e(j2πfk−dk)∆t (5)

where fk, k = 1, . . . ,K represent the frequencies,
dk, k=1, . . . ,K the dampings and ∆t the constant sam-
pling interval; furthermore, cxk, k = 1, . . . ,K represent
the so-called complex amplitudes associated with x(t):

cxk = axke
jφxk (6)

where axk, k = 1, . . . ,K stands for the amplitude and
φxk, k = 1, . . . ,K for the phase. In a similar way the com-
plex amplitudes cyk, k = 1, . . . ,K of y(t) are defined as
a function of ayk, k = 1, . . . ,K and φyk, k = 1, . . . ,K.

From (3) and (4), it is clear that the two signals
x(t) and y(t) are modeled with the same signal poles
zk, k = 1, 2, . . . ,K (meaning that they share the dynam-
ical properties of one linear system) but with different
complex amplitudes. To determine the common poles,
a subspace-based approach is used. First, Hankel matri-
ces Hx and Hy are constructed from x(t), respectively
y(t), as follows:

Hx=


x(0) x(1) . . . x(N−m+1)
x(1) x(2) . . . x(N−m+2)

...
...

. . .
...

x(m−1) x(m) . . . x(N−1)

 (7)

Then, to determine the common subspace C of Hx and
Hy, matrices X and Y must be calculated such that:

HxX = HyY ≡ C (8)

Since this condition can also be written as:

[Hx −Hy]
[
X
Y

]
= 0 (9)

it is clear that X and Y can easily be derived from the
null space of the block Hankel matrix [Hx Hy].

The common poles are thus estimated from the common
subspace C by means of the HTLS algorithm1 [8], giving
the pole estimates ẑk, k = 1, . . . ,K. This is possible
because the column spaces of Hx and Hy possess the shift
invariance property. Multiplying them with a matrix to
the right does not change this property.

After estimation of the common poles, the phases and
the amplitudes are estimated for x(t) and y(t) separately
as the least squares solutions to (3), respectively (4), with
zk replaced by the estimates ẑk.

Using (3) and (4) with all parameters replaced by their
estimates, we reconstruct the part of x(t) common to x(t)
and y(t), giving x̂c(t). The residual xr(t) can then be
defined as:

xr(t) ≡ x(t)− x̂c(t) (10)

Note that if x(t) and y(t) do not have many components in
common, x̂c(t) will be a very bad fit to x(t). Therefore,
the ratio of the energy of the common part to the sum
of the energy of the common part and the energy of the
residual, is used as a measure of the importance of the
common part in the original signal x(t):

xr(t) ≡ x(t)− x̂c(t) (11)

CPCx =
∑N−1
t=0 (x̂c(t))2∑N−1

t=0 (x̂c(t))2 +
∑N−1
t=0 (xr(t))2

(12)

If the signals consist only of common poles than CPCx
approaches one, if there are no common poles CPCx will
be close to zero. If the signals are normalized (standard
deviation=1), CPCx can also be regarded as a measure of
the mean square error of x̂c(t) with respect to x(t), since:

CPCx ≈ 1− 1
N

N−1∑
t=0

xr(t)2 (13)

In a similar way ŷc(t), yr(t) and CPCy can be defined.

1HTLS is a subspace-based pole estimation method that exploits
the shift invariance property. It is an alternative to the TLS-
ESPRIT method [7]: HTLS uses the singular value decomposition
of the data matrix, whereas TLS-ESPRIT uses the eigenvalue de-
composition of the sample covariance matrix.
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III. Experimental results

A. Measurements
From several premature infants, MAP, SaO2 and HbD

were measured simultaneously at the University Hospital
Leuven. HbD was calculated as the difference between the
concentration changes of HbO2 and Hb. These changes
were acquired using near-infrared spectroscopy (NIRO-
300 r©, Hamamatsu). The data are recorded at a sampling
frequency of 100 Hz by a data acquisition system Codas
(CODAS r©, Dataq Instruments, USA) and stored on a
PC. The MAP- and SaO2- signals are analog and digitized
afterwards by the CODAS-system. The NIRO-300 signals
are digital with a sampling rate of 6 Hz. They are con-
verted to analog signals with a sample-and-hold function
before their introduction in the CODAS-system. From
this 100 Hz data, the average values for non-overlapping
5-second intervals were calculated (0.2 Hz). This sampling
frequency is still high enough, since major physiological
importance can be attributed to the frequency band of
0-0.01Hz (i.e. changes occuring over several minutes) [1].

B. Results
Since the concordance between the signals might vary

as a function of time, a sliding window approach was
used: the presented measures were calculated on 30-
minute recordings (i.e. 360 samples), and plotted against
the starting time of the 30-minute window. In this way it
is possible to track the changes of the measures over time.

For the correlation coefficient, we used the 5-second av-
eraged values without filtering. When the signals are low-
pass filtered to the frequency range of interest (0-0.01Hz),
the correlation coefficient is only slightly higher in highly
correlated windows, but also higher in uncorrelated win-
dows. Therefore, the correlation coefficient of the un-
filtered signals is more sensitive to discriminate between
correlated and uncorrelated windows.

Several parameters have an influence on the estimation
of the spectra for the calculation of the coherence func-
tion. In the first place, the length n of the sections, used
for the calculation of the FFTs, and the number of over-
lapping points between consecutive sections. The smaller
the value of n, the more periodograms can be averaged
and hence the lower the variance of the estimates of the
spectra. On the other hand, the smaller n, the lower the
frequency resolution. Experiments with varying n showed
that n= 144 gives the best results (the frequency resolu-
tion is then 0.0014Hz). In order to average as much as
possible, we used maximum overlap between the sections
(i.e. n−1=143 data points). The average of the coherence
function over the frequency band of interest (0-0.01Hz)
was used as measure, and is called COH in the remainder
of this paper. Before calculating the FFT of each section,
the mean was removed and a Hanning window applied.

The main problem for the HTLS-SEP method is the
determination of the model order of the common sub-
space K, which is twice the number of frequency com-

ponents. Since K is not known a priori, the following
approach is used. First, x(t) and y(t) are modeled with
K=2. Then, as long as ex, being the mean of |x(t)− x̂(t)|
over the 30-minute window, and ey, being the mean of
|y(t) − ŷ(t)| over the same period, decreases, K is in-
creased with 2. If either ex or ey increases, the algorithm
is stopped. The model of HbD with the previous value of
K is then used to calculate CPC by means of (12). Be-
fore modeling, the signals of the 30-minute windows were
normalized (such that mean=0, standard deviation=1).

An example of the measurements on a premature in-
fant are shown in Fig. 1, together with the corresponding
measures. The total length of the measurement was four
hours. The MAP signal shows only modest fluctuations
during the first two hours. There is also modest variabil-
ity in HbD during the first two hours, except between
the 40th and 60th minute, where HbD clearly decreases.
However, this decrease is accompanied by a decrease in
SaO2, as can be seen in Fig. 2. Fig. 2 also shows MAP
and HbD during the 30-minute window containing this de-
crease, together with the models of MAP and HbD. Since
the condition of constant SaO2 does not hold, HbD can
not be assumed to be proportional to CBF during this pe-
riod, and therefore the results should be interpreted care-
fully. The analysis of this 30-minute window results in low
COR and COH values (0.26 and 0.39 respectively); on the
other hand, CPC is high (0.86). The latter indicates that
the dynamics of the SaO2 is not only reflected in HbD,
but also in MAP although to a lesser degree. A possi-
ble explanation of this finding is that the patient might
have had an open ductus Botalli. This causes decreases
in oxygenation which are often accompanied by decreases
in blood pressure. However, further research is necessary
to clarify this hypothesis. During the last two hours of
the recording, large (spontaneous) fluctuations in MAP
are associated with parallel changes in HbD, while SaO2

remains constant. This is a case of impaired cerebrovas-
cular autoregulation. During this period, CPC (close to
1) and COR (about 0.8) are higher than COH, suggesting
that CPC and COR are more sensitive in order to detect
impaired autoregulation. To evaluate the predictive value
of the measures with respect to subsequent brain injuries
statistically, a larger follow-up study is necessary.

IV. Conclusions

A new measure to quantitate how similar the dynamics
in two (or more) signals are, was presented. It is derived
from the common subspace of the signals. The measure
was used to quantitate the concordance between cerebral
intravascular oxygenation and mean arterial blood pres-
sure, which reflects impaired cerebrovascular autoregula-
tion. The recordings analyzed so far indicate that the new
method and correlation are better measures to detect im-
paired autoregulation than coherence analysis. A larger
follow-up study is needed to confirm the performance of
the new measure, and to evaluate the predictive value
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Fig. 1. Simultaneous changes in MAP (a) and HbD (b) in a premature infant, with corresponding measures (c): COR (dashed line), COH
(dash-dotted line) and CPC (solid line).

of the different measures with respect to possible brain
damage statistically. Furthermore, the new measure truly
looks for similarity of the dynamics between signals and
should therefore be better suited to see whether the sig-
nals are generated by one and the same biomedical pro-
cess. Another advantage of the new method is that it
allows to analyze the dynamical properties of more than
two signals simultaneously. This will allow us in the future
to include other relevant physiological parameters like the
arterial carbon dioxide tension (PCO2) in the analysis.
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