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Abstract 

An unstructured grid Large Eddy Simulation (LES) methodology has been developed for compress- 
ible high speed flows. The filtered compressible Navier-Stokes equations are solved on an unstruc- 
tured grid of tetrahedra. The inviscid fluxes are obtained from an exact locally one-dimensional 
Riemann solver using Godunov's method. The viscous fluxes are obtained using a discrete analog of 
Gauss' Theorem. The reconstruction is performed using a Least Squares technique. The temporal 
integration is a Runge-Kutta method. The algorithm is overall second order accurate in space and 
time. Four flowfields have been computed: supersonic flat plate boundary layer, supersonic com- 
pression corner, supersonic expansion-compression corner and subsonic square jet. The computed 
results show close agreement with experiment and Direct Numerical Simulation, and validate the 
unstructured grid LES methodology. 
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Introduction 

The effective design of high speed aircraft and missiles depends critically upon accurate prediction 
of aerodynamic and aerothermodynamic performance which are strongly affected by flow turbulence 
under most flight conditions. From an engineering standpoint, the aircraft or missile aerodynamicist 
needs the capability for accurate prediction of the mean and rms fluctuating surface pressure (pw 

and p'w) and surface heat transfer (qw and q'w), mean surface skin friction (f^), and locations of 
primary and secondary separation. 

Table 1: RANS Capability for 3-D Shock Wave Boundary Layer Interaction 

Quantity Satisfactory Unsatisfactory No capability shown 

Pw V 
Pw V 
Qw V 
Q'w V 

Primary Separation V 
Secondary Separation V 

The current methodology for prediction of compressible turbulent flows is based on the Reynolds- 
averaged Navier-Stokes (RANS) equations (Knight 1993). This approach has yielded a hierarchy 
of turbulence models extending from zero-equation to full Reynolds Stress Equation models. While 
these models have generally been capable of predicting the engineering quantities of interest in 
weakly perturbed boundary layers, they have been unable to accurately predict the complex 3-D 
flows which are encountered in highly maneuvering, high angle-of-attack flight. Two recent extensive 
reviews have documented the capabilities and deficiencies of a wide range of RANS models for 
prediction of complex 3-D flows with shock wave-turbulent boundary layer interactions (Knight 
1997, Knight and Degrez 1998). The results, summarized in Table 1, indicate that a significant 
number of critical engineering quantities are not capable of prediction by current RANS models. 
Therefore, more advanced turbulence models are needed which have the ability to simulate the 
complex physics of turbulence with greater generality. 

Large Eddy Simulation (LES) is an alternative to RANS which may be capable of predicting more 
(or all) of the aerodynamic and aerothermodynamic quantities of engineering interest described 
above. In LES, the governing equations are spatially filtered on the scale of the numerical grid. The 
large, energy-containing eddies are directly computed. These eddies are strongly influenced by the 
physical geometry and configuration of the flow. Thus, the direct computation of the large eddies by 
LES, as opposed to the modeling of the large eddies by RANS, gives greater generality, in principle, 
to LES. The influence of the unresolved scales of motion is simulated using a subgrid-scale (SGS) 
model (Smagorinsky 1963, Lilly 1967, Deardorff 1970, Germano et al 1991, Piomelli et al 1991, 
Ghosal et al 1995) or by the inherent dissipation in the numerical scheme (Boris et al 1992, Oran 
and Boris 1993, Porter et al 1994, Grinstein 1996, Ansari and Strang 1996). Because the statistics 
of the small scale turbulence are expected to be more homogeneous and isotropic than those of the 
large scales, a general model of the small scales seems more plausible than a general model of the 
entire spectrum of turbulent motions. 

LES has been shown to be both a useful research tool for understanding the physics of turbulence, 
and also a predictive method for flows of engineering interest. Recent compendia and reviews 
include Galperin and Orszag (1993), Mason (1994), Lesieur and Metais (1996) and Moin (1997). 



Many models have been developed for the subgrid-scale stress tensor. These include the conventional 
Smagorinsky eddy viscosity model (Smagorinsky 1963, Lilly 1967, Deardorff 1970), the spectra eddy 
viscosity model of Kraichnan (1976), the dynamic SGS model of Germano et al (1991), the scale 
similarity model of Bardina et al (1980), and the localized dynamic SGS model of Ghosal et al (1995) 
and more recently of Menon and Kim (1996), and many others. Although most research has focused 
on incompressible turbulent flows, there has recently emerged a growing interest in applications of 
LES to compressible turbulent flows. Examples include Yoshizawa (1986), Speziale et al (1988), 
Moin et al (1991), Erlebacher et al (1992), Zang et al (1992), El-Hady et al (1994), Jansen (1997), 
Spyropoulos and Blaisdell (1996), and Haworth and Jansen (1996). Nearly all compressible LES 
has employed spectral methods or structured grids, with the exception of Jansen and Haworth. 

Apart from the complexities of the flowfield, the complicated geometries of high speed vehicles is 
also a challenge. To enable treatment of complex geometries and also achieve high resolution of 
the flowfield dynamically, we employ an unstructured grid. There are two important advantages 
of unstructured grids. First, algorithms have been developed to facilitate automatic generation of 
unstructured grids for a complex geometries (see, for example, the discussion in Barth (1990, 1992). 
These grid generation methods can be substantially more efficient (in terms of user time) than some 
of the multi-block structured grid generation methods used. Second, local mesh refinement, either 
adaptive or fixed, can been performed much more readily for unstructured grids. 

The report summarizes the research in Large Eddy Simulation of compressible turbulent flows using 
unstructured grids. Two methods for simulation of the subgrid scale stresses have been examined. 
The first method is the Monotone Integrated Large Eddy Simulation (MILES) technique. The sec- 
ond method is a hybrid technique combining MILES with a Smagorinsky eddy viscosity model for 
the subgrid scale stresses. These two methods, together with different algorithms for the inviscid 
fluxes and function reconstruction, have been evaluated for four turbulent flows: supersonic bound- 
ary layer, supersonic compression corner, supersonic expansion-compression corner and subsonic 
square jet. The results are in overall good agreement with the experiment and Direct Numerical 
Simulation (DNS), thereby validating the accuracy of the methodology. 

Governing Equations 

The governing equations are the three-dimensional filtered Navier-Stokes equations. For a function 
/, its filtered form / is 

where G is the filtering function, and its Favre-averaged form / is 

f = ^- 
P 

where p is the density. From the Navier-Stokes equations for the instantaneous flow variables density 
(p), velocity in the ith coordinate direction (ui), pressure (p) and temperature (T), Favre-averaging 
and spatial filtering yield the filtered Navier-Stokes equations (here written using the Einstein 
summation notation where repeated indices denote summation) 

dp     dpük    _   0 

dt      dxk 
dpuj     dpüjük    _       dp     dTjk 
dt dxk dxi     dxk 



dpe       9 dQk       d 
-m+d^k

{pe+p)uk = -d^ + d^k
{TikUi 

p   =   pRT 

where 

%k    =    Tik + Öik 

Tik    =    -pÜHUk ~ üiük) 

Qk  =  Qk + Qk 

Qk   =   -pCp{Tuk-fük) 

~  df 

pe   =   pcvf + \püiüi + pk 

pk   =    \{pUiUi - püiüi) = -\TH 

Two different Sub-Grid-Scale (SGS) models are employed. The first model is Monotone Integrated 
Large Eddy Simulation (MILES) wherein the numerical algorithm itself provides the requisite 
dissipation associated with the subgrid scale motions. The second model is the classical constant- 
coefficient Smagorinsky method 

5..   =    1 ( düi  1 düi 
%3 2 \dxj      dii 

T{j     —     2G#/>A  \j brnn&mn \&ij ~ ^^>kk"ij) 

c n.—~— c¥T 
LJj    =    Pcp~j^    A V   mn   mn a 

t UXj 

where CR = 0.00423 and A is the length scale which is related to the local grid size. For boundary 
layer flows, A is multiplied by the Van Driest damping factor 

D = 1 - e-n+lA 

where A = 26, n+ — nuT/vw is the normal distance to the (nearest) solid boundary normalized by 
the viscous length scale vwjuT where i/w is the kinematic viscosity evaluated at the wall and UT is 
the local friction velocity. 

We simplify the notation by hereafter dropping the tilde ~ and overbar ~. The flow variables are 
nondimensionalized using the reference density poo, velocity Uoo, static temperature T^ and length 
scale L, with Mach number M^ = U00/^/;yW^Z■ The governing equations are therefore 

dp     dpuk 

dt      dxk 



dpui     dpuiUk 
dt dxk 

dp     dTjk 
dxi     dxk 

dpe       d   . . v    ._       _     . 

-m+dx-k
{pe+p)uk = dx~k

{Qk + TikUi) 

p = 

Jxk 

pT 

Numerical Algorithm 

The governing equations are expressed in finite volume form for a control volume V with surface 
dv 

4- f QdV+ [   {Fi + Gj + Hk)-MA = 0 
at Jv Jdv 

where Q is the vector of dependent variables 

Q = 

( P \ 
pu 
pv 
pw 

\ pe ) 

and the flux vectors are 

F = 

1                   pu                   \ (                 pv                 \ (                           PW                           \ 
pU2 +p- Txx PUV - Txy pUW - Txz 

PUV - %y ,    G = pV2+p-Tyy ,    H = PVW - TyZ 

PUW - Txz PVW - Tyz PW2 +p-Tzz 

\ (pe+p)u- Qx- ßx j \   (pe+p)v~ Qy-ßy   ) \ (pe + p)w - Qz - ßz j 

with 

ßx 

ßy 

ßz 

= TXXU + TXyV + TxzW 

— IxyV*   i    >yyV ~r~ lyz^ 

= Txzu + TyZV + Tzzw 

An unstructured grid of tetrahedra is employed, with a cell-centered storage architecture. The 
cell-averaged values, stored at the centroid of each tetrahedron of volume V\ are 

Qi V I QdV 
Vi JVi 

The inviscid fluxes are computed using Godunov's method which is an exact one-dimensional Rie- 
mann solver (Gottlieb and Groth 1988) applied normal to each face. The inviscid flux computations 
require the values of each variable on either side of the cell faces. These values are obtained from the 
cell-averaged values by second-order or third-order function reconstruction using the Least Squares 
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method of Ollivier-Gooch (Ollivier-Gooch 1997). The second-order function reconstruction method 
of Prink (1994) was employed in some of the earlier LES studies, but was found inferior to the 
method of Ollivier-Gooch (Okong'o and Knight 1998). More details on the reconstruction schemes 
are given in Okong'o and Knight (1998). 

The viscous fluxes and heat transfer are computed by application of Gauss' theorem to the control 
volume whose vertices are the centroids of the cells which share each node. The second-order 
accurate scheme (in 2-D) is given by Knight (1994) and the extension to 3-D is straightforward. 

Parallelization 

The code is parallelized using domain decom- 
position and Message Passing Interface (MPI). 
Domain decomposition is performed in a pre- 
processing step. The domain is decomposed in 
a single direction with equal number of tetrahe- 
dra in each domain. A halo of cells is added in 
each domain to provide data on the adjacent do- 
main, and the halo cell data is updated at ev- 
ery subiterate of the time integration. An ex- 
ample is shown in Fig. 1 for the LES of decay 
of isotropic turbulence. The numerical algorithm 
achieves excellent parallel performance. For ex- 
ample, the speed-up on four processors of the 
SGI Power Onyx with R-10000 processors is 3.7 
for 93% efficiency (Knight et al 1998). 

Figure 1: Example of domain decomposition 

Results 

Four different configurations have been examined: supersonic flat plate boundary layer, supersonic 
compression corner, expansion-compression corner and subsonic square jet. 

1    Supersonic Flat Plate Turbulent Boundary Layer 

The adiabatic and isothermal flat plate turbulent boundary layers at Mach 3 and Mach 4 at 
Reynolds number Reg = 2x 104 (based on the incoming boundary layer thickness 6) have been 
computed. The Reynolds number based on the momentum thickness 62 and wall viscosity /J,W is 
Reg2 = 600. The Reynolds number is suflicently high to achieve turbulent flow. 

The inflow conditions are obtained using a compressible extension of the method of Lund et al 
(1998). The simulation generates its own inflow conditions through a sequence of operations where 
the velocity field at a downstream station is rescaled and reintroduced at the inflow boundary 
(Fig. 2). Defining x,y and z to denote the streamwise, transverse and spanwise directions, re- 
spectively, the size of the computational domain is Lx = 14.85, Ly = 3AS and Lz = 2.06. The 
spanwise width Lz is approximately three times the experimental spanwise streak spacing (as- 
suming the compressible turbulent boundary layer streaks scale in accordance with incompressible 
experimental results). The streamwise length Lx is approximately three times the mean experimen- 
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Figure 2: Computational domain 

tal streamwise streak size. The height Ly is based on the requirement that acoustic disturbances 
originating at the upper boundary do not interact with the boundary layer on the lower wall. 

The reference quantities for non-dimensionalization are the incoming boundary layer thickness 6, 
velocity C/QO, density poo, static temperature T^, and molecular viscosity fioo (where the subscript oo 
denotes the freestream condition). The grid resolution near the wall is dependent on Ax+, Ay+ and 
Az+, where Ax+ = Ax/r),Ay+ = Ay/77 and Az+ = Az/rj. The inner length scale is r) = uw/uT, 
where vw is the kinematic viscosity at the wall, uT = ^rw/pw is the friction velocity, TW is the wall 
shear stress and pw is the density at the wall. Before we proceed with the discussion about the grid 
resolution, we first describe how to obtain 77. 

The theoretical value of the friction velocity uT for a supersonic flat plate boundary is obtained 
from the combined Law of the Wall and Wake evaluated at y = S 

UVD      1 .  ,  ur 211   . 2 Try 
 = -ln(y—) + C+—sin (--r) (1) 

where 

UVD 
Uoos . _U2A^)-B 
—;—(sin     —,   „°° J + sin-1! 

B 
VB2 + 4A2 ]} (2) 

A 

B 

I *-1D \1+W 
VvzKTjr) 

J-oo 

■•■aw       w 

Too[l + ^^-PrtmM^ 

where K — 0.4 is von Karman's constant, C = 5.1, the wake parameter II is 0.12 at Res = 2 x 104, 
the exponent w is 0.76, the mean turbulent Prandtl number Prtm is 0.89 and the ratio of specific 



heats 7 is 1.4. The wall temperature Tw is fixed at 10% above the theoretical adiabatic temperature 
Taw for the isothermal boundary. In the computation, uT and vw are obtained from uT = y/Tw/pw 

and vw = fc»(^-)1+a', respectively. 

The variation of Mach number and the different temperature boundary condition have effect on 
JJ, therefore on Ax+,Ay+ and Az+. At the same Mach number, the wall temperature for the 
isothermal case is 10% higher than that for the adiabatic case, leading to the larger rj and the 
smaller Ax+ if keeping the same Ax. However this effect is very small in our case, therefore we 
keep the same Ax, Ay and Az for the different temperature condition at the same Mach number. 
The grid details are shown in Table 2. 

Table 2: Details of Grid 

A3 13 A4 14 
Ax+ 20 18 12 11 
Ay+ 1.8 1.6 1.8 1.6 
Az+ 7 6.4 4 3.4 
Ax/6 0.1 0.1 0.1 0.1 
Ay/S 0.18 0.18 0.18 0.18 
Az/S 0.034 0.034 0.034 0.034 

where A and I stand for the adiabatic and isothermal cases, respectively and the number followed 
indicates the Mach number. The Aa;+,Ay+ and Az+ are measured at the wall and the Ax, Ay 
and Az are measured at y/S = 1.0. The grid is uniform in x and z directions and stretched in y 
direction with about 23 layers of tetrahedra in the boundary layer for each case. 

The initial condition is a turbulent mean profile with random fluctuations. The simulation is run 
first for 90 inertial timescales S/Uoo in order to eliminate starting transients (Lund et al 1998). 

For a function /, its average in time form </> is defined by 

— f tf - U hi 

1      /"'/ 
</>=7 T fdt 

tf -ti Ju 

and its time fluctuating part is 

/" = /-</> 

In order to provide converged data, the primitive variables are averaged in spanwise direction and 
the statistical evaluations are performed on a period longer than tf — ti — AOS/UOQ. The notation 
for the combined temporal and spanwise average is 

i    i     rL* ps 
<f>=T~. T /    fdtdz 

Lztf-tiJo     Ju 

rLz    rtf 

tf - U Jo    Ju 

A simplifying notation is used for the velocity, temperature and pressure 

U =<u» 

The mean streamwise velocity profiles using the Van Driest transformation are plotted in Fig. 3 
and Fig. 4 (where uT is obtained from the simulation). Good agreement is shown with the viscous 
sublayer linear approximation UVD/UT = y+ and Law of the Wall formulated in (1). 
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  Isothermal wall M=2.88   /^ 

10J 

20 - 

Theoretical value 
Adiabatic wall   M=4 
Isothermal wall M=4 

Figure 3: Van Driest velocity at M=3 Figure 4: Van Driest velocity at M=4 

The mean velocity profiles shown in Fig. 5 and Fig. 6 exhibit virtually identical distributions 
for adiabatic and isothermal cases and show good agreement with experiment (Zheltovodov et 
al 1986, Zheltovodov et al 1990). The mean temperature profiles in Fig. 7 and Fig. 8 display a 
higher temperature distribution for the isothermal case with the wall temperature higher than the 
adiabatic and experiment data (Zheltovodov et al 1990) which are also obtained at the adiabatic 
boundary condition. The difference is expected since the wall temperature for the isothermal case 
is fixed at 10% higher than the adiabatic case. 

Zheltovodov et alRes=63560, M=2.9 
Adiabatic wall      Res=20000, M=2.88 
Isothermal wall    Re.=20000, M=2.88 

1.2 

0.8 

0.6 

0.4 

0.2 

O        Zheltovodov et alRe,=280000, M=3.74 
 Adiabatic wall      Re,=20000, M=4 
  Isothermal wall    Re.=20000, M=4 

0.5 0.6 0.7 
u/u. 

Figure 5: Streamwise velocity at M=3 Figure 6: Streamwise velocity at M=4 

The discrepancies between Mach 4 cases and experiments in Fig. 6 and Fig. 8 are due to the effects 
of Mach number and Reynolds number. The Reynolds number in the simulation is one magnitude 
lower than experiments due to the significant computation cost in LES. The outer portion of the 
velocity profiles in Fig. 6 is in good agreement with experiment since this portion is not sensitive 
to the Reynolds number. The discrepancy in the inner portion is due to the effect of the Reynolds 
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O        ZheltovodovetalRe,=63560, M=2.9 
 Adiabatic wall      Res=20000, M=2.88 
  Isothermal wall    Re,=20000, M=2.88 

Figure 7: Temperature at M=3 Figure 8: Temperature at M=4 

number. The effect of Mach number is observed in Fig. 8, which can be explained using Crocco's 
relationship between the mean temperature and mean velocity profiles 

J-        J-w    .   -Law      -*tu   t/ 

J-oa -Loo J-cxi Uno 

7_1 
<(#-)2 

2  " °°"a 
where r is the recovery factor defined as 

r = J-r      -*« 

T0-Ta 

(3) 

(4) 

where Tr is the adiabatic or recovery temperature and To is the freestream stagnation temperature. 
For the adiabatic case, Eq. (3) becomes 

7 - 1     2 i U \2 (5) 

Eqs. (3) and (5) show the trend that under the same mean velocity distribution, the mean temper- 
ature decreases with increasing Mach number, leading to the discrepancy between the calculation 
and experiment in the outer portion of the mean temperature profiles in Fig. 8. The discrepancy 
in the inner portion is mainly due to the effect of the Reynolds number. 

The mean streamwise resolved turbulent kinematic normal stress -C u"u" S>, normalized using the 
local mean density <C p ^> and wall shear stress TW, is shown in Fig. 9 and Fig. 10. As discussed in 
Zheltovodov and Yakovlev (1986) and Smits and Dussauge (1996), the scaling < p X u"u" » 
JTW provides an approximate self-similar correlation of experimental data for supersonic flat plate 
zero pressure gradient adiabatic boundary layers, although the measurements close to the wall are 
subject to considerable uncertainty. In those two figures data are displayed from Konrad and Smits 
(1998), Johnson and Rose (1975), Muck et al (1984, 1985), Konrad (1993), as well as upper and 
lower bounds of an extensive set of experimental data for the Mach number range M = 1.72 to 
9.4 in accordance with generalizations of Zheltovodov and Yakovlev (1986). The characteristics of 
the different experiments are displayed in Table 3. The computed results show good agreement 
with experiment for the main part of the boundary layer (y/5 > 0.2), despite a significantly higher 
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Table 3: Flat Plate Boundary Layer Experimental Data 

Name Mach No. Res 

LES 3.0 & 4.0 20 x 103 

DNS Adams (1997) 3.0 25 x 103 

Johnson & Rose (1975) 2.9 1000 x 103 

Konrad (1993) 2.9 1590 x 103 

Konrad & Smits (1998) 2.87 1900 x 103 

Muck et al (1984, 1985) 2.87 1638 x 103 

Zheltovodov et al (1986) 1.7-9.4 up to 2000 x 103 

experimental Reynolds number. The decreasing slope corresponds precisely to Johnson and Rose 
(1975) data. For y/S < 0.2 the presence of the typical high level peak in the near wall region is 
supported by experimental data of Konrad (1993) and the Direct Numerical Simulation data from 
Adams (1997), which is nearly at the same Reynolds number as the LES. However, no conclusion 
can be drawn about the precise y position and the width of this peak without further experimental 
data or DNS. 

3.5 
* Johnson & Rose 
D Konrad 
D Konrad & Smits 
o Muck 

- DNS Adams   - Adiabatic wall   M=2.88 
— Isothermal wall M=2.88 

4 

3.5 
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^'2.5 
A 
3 
3     2 
V 
A 
Q. 

-£1.5 
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- 
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■ D        Konrad & Smits 
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O        Muck 
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1.2 

Figure 9: Streamwise Reynolds stress at M=3    Figure 10: Streamwise Reynolds stress at M=4 

In Fig. 11 and Fig. 12 Reynolds shear stress distributions are shown for the same experiments and 
the DNS. Again, the data fit well in the outer part of the boundary layer. The maximum value and 
the decreasing slope are again well predicted. 

The capability of our LES method to accurately predict the heat transfer in the flat plate boundary 
layer is evaluated. The Reynolds analogy relates the skin friction coefficient Cf and heat transfer 
coefficient Ch by the Prandtl number as follows 

2Ch 1 

Cf Pr, tm 

where Ch and Cf are written as 

Ch = 
PooUoocp\l-w      -Law) 

(6) 

(7) 
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Figure 11: Reynolds shear stress at M=3 Figure 12: Reynolds shear stress at M=4 

C/ = T PooUgo 
(8) 

where cp is the specific heat at constant pressure. The wall heat flux (qw) and skin friction (TW) are 
obtained from the isothermal case and the adiabatic wall temperature (Taw) is calculated from the 
adiabatic case. The wall heat flux is 

dT 
Qw = -*-z-\w (9) dy 

and the wall shear stress is 

Tw — MwTT- \w 
dy 

(10) 

Table 4: LES predictions 

Name -Lw/ -Loo Cf                  Ch 

A2.88 
12.88 

2.51 
2.72 

2.44 x 10~3             0 
2.32 x 1(T3    1.27 x 1CT3 

A4 
14 

3.95 
4.23 

1.97 x 10~3             0 
2.00 x 10~3    1.24 x 10~3 
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Table 5: Comparison of LES and Experiment 

Cases Name LES Experiment Error 
Mach=2.88 ■L aw 1 -Loo 2.51 2.549 1.5% 

Cf 2.32 x 1(T3 2.56 x 10-3 9.4% 
ch 1.27 x 1(T3 1.44 x 10~3 11.8% 

2Ch/Cf 1/0.91 1/0.89 2.2% 

Prtm 0.91 0.89 2.2% 
Mach=4.0 -Law/ -Loo 3.95 3.848 2.6% 

Cf 2.0 x 10-3 2.17 x lO-3 7.8% 
ch 1.24 x 10~3 1.22 x lO-3 1.6% 

2Ch/Cf 1/0.81 1/0.89 9.9% 
Prtm 0.81 0.89 9.0% 

Note: 

Experimental Taw from Eq. (3) 

Experimental Cf from Eqs. (1), (2) and (8) 

Experimental Ch from Eq. (6) 

The wall temperature Tw is fixed at Tw 

Taw - [1 + ^PrtmMl]T, 
l.lTaw, where the empirical adiabatic wall temperature 

All the predicted results are listed in Table 4, where the wall 
temperature for the isothermal case is fixed. The comparison with experiment is shown in Table 5. 
The experimental adiabatic wall temperature is computed from Taw = [1 + ^ ' PrtmM^Too. The 
computed mean turbulent Prandtl number from (6) shows good agreement with experiment value 
of 0.89, indicating the consistency of LES results with the Reynolds analogy. 

The turbulent Prandtl number changes across the boundary layer. Simpson et al (1970) have estab- 
lished the uncertainty envelope of the turbulent Prandtl number for incompressible zero pressure 
gradient turbulent boundaries. The experimental predictions by Meier and Rotta (1971) at Mach 
number up to 4.5 at the wall and Horstman and Owen (1972) at M=7.2 and cooled wall conditions 
fall into this uncertainty envelope. According to the eddy viscosity hypothesis, the turbulent stress 
and heat flux can be expressed as 

Tik = -PUJUJ. = Ht[ 
. düi      dük 

dxk     dxi 

Qk = -CPPT% = A— 

2düj 2  - 
3dx~Sik) ~ 3pkSik 

df 

(11) 

(12) 

where the bar "denotes the filtered flow variables and the tilde ~ denotes the Favre-averaged filtered 
flow variables. The local turbulent Prandtl number (Prt) for a two-dimensional boundary layer can 
be derived from the above two equations as 

Prt.= 
dv Pu v 

du 
dy pT'v' 

(13) 

The calculated turbulent Prandtl number profile is shown compared with the experimental range 
in Fig. 13. The Prandtl number reaches the maximum at the wall and starts to decrease away from 
the wall. In the outer portion of boundary layer, the fluctuation of Prandtl number is relatively 
greater than the inner portion, which is consistent with the experimental trend. 
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Figure 14: Example of overshoot 

Figure 13: Turbulent Prandtl number 

2    Compression Corner 

Supersonic flow past a compression corner is an important problem in aerodynamics. It represents, 
for example, the deflection of a control surface on a wing. The shock can cause a boundary layer 
separation upstream of the point of impingement of the primary shock, with a secondary shock 
forming near the separation (Andreopoulos and Muck 1987, Dolling and Or 1983, Horstman et al 
1977, Settles et al 1979, Smits and Muck 1987, Zheltovodov et al 1983, Zheltovodov and Yakolev 
1986, and Zheltovodov 1996). Reynolds-averaged Navier-Stokes simulations have failed to accurately 
predict the flow characteristics (Knight and Degrez 1998) such as fluctuating pressure and heat 
transfer. 

2.1    Weighting Function and Limiters 

The computation of a strong shock using the exact Riemann solver (Godunov's method) and the 
Least Squares method (Ollivier 1997) as a reconstruction scheme leads to the generation of oscilla- 
tions in the vicinity of shock waves which cause numerical instability. It can be shown theoretically 
that a linear second-order upwind scheme always generates oscillations. The only way to overcome 
this limitation, while satisfying the concept of an entropy function, is to introduce non-linear com- 
ponents. The classical method to avoid such spurious oscillations is to implement limiters which 
control the gradient of the computed quantities to prevent the appearance of overshoots and under- 
shoots. An excellent review of this technique is described in Hirsh 1997. A different approach is the 
stencils-searching ENO schemes which have been extended to unstructured grids (Abgrall 1994). 
At each time step, the stencil is chosen which provides the smoothest reconstruction. However, 
this approach is computationally expensive for LES since it implies a determination of the stencil 
at every time step. Recently, Ollivier-Gooch (Ollivier 1997) proposed a weighted stencil method 
wherein the stencil is fixed but the weights are recomputed at each time step as required1. 

1 We found that the weighted stencil method of Ollivier-Gooch (Ollivier 1997) provided an improvement compared 
to the unweighted results, but was nonetheless very sensitive to the weighting parameters. For the 25° compression 
corner, we found that overshoots and undershoots in the vicinity of the shock could not be avoided without adversely 
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2.2    Limiters 

We consider limiters which control the gradient of computed quantities reconstructed to a cell face 
(denoted by the index i + \). The limiters described in the literature {e.g., Van Leer's limiter, 
Minmod, Roe's Superbee limiter) are expressed as a function of the ratio r, 
variations 

Ui+i - Ui 

i+i of consecutive 

t+2 Ui Ui-1 
(14) 

This expression is well defined in case of a structured grid, where i + 1 means the next cell in the 
i discretization and i - 1 means the previous one. 

2.3    Homogeneous Limiter 

Consider a linear reconstruction of a flow variable wherein the computed gradient yields an over- 
shoot (or undershoot) in the reconstructed value at the cell interface (Fig. 14). The overshoot (or 
undershoot) can be avoided if the interface values were to remain between the adjacent cell aver- 
aged values. We can limit the slope computed by the LS method to satisfy this criterion. For a one 
dimensional case, the interface value computed from the left cell i is 

u left 
Ui + Ci(xi+i -x{) (15) 

where d is du/dx. Consider the case Ui < ui+i. Referring to Fig. 14, the reconstructed value uleft 

is required to lie within the adjacent cell averaged values 

Ui < ul*l\ < Ui+i 
li"2 

or 

0<d < Ui+l ~ Ui 

Xi+k Xi 

This is achieved by replacing the gradient d by r/d where 

(16) 

(17) 

ri= < 

for   0 < d < Vi+1~Ui 

ZF^T^t   for    Ci>^^. 

xi+i-Xi 

0 for   a < 0 

Xi+1-Xi (18) 

An analogous result can be obtained for the case Ui > u-,i i+i 
For a general 3D configuration, the limited quantities are 

u, left j   = Ui + T)C ■ Ax (19) 

left 
where utj   is the reconstructed value of variable u for cell i and the face adjacent to cell j, and 

C-Ax = 
( Cxi \ 

Cyi 
\ Czi j 

affecting the undisturbed boundary layer. 

xi,j      xi 

ViJ ~ Vi 
zi,j ~ zi 

(20) 
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Figure 15: Temperature (no limiter) Figure 16: Temperature (homogeneous limiter) 

V 

1.0 
Uj —Uj 

CAx 
0 

for 0 < C ■ Ax < u 
for C • Ax > Uj —t 

for    C ■ Ax < 0 

(21) 

The above expression holds for U{ < Uj. An analogous expression holds for ui > Uj. In practice the 
limiter is successively applied to the different cell neighbors j of the cell i. As far as tetrahedras are 
concerned, only the neighbors sharing a face are used. 

A 25° compression corner computation has been designed to evaluate the efficiency of the limiter. 
Fig. 15 displays the evolution of the static temperature across the shock computed using the second 
order LS without a limiter. Strong overshoots and undershoots appear. Fig. 16 displays the static 
temperature in the shock using this limiter. The spurious oscillations disappear, although the 
gradients within the cells appear to have been reduced probably more than necessary. 

2.4    Inhomogeneous Limiter 

The homogeneous limiter (21) does not treat the function gradients Cxi,Cyi,Czi independently, 
and therefore is overly limiting. Consider a case where Cx{ and Cyi are "satisfactorily" computed 
but Czi is overestimated by the LS method and therefore u^  is also overestimated. During the 

limitation process r] is set to a value less than 1 because C • Ax is too large. As a result, all three 
gradients are reduced, even though Cx, Cy were "satisfactory". 

A three parameter limiter is defined by 

left . 
( r]xCxi ^ 

VyCyi 
\ rizCzi J 

X{j       X{ 

Vi 
Zi zi,i 

(22) 

wherein each gradient Cxi, Cyi, Czi has a limiter. We present the inhomogeneous limiter for U{ < Uj. 
Analogous expressions hold for U{ > Uj. 
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Case 1: C ■ Ax > Uj — U{ 
r>   — i n   Jt-i \Cxi(Xi>-i~Xih T)X — i.u     fti|        k2        | 

% = 1.0_fcl|2tol| (23) 

rjz = 1.0 - fci| c*(%-*>| 

where 

*> = 3^ <24> 
OXj.^Xjj ~ Xi)    I 

&2 = max<    Cyi.{yitj-yi)   > (25) 
Czi.(zitj — Zi)  J 

where ü'e^* is the reconstructed value assuming r/x = r)y = f)z — 1- 

Case 5: 0 < C • Ax < UJ - Ui 

Vx   =   1 (26) 

Vy    =    1 (27) 

»?*    =    1 (28) 

Case 3: C ■ Ax < 0 

»?*   =   0 (29) 

r)y   =   0 (30) 

%    =   0 (31) 

The process mainly limits the components r]x,r]y,r]z whose contribution in the C ■ Ax expression is 
the largest. When the j neighbor position is aligned with x,y or z direction, then only Cx, Cy or 
Cz is respectively reduced. 

Fig. 17 displays the results of this limiter for the static temperature profile within the shock. The 
effect on the gradient is less severe than in Fig. 16. The 25° compression corner computations 
described below use this limiter. 

2.5    ENO scheme 

The key idea of ENO schemes is to use the smoothest stencil among several candidates to approxi- 
mate the fluxes at cell boundaries to a high order accuracy and at the same time to avoid spurious 
oscillations near shocks. We previously computed supersonic turbulent flow past compression cor- 
ner of 8° at Mach 3 without use of limiters (Urbin 1999). However, the 25° compression corner at 
Mach 3 (see Fig. 18) requires a limiter, and thus determination of the most effective limiter is the 
objective of this part of our study. In the 25° compression corner, a strong shock is formed through 
a series of unsteady compression waves, and variations in the flow variables in the boundary layer 
are sometimes comparable to the shock. In order to determine a proper criterion to construct the 
ENO stencil, we begin with the analysis of the variable gradient (we use density since it has a 
similar change as the other variables), shown in Fig. 19 at x = 35, where x is measured from the 
corner and S is the inflow boundary layer thickness. The density is non-dimensionalized by the 
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Figure 17: Temperature (inhomogeneous limiter) Figure 18: 25° compression corner 

freestream density p,». The gradient using the isotropic stencil (Okongo 1998) with Least Squares 
reconstruction shows two peaks corresponding to the boundary layer and the shock wave. Outside 
these two regions, the change of the gradient is smooth. The selection of the ENO stencil should 
take advantage of this feature and make the ENO stencil focus on these two regions. 

First, we establish a criterion to decide where to use the ENO stencil. The density ratio across the 
shock is approximately 2.19 according to the Rankine-Hugoniot equations. The maximum norm of 
the density gradient a is approximately equal to 6 with mesh spacing Ar = V'Ax2 + Ay2 + Az2 = 
0.2 in the vicinity of the shock, where Ar is non-dimensionalized by 6. We make a cut-off at a = 6 
and any cell whose density gradient is larger than a should use an ENO stencil. We define S as a 
set of cells satisfying |Vp| > a. In Fig. 19, the maximum density gradient based on the isotropic 
stencil is approximately 13. 

Second, for all E, a direction should be found to construct the ENO stencil. Consider any tetrahe- 
dron in S in which four possible density gradients are computed using only three face neighbors, 
denoted as |Vp|fc (A; = 0,1,2,3). The subscript is the index of the face neighbor which has been 
excluded. The density gradients are computed by the Least Squares method. We assume that 

|Vp|3 > |Vp|2 > |Vp|x > |Vp|o 

where |Vp|max = |Vp|3, |Vp|min = |Vp|0. 

We construct the ENO stencil as follows. First, the three face neighbors which give the minimum 
density gradient are added. Second, we find all the node neighbors of any cell of E and exclude all 
the cells which share at least one node with the remaining face neighbor. Any five of the remaining 
cells which are the node neighbors of that cell and these three face neighbors are used to construct 
the ENO stencil. 

A modified Riemann shock tube case with the initial pressure ratio of ten and an initial distribution 
of isotropic turbulence is used to verify the ENO scheme and to compare with the inhomogeneous 
limiter. The pressure ratio across the shock is chosen close to that in the 25° compression corner. 
The cut-off number a is set to 6. Fig. 20 shows the comparison between the inhomogeneous limiter 
and the ENO scheme for the Riemann shock tube case. It can be seen that the ENO stencil is 
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used only in the shock region, while the inhomogeneous limiter is also used in the expansion fan 
region where there are no overshoots and even in the undisturbed flow in presence of turbulence. 
In Fig. 21, the ENO scheme is applied to the 25° compression corner with a = 6. The cells using 
the ENO stencil appear principally in the shock region and the boundary layer downstream of 
the corner where the density gradient has a larger variation than the upstream. Fig. 22 shows the 
instantanous profiles of velocity and pressure along the direction perpendicular to the shock wave 
at z = 1.05 (where ye is measured along the direction perpendicular to the shock wave and U^ is 
the streamwise velocity in the freestream.). The x coordinate of the interception point of the ye 

with the solid wall is 55, where x is measured from the corner. The shock wave is efficiently limited 
within the width of two or three cells. 

2.6    Results 

David (1993) performed the first LES of a compression corner which successfully reproduced the 
Taylor-Görtler vortices downstream of the shock. Nevertheless, the use of a pseudo-compressible 
subgrid-model did not permit accurate quantitative results. The second and most recent LES was 
Hunt and Nixon (1995) who investigated the role played by turbulence, and showed a direct correla- 
tion between the shock motion and the incoming velocity fluctuations. They also demonstrated that 
the size of the separation bubble has, to some extent, a weak effect on the shock motion. Despite 
the lack of detail in the inner layer (a log-law wall function was used on a rough grid resolution), 
it displayed the qualitative features of the shock oscillation observed experimentally (Dolling and 
Or 1983). 

A computation of an adiabatic turbulent boundary layer flow past a 25° compression corner at 
Mach 3.0 and Res = 2 x 104 was performed. 

Allowing x, y and z to denote the streamwise, transverse and spanwise directions, respectively, the 
computational domain is Lx = 16.05, Ly = 3.45, and Lz = 1.9255. The grid consists of 213 x 35 x 57 
nodes in the x, y and z directions, respectively. The reference quantities for non-dimensionalization 
are length 5 (the incoming boundary layer thickness), velocity Uoo, density p^, static temperature 
Too and molecular viscosity /J,OO (where the subscript oo denotes the freestream conditions upstream 
of the compression corner). The tetrahedral grid is employed and stretched in the y direction with 
a spacing of 0.008(5 at the wall and the stretching factor of 1.154. The grid is concentrated around 
the compression corner. The details of the grid are shown in Table 6, wherein Ay+ = Ay/77 w^h 

Table 6: Details of Grids 
Name Mach Ax+    Ay+              Az+    Ax/6 

at the wall 
Ay/5 
at y = 5 

Az/6 Tetras 

Theoretical value 
LES 

2.88 
2.88 

24        1.9                 8.1       0.1 
20.9     1.67              7.1      0.1 

0.14 
0.14 

0.034 
0.034 2,018,240 

the inner length scale ry = vw/uT {vw is the kinematic viscosity at the wall, ur = y/rw/pw is the 
friction velocity, TW is the wall shear stress and pw is the density at the wall). The theoretical values 
of uT and uw are obtained from the combined Law of the Wall and Wake evaluated at y = 6 and 
the power law of the relationship between temperature and kinematic viscosity, respectively. 

The inflow condition is obtained from a separate flat plate boundary layer computation. The non- 
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Figure 23: Mean streamwise velocity Figure 24: Mean temperature 

slip boundary condition is used to the adiabatic wall. All the flow variables shown in the figures 
are averaged in time and the spanwise direction. The time averaging period is set to three times 
the flow-through time, where one flow-through time is defined as the time for the freestream flow 
to traverse the computational domain. The details are presented in Urbin et al 1999. 

The oncoming flow characteristics are illustrated by the mean flow variables in Fig. 23 and Fig. 24 
and the Reynolds shear stress in Fig. 25. The comparisons with experiments (Zheltovodov et al 
1990) and DNS show good agreement. 
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Figure 25: Reynolds shear stress 

Figure 26: Instantaneous pressure contour 

Fig. 26 shows the pressure contour distribution at x - y plane of z = 1.06. A strong separation and 
attachment shock wave is formed at the compression corner leading to the higher pressure level 
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after the shock. The strong adverse pressure gradient causes the skin friction coefficient to decrease 
dramatically and the flow separates. Downstream of the corner, the overall increase in pressure and 
the decrease in Mach number cause the skin friction coefficient to recover. 
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Figure 30: Expansion-compression corner 

Figure 29: Separation length for LES and DNS 

The computational results are shown in Fig. 27-Fig. 29 along with experimental data. The skin 
friction coefficient in Fig. 27 is compared with the experiment at higher Reynolds number of Res — 
63560. According to the Law of the Wall and Wake, the friction velocity is decreased with the 
increase in Reynolds number, leading to the higher skin friction coefficient in the computation. The 
time and spanwise averaged surface pressure profile along the streamwise direction is compared 
with experiment at higher Reynolds number in Fig. 28 and the pressure plateau is not observed. 
The difference between the predicted and experimental surface pressure profile may be attributable 
to the difference in Reynolds number. 

The effect of Reynolds number on the separation length is plotted in Fig. 29. In this figure, the 
separation length is measured by connecting the separation and attachment points at which the 
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time and spanwise averaged skin friction coefficients go to zero and then scaled by the characteristic 
length (Lc) proposed by Zheltovodov and Schuelein 1987, 1993. 

Lc = 5(p2lPpi?llMl (32) 

where 6 is the incoming boundary layer thickness, p2 is the pressure after the shock in inviscid flow, 
Ppi is the plateau pressure obtained by the empirical formula ppi = p^O-bM^ + 1) (Zukoski 1967) 
and MQO is the Mach number in the uniform flow. Some LES and DNS results by other researchers 
are also plotted in Fig. 29 for comparison. Our LES successfully predicts the consistent trend with 
the experiment. 

3    Expansion-Compression Corner 

Supersonic expansion-compression corner (Fig. 30) is reminiscent of aerodynamic configurations 
wherein a supersonic boundary layer is subjected to an initial expansion followed by a subsequent 
compression. Interest in this configuration is due in part to the stabilizing influence of the expansion 
( Dussauge 1987, Zheltovodov et al 1987, Zheltovodov and Schueleinl987, Smith 1997, Stephen 
1998, Zheltovodov 1990). The first systematic combined experimental and numerical study of an 
expansion-compression corner by Zheltovodov 1992 and Zheltovodov 1993 showed that several 
different turbulence models (including k—e, q-u and several modifications thereto) did not accurately 
predict the separation and attachment positions, and distributions of surface skin friction and heat 
transfer. We therefore seek to ascertain the capability of LES to predict this flowfield. 

An incoming Mach 3 adiabatic equilibrium turbulent boundary layer of height 5 expands over a 
25° corner followed by a 25° compression. The distance along the expansion surface is 7.15 (i.e., 
the vertical distance between the two horizontal surfaces is 36, and the horizontal distance between 
the expansion and compression corners is 6.436). 

The Cartesian coordinates x, y and z are aligned in the incoming streamwise, transverse and span- 
wise directions with the origin at the inflow boundary. The computational domain is Lx = 24.05, 
Ly = 3.46, and Lz = 1.925(5. The expansion corner is located at 45 from the inflow boundary. 
The grid consists of 253 x 35 x 57 nodes in the x,y and z directions, respectively, forming 479,808 
hexahedra which are subdivided into five tetrahedra each. Thus, the total number of tetrahedra is 
2,399,040. The grid is stretched in the y direction with spacing 0.008^ at the wall and a geometric 
stretching factor of 1.154. The grid is concentrated in the streamwise direction in the neighborhood 
of the expansion and compression corners. The details are shown in Table 7 where Ay+ = AyuT/vw 

where vw is the computed kinematic viscosity at the wall, uT = y/rw/pw is the friction velocity, TW 

is the computed wall shear stress and pw is the computed density at the wall. The grid is consistent 
with the resolution requirements for the LES code established by Urbin 2001. 

Table 7: Details of Grid 
Name Ax+ Ay+         Az+    Ax/6      Ay/6 

at the wall                           at y = 6 
Az/6 Tetras 

Computed 20.9 1.67          7.1       0.1         0.14 0.034 2,399,040 

The inflow boundary condition is obtained from a separate flat plate boundary layer computation. 

Experimental data has been obtained by Zheltovodov et al 1987, Zheltovodov and Schuelein 1987, 
Zheltovodov 1990a and presented in part in tabular form in Zheltovodov 1990 for the expansion- 

24 



compression corner at Mach 3 and several Reynolds numbers Res based on the incoming boundary 
layer thickness 6. The experimental conditions are listed in Table 8, where FPBL and ECC imply 
flat plate boundary layer and expansion-compression corner, respectively. The LES was performed 
at a lower Reynolds number (Res = 2 x 104) than the experiment {Reg = 4.4 x 104 to 1.94 x 105) for 
reasons of computational cost. Additional LES cases will be performed at higher Reynolds numbers. 

Table 8: Details of Experiments and Computation 
Cases Mach Res References 
ECC 2.9 4.07 x 104 Zheltovodov 1990 
ECC 2.9 6.76 x 104 Zheltovodov 1990 
ECC 2.9 8.0 x 104 Zheltovodov 1990 
ECC 2.9 1.94 x 105 Zheltovodovl987 and Zheltovodov 1990a 
ECC 2.88 2.0 x 104 Present computation 

FPBL 2.88 1.33 x 105 Zheltovodov 1990a 

The structure of the flowfield is shown in Figs. 31 and Fig. 32 which display the mean static 
pressure and streamlines at z = 5. The flow expands around the first corner, and recompresses at 
the second corner through a shock which separates the boundary layer as evident in Fig. 32. The 
flowfield structure is in good agreement with the results of Zheltovodov 1987,Zheltovodov 1988, 
Zheltovodov 1990 and Zheltovodov 1990a which are shown qualitatively in Fig. 30. 
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Figure 31: Mean static pressure (s is separation, Figure 32: Mean streamlines (s is separation, A 
A is attachment) is attachment) 

The mean velocity profiles in the x-direction are shown in Fig. 33 at x = 28 and x = 6(5, where 
x is measured from the inflow along the direction of the inflow freestream velocity (Fig. 31). The 
abscissa is the component of velocity locally parallel to the wall, and the ordinate is the distance 
measured normal to the wall. The first profile is upstream of the expansion corner which is located 
at x = 4.6, and the second is downstream of the expansion fan and upstream of the separation point. 
The computed mean velocity profile at the first location is slightly fuller than the experiment. This 
is consistent with the experimentally observed dependence of the exponent n in the power-law 
U/Uoo = (y/tf)1/" on the Reynolds number. The second profile shows a significant acceleration of 
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the flow in the outer portion of the boundary layer due to the expansion. 
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Figure 33: Mean velocity Figure 34: Separation length 

Zheltovodov 1988 and Zheltovodov 1993 developed an empirical correlation for the separation length 
(defined as the minimum distance between the mean separation and attachment points on the wall) 
in the expansion-compression corner interaction. The scaled separation length Lsep/Lc is observed 
experimentally to be a function of Res where the characteristic length (Lc) is defined by 

Lc = 5e(p2/ppiy
1/M( r? (33) 

where 5e is the incoming boundary layer thickness (upstream of the expansion corner), p2 is the 
pressure after the shock in inviscid flow, ppi is the plateau pressure from the empirical formula 
Ppi = Pe{\Me + 1) where pe and Me are the static pressure and freestream Mach number upstream 
of the compression corner and downstream of the expansion fan. In the computation, the location 
is taken to be x = 66. The values of Me and p2 have been computed using inviscid theory. Also, 
Rese = 1-8 x 104 for LES (Rese = peUe&elße, where pe,Ue and p,e are computed using inviscid 
theory). The experimental data correlation of Zheltovodov 1988 and the computed result2 for 
the scaled separation length is shown in Fig. 34. The computed value is consistent with a linear 
extrapolation of the expermental data. 

The surface pressure profile in Fig. 36 displays a pressure plateau on the compression face generated 
by the separation bubble. The experiments exhibit a trend of increase in the size of the pressure 
plateau region with decreasing Reynolds number. The experimental data at the lowest Reynolds 
number (Reg = 4.1 x 104) shows close agreement with the computed results for Res = 2 x 104 for the 
location, extent and magnitude of the pressure plateau. Moreover, the shape of the experimental 
pressure plateau shows little variation for Res < 6.8 x 104, thus suggesting that the computed 
pressure plateau region (for Res = 2 x 104) is accurate. The computed recovery of the surface 
pressure is more rapid than in the experiment, however. 

2The uncertainty in the computed value of L3ep/Lc is associated with the uncertainty in determining Se- We have 
used the streamwise Reynolds stress (<< p »<< uV >>) to determine Se (Fig. 35), where v! is the fluctuating 
velocity parallel to the wall. 
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4 ^Square Jet 

Turbulent round and plane jets are simple inhomogeneous flows that can be served to verify models 
for complex flows and have been experimentally and numerically studied extensively (Panchapake- 
san 1993, Rodi 1980). Recently, noncircular jets have been gained much interest in passive control 
due to their enhanced jet mixing properties (Grinstein 1992, Grinstein 1995a, Grinstein 1995b, 
Grinstein 2001,Gutmark 1999). A square jet at a Reynolds number of 3200 and a Mach number 
of 0.3 is simulated. Temporal evolutions are visualized to characterize the dynamics of deforming 
vortex rings, ribs and their interactions. Statistical quantities are quantified and compared with 
the DNS results of Grinstein et al 1995. 

The grid consists of 65 x 65 x 65 hexahedral cells in an unstructured grid covering a computational 
domain of 5D in the streamwise direction and ±3D along the transverse directions. Each hexahedral 
cell is divided into five tetrahedral cells, yielding a total of 1.3M tetrahedra. A uniform grid is used 
along the streamwise direction with the hexahedral grid spacing of Ax/D = 0.078, which is larger 
than 0.04 used by Grinstein et al. in their DNS (Grinstein 1995). The grids are stretched along the 
other two directions and the minimum grid spacings are Ay/D = Az/D = 0.0375. The imposed 
boundary conditions include inflow, outflow and wall boundaries. At the inflow, the streamwise 
velocities are prescribed as 

u = U[l + Asin(2Trft)] (34) 

and 

U = 0.5 Uoo [1 - tanh[62(2|y|/ö - D/(2\y\))] x 0.5 U^ [1 - tanh[62(2|^|/P - D/(2\z\))},     (35) 

where A = 0.02 is the perturbation amplitude, / is the forcing frequency (/ = 0.5), 62 = O.25Ri/0, 

where Ri/9 = 40, R = D/2 and 6 is the momentum thickness. Zero-gradient condition is imposed 
2 

at the outlet and symmetry boundary conditions are used at the side walls. 

The iso-surfaces of the total vorticity UJ = JUJ% + w| + wf corresponding to w = 0.25wpeajfc are shown 
in Fig. 38. Azimuthal nonuniformities make the evolution of the jet shear layer more complicated 
relative to circular jets. Close to the jet exit, a smooth square vortex sheet can be observed, and 
subsequently rolled-up vortex-ring structures form due to shear-layer Kelvin-Helmholtz instability. 
However, the vortex rings further downstream deform to non-planar shape due to self-induction 
mechanism caused by azimuthal nonuniformities. The deformed vortex rings are connected with 
the four corners of the initial square sheet by ribs. The hairpin braid vortices aligned with the 
corners progress faster in the diagonal direction than the others, "which results in redistribution 
of energy between azimuthal and streamwise vortices" (Grinstein 2001). Further downstream, the 
jet development is characterized by the strong interaction between vortex rings and braid vortices, 
which leads to a final breakdown of the large-scales coherent structures and transition to the tur- 
bulent flow. The self-induced deformation of the rings and rib pair were explained to be the leading 
mechanism for larger entrainment properties in non-circular jets relative to circular jets (Grinstein 
1992). "The interactions between the streamwise vortices and the vortex rings is reminiscent of the 
interaction between ribs and spanwise rollers in the mixing layer" (Grinstein 1992). Mixing of jets 
with surroundings can be enhanced through controlling the formation, development and interaction 
of large-scale coherent structures passively. 

Fig. 39 shows the instantaneous crosswise vorticity wz = dv/dx - du/dy contours at the central 
x — y plane. Rolled-up structures can be observed near the base, and subsequently symmetrical 
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counterrotating toroidal structures form in the shear layer which are then followed by their stretch- 
ing and deformation. The organized structures can be broken down into smaller eddies further 
downstream. Evidently, the MILES model can capture the transition process. Large-scale vortex 
rings dominate in the near-field and the small vortices dominate downstream after the breakdown. 
The spatial spreading can be clearly observed downstream as the jet spreads by entraining mass 
from the surrounding nonvortical fluid. 

Fig. 40 (a-d) shows the contours of instantaneous streamwise vorticity, u)x = dv/dz - dw/dy, across 
the y — z planes of x/D = 1, 2, 3 and 4. Quite different behaviour can be observed at different axial 
positions. Vortex shears with some rounded-corners are stretched and thickened but still keep the 
initial square shape at the position of x/D = 1. The jet cross section switches axis 45° relative to 
that of the jet nozzle at the axial location of x/D = 2,3 due to self-induced velocity around the 
corners by the presence of streamwise vorticity. The flow structure develops into a irregular shape 
further downstream at x/D = 4. 

The statistical quantities are obtained by averaging over five forcing cycles after a statistically 
stationary state has been reached after an elapsed dimensionless physical time of ten. The centerline 
distributions of the mean axial velocity by LES compared with the DNS results of Grinstein et al 
1995 are plotted in Fig. 41. The mean velocity initially decays within the first 1.5 diameters and 
subsequently shows a slight increase due to the periodic roll-up by the sinusoidal forcing. The 
decay after 3.2 diameters is the result of turbulent mixing. In general, the agreement between 
present MILES and previous DNS results are good. 

The corresponding centerline r.m.s. velocities u'/Uc are shown in Fig. 42. Note that close to the 
inflow plane the r.m.s. of velocity fluctuations is about 2 percent and corresponds to the imposed 
disturbance level. In the potential core region, the r.m.s. velocity decreases slightly with increasing 
axial distance which shows a tendency to remain laminar with low turbulence intensities. Beyond 
the end of the potential core, the fluctuations of velocity increase very rapidly, which indicates 
the appearance of the secondary-instability mechanism which leads to the final breakdown of the 
large vortex structures. Due to insufficient length scale in the streamwise direction, the self-similar 
behaviour has not been achieved. However, it can be seen that the agreement between MILES and 
DNS is very good for the transient square jet. 
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Figure 38: Instantaneous isosurfaces of total vor-Figure  39:   Instantaneous  streamsise  vorticity 
ticity LJ = 0.25u)peak. contours at the x — y centre-plane. 
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(c) Figure 40: Instantaneous streamwise vorticity 
contours across the y — z planes at x/D = (a) 
1, (b) 2, (c) 3 and (d) 4. 
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