
Abstract-Pneumatic and hydraulic pressure and flow signals, 
measured on working ventricular assist device (VAD) during its 
test, describe its temporal hydrodynamic conditions.  Signals 
registered as time samples series contain characteristic points or 
fragments, which reflect consecutive stages of VAD pulsate 
work. Because of nature of signals describing biological objects, 
they often can be time-varying, transient, non-stationary and 
affected by multi-sources noise. It makes in some situations 
characteristic points of pressure-flow curves unseen in time 
domain and automatic detection of these important instants is 
very difficult or even not possible.  We proposed time-frequency 
(T-F) analysis approach, where signals are decomposed into 
adaptive, frequency sub-bands, using wavelet transform (WT), 
which is known as a suitable tool for biomedical non-stationary 
signal analysis.  As a result of using WT, the multi-resolution T-
F representation is obtained, which is sensitive and can detect 
both long-term trends and dynamic, sudden changes in input 
signal.  Our research signal database was created as a result of 
VAD tests performed for different control parameters on mock 
circulatory system, designed and made in our Institute.  Results 
of proposed automatic detection procedure were presented for 
three types of WT basis function.  We work on application of 
our study effects in control algorithm of testing devices for the 
determination of the critical control parameters of VAD work 
conditions. 
Keywords: characteristic points detection, wavelet transform, 
ventricular assist device. 

 
I. INTRODUCTION 

 
One of the basic goals of digital signal processing 

methods is to extract important and specific information, 
which can not be directly obtained from accessible signals.  
Such a situation takes place in presented in this paper 
problem of using time-frequency signal analysis for detection 
of characteristic points from signals, measured on heart valve 
prostheses and Polish ventricular assist device (POL-VAD) 
during tests.   

 
Presented in fig.1 POL-VAD is a  pneumatically driven, 

membrane type (U-shaped) blood pump, which was 
developed in Institute of Heart Prostheses in Zabrze, Poland, 
to support the failure patient heart during recovery or as a 
bridge to transplantation.  Mechanical, disc valves Sorin-
Biomedica® were placed in inlet and outlet channels, which 
through special prepared caniulas can be connected to patient 
cardiovascular system during cardiac surgery operation.  Both 
VAD walls and membrane are made of bio-compatible 
polyurethane.  A driver unit creates a pulsate air wave, which 
through a elastic pipe is sent to pneumatic part of POL-VAD.   

 
Generally, from the medical point of view, the VAD 

control optimization means the achievement of required by 
physician hemodynamical system conditions with 

minimization of harmful effects connected with external heart 
assist device usage.  In clinical practice, realization of this 
goal is often done by setting control parameters in such a way 
to ensure the full filling and full ejection of VAD during its 
pulsate work cycle.  This is not a trivial task because of both 
the features of device and changeable conditions of patients 
cardiovascular system, what determines the blood supply into 
organism.     
Pump control parameters, which characterize the pneumatic 
drive wave, can be divided into two groups: 
1) Time relations: frequency (F) and percent of systole 

(%S) (ratio of the ejection fraction to the whole cycle 
time) 

2) Pressure relations: force (PF) and suck pressure (PS). 
 

The most important for estimation of assisted patient 
hemo-dynamic conditions are following hydraulic signals 
connected with blood flow through POL-VAD: 
1) PIN – input pressure 
2) POUT – output pressure  
3) PV – pressure measured inside the chamber 
4) QOUT – output blood flow 
 

From POL-VAD control point of view, only pressure PD 
and flow QD of pneumatic driving wave is accessible.  That’s 
why the first step in approach of automatic detection of 
pressure and flow characteristic points, is to associate them 
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with the pneumatic - control signals, what will be presented 
in the next section.  As a next stage, time-frequency 
representation of analyzed signals is obtained.   Because of 
nature of signals describing biological objects, processed 
signals are time-varying, transient and non-stationary. It 
makes, that in some situations characteristic points of 
pressure-flow curves can be unseen in time domain and   
automatic detection of these important instants is very 
difficult or even not possible.  We proposed time-frequency 
(T-F) analysis approach, where signals is decomposed into 
adaptive, frequency sub-bands, using wavelet transform 
(WT), which is known as a suitable tool for biomedical non-
stationary signal analysis [1], [2].  As a result of using WT, 
the multi-resolution T-F representation is obtained, which is 
sensitive and can detect both long-term trends and dynamic, 
sudden changes in input signal. These features, verified in 
many applications makes the WT more useful for analysis of  
described problems than the Short Term Fourier Transform 
with constant-width window [3]. Others commonly used T-F 
signal representation methods like Wigner Distribution (WD) 
and its modification Smoothed WD or Choi Williams 
Distribution (CWD) features, which make difficult to apply 
them for non-stationary signals. 
 

II. EXPERIMENTAL PROCEDURE 
 

To test presented detection procedure, data base of POL-
VAD in vitro test were created.  Mock circulatory 
investigation system, designed in our laboratory was used to 
collect described above signals characterizing the VAD work.  
266 sets of signals were recorded for different values of 
driving parameters: 
1) Frequency (F) - 30, 35, 40, … 115, 120 [bpm] 
2) Percent of systole (%S) - 20, 30, ... 70, 80 [%] 
3) After-load on VAD outlet,  simulating arterial systemic 

resistance (RS) – two values. 
Signals were collected using data monitor and acquisition 
system, with sample frequency FS=250  [Hz]. 

 
III. METHODOLOGY 

 
In this section, consecutives steps of characteristic points 

detection procedure as well as the issues connected with 
choice of methods parameters are presented. 
 
A. Determination of analyzed signals characteristic points. 
 
Based on results of performed in our Institute research on the 
influence of control parameters on the hemodynamic 
conditions of POL-VAD work [4], the recorded signals 
characteristic points and fragments were determined.   
Fig.2 a-d presents the drive pneumatic wave PD in 
comparison with four described above signals, connected 
with VAD operation: hydraulic pressures: PIN, PV, POUT, and 
flow QOUT.  The crucial peaks and phases, which reflect 
consecutives stages of VAD pulsate work, marked on fig.2 
are shortly described below. 
FE – state of chamber full ejection, at the end of systolic 

cycle phase. This is an effect of force continuation in the 
extreme membrane position.     

FF – state of chamber full fill, at the end of diastolic cycle 
phase. This is an effect of suction continuation in the 
extreme membrane position. 

VHIE – ventricular hemodynamical inertial effect, which is 
also called as “hydraulic hammer” can be seen as a 
characteristic pressure and flow wave caused by sudden 
membrane stopping after systolic FE (VHIEs) or diastolic 
FF (VHIEd) phases. 

 
B. Wavelet decomposition application. 
 
The continuous wavelet transform (CWT) expressed by (1), 
can be interpreted as the correlation function between the 
signal s(t) and the wavelet ψa,b(t), obtained by the scaling (a-
parameter) and shifting (b-parameter) the basic function ψ(t) 
[5]. 

 
In frequency domain it corresponds to process of passing the 
signal s(t) through a filter, represented by wavelet ψa,b(t) 
transfer function.  So multi-resolution analysis of signal 
means its decomposition into frequency subbands, 
corresponding to different values of scale parameter a.  
Discretization of CWT parameters a and b leads to discrete 
wavelet transform (DWT), which results can be less 
redundant than for CWT.  In presented work, the effective 
way of DWT perform introduced in late 1980’s by Mallat 
was used [6].  In jth-level of the Mallat algorithm, signal is 
decomposed into two complement function spaces of details 
sDj and approximations sAj. In practice, the approximation and 
detail associated with jth-level are computed from the 
approximation coefficients at the next higher scale j+1, using 
a quadrature mirror filter pair. 
 
The features both of filters and algorithm performance are 
determined by the type of basic wavelet and scaling function 
used for analysis.  Taking into consideration the specific 
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Fig. 2  The comparison of VAD pneumatic driven signal PD (thick line)
with pressure measured chamber inside (a), input pressure PIN (b), output
pressure POUT (c) and output flow signal QOUT (d).  Characteristic points are
marked (see text for description). 
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character of studied problem, wavelet properties list, 
including following items was created: 
1) Ortogonality 
2) Biortogonality 
3) Compact support 
4) Symmetry 
5) Regularity and smoothness 
6) Number of vanishing moments 
7) Analytical formula of basic function 
8) Interpolation 
9) Rational coefficients 
 
Base on these features, for further analysis we chose three 
types of basic functions, which usage in presented detection 
procedure was compared: 
1) Daubechies : Db4 
2) Symlets : Sym5 
3) Biortogonal-Spline: Bior 2.4 
     
C. Characteristic points detection procedure. 
 
After determination of crucial points for optimal VAD 
control on described in section I pneumatic and hydraulic 
signals, main stages of proposed their automatic detection 
procedure are following: 
1) Determination of signal characteristic fragment or peak 

to detect. 
2) Finding the cycle start point for all synchronized 

pressure and flow signals. 
3) The most appropriate WT decomposition level 

determination, according to Mallat algorithm, for 
analysis of specified characteristic signal part. 

4) Definition of the detailed decision rules for each detected 
signal fragment. 

 
III. RESULTS AND DISCUSSION 

 
Results presented in this paper are devoted to automatic 

detection of characteristic pneumatic driving pressure peak - 
FE (fig.2a), which reflects the full ejection state of VAD 
pulsate work.  According to described in previous section 
algorithm, for each of chosen basic wavelet function, Mallat 
multilevel decomposition of driving VAD pressure PD was 
performed.  Frequency subbands limits, corresponding to 
different level of Mallat decomposition, in frequency range 
specified as significant for pressure and flow signals [7] are 
following: 
 
   b2 : 31.25 ÷ 62.5   [Hz]  b3 : 15.63 ÷ 31.25 [Hz] 
   b4 :   7.81 ÷ 15.63 [Hz]  b5 :   3.90 ÷ 7.81   [Hz] 
   b6 :   1.95 ÷ 3.90   [Hz]  b7 :   0.98 ÷ 1.95   [Hz]. 
 
Fig.3 presents the result of Mallat decomposition of pressure 
PD into seven levels.  Both for cycle start point and FE peak 
determination, we chose extracted from WT coefficient detail 
component SD1.   
 
The comparison of original pressure signal PD with absolute 
values of component SD1 samples, is showed in fig.4  The 
local maximums of the WT modulus at chosen decomposition 

level - SD1 were used to locate interesting analyzed signal 
parts, according to following procedure:  
1) Using threshold detection value - STR , the cycle starting 

point (CSP) can be set as the maximum value of |SD1| 
over given time period.  This moment corresponds to the 
beginning of systolic (ejection) phase of pulsate VAD 
work. 

2) After estimating the CSP, the next maximum detected by 
threshold value STR is assumed as characteristic peak FE. 

3) Third |SD1| detected maximum corresponds to next 
important driving pressure PD peak of VAD full fill FF. 

 
To verify proposed procedure based on WT time-scale signal 
representation, we performed the automatic detection for all 
signals recorded during experiment for different VAD driving 
parameters (see section II).  Tab. 1 presents the percent of 
correctly detected CSP and peaks FE, for three chosen types 
of WT basic function. 

Fig.4 Original VAD driving signal PD and its detail component on first 
level of Mallat decomposition. 

Fig. 3  Multilevel, wavelet decomposition of VAD driven signal PD ,
according to Mallat algorithm. 

Decampositian at leu I7:s-87*d7nis»d5*d4*d3 + d2 + d1. 

■/?^V_^,    /^V-^ ,     ,/^V-: 
^\: : : /x: : : : ;: 
- /"^"'--^y\  'y ^^^ 
:/: \/:--'^--\:/:\; 

>vxyV-~^^/\/\yw^:/\7\ n 
rAAawvA^~-.--.A^^ 

[VlArvvVyWv S\l'^M\ft^'J^.l^w-j /\/^—ilArvv^JylAvv^ 

|^^AvVw---'Y"VW'^ -v^^(Vl^-.™i twVW AJIWAVV^ — AVW'A~-VWM/VW' ^^yW—w 

; JLA. 4,,.....,.  .,.....#-W".^.iLv^-.l... iW..>v^..4v^.*■..^|^ ,.., .1 1   |f-.v,.      ^|-,                          ;jf/;,         ,|i    s.       ,™    r,                       ,^y^ 1.     pi..,ui     1   '     '      j 

ll    1           1           1           1        ' 1           1           1           1           1           1   '       1     1 



TABLE 1 
The percent of correctly detected cycle start points (CSP) and 

full ejection peaks (FE). 
 Db4 Bior 2.4 Sym5 

CSP [%] 88.2 85.4 83.9 
FE [%] 87.6 84.2 83.4 

 
Obtained results show, that the type of applied WT basic 
function has a significant meaning for quality of detection 
procedure. False detection of CSP, caused the errors in FE 
peak place definition.  As a next step in work on presented 
subject, the adaptive detection threshold level will be used 
and rules for remain characteristic point of VAD driving 
pressure PD will be determined. 
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