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INTRODUCTION 

The advent of advanced turbomachines featuring closely spaced rows of highly 
loaded low-aspect ratio blading has resulted in the prediction of High Cycle Fatigue 
(HCF) being a fundamental weakness in the technology base for gas turbine engines. In 
fact, the loss of blades or disks due to HCF is currently the predominant surprise engine 
failure mode in the field. 

The driving phenomenon for flow-induced vibrations and HCF is the blade row 
unsteady aerodynamics, with transonic compressors of particular interest. Specifically, a 
transonic rotor operates with a supersonic relative velocity with a subsonic axial 
component. Shocks thus form near the rotor blade leading edges, Figure 1. These shocks 
propagate upstream as the rotor moves and, thus, are a forcing function generating 
unsteady flow in the upstream vane row that can lead to HCF. 

Rotor 

*abs 

Figure 1. Upstream vane excitation due to rotor shocks 

Wakes are the most common forcing functions, with rotor wakes an unsteady 
forcing function to the downstream stators. The reduction in the wake relative velocity 
causes an absolute velocity decrease and an incidence change to the downstream vanes, 
Figure 2. The resulting rotor-exit unsteady flow is the forcing function to the stator that 
can result in HCF. 
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Figure 2. Stator excitation due to rotor wake 

As airfoil row interaction unsteady aerodynamics is the driving phenomena for 
HCF blade failures, requirements to avoid HCF include an increased fundamental 
understanding of multi-blade row interaction phenomena. The key barrier research issues 
are: Multi-Stage Interaction Unsteady Aerodynamics Including Benchmark Standard 
Data, Multi-Stage Interactions Including Off-Design Unsteady Aerodynamics, Generating 
Additional Damping - Aerodynamic or Structural, and Variability & Nonlinearities. 



RESEARCH OBJECTIVES 

The overall research objective was to develop the technology needed to predict 
accurately significant blade row forced response in a multistage environment, thereby 
providing accurate predictions of HCF in turbine engine blade rows. Specific objectives 
included: development of a benchmark standard multistage transonic research 
compressor; providing a quantitative understanding and predictive capability for multi- 
stage blade row forced response; investigating techniques to control the flow induced 
vibrations; considering the issue of robustness including the role of variability and fluid- 
structure interactions. 

TECHNICAL APPROACH 

This multidisciplinary research program required an integrated experiment-theory 
approach, accomplished through collaboration between Pratt & Whitney, Duke 
University, and Purdue University. 

First, a benchmark standard multistage transonic research compressor was 
developed, accomplished by modifying an existing research compressor. Specifically, in 
cooperation with Pratt & Whitney, the Purdue High Speed Axial Research Compressor 
was modified to feature new IGV and stator rows representative of those used in Pratt- 
designed modern high pressure compressors. 

A quantitative understanding and predictive capability for multi-stage blade row 
forced response was developed. This includes investigating both analytically and 
experimentally the fundamental flow phenomena. This was accomplished through 
experiments that investigate and quantify interacting blade row unsteady aerodynamics as 
well as the resulting vane vibration and stress response. In addition, Duke University 
developed a new unsteady aerodynamic analysis of multistage flows in turbomachinery - 
especially those flows associated with flutter and forced response - capable of analyzing 
complex two and three-dimensional flows. The method is computationally much more 
efficient than the current generation of time-domain codes. 

The inherently small damping of complex higher order modes was addressed by 
investigating techniques to control the flow induced vibrations. The issue of robustness - 
one engine may suffer HCF but a nominally identicalone does not - was also considered. 
The inability to predict, or even understand, these failures is due to a poor understanding 
of the role of such issues as variability and fluid-structure interactions. 



RESEARCH TRANSONIC COMPRESSOR 

The Purdue Transonic Multistage Research Compressor features a 1&1/2 stage 
axial-flow geometry representative of that used in the front stages of aircraft engine high- 
pressure compressor designs. The drive system consists of a 400 horsepower AC motor, 
a variable speed magnetic clutch, and an 8:1 ratio gearbox, the output of which drives the 
compressor rotor. Atmospheric air is drawn into the test section through a converging 
bell-mouth inlet with a 16:1 contraction ratio and exits the test section through discharge 
piping which contains a butterfly throttle valve to regulate the flow rate. 

The test section, Figure 3, has a constant hub-tip ratio of 0.67 with a tip diameter 
of 0.3 m (12.0 in.) and features an inlet guide vane (IGV) row, a blisk with 19 rotor 
blades, and a downstream stator. The rotor blades consist of NACA 65 series profiles on 
circular arc meanlines having a 5.08 cm (2.0 in.) chord and a thickness distribution 
varying from 10% at the root to 6% at the tip, with the sections stacked along their 
centers of gravity. The IGV and stator vanes are an advanced controlled diffusion airfoil 
(CDA) design with a 4.45 cm (1.75 in.) chord and a constant 7% thickness. The CDA 
sections are stacked along the maximum thickness locations, with the IGV trunnion 
located at 39% chord and the stator trunnion at 42% chord. 

Unsteady Static 
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Hub 

Figure 3. Research compressor test section 

IGV ROW UNSTEADY INSTRUMENTATION 

Measurements of the rotor generated unsteady aerodynamic forcing function and 
the resultant IGV steady and unsteady surface pressure distributions are made at 90% 
span. An unsteady static pressure probe is used to measure the potential flow generated 
forcing function upstream of the rotor, with vane mounted high-response Kulite XCS-093 
5 psi sealed gage pressure transducers used to measure the resultant IGV unsteady surface 



pressure response. These transducers are reverse mounted within the suction surface of 
one vane and the pressure surface of an adjacent vane, with the chordwise tap locations 
shown in Figure 4. 

The rotor operates with a single detached leading edge shock wave which is a 
significant source of unsteady aerodynamic excitation to the upstream IGV row. Thus, 
the transducers are concentrated along the aft region of the IGV's since this is where 
strong interactions with the rotor tip shock system are expected. To minimize probe 
interference effects, the unsteady static pressure probe is located 21.4% vane chord 
downstream of the IGV trailing edge and circumferentially positioned at 44.55% pitch 
between the trailing edges of the vanes adjacent to the instrumented passage, Figure 4. 

Very large unsteady pressures on the vane surfaces exceeding the quoted linearity 
range of the transducers are to be measured. Consequently, the transducers were 
statically calibrated over a pressure range from 0-7 psi, with the sensitivity found to be 
nearly linear over this pressure range. Accounting for nonlinearities, the maximum 
uncertainty in the unsteady pressure measurements is estimated to be 0.5%, with the 
frequency responses estimated to be 50kHz and 70kHz for the unsteady static pressure 
probe and instrumented vanes respectively. 
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% Chord   5.0 17.5 35.0 55.0 67.5 77.5 85.0 90.0 

Figure 4. IGV 90% span instrumentation locations 



STATOR ROW UNSTEADY INSTRUMENTATION 

Measurements of the rotor wake generated unsteady aerodynamic forcing function 
to the downstream stator and the resultant stator steady and unsteady surface pressure 
distributions are made at mid-span. Miniature probes designed to access the confined 
regions between the blade rows are utilized to make inter-stage measurements at the 
stator inlet. These probes include a United Sensors DA-125 pneumatic five hole prism 
probe, a conventional total temperature probe, an unsteady static pressure probe and a 

If oü0*1 124°*20 Cr0SS h0t"fllm anemometer Probe- The probe measurement plane is 
16 26% stator chord upstream of the stator leading edge and circumferentially positioned 
mid-way between the stator vane stacking axes, Figure 5. 

The steady and unsteady stator vane mid-span pressure distributions are measured 
at the chordwise locations shown in Figure 5. The steady pressure distribution is 
measured using pneumatic taps, with the unsteady aerodynamic response measured on 
separate vanes with high response Kulite XCS-093 pressure transducers reverse mounted 
within the suction surface of one vane and the pressure surface of an adjacent vane. Both 
the transducers and lead wires are recessed into the vane to maintain the design intent 
vane profile. Note that the unsteady aerodynamic forcing function and vane response 
measurements are not made simultaneously. Rather, to minimize probe interference 
effects the vane response is measured with a clean inlet flow field. The instrumented 
stator assembly is then removed and separate forcing function measurements are made at 
the inlet to this same passage using each of the high-response probes. The maximum 
uncertainty in the unsteady pressure measurements is estimated to be 0.5% with the 
frequency responses estimated to be 50kHz and 70kHz for the unsteady static pressure 
probe and instrumented vanes respectively. 
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Pitch 

Tap No.       1      2      3       4       5      6       7       8 
% Chord     5.0 100 17.5 30.0 45 0 60.0 75.0 87.5 

Figure 5. Stator mid-span instrumentation locations 



PARTICLE IMAGE VELOCIMETRY (PIV) 

The DANTEC PIV system utilized consists of a 30 mJ NewWave Research 
Minilase HI Nd:YAG laser, a high-resolution Kodak Megaplus ES 1.0 digital camera, and 
a dedicated personal computer (PC) controlled PrV-2100 Processor. The laser has twin 
oscillators and is capable of delivering a 5-7 ns duration pulse with a wavelength of 532 
nm (visible green light) at a repetition rate of 10 Hz, with the time between pulses 
specified using software. The camera has a 1008 x 1018 CCD array operated in cross- 
correlation mode, with the images corresponding to the 1st and 2nd laser pulses recorded 
separately. Both images are then transferred to the PrV 2100 Processor that provides near 
real-time vector processing of the images using Fast Fourier Transform (FFT) correlation 
techniques. This unit also synchronizes the camera and laser, and is capable of resolving 
the particle displacement to within 1/10 of a pixel through the use of sub-pixel 
interpolation schemes. PC controlled software is used to perform off-line validation and 
post-processing of the vector maps, with directional velocity information unambiguously 
determined since the initial and final particle positions are recorded as separate images. 

A thermal aerosol generator is used that produces a high volume of particles by 
discharging a heated and pressurized glycol based mixture into the atmosphere where it 
immediately vaporizes and then condenses into a fine mist of monodisperse particles. A 
uniform test section seeding density is achieved by introducing these particles upstream 
of the inlet and allowing them to disperse into the ambient air prior to being drawn 
through the facility. 

The instantaneous IGV-to-IGV and stator vane-to-vane flows are measured for 
several time instants over one rotor blade-passing period. A once-per-revolution pulse 
from a photo-optic sensor on the shaft triggers the PF/ 2100 Processor that then fires the 
lasers and records the camera CCD images. To record images at different points over one 
interaction cycle, the rotor speed is used to calculate the time delay to position the rotor at 
the desired angular location relative to the stationary vanes. This value is then 
programmed into a LaserStrobe 165 Phase Delay Generator, which can deliver an 
accurate time delay up to 999.9 usec in 0.1 usec increments. 

The IGV-to-IGV 90% span flow is illuminated by a 1 mm thick light sheet 
introduced upstream through the bellmouth inlet using a combination of cylindrical and 
spherical lenses. Optical access to the IGV passage is provided with a 2 Plexiglas 
window contoured to the flow path O.D. The 50% span stator vane-to-vane flow is 
illuminated by a 1 mm thick sheet introduced downstream of the stator through an optical 
probe. The probe has a 7.94 mm O.Di and consists of a 45° high energy Nd: YAG mirror 
and a +4.0 mm piano-cylindrical lens. Prior to entering the probe, the laser beam is 
passed through an iris and a 1000 mm plano-convex lens located adjacent to the test 
section. To minimize disturbances produced by the probe, it is positioned ahead of the 
support strut leading edge 2.06-stator chords downstream of the stator trailing edge. 

The images corresponding to the two laser pulses are divided into rectangular 
interrogation areas, with cross-correlation software used to determine an average particle 
displacement for each region. The FFT algorithm generates artificial cyclic background 
noise at the interrogation region edges. This can result in the loss of particle pairs due to 



low signal-to-noise ratio at the boundaries, with particles near the edges not used in the 
velocity calculation. However, this information is recovered by over-sampling the images 
using overlapping interrogation regions. This does not increase the spatial resolution but 
generates additional vectors as suitable interpolations. 32 x 32 pixel interrogation aVeas 
with 50% overlap are used, resulting in 3,844 raw velocity vectors per image. 

RESULTS 

The IGV and stator unsteady flow fields generated by rotor-IGV and rotor-stator 
interactions were experimentally investigated along the nominal operating line at 
transonic (Nc=20,000 rpm) and subsonic conditions (Nc=15,000 rpm), Figure 6. The 
downstream stator unsteady flow field was also investigated over a range of steady 
compressor loading conditions at the transonic design speed of 20,000 rpm. The three 
operating lines correspond to low steady loading near the choke boundary, nominal 
loading at the aerodynamic design point, and a highly loaded condition near the 
compressor stall line. 
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Figure 6. Purdue compressor performance map 

IGV UNSTEADY AERODYNAMICS 

Detailed benchmark rotor-IGV unsteady aerodynamic blade row interaction data 
are acquired at both design and part-speed operating conditions. These detailed data 
include IGV surface pressure data as well as PIV measurements of the instantaneous 
vane-to-vane flow field in the IGV passage at 90% span. 



Rotor Generated Forcing Function to IGV's 

The effect of steady compressor loading on the rotor generated unsteady static 
pressure field, i.e., the forcing function to the upstream IGV, is shown in Figure 7 for 
both design (transonic) and part-speed (subsonic) rotor operating conditions. Presented is 
the time-variant static pressure nondimensionalized by the time-average inlet total 
pressure, with time nondimensionalized by the blade-pass period. Note that the scales are 
different, with the maximum static pressure fluctuations at the transonic operating 
conditions 3.5 times larger than those for subsonic rotor flow. 

These pressure fluctuations are very large, with peak-to-peak amplitudes up to 
35% and 10% of the inlet total pressure for the transonic and subsonic rotor speeds 
respectively. The very large fluctuations at the transonic design speed are due to the 
shock waves generated by the rotor. Note that the forcing functions generated by 
subsonic rotor operation are by no means insignificant. Rather, they are small only in 
comparison to those generated at the transonic operating condition. Notice also that the 
waveforms are significantly different, transitioning from a saw tooth type pattern for 
subsonic rotor flow to a series of large amplitude periodic pulses at the transonic design 
speed. Steady compressor loading does not, however, have a strong effect on the forcing 
function, with the maximum amplitudes nearly identical for all operating conditions along 
a given speed line. 
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Figure 7. Effect of steady loading on rotor generated forcing function to IGV 

IGV Unsteady Aerodynamic Response 

The unsteadiness on the IGV surfaces is shown in Figure 8. Specifically, the vane 
surface unsteady pressure envelopes along with the time-average pressure distributions 
for the moderate and large axial spacings at the transonic and subsonic rotor operating 
conditions are shown. 
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Figure 8. IGV unsteady pressure envelopes for nominal loading 

At the transonic design speed, the maximum unsteady pressure surface loading is 
highest along the aft 30% chord, decreasing as one moves forward from 70 to 30% chord, 
and then remaining relatively constant over the front 30% of the chord. Note that the 
suction surface exhibits the opposite trend, with the unsteady loading highest near the 
leading edge, decreasing in a nearly linear fashion to 60% chord, and then remaining 
nearly constant over the aft 40% chord. This unsteadiness is very significant, reaching 
amplitudes as high as 60% (maximum - minimum) of the inlet total pressure in the 
trailing edge region at the moderate spacing. Increasing the axial spacing reduces the 
magnitude of the unsteady loading, but the loading still reaches levels as large as 40% of 
the inlet total pressure, which corresponds to nearly 1/2 of the steady loading in the 
trailing edge region. Also notice that the vane suction surface unsteadiness begins to 
increase at roughly the same chordwise location as that at which the pressure surface 
unsteadiness begins to decrease, with the unsteadiness the same order of magnitude near 
the vane leading edge on both vane surfaces. 

The unsteady vane loading is considerably reduced at the subsonic rotor operating 
condition, with the maximum peak-to-peak pressure fluctuations at the moderate spacing 
only around 10% of the inlet total pressure. Additionally, the pressure fluctuations are 
highest over the central portion of the vane on both airfoil surfaces. This is in contrast to 
the data at the transonic rotor speed where the fluctuations were highest in the vane 
pressure surface trailing edge region and in the suction surface leading edge region. Since 
the forcing function generated by subsonic rotor operation decays exponentially with 
axial distance, it might be expected that the vane response would be highest in the IGV 
trailing edge region at this operating condition. The data, however, indicate that the 
unsteadiness is the same order of magnitude in the vane leading and trailing edge regions 
and highest over the central portion of the vane. This may be due to acoustic phenomena, 
with the rotor-IGV interactions generating acoustic modes which propagate upstream 
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through the vane passage. These acoustic modes are contained in both the forcing 
function and vane response data since they occur at harmonics of blade-pass frequency 
and are phase-locked to the rotor. Also note that the forcing function generated in the 
transonic flow regime is 3.5 times larger than that generated by subsonic rotor operation. 
However, the maximum unsteady loading on the IGV at the design speed as a result of 
this interaction is six times larger than that at part-speed. It will be shown that this 
dramatic increase in unsteady loading at transonic speeds is due, in part, to nonlinear 
interaction effects in the vane trailing edge region, with these effects not present for 
subsonic rotor operating conditions. 

To gain insight into the unsteadiness evolution, the time-variant IGV surface 
pressures generated at the transonic design speed over one periodic cycle are examined. 
Figure 9 shows the phase-lock averaged surface pressure distributions at ten equally 
spaced increments over one blade-passing period. Also shown for reference in the center 
of the figure is the rotor generated unsteady aerodynamic forcing function. Recall that 
this forcing function is measured at approximately mid-pitch, and lags the measurements 
at the upper vane trailing edge by 58.5% of the blade-pass period. To compensate for this 
time delay, the pressure fluctuations associated with the passing of the rotor shock at each 
time increment are indicated on the forcing function waveform by the open symbols for 
one vane response cycle. 
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Figure 9. Time-variant IGV loading at 20,000 rpm 
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Upstream traveling wave phenomena are evident, with the pressure and suction 
surface responses nearly 180° out-of-phase along most of the chord. This behavior is 
attributed to a time-dependent wave pattern being generated in the IGV passage due to the 
interaction of the rotor shock waves with the upstream vane row. The rotor shocks 
periodically impact the trailing edge region of the upstream vanes, with a reflection of the 
incident shock wave occurring on the pressure (upper) surface and diffraction occurring 
on the suction (lower) surface as the shock bends around the trailing edge, Figure 10. 

The reflection of the shock by the vane pressure surface causes a significant 
increase in the static pressure (overpressure zone) to occur in the region aft of the 
reflection point (p3 > pa). Since the IGV flow field is subsonic, a pressure wave is 
generated in the trailing edge region which equalizes the pressure in the overpressure 
zone with the lower pressure region aft of the diffracted shock on the suction surface. 
This process is periodic since the shock waves translate with the rotor, with the reflection 
point moving upstream along the chord and the reflected shock segment continuing to 
propagate upstream toward the suction surface of the adjacent vane as the cycle 
progresses. As the reflection point moves past the nose of the airfoil, another pressure 
wave is generated in the leading edge region in order to equalize the pressure on the upper 
and lower surfaces and the reflected shock segment is diffracted as it bends around the 
nose. Note that cascade effects can cause secondary reflections to occur, with the 
reflected shock segments impacting the surface of adjacent vanes or the multiple leading 
edge shocks generated by the rotor as they propagate upstream. 

Shock Interaction with V ane Trailing Edge 

Incident Shock 

Reflection by 
clipper Surface 

Trailing Edge 
Pressure Wave 

Shock Interaction with V ane Leading Edge 

Reflected Shock 

Incident Shock 

Diffracted Shock 

Figure 10. Shock wave interaction with an isolated IGV 
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The maximum pressure fluctuation associated with the rotor generated forcing 
function occurs at t/T=0.8, while the vane response to this forcing function is first evident 
at t/T=0.9. This time lag is due to the rotor leading edge shock waves being inclined to 
the axial direction, with the axial separation distance between the last transducer and 
unsteady static pressure probe 31.4% vane chord. At t/T=0.9, the impact of the rotor 
shock causes an increase in the unsteady pressure surface loading in the trailing edge 
region of the vane. Note that a suction surface response to the rotor shock is not yet 
evident at this time for the 90% chord transducer location due to the diffraction of the 
shock by the lower surface of the vane. 

At the next time instant, the overpressure caused by the shock reflection on the 
pressure surface is clearly visible, with the suction surface of the vane also beginning to 
respond to the passing of the rotor shock. The unsteady loading generated by the 
reflected shock is very significant, with the maximum unsteady pressure difference across 
the vane nearly 50% of the time-average inlet total pressure. Note that the pressure 
surface loading decreases sharply aft of the reflection point, with the loading on both vane 
surfaces approaching the same value as the trailing edge is approached. 

As the reflection point moves upstream, the unsteady pressure surface loading aft 
of the reflection continues to increase to a maximum at t/T=0.2, after which it decreases 
and then remains about the same throughout the remainder of the cycle. This behavior is 
attributed to the decay of the incident shock waves as they interact with the upstream 
vane row and dissipate energy through the reflection and diffraction process. The 
reflected shocks, however, continue to propagate upstream as the cycle progresses. At 
t/T=0.3, the shock reflected by the pressure surface of the adjacent vane during the 
previous cycle has traveled across the vane passage and impacts the suction surface of the 
reference vane in the leading edge region, causing the unsteady loading near 20% chord 
to increase noticeably. 

Analogous results for the moderate axial spacing at the subsonic rotor speed are 
shown in Figure 11. Here the entire pressure and suction surfaces of the vane smoothly 
respond to the passing of the rotor at each time instant, with essentially no unsteady 
loading occurring at t/T=0.4 and the maximum unsteady loading occurring at t/T=0.7. 
Notice that a pressure wave is generated on the vane suction surface near the trailing edge 
at t/T=0.6 which propagates upstream along the vane chord and reaches the leading edge 
about halfway though the cycle at t/T=0.1. The effects of this on the unsteady loading 
are, however, much less noticeable than those which occurred at the transonic rotor 
speed, in which upstream traveling wave phenomena were distinctly evident on both vane 
surfaces over the entire cycle. 
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Figure 11. Time-variant IGV loading at 15,000 rpm 

IGV-to-IGV Time-Variant Flow Field 

The time-variant IGV-to-IGV flow field is measured at 90% span using PIV, with 
ensemble averaged snapshots of the periodic unsteady flow field generated by rotor-IGV 
interactions presented for ten equally spaced increments over one blade-passing period. 
Figures 12 and 13 show the time-average and unsteady Mach number contours over one 
interaction cycle respectively for the transonic rotor speed. 
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Figure 12. Time-average IGV flow field for nominal loading at 20,000 rpm 
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The time-averaged PIV data at the IGV leading edge plane are in excellent 
agreement with the average inlet Mach number of 0.37 calculated from the surface 
pressure data. The instantaneous snapshots of the flow field demonstrate the highly 
unsteady nature of the flow field generated by the transonic rotor-IGV interactions and 
reveal several complicated interaction phenomena. First, the rotor leading edge shock 
waves are reflected and diffracted as they impact the IGV trailing edge. The reflection 
point moves upstream as the cycle progresses, with the incident shock decaying as it 
propagates through the IGV passage. The reflected shock segment however, travels 
across the vane passage as it propagates upstream, interacting with the shock of the 
adjacent rotor blade before it eventually impacts the suction surface of the upper vane in 
the leading edge region. 

At t/T=0.9, the rotor leading edge shock wave is just about to impact the lower 
vane in the passage. Note however, that the shock of the adjacent rotor blade has already 
impacted the upper vane in the passage due to the unequal blade-vane count. The blade- 
vane count ratio sets the spatial periodicity of unsteady flow phenomena in the passage, 
with interactions which occur on the upper vane leading those on the lower vane by the 
interblade phase angle. For the present geometry with 18 IGV's and 19 rotor blades, the 
interblade phase angle is 380°. It thus takes any given rotor blade 1.06 blade-passing 
periods to traverse the IGV passage, with the rotor-IGV interactions for each vane 
periodic at blade-pass frequency. 

At t/T=0.0, the rotor shock impacts the lower vane and is diffracted as it bends 
around the trailing edge. At the next time instant, the point of impact has moved 
upstream and the shock is reflected by the vane pressure surface. A pressure wave is also 
generated at the trailing edge to equalize the overpressure region aft of the reflected shock 
with the lower pressure region on the suction surface behind the diffracted shock. The 
reflected shock segment continues to propagate upstream toward the suction surface of 
the upper vane in the passage as the cycle progresses, with the incident shock decaying as 
the reflection point moves further upstream along the vane chord and no longer visible at 
t/T=0.7. 

At t/T=0.4, a pressure wave is also visible just ahead of the diffracted shock on 
the upper vane suction surface. This pressure wave continues to grow and begins 
interacting with the shock segment reflected by the lower vane at t/T=0.6. This 
interaction between the pressure wave and the reflected shock segment continues as the 
cycle progresses, with the reflected shock also beginning to interact with the incident 
shock generated by the adjacent rotor blade at t/T=0.8. This complex interaction 
continues as the cycle repeats up until t/T=0.3, at which point the shock segment reflected 
by the lower vane during the previous cycle has traveled across the passage and impacts 
the suction surface of the upper vane in the leading edge region. 

A low velocity high pressure region characterizes the IGV flow field aft of the 
reflected shock on the vane pressure surface. After passing through the reflected shock 
segment, fluid particles are smoothly accelerated to a velocity higher than the free stream 
prior to being again decelerated as they pass through the incident shock generated by the 
adjacent rotor blade. Note that a similar process also occurs on the suction surface of the 
upper vane in the passage aft of the secondary reflection point. 
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Figure 13. Time-variant IGV flow field for nominal loading at 20,000 rpm 

Figures 14 and 15 show the time-average and unsteady Mach number contours at 
the same ten time instants for the part-speed subsonic rotor operating condition. The 
time-average subsonic and transonic rotor generated IGV flow fields are similar, with the 
time-averaged PIV data at the IGV leading edge plane again in excellent agreement with 
the average inlet Mach number of 0.27 calculated from the surface pressure data. The 
time-variant snapshots of the flow closely resemble the time-average flow throughout the 
entire interaction cycle. This is due to the subsonic rotor potential field imposing a 
moderate unsteady backpressure variation on the upstream IGV row, with the flow 
through the IGV passage smoothly responding to the passing of the rotor at each time 
instant. This is in contrast to the highly unsteady flow field generated at the transonic 
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rotor speed in which the rotor leading edge shocks were reflected and diffracted as they 
interacted with the upstream vane row, creating sharp unsteady velocity gradients. 
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Figure 14. Time-average IGV flow field for nominal loading at 15,000 rpm 
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Figure 15. Time-variant IGV flow field for nominal loading at 15,000 rpm 
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Conclusions 

The rotor generated shocks resulted in very large pressure fluctuations, i.e., 
forcing functions to the upstream IGV's, with peak-to-peak amplitudes to 35% of the 
inlet total pressure. The resulting vane unsteady aerodynamic loading was very 
significant, with the maximum peak-to-peak static pressure fluctuations over the aft 
region as large as 60% of the inlet total pressure. 

For the part-speed rotor operating condition, the time-variant IGV flow field 
closely resembled the time-average flow throughout the entire cycle. This was due to the 
subsonic rotor potential field imposing a mild unsteady backpressure variation on the 
upstream vane row, with the flow through the IGV passage smoothly responding to the 
passing of the rotor at each time instant. 

The time-variant IGV flow field at the transonic design speed differed markedly 
from the time-average vane-to-vane flow. The impact of the rotor leading edge shocks 
with the vane trailing edge resulted in the incident shock being reflected by the pressure 
surface and diffracted by the suction surface. The reflection point moved upstream as the 
cycle progressed, with the incident shock decaying due to its interaction with the vane 
row as it propagated upstream through the vane passage. The reflected shock segment 
however, did not decay and traveled across the vane passage as it propagated upstream, 
interacting with the incident shock of the adjacent rotor blade before it eventually 
impacted the suction surface of the upper vane in the leading edge region. This 
interaction resulted in a complicated time-dependent wave pattern being established in 
the vane passage, with steep velocity gradients occurring across both the incident and 
reflected shocks. 

The reflection of the rotor shock by the upstream vanes generated a high 
overpressure zone aft of the reflection point on the vane pressure surface. This high- 
pressure region caused the flow to accelerate around the trailing edge and the stagnation 
point to periodically move from the upper to the lower surface of the vane over the course 
of a single blade-passing period. 

STATOR ROW UNSTEADY AERODYNAMICS 

Rotor Wake Generated Forcing Function to Stators 

The subsonic rotor wake generated forcing function is shown in Figure 16. 
Presented are the rotor relative Mach number, relative flow angle, absolute Mach number, 
absolute flow angle, and unsteady static pressure normalized by the compressor inlet total 
pressure for one complete rotor revolution. The subsonic rotor wakes are narrow 
compared to the rotor pitch, with blade-to-blade differences present in the phase-lock 
averaged waveforms. The blade-to-blade wake variability is large compared to the size of 
the wake deficit, with the relative Mach number deficits ranging from 13.6% to 17.7% of 
the free stream Mach number over one rotor revolution. 
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Figure 16. Subsonic rotor wake generated forcing function (AS/S=0.0) 

In the reference frame of the downstream stator, the rotor wakes manifest 
themselves mainly as absolute flow angle fluctuations, with the absolute Mach number 
fluctuations much smaller. In fact, the waveforms for the absolute Mach number and 
flow angle closely resemble the inverted relative flow angle and relative Mach number 
waveforms respectively. This causes the vane incidence angle to fluctuate from -15.0° to 
+1.9° over one rotor revolution, which is a considerable fluctuation. Also note that the 
variability in the rotor wake velocity deficits causes the maximum, or peak, phase-lock 
averaged incidence angle to the downstream stator to vary by as much as 2.8° over one 
rotor revolution, which will generate significant variability in the periodic stator loading. 

Also notice that the static pressure fluctuations are approximately 180° out-of- 
phase with the rotor wake velocity deficits. These static pressure fluctuations are 
attributed to the spinning acoustic modes generated by interactions between the stationary 
and rotating blade rows, with an infinite number of these spinning pressure patterns 
generated at harmonics of blade-pass frequency. These patterns are generated both 
upstream and downstream of the interacting blade rows, with the number of lobes and 
phase speed of each pattern set by the blade-vane count ratio. Only certain modes are cut- 
on and propagate unattenuated to the far field where they are perceived as discrete 
frequency noise, with the majority of the modes cut-off in which they decay exponentially 
with axial distance. In the near field, the effects of both the cut-on as well as the cut-off 
modes are present, with the superposition of a number of patterns rotating at different 
phase speeds resulting in a signal level that varies with circumferential position. 
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Additionally, since the probe is placed in the inter-stage region between the rotor and 
stator, both the downstream propagating rotor-IGV interaction modes as well as the 
upstream propagating rotor-stator modes are contained in the data since both sets of 
modes occur at blade-pass frequency harmonics. 

To investigate the spatial variation in the static pressure fluctuations generated by 
these interactions, the static pressure probe is traversed across the inlet to one full vane 
passage. The circumferential traverse used for this survey is located at top dead center 
90° (4.5 vane spacings) from the reference stator passage, with the results presented in 
Figure 17. Here AS/S denotes the circumferential location of the probe relative to the 
center of the reference stator passage measured in the direction of rotor rotation 
normalized by the stator vane-to-vane spacing. Thus, the probe is located at the same 
circumferential position relative to the downstream vane passages for AS/S=0 0 AS/S=- 
1.0, AS/S=-2.0, AS/S=-3.0, AS/S=-4.0, and AS/S=-5.0. 
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Figure 17. Circumferential variation in subsonic rotor wake unsteady static pressure 

However, the waveforms for AS/S=0.0, AS/S=-4.0, and AS/S=-5.0 are noticeably 
different, indicating that the unsteady static pressure field varies from vane-to-vane 
around the compressor annulus. The waveform character changes even more markedly as 
the probe is traversed across an individual stator passage, i.e., from AS/S=-4.0 to AS/S=- 
5.0.  In fact the waveform corresponding to AS/S=-4.5 has a visibly different harmonic 
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content than the waveforms at AS/S=-4.0 and AS/S=-5.0. These spatial variations are due 
to the superposition effect of the infinite number of modes generated at blade-pass 
frequency harmonics in the near field region between the rotor and stator where the 
measurements are made. Since these modes occur at the same frequency but travel at 
different phase speeds, they constructively and destructively interfere with one another 
they as they spiral around the compressor annulus, with the degree of interference 
dependent upon circumferential as well as axial location. 

The spatial periodicity of these acoustic interactions is over the entire annulus of 
the machine due to the unequal numbers of blades and vanes in the compressor, with the 
amplitude of the acoustic excitation to the stator varying from vane-to-vane around the 
compressor annulus. Time-accurate multi-blade row CFD simulations commonly scale 
the geometry such that the computational domain of each airfoil row is represented by at 
most a few passages. This greatly reduces the computation time and storage requirements 
but alters the fundamental periodicity of the blade row interaction phenomena, i.e., the 
characteristics of the interaction acoustic modes are drastically altered due to the 
interblade phase angle change. Thus, the impact of this assumption on the unsteady 
aerodynamic flow field must be considered when comparing the results of multi-blade 
row CFD analyses to the data presented herein. 

Analogous results for the transonic rotor speed are presented in Figure 18. The 
transonic rotor wakes are very broad and deep, with their circumferential extent spanning 
almost the entire rotor pitch. These characteristics are due to off-design operation of the 
current rotor, which features subsonic NACA 65 series airfoil profiles. The wake 
velocity deficits generated by transonic rotor operation are significantly deeper than those 
at the subsonic rotor speed, with the average wake deficit 25.7% of the free stream Mach 
number. Blade-to-blade wake variability is again present in the phase-lock averaged 
waveforms, with the rotor wake relative velocity deficits ranging from 23.6% to 26.7 % 
of the free stream Mach number over one rotor revolution. 

The absolute flow angle fluctuations to the downstream stator are also nearly 
sinusoidal and much more severe for the transonic rotor speed, with the vane incidence 
angle fluctuating from-23.20 to +2.0° over one rotor revolution. The rotor wake 
variability again causes the maximum, or peak, phase-lock averaged incidence angle to 
the downstream stator to differ by as much as 1.7° over of one rotor revolution. Also 
notice that the time-average vane incidence is nearly the same for both the subsonic and 
transonic rotor speeds (-6.5° versus -7.1°). However, the change is rotor speed has a 
marked impact on the time-variant characteristics of the stator incidence fluctuations. 

Transonic rotor operation also results in much larger static pressure fluctuations 
than those that occurred at part-speed. Here, the minimum static pressure occurs very 
near the wake centerline, with the peak-to-peak fluctuations around 4% of the compressor 
inlet total pressure. These static pressure fluctuations are again attributed to the spinning 
acoustic modes generated by blade row interactions. 

Figure 19 shows the circumferential variation in the unsteady static pressure. The 
changes in waveform character with probe location are similar to those noted for the 
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subsonic rotor speed, with the superposition field characterized by a signal which varies 
with circumferential position in the inter-stage region between the rotor and stator. 
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Figure 18. Transonic rotor wake generated forcing function (AS/S=0.0) 
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Stator Unsteady Aerodynamic Response 

The vane surface phase-lock averaged unsteady pressure envelopes along with the 
time-average pressure distributions for the subsonic and transonic rotor operating 
conditions are shown in Figure 20. For the subsonic rotor speed, the pressure fluctuations 
on the vane suction surface are smallest at the leading edge and increase to a maximum at 
30% chord, which corresponds to approximately the point at which the steady pressure 
gradient switches from favorable to adverse. The pressure fluctuations remain relatively 
constant between 30% and 80% chord, and then begin to decrease aft of 80% chord as the 
trailing edge is approached, with the maximum peak-to-peak pressure fluctuations around 
3% of the compressor inlet total pressure. The magnitude of the pressure surface 
unsteadiness, however, is nearly constant across the entire chord, with the peak-to-peak 
pressure fluctuations as large as 3.6% of the inlet total pressure. 

At the transonic rotor speed, the deeper rotor wake velocity deficits cause the 
periodic unsteadiness to increase significantly on both vane surfaces (note the difference 
in scales for the two rotor speeds). The vane suction surface unsteadiness is now highest 
in the leading edge region and decreases with chordwise distance. The suction surface 
unsteadiness is again considerably reduced aft of 30% chord, which corresponds 
approximately to the location at which the steady pressure gradient changes from 
favorable to adverse. These pressure fluctuations are very significant, with the peak-to- 
peak amplitudes as large as 10.3% of the compressor inlet total pressure in the leading 
edge region and decreasing to around 4% in the aft region of the vane. 
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Figure 20. Stator unsteady surface pressure envelopes 

The unsteadiness on the vane pressure surface at the transonic rotor operating 
condition follows a noticeably different trend than that which occurred at the subsonic 
rotor speed. Here the pressure fluctuations increase significantly from the leading edge 
and reach a maximum at 45% chord. Notice that the unsteadiness at this chordwise 
location is higher than that which occurs on the vane suction surface, with the peak-to- 
peak pressure fluctuations as large as 11.3% of the compressor inlet total pressure. Aft of 
this location, the unsteadiness attenuates slightly but is still very significant along the aft 
half of the vane. 

The steady vane incidence is nearly the same for both the transonic and subsonic 
rotor speeds (-6.5° versus -7.1°). However, the rotor wake characteristics are markedly 
different for the two speed regimes, with the subsonic rotor wakes narrow compared to 
the blade pitch while the transonic rotor wakes have much broader and deeper profiles 
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that are nearly sinusoidal in character. The impact of this on the vane response is 
twofold. First, the incidence angle fluctuations are much more severe at the transonic 
rotor speed, resulting in higher levels of periodic unsteadiness on both vane surfaces 
relative to those at the subsonic rotor speed. At part-speed, the stator incidence angle 
fluctuates from -15.0° to +1.9° while at the transonic rotor speed the stator incidence 
angle fluctuates from -29.8° to +2.4° over one rotor revolution. Thus, the transonic rotor 
wakes cause highly negative incidence angle swings that result in a high level of periodic 
unsteadiness on the pressure surface of the vane. 

The wake character also has a marked impact on the vane response due to 
unsteady phenomena associated with the intra-stator transport of the chopped rotor wake 
segments. In the stator reference frame, the rotor wakes have a slip velocity relative to 
the mean flow that causes the low momentum wake fluid to migrate across the vane 
passage and accumulate on the vane pressure surface as the chopped wake segments are 
convected downstream, Figure 21. 

The transonic rotor wakes are much broader and deeper than those associated with 
subsonic rotor flow, which results in more low momentum wake accumulating on the 
stator pressure surface during this transport process due to the higher slip velocity in the 
wake regions. The interaction of this low momentum wake fluid with the airfoil 
boundary layer thus results in significantly higher levels of pressure surface unsteadiness 
at the transonic rotor operating condition. The particle image velocimetry (PIV) data 
presented in Part I of this paper confirm this phenomena, and quantifies the stator vane- 
to-vane flow field differences at the subsonic and transonic rotor speeds which lead to 
vane response differences noted herein. 

Pressure Surface 

Time 

Time 

Suction Surface 

 Freestream Velocity 
Wake Velocity 

Time 

V 
-»•Time 

Figure 21. Intra-stator transport of chopped rotor wake segments 
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To gain insight into the evolution of the wake-generated periodic unsteadiness on 
the vane surfaces, the time-variant chordwise pressure distributions generated over one 
periodic cycle are examined. At the subsonic rotor speed, the time-variant vane surface 
pressure distributions for both vane surfaces resemble the time-average loading 
distributions throughout the cycle, with the entire surface of the vane responding to the 
incidence change resulting from the passing of the rotor wakes at each time instant, 
Figure 22. This behavior indicates that the vane response is mainly due to the time- 
variant airfoil circulation distribution resulting from the incidence fluctuations generated 
by the passing of the rotor wakes. Also notice that the pressure and suction surface 
responses are almost 180° out-of-phase with one another, with the minimum and 
maximum pressure difference across the chord occurring at approximately t/T=0.2 and 
t/T=0.7 respectively. 
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Figure 22. Time-variant stator loading at subsonic rotor speed 

Figure 23 presents analogous results for the transonic rotor operating condition. 
At t/T=0.5 there are two local depressions in the pressure surface loading at 30% and 
75% chord. These depressions are due to the chopped transonic rotor wake segments 
collecting on the vane pressure surface as they are transported through the vane passage. 
The rotor wake segments act as "negative jets" after they are chopped by the downstream 
stator vanes due to the wake slip velocity. As the wake fluid is transported from the 
suction to the pressure side of the passage, it creates a low-pressure region on the suction 
surface of the airfoil and a high-pressure region on the pressure surface at the 
impingement location.  Two counter rotating vortices are generated on each side of the 
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high-pressure region as the wake fluid interacts with the pressure surface of the vane at 
the impingement location. A similar set of counter rotating vortices are generated near 
the low pressure region on the suction surface of the airfoil as high momentum free 
stream fluid replaces the low momentum wake fluid that has migrated toward the 
pressure surface of the vane. 

These vortices are an additional source of unsteadiness for both airfoil surfaces, 
with their low-pressure cores causing local depressions in the surface pressure 
distribution on each side of the chopped wake segments as they are transported through 
the vane passage. The PIV data presented in Part I of this paper confirm that vortical 
flow structures are generated by the migration of the low momentum wake fluid across 
the vane passage, with these vortices convected along the vane pressure surface by the 
mean flow. It should be pointed out that these vortices are generated by nonlinear effects 
associated with the migration of wake fluid across the vane passage, with their presence 
not accounted for in linearized analyses which utilize the frozen gust assumption. 
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Figure 23. Time-variant stator loading at transonic rotor speed 

As the cycle progresses, the low-pressure troughs due to the vortex cores on each 
side of the chopped wake segment are convected downstream with the mean flow. Notice 
however, that distinct troughs are not present at each and every time instant. This may be 
an artifact of displaying the instantaneous loading at only ten discrete time instants, with 
significant changes also occurring during the time instants that were not displayed. 
Additionally, the chopped wake segments interact with the pressure surface boundary 
layer as the wakes collect on the pressure surface, with more and more low momentum 
wake fluid entrained within the boundary layer as the wakes convect further downstream. 
This process is highly nonlinear and dominated by viscous effects, with flow field 
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structures having time scales different from blade-passing events possibly generated by 
these interactions that are removed by the phase-lock averaging process. This interaction 
phenomenon was not evident at the part-speed operating conditions due to the narrow 
subsonic rotor wakes having a much lower velocity deficit and hence slip velocity. 

Notice that the effects of the low-pressure vortex cores are not evident in the vane 
suction surface loading distributions. Here the entire suction surface loading distribution 
is smooth at all ten time instants and there is no indication of the counter rotating vortices 
being convected along the suction surface of the vane. This may be due to the suction 
side vortices being generated away from the vane surface. Once the wake segment is 
chopped by the leading edge of the airfoil, the wake fluid begins its migration toward the 
pressure surface of the vane. This may cause the suction side vortices to be generated 
further and further away from the vane suction surface as the wakes convect downstream, 
which may be enhanced by the fact that the present airfoils are front-loaded. Thus, the 
vortices do not affect the suction surface loading and the character of the suction surface 
pressure distribution more closely resembles that which occurs at the subsonic rotor 
speed, which is in sharp contrast to the pressure surface unsteadiness. 

Notice also that the interaction of the rotor wakes with the vane row results in the 
generation of a pressure wave in the trailing edge region that propagates upstream along 
the suction surface of the vane as the cycle progresses. This wave was not present at the 
part-speed subsonic rotor operating condition and its effects are superimposed on the 
unsteady loading induced by the time-variant circulation distribution, with this pressure 
wave first evident along the aft region of the suction surface at t/T=0.6. The suction 
surface loading changes noticeably as this wave propagates upstream along the chord 
between t/T=0.6 and t/T=0.2, at which point the suction surface loading distribution 
remains similar throughout the remainder of the cycle. 

Stator Vane-to-Vane Flow Field 

The time-variant downstream stator mid-span vane-to-vane flow field is measured 
using PIV, with ensemble averaged snapshots of the periodic unsteady flow field 
generated by rotor-stator interactions presented for ten equally spaced increments over 
one blade-passing period. The time-average of the unsteady flow field is also presented, 
with this vector field calculated by arithmetically averaging the ensemble averaged flow 
field over one complete interaction cycle. Since it was not possible to obtain valid data at 
every point in the flow field, the time-average is calculated only for interrogation regions 
that had valid velocity vectors at all ten time instants. 

The time-average stator mid-span Mach number contours are shown in Figure 24 
for the subsonic and transonic compressor operating conditions respectively. These time- 
average PIV data are in excellent agreement with the steady surface Mach number 
distributions. Specifically, the steady surface Mach number distributions for the subsonic 
rotor speed indicate that the average inlet and exit Mach numbers are 0.30 and 0.25 
respectively, with the pressure surface Mach number nearly constant at 0.23 and the 
suction surface Mach number peaking at 0.38 at 30% chord. At the transonic rotor speed, 
the average inlet and exit Mach numbers determined from the pneumatic surface pressure 
data are 0.39 and 0.34, with the pressure surface Mach number nearly constant at 0.30 
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and the suction surface Mach number peaking at 0.51 at 30% chord. These values are in 
excellent agreement with the time-average PIV data for both rotor speeds. 
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Figure 24. Time-average stator flow field at subsonic rotor speed 

Two unsteady flow phenomena occur as the rotor wakes are chopped and 
transported through the downstream stator passages. First, the circulation around the 
stator vanes enhances the decay rate of the rotor wakes due to an inviscid straining of the 
wake fluid as the chopped wake segments are convected downstream, Figure 25. For an 
incompressible inviscid two-dimensional flow, Kelvin's theorem requires that the 
circulation associated with the incoming wake segment remain constant as it is 
transported through the vane passage. Thus, the length of the chopped wake segment 
increases and its width is reduced as it convects downstream to maintain the same 
vorticity. Since the velocity deficit is proportional to the width of the wake for a fluid 
with constant vorticity, the straining of the wake fluid by the vane row potential field 
causes the chopped wake segments to decay faster than they would behind an isolated 
blade row. This inviscid straining occurs in addition to viscous dissipation and is 
commonly referred to as wake recovery, which is a reversible process that reduces the 
viscous mixing losses. 

Second, the low momentum rotor wake fluid has a slip velocity relative to the free 
stream that causes it to drift across the vane passage and accumulate on the vane pressure 
surface as the chopped rotor wake segments are transported downstream, Figure 26. This 
slip velocity causes the low momentum rotor wake fluid to drift across the vane passage 
and collect on the airfoil pressure surface as the chopped wake segments are transported 
downstream. This results in a local broadening of the wake segment near the pressure 
surface and a thinning near the suction surface due to "negative jet" effects. 
Recirculating flow patterns are also generated as high momentum free stream fluid is 
drawn into the chopped wake segment near the suction surface to replace the low 
momentum wake fluid that has drifted across the passage. As the low momentum rotor 
wake fluid accumulates on the vane pressure surface, it will interact with the airfoil 
boundary layer and eventually end up appearing in the stator wake regions. 
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Figure 25. Inviscid wake recovery process for a stator row 
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Figure 26. Intra-stator transport of chopped rotor wake segments 

These unsteady phenomena are investigated by examining the downstream stator 
time-variant mid-span vorticity and axial Mach number contours at ten time instants over 
one blade-passing period. The time-variant vorticity field is shown in Figures 27 and 28 
for the subsonic and transonic rotor speeds respectively. The vorticity is calculated from 
the ensemble averaged velocity using central differencing and is normalized by the 
compressor inlet stagnation speed of sound and stator chord length, with the calculation 
performed only if there are valid velocity vectors present for all four neighboring 
interrogation areas. The shear flow in the rotor wake causes the vorticity to be negative 
on the suction side of the wake and positive on the pressure side. Thus, the chopped 
wake segments appear as alternating bands of positive and negative vorticity that extend 
across the vane passage and are convected downstream with the mean flow. 

The reduced frequency is defined as the ratio of the time it takes a fluid particle to 
convect through the vane row to the time scale of the wake-generated unsteadiness. 
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Thus, this parameter provides an indication of the number of chopped wake segments 
residing within the vane passage at any given instant in time. The reduced frequencies 
based on the mass averaged mid-span stator inlet velocity are 2.42 and 2.45 for the 
subsonic and transonic rotor speeds respectively, indicating that it takes approximately 
2.5 blade-passing periods for one chopped wake segment to be completely transported 
through the vane row. 
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Figure 27. Time-variant stator vorticity at subsonic rotor speed 
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Figure 28. Time-variant stator vorticity at transonic rotor speed 

For both rotor speeds, the rotor wake is in the process of being cut by the lower 
vane between t/T=0.5 and t/T=0.8. Notice that this wake was cut by the upper vane in the 
passage at an earlier time, with the blade-vane count ratio setting the spatial periodicity of 
the wake chopping and transport process. For the present geometry with 19 rotor blades 
and 18 stator vanes, the interblade phase angle is 380°. Thus, the rotor wake was cut by 
the upper vane 1.06 blade-passing periods earlier, with the resulting unsteady flow in the 
vane passage periodic at blade-pass frequency. 

After being cut by the vane, the chopped wake segment acts a "negative jet", with 
the slip velocity in the wake region causing low momentum wake fluid to drift across the 
vane passage and collect on the pressure surface as it convects downstream. The effects 
of this are first visible at t/T=0.8 for both rotor speeds, with the chopped wake segment 
becoming noticeably broader along the pressure surface of the lower vane and thinner 
near the suction surface of the upper vane in the passage. Both viscous dissipation and 
the inviscid straining of the wake fluid by the vane row potential field cause it to decay as 
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it is transported through the vane passage, with the vorticity of the wake segment thus 
reduced as the cycle progresses. 

The subsonic rotor wakes decay very rapidly after they are chopped and ingested 
into the stator passage. This decay is evident by examining the vorticity contours for the 
first chopped wake segment between t/T=0.8 and t/T=0.2, with the dispersion of the 
chopped wake segment very noticeable. The chopped wake segment continues to 
disperse as the cycle progresses, with both the wake width increasing and the vorticity 
decreasing considerably by the time it exits the stator passage 2.5 blade-passing periods 
after being initially cut. Note however, that even though the subsonic rotor wakes decay 
considerably as they are chopped and transported through the stator, the chopped rotor 
wake segments are still clearly evident downstream of the stator trailing edge. 

The chopped rotor wakes appear to disperse much more rapidly at the transonic 
rotor speed, and are not evident downstream of the stator trailing edge as they were for 
the subsonic compressor operating condition. This result is surprising considering that 
the transonic rotor wakes are much larger than those generated by subsonic flow, with the 
transonic rotor wake velocity deficit 25.7% of the free stream relative Mach number 
versus 15.2% at the subsonic rotor speed. Thus, it might be expected that the transonic 
rotor wakes would persist for longer distances downstream of the rotor. However, the 
reasons for the more rapid decay of the rotor wakes at the transonic rotor speed are due to 
unsteady flow effects. Specifically, the slip velocity in the rotor wakes causes low 
momentum fluid to drift across the stator passage as the chopped wake segments are 
transported downstream, with this rotor wake fluid accumulating on the vane pressure 
surface and thus appearing in the stator wake regions during the transport process. This 
unsteady intra-stator wake transport process is more significant at the transonic rotor 
speed due to the much deeper and broader rotor wakes generated by transonic compressor 
operation. 

This intra-stator wake transport process is further investigated by examining the 
axial Mach number contours for the subsonic and transonic rotor speeds, Figures 29 and 
30 respectively. Notice that the low velocity regions associated with the chopped wake 
segments do not extend across the entire passage as did the vorticity contours, with this 
evident in the data for both rotor speeds. This is due to the wake segments being cut by 
the upper vane 1.06 blade-passing periods earlier, with a significant portion of the low 
momentum wake fluid drifting toward the pressure surface during this time. Also recall 
that the chopped wake segments act as "negative jets" as they are transported 
downstream. Thus, high momentum free stream fluid is drawn into the wake segments 
on the suction side of the passage to replace the low momentum wake fluid that has 
drifted toward the pressure surface during this time interval. It is this transport process 
which causes the low velocity regions to be concentrated only on the pressure side of the 
passage. 
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Figure 29. Time-variant stator axial mach number at subsonic rotor speed 
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Figure 30. Time-variant stator axial mach number at transonic rotor speed 

At the subsonic rotor speed, the low velocity regions associated with the chopped 
wake segments are superimposed on the steady flow field, with the time-variant flow 
field outside of the wake regions very similar to the time-average flow field at each time 
instant. Additionally, very little low momentum rotor wake fluid accumulates on the 
stator pressure surface as the chopped wake segments are transported through the vane 
row. This is consistent with the surface pressure data presented which show the 
convection of the chopped wake segments through the vane passage have a low order 
effect on the vane response at the subsonic rotor operating condition. In fact, the stator 
response at this operating condition is mainly due to changes in the airfoil circulation 
distribution due to the incidence change associated with the passing of the rotor wakes. 

This is not the case for the transonic rotor speed, in which the higher slip velocity 
in the rotor wakes causes a significant amount of low momentum wake fluid to 
accumulate on the vane pressure surface as the chopped wake segments convect 
downstream, Figure 14. Also notice that distinct low velocity regions associated with the 
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various chopped wake segments are only evident in the leading edge region at the 
beginning of the wake chopping cycle between t/T=0.5 and t/T=0.1. For times t/T=0.2 to 
t/T=0.5, the low velocity regions of the two adjacent chopped wake segments have begun 
to merge and encompass a significant portion of the airfoil pressure surface. This is due 
to the chopped wake segments becoming broader as they convect further downstream, 
with more and more low momentum wake fluid accumulating on the vane pressure 
surface as the cycle progresses. This is again consistent with the surface pressure data 
presented in Part II of this paper, with the intra-stator transport of the chopped rotor wake 
segments through the vane passage significantly impacting the character of the vane 
pressure surface response at the transonic rotor speed. 

To examine the detailed unsteady flow field generated by the accumulation of low 
momentum rotor wake fluid on the stator vane pressure surface at the transonic rotor 
speed, PIV images were also acquired focusing on the pressure surface leading edge flow 
field. The wake migration process is depicted in Figure 31, which shows the unsteady 
velocity vectors superimposed on the time-variant axial Mach number contours for the 
transonic rotor operating condition. This unsteady velocity field was calculated by 
subtracting the time-average velocity and shows how the steady flow field is perturbed at 
each time instant during the wake chopping cycle. 

The slip velocity is largest prior to the wake being cut by the vane (t/T=0.4). 
Once the wake has been cut, this slip velocity causes the low momentum rotor wake fluid 
to accumulate on the airfoil pressure surface as the chopped wake segment is transported 
downstream. Notice that the wake slip velocity is reduced as the cycle progresses and the 
chopped wake segment is convected further downstream. This is due to both viscous 
dissipation and wake recovery effects enhancing the rotor wake decay rate, as can be seen 
by examining the length of the velocity vectors in the wake region as the cycle progresses 
onward from t/T=0.5. 

As the wake fluid collects on the vane pressure surface, counter-rotating vortices 
that are evident throughout the entire cycle are generated near the airfoil. These vortices 
are convected downstream along with the chopped wake segments and are an additional 
source of unsteady aerodynamic excitation to the stator vanes. Recirculating flow 
patterns are also established away from the vane surface on each side of the chopped 
wake segment as high momentum free stream fluid is drawn into the wake region to 
replace the low momentum wake fluid which has migrated toward the airfoil pressure 
surface. Also notice that these vortices actually appear to distort the chopped wake 
segment. This distortion, however^ may be an artifact of a large radial velocity 
component in the convected wake regions that cannot be measured using conventional 
two-dimensional PIV techniques that only measure the axial and tangential velocity 
components. These three-dimensional effects may also be responsible for the lack of data 
near the vane pressure surface, with the radial velocity component at the impingement 
point on the airfoil surface probably significant. 
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Figure 31. Unsteady stator pressure surface velocity vectors at transonic rotor speed 

Conclusions 

Two unsteady flow phenomena occurred as the rotor wakes were chopped and 
transported through the downstream stator passages. First, the circulation around the 
stator vanes enhanced the decay rate of the rotor wakes due to an inviscid straining of the 
wake fluid as the chopped wake segments were transported through the vane row. This 
inviscid stretching, or wake recovery, occurred in addition to viscous dissipation and 
enhanced the rotor wake decay rate. Second, the chopped rotor wake segments acted as 
"negative jets" after being cut by the downstream vanes. This was due to the slip velocity 
in the wake region causing low momentum wake fluid to drift across the stator passage 
and collect on the vane pressure surface as the chopped rotor wake segments were 
transported through the vane row. 

The rotor wakes decayed very rapidly after they were chopped and ingested into 
the downstream stator passage, but were still evident downstream of the vane trailing 
edge for the subsonic rotor operating condition. This was not the case at the transonic 
rotor speed, in which the chopped rotor wakes dispersed much more rapidly and were no 
longer evident by the time they reached the stator exit. This increased decay rate was due 
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to the much higher levels of unsteadiness at the transonic operating condition. In fact, 
even though the rotor wakes were much deeper at the transonic rotor speed, the higher 
slip velocity in the wake region caused more low momentum fluid to drift across the 
stator passage and accumulate on the vane pressure surface as the chopped rotor wake 
segments were transported downstream. 

As the low momentum wake fluid collected on the vane pressure surface, counter- 
rotating vortices were generated on each side of the chopped wake segment. These 
vortices were converted downstream by the mean flow and acted as an additional source 
of unsteadiness to the vane pressure surface. It should be noted that the presence of these 
vortices are not accounted for in linearized analyses that utilize the frozen gust 
assumption since they are generated by a nonlinear process. These interaction 
phenomena were not evident in the PIV data at the part-speed compressor operating 
conditions due to the subsonic rotor wakes having a much lower velocity deficit and 
hence slip velocity, with the intra-stator wake transport process dominated by the 
convective action of the inviscid free stream flow at the subsonic rotor speed. 

Finally, since the rotor wake fluid ultimately tends to appear in the stator wake 
regions, the characteristics of the wake-generated forcing function to a downstream rotor 
in a multistage compressor would be significantly impacted by this unsteady intra-stator 
wake transport process. Thus, these multi-blade row interaction effects must be 
accounted for to accurately predict the forced response characteristics of multistage 
turbomachinery. 

Rotor speed had a marked impact on the characteristics of the wake generated 
forcing function to the downstream stator. The subsonic rotor wakes generated at the 
part-speed compressor operating condition were characterized by narrow wake profiles 
relative to the blade pitch with moderate velocity deficits. Transonic rotor operation 
resulted in much broader and deeper wake profiles that were nearly sinusoidal in 
character. This was due to off-design operation of the current rotor. In the absolute 
reference frame of the downstream stator, the passing of the rotor wakes caused 
significant fluctuations in the incidence angle to the downstream vane row for both rotor 
speed regimes, with the fluctuations in the absolute inlet Mach number much smaller in 
comparison. 

Significant static pressure fluctuations were also measured at the stator inlet 
which were attributed to the spinning acoustic modes generated by both rotor-IGV and 
rotor-stator interactions. The spatial periodicity of these acoustic interactions was over 
the entire annulus of the machine due to the unequal numbers of blades and vanes in the 
compressor, with the amplitude of the acoustic excitation to the downstream stator 
varying from vane-to-vane around the compressor annulus. This spatial variation was 
due to the superposition of the infinite number of modes that occur in the near field at 
harmonics of blade-pass frequency but travel at different phase speeds as they spiral 
around the compressor annulus, with the degree of interference dependent upon 
circumferential position. 

The steady vane incidence was nearly the same for both the subsonic and 
transonic rotor speeds, with the steady stator mid-span surface pressure distributions 
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nearly scaling with the change in rotor speed squared. The stator unsteady aerodynamic 
response was, however, significantly different for the two rotor speed regimes due to the 
markedly different rotor wake characteristics associated with transonic rotor operation 
For the subsonic rotor speed, the downstream stator unsteady aerodynamic response was 
mainly due to changes in the airfoil circulation distribution, with the maximum pressure 
fluctuations occurring at nearly the same instant in time across the entire chord. Here the 
velocity fluctuations associated with the convection of the chopped wake segments 
through the vane passage had small order effect on the vane response. 

This was not the case for the transonic rotor speed in which unsteady phenomena 
associated with the intra-stator transport of the chopped rotor wake segments were 
significant. Li the stator reference frame, the rotor wakes have a slip velocity relative to 
the mean flow that causes the low momentum wake fluid to migrate across the vane 
passage and accumulate on the vane pressure surface as the chopped wake segments are 
transported downstream. The transonic rotor wakes were much broader and had a higher 
slip velocity than those associated with subsonic rotor operation, which resulted in more 
low momentum wake accumulating on the stator pressure surface during this transport 
process. r 

The interaction of the transonic rotor wakes with the downstream vane row also 
resulted m the generation of an upstream propagating pressure wave in the vane trailing 
edge region. This pressure wave propagated upstream along the vane suction surface as 
the cycle progressed, with its effects superimposed on the unsteady loading induced by 
the time-variant circulation distribution. The suction surface loading changed noticeably 
as this wave propagated upstream along the airfoil chord. This phenomenon was not 
evident at the subsonic rotor speed, in which the vane response was predominantly due to 
changes m the airfoil circulation resulting from the incidence angle fluctuations 
associated with the passing of the rotor wakes. 

STEADY LOADING EFFECTS ON ROTOR-STATOR INTERACTIONS 
Rotor Wake Generated Forcing Function 

The rotor wakes are the primary unsteady aerodynamic excitation to the 
downstream stator. The rotor wake velocity deficit causes the absolute velocity and flow 
angle to the stator vanes to fluctuate over a blade-passing period. Rotor-IGV and rotor- 
stator interactions also result in the generation of spinning acoustic modes at blade-pass 
frequency harmonics that propagate both upstream and downstream. The unsteady 
aerodynamic forcing function to, the downstream stator is thus characterized by 
measurements of both the rotor wake velocity deficits and the unsteady static pressure 
fluctuations at the stator inlet. 

The effect of steady compressor loading on the rotor wake generated forcing 
function is shown in Figures 32-34. Presented are the rotor relative Mach number, 
relative flow angle, and unsteady static pressure normalized by the inlet total pressure for 
one complete rotor revolution. The transonic rotor wakes are very broad and deep for all 
three operating conditions, with their circumferential extent spanning almost the entire 
rotor passage, Figure 32. These characteristics are due to off-design operation of the 
current rotor which features subsonic NACA 65 series airfoil profiles.   The transonic 
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rotor wake velocity deficits for all three loading conditions are very large, with the 
average wake deficit 25.4% of the free stream Mach number at the low, 25.7% at the 
nominal, and 32.2% at the highly loaded operating conditions. Also, there is significant 
blade-to-blade wake variability. This is most notable at the lowest loading condition 
since this is where the rotor is most off-design, i.e., the rotor inlet Mach number is 
highest. Also note that the blades which generate the largest and smallest wakes change 
with compressor loading indicating that the wake variability is aerodynamic in origin. 

Figure 32. Steady loading effect on rotor wake relative Mach number 

The rotor wake relative flow angle fluctuations are shown in Figure 33. The 
under-turning in the wake region increases as the compressor loading is increased, with 
the maximum rotor relative exit flow angle fluctuations across the wake 4.1°, 4.6°, and 
7.3° for the low, nominal, and highly loaded operating conditions. Significant blade-to- 
blade differences are also evident. 
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Figure 34 presents the unsteady static pressure fluctuations at the stator inlet as a 
function of compressor loading, with sharp pressure fluctuations associated with the 
passing of the 19 rotor blades clearly visible. These static pressure fluctuations are 
attributed to the spinning acoustic modes generated by both rotor-IGV and rotor-stator 
interactions and represent a significant source of unsteady aerodynamic excitation to the 
downstream stator vanes. Additionally, since the probe is in the rotor-stator inter-stage 
region, both the downstream propagating rotor-IGV interaction modes as well as the 
upstream propagating rotor-stator modes are contained in the data since both sets of 
modes occur at blade-pass frequency harmonics. 

0.08 

Figure 34. Steady loading effect on rotor wake unsteady static pressure 

Stator Unsteady Aerodynamic Response 

Figure 35 displays the corresponding phase-lock averaged stator unsteady surface 
pressure envelopes for the low, nominal, and highly loaded compressor operating 
conditions. For all three loading conditions, the vane suction surface unsteadiness is 
highest in the leading edge region and decreases with chordwise distance. At the low and 
nominal operating conditions, the unsteadiness is considerably reduced aft of 45% chord 
which corresponds approximately to the location at which the steady pressure gradient 
changes from favorable to adverse. These pressure fluctuations are very significant, with 
the peak-to-peak amplitudes as large as 9.6% and 10.3% of the compressor inlet total 
pressure m the leading edge region and decreasing to around 4% in the aft region of the 
vane for the low and nominal loading conditions respectively. The chordwise attenuation 
of the unsteadiness is much less pronounced at the high loading condition. 
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Figure35. Unsteady stator surface pressure envelope 

The unsteadiness on the vane pressure surface follows a noticeably different trend 
than that noted for the suction surface. Here the pressure fluctuations increase 
significantly from the leading edge and reach a maximum at 45% chord for all three 
loading conditions. Notice that the periodic unsteadiness at this chordwise location is 
considerably higher than that which occurs on the vane suction surface. Aft of this 
location, the unsteadiness attenuates slightly but is still very significant. Also note that 
much higher levels of unsteadiness are generated in the vane leading edge region for the 
low operating line due to the highly negative incidence angle variations. 

Time-Variant Stator Flow Field 

The effect of steady loading on the time-average stator mid-span Mach number 
contours is shown in Figure 36, with this vector field calculated by arithmetically 
averaging the phase-lock averaged PIV data over one complete rotor-stator interaction 
cycle. As the compressor flow rate is reduced and the loading increases, a low velocity 
region forms on the pressure surface of the vane. This low velocity region first becomes 
evident at the nominal operating condition and is even more significant at the highly 
loaded condition. It will be shown that this low velocity region forms as a result of 
unsteady flow processes associated with the transport of the chopped rotor wake segments 
through the vane passage. 

Nominal Loading High Loading 

Figure 36. Compressor loading effect on time-average absolute Mach number 

The time-variant vorticity field at a time instant for all three loading conditions is 
shown in Figure 37. The shear flow in the rotor wake causes the vorticity to be negative 
on the suction side of the wake and positive on the pressure side. Thus, the chopped rotor 
wake segments appear as alternating bands of positive and negative vorticity that extend 
across the vane passage and are convected downstream with the mean flow. 
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The fundamental physics of the wake chopping and transport process are very 
similar for all loading conditions. As the compressor loading is increased, a region of 
high vorticity forms near the pressure surface of the vane, with this region extending from 
the leading to the trailing edge of the vane at the highly loaded operating condition. This 
region is also present at the nominal loading condition but to a much lesser extent. This 
region is attributed to the slip velocity in the rotor wakes causing the low momentum 
wake fluid to drift across the vane passage and accumulate on the pressure surface as the 
chopped wake segments are transported downstream. This results in the rotor wake fluid 
tending to appear in the stator wakes, with the amount of entrained rotor wake fluid 
increasing as the compressor loading is increased. 

Low Loading Nominal Loading High Loading 
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Figure 37. Effect of Compressor Loading on the Time-Variant Vorticity (t/T=0.0) 

The reduced frequency is defined as the ratio of the time it takes a fluid particle to 
convect through the vane row to the time scale of the wake-generated unsteadiness. 
Thus, this parameter provides an indication of the number of chopped wake segments 
residing within the vane passage at any given instant in time. The reduced frequencies 
based on the mass averaged mid-span stator inlet velocity are 2.27, 2.46, and 2.65 for the 
low, nominal, and highly loaded operating conditions respectively, indicating that it takes 
between two and three blade-passing periods for one chopped wake segment to be 
completely transported through the vane passage. The combination of a longer transport 
time and a higher slip velocity due to deeper wakes at the higher loading conditions thus 
results in more low momentum rotor wake fluid accumulating on the stator pressure 
surface during the rotor-stator interaction cycle. It is the interaction of this low 
momentum rotor wake fluid with the airfoil boundary layer that generates the high 
vorticty region near the pressure surface of the vane. 

The increased compressor loading also causes the rotor wake segments to disperse 
more rapidly after they are chopped and ingested into the vane passage, with the enhanced 
decay rate due to both increased viscous dissipation and stronger inviscid wake recovery 
effects. The enhanced wake recovery is due to the airfoil circulation causing the chopped 
wake segments to convect past the suction surface faster than they do past the pressure 
surface, with the amount of wake stretching increasing with compressor loading. This 
can be seen by comparing the snapshots of the flow field at each of the three loading 
conditions, with the tilting of the first chopped wake segment increasing with compressor 
loading due to the higher stator vane circulation, with this wake stretching partly 
responsible for the enhanced decay rate. 
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The effect of compressor loading on the axial Mach number contours is shown in 
Figure 38 for single time instant, with the characteristics of the unsteady flow field 
similar for all three operating conditions. Increasing the compressor loading results in 
both deeper rotor wake velocity deficits and lower convection velocities due to the 
decreased flow rate through the machine. Thus, more low momentum rotor wake fluid 
accumulates on the stator pressure surface as the chopped wake segments are transported 
downstream, as evident by the increased size of the low velocity region near the vane 
pressure surface for the higher loading conditions. The extent of this low velocity region 
increases with compressor loading due to both the higher wake slip velocity and the fact 
that the chopped wake segments reside in the passage longer due to the reduction in flow 
rate. 

Low Loading Nominal Loading High Loading 

Figure 38. Compressor loading effect on the time-variant axial Mach number (t/T=0.0) 

At the highest loading condition, this low velocity region extends from the leading 
to the trailing edge of the vane pressure surface. Recall that this low velocity region was 
also evident in the time-average Mach number contours for this operating condition and 
to a lesser extent at the nominal loading condition. Thus, the unsteady wake chopping 
and transport processes that occur within multistage turbomachines can significantly 
affect the time-average flow through downstream airfoil rows. Additionally, since the 
rotor wake fluid tends to appear in the stator wakes, this intra-stator wake transport 
process can significantly affect the character of the wake-generated forcing function to a 
downstream rotor in a multistage turbomachine. 

To examine the detailed unsteady flow field generated by the wake chopping and 
transport process, PIV images were also acquired focusing on the stator leading edge 
region flow field near the vane pressure surface. Figure 39 shows the unsteady velocity 
vectors superimposed on the time-variant axial Mach number contours including the 
effects of steady loading for the same time instant at which the passage flow data were 
presented. This unsteady velocity field was calculated by subtracting the time-average 
velocity and shows how the steady flow field is perturbed at each time instant throughout 
the rotor-stator interaction cycle. 

Figure 39 shows the effects of steady loading on the unsteady velocity vectors, 
with the vectors clearly showing the high slip velocity associated with each of the 
chopped rotor wake segments. Once the wake has been cut, this slip velocity causes the 
low momentum rotor wake fluid to drift across the vane passage and accumulate on the 
airfoil pressure surface as the chopped wake segment is transported downstream. As the 
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wake fluid collects on the vane pressure surface, counter-rotating vortices are generated 
near the airfoils which are present throughout the entire cycle. These vortices are 
convected downstream along with the chopped wake segments and are an additional 
source of unsteady aerodynamic excitation to the stator vanes. Recirculating flow 
patterns are also established away from the vane surface on each side of the chopped 
wake segment as high momentum free stream fluid is drawn into the wake region to 
replace the low momentum wake fluid which has migrated toward the airfoil pressure 
surface. 

As the compressor loading is increased, the size of the low velocity region that 
forms as the wake fluid collects on the pressure surface also increases. This causes the 
counter-rotating vortices to be generated further away from the airfoil surface as can be 
seen comparing the snapshots of the flow field for the three loading conditions. Also 
notice that at the nominal and highly loaded operating conditions these vortices actually 
appear to distort the chopped wake segment. However, this distortion may be an artifact 
of a large radial velocity component in the wake regions that cannot be measured using 
conventional two-dimensional PIV techniques. 

Low Loading Nominal Loading High Loading 

Figure 39. Compressor loading effect on unsteady velocity vectors (t/T=0.0) 
Conclusions 

For all three loading conditions the suction surface unsteadiness was highest in the 
leading edge region and decreased with downstream distance. The pressure surface 
unsteadiness followed a noticeably different trend. Here the pressure fluctuations 
increased significantly from the leading edge and reached a maximum at 45% chord for 
all three loading conditions. Aft of this location, the unsteadiness attenuated slightly but 
was still very significant along the aft half of the vane. Increasing the compressor loading 
resulted in higher levels of unsteadiness on both vane surfaces, with the peak-to-peak 
pressure fluctuations very significant. 

The PIV data indicated that the high levels of pressure surface unsteadiness were 
due to viscous effects associated with the intra-stator transport of the chopped rotor wake 
segments through the vane row. Specifically, the low momentum rotor wake fluid had a 
slip velocity relative to the free stream that caused it to drift across the vane passage and 
accumulate on the vane pressure surface as the wakes convected downstream. As the 
compressor loading was increased, the extent of the low velocity region on the vane 
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pressure surface became larger due to the deeper wakes and lower convection velocities 
at the higher loading conditions. 

Counter-rotating vortices were generated on each side of the chopped wake 
segment as the low momentum wake fluid accumulated on the vane pressure surface. 
These vortices were converted downstream along with the chopped wake segments and 
were an additional source of unsteady aerodynamic excitation to the stator vanes. 
Recirculating flow patterns were also established away from the vane surface on each side 
of the chopped wake segment as high momentum free stream fluid is drawn into the wake 
region to replace the low momentum wake fluid that had migrated toward the airfoil 
pressure surface. As the compressor loading was increased, the size of the low velocity 
region that formed on the vane pressure surface increased, causing the counter-rotating 
vortices to be generated further away from the airfoil surface. 

The PIV data also illustrated the effects of steady loading on the inviscid wake 
recovery process. This was due to the circulation around the stator vanes enhancing the 
decay rate of the rotor wakes due to an inviscid straining of the wake fluid as the chopped 
wake segments were transported through the vane row. This inviscid stretching occurred 
in addition to viscous dissipation and is a reversible process that causes the rotor wakes to 
decay faster than they would in isolation. This phenomenon became more pronounced as 
the flow rate was reduced, with the increased vane loading partially responsible for 
causing the wakes to disperse more rapidly. 
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ROTOR WAKE VARIABILITY & ITS EFFECT ON VANE RESPONSE 

Rotor wakes are the aerodynamic forcing function to the downstream stator 
However these wakes are not steady in the rotor relative frame due to the interaction of 
the rotor with the upstream IGV row and the potential field of the downstream stator row 
Io quantify these multistage interaction effects on the rotor wake, the IGV row is 
circumferentially clocked over one vane spacing relative to the stationary instrumentation 
and downstream stator at a corrected speed of 15,000 rpm. Since the data acquisition is 
always initiated at the same absolute rotor shaft position, the temporal variations over one 
complete rotor revolution measured by the stationary probes are generated by the same 
rotor blades, regardless of IGV clocking position. However, by clocking the IGV row 
the interaction between the IGV and the rotor is shifted in the time domain, thereby 
resulting in different rotor wake characteristics. Thus, multistage interaction effects are 
assessed by comparing the time-variant signals from the stationary probes at the different 
IGV clocking positions. In the unclocked position, the stacking axes of the IGV and the 
stator airfoils coincide at the same circumferential position, Figure 40. 
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Figure 40. Stage geometry showing instrumentation locations and vane clocking 

Figures 41-43 show the rotor exit time-variant mid-span velocity, flow angle, and 
static pressure over one rotor revolution as a function of IGV clocking position for 20° 
IGV stagger. This is the inlet flow field to the vane row, with the 19 rotor-blade wakes 
readily apparent. The 1st blade wake is also shown at the beginning of the second rotor 
revolution to illustrate that the fundamental temporal periodicity of these multistage 
interactions is over one complete rotor revolution. 

Both the rotor blade wake deficits and the free stream velocities change noticeably 
as the IGV row is clocked, Figure 41. This is attributed to multistage interactions, with 
the chopped IGV wake segments most visible in the free stream region at the %-cycle 
IGV position. The wake velocity deficit is similar for the unclocked and 1/2-cycIe IGV 
positions, with the wakes for the 1/2 cycle position narrower than those in the unclocked 
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position. The wakes for the lA- and %-cycle IGV positions are also similar, with the 
velocity deficits approximately 5% smaller than those in the unclocked position. The V2- 
cycle IGV data also reveal a very interesting phenomenon. Namely, the magnitudes of 
the velocity deficits are nearly the same as those in the unclocked position, but the blade- 
to-blade wake variability is markedly different. In the unclocked position blade-to-blade 
variability is apparent. However, in the 'A-cycle IGV position, the wakes are fairly 
uniform from blade-to-blade except for a rogue wake with a velocity deficit roughly 2.5% 
larger than the other blades between the 17th and 18th blade pass periods. This rogue 
wake is also evident in the %- cycle IGV clocking position and to a lesser extent in the VA- 
cycle position. Also, the free stream velocity magnitude is similar for the unclocked and 
the full-cycle IGV positions. However, the waveforms exhibit small differences, with the 
suction side of the rotor blade wake thicker in the unclocked position. Note that for each 
clocking position the temporal periodicity is one complete rotor revolution, with the wake 
generated by the 1st blade identical for the 1st and 2nd rotor revolutions. 
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Figure 41. Velocity magnitude as a function of IGV clocking, 0igv= 20°, Nc= 15,000 rpm 
J 

Figure 42 shows that blade-to-blade wake differences in the absolute flow angle 
of up to 3° exist at each IGV clocking position. However, this wake variability as well as 
the magnitudes of the flow angle variations are very similar for each IGV clocking 
position, not exhibiting the differences seen in the velocity data. The most notable 
difference is in the time-average flow angle that varies from -0.9° to -2.6° as the IGV is 
clocked over one cycle. Also, the time-average flow angle is different for the unclocked 
and full-cycle positions, indicating that the fundamental spatial periodicity is over the 
entire compressor annulus and not just a single vane spacing. 
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Figure 42. Flow angle as a function of IGV clocking, 9igv = 20°, Nc = 15,000 rpm 

The static pressure coefficient data of Figure 43 were acquired 66% rotor chord 
downstream of the rotor. Hence, the steady rotor potential-flow field is expected to be 
negligible and not contribute to the unsteady static pressure. However, the data exhibit 
large pressure perturbations at blade-pass-frequency harmonics. Also, both the waveform 
character and its phase change with IGV clocking position, with the waveforms for the 
unclocked and full cycle IGV positions significantly different. 

These pressure perturbations are attributed to acoustic interactions. Rotors and 
stetors interact and generate spinning acoustic modes at multiples of blade-pass 
frequency. Depending on the axial wave number, these modes either decay exponentially 
or propagate unattenuated. These interactions lead to frequency shifting and mode 
scattering, with a single excitation frequency in the rotor frame producing a multiplicity 
of frequencies and interblade phase angles in the stator frame. 

That the static pressure waveforms differ at the unclocked and full-cycle IGV 
positions supports the hypothesis that these pressure perturbations are due to acoustic 
interactions, i.e., the pressure perturbations due to these spinning acoustic modes vary 
with circumferential position and depend upon the mode order. The clocking of the IGV 
row results in a shifting of the IGV-rotor interaction in the time-domain. Hence the 
phase of the acoustic modes generated by this IGV-rotor interaction are also shifted In 
addition, the interaction between the rotor and downstream stator generates a second set 
of acoustic modes, with the phase of these modes independent of IGV clocking position 
Since the probe measures the total interaction field, both sets of acoustic interaction 
modes are contained in the data, with possible constructive or destructive interference 
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between the two sets of modes occurring as the IGV is clocked over one cycle. Thus, this 
multistage interaction also contributes to the rotor wake differences resulting from IGV 
clocking. 
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Figure 43. Static pressure as a function of IGV clocking, 0igv = 20°, Nc = 15,000 rpm 

Figures 44-46 show analogous results for the 10° IGV stagger. The rogue wake 
is more pronounced and clearly evident at all IGV clocking positions, with its velocity 
deficit nearly twice that of the other wakes in the unclocked position. The free stream 
region ripples are the chopped IGV wake segments, which are much more pronounced 
than in Figure 41. This is due to the IGV incidence increase from -3.4° to -13.4° in going 
from the 20° to the 10° IGV stagger resulting in larger IGV wakes. At the 3/4-cycle IGV 
position, these chopped IGV wake segments have actually merged with the rotor wakes, 
resulting in a markedly different wake profile from those at the other clocking positions. 
Also, the unclocked and full cycle IGV results are not identical, with the deficits 
associated with the wakes of the 3rd, 11th, and 14th blades differing. The temporal 
periodicity at each clocking position is again over one complete rotor revolution, with the 
spatial periodicity over the entire annulus due to the differences noted for the unclocked 
and full cycle IGV positions. The rotor exit absolute flow angle variability is nearly 
independent of IGV clocking, Figure 46. However, the flow angle fluctuations are about 
1° larger for the 1/2 cycle versus the other IGV clocking positions. The time-average 
flow angles for the clocked and full cycle IGV positions are also identical, in contrast to 
the 20° IGV stagger results. 
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Figure 44. Velocity magnitude as a function of IGV clocking, 0igv= 10°, Nc= 15,000 rpm 
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Figure 45. Flow angle as a function of IGV cocking, 9j  = 10°, Nc= 15,000 rpm 
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Figure 46 shows the rotor exit unsteady static pressure coefficient as a function of 
IGV clocking position. As per the 20° IGV stagger, the waveform character and phase 
change with IGV clocking. However, the waveforms for the unclocked and full cycle 
positions are nearly identical and the pressure fluctuations are larger than those at the 20° 
IGV stagger. Also, both the character and phase of the %- and full-cycle waveforms are 
similar to the 20° IGV stagger unclocked and 1/4-cycle positions of Figure 43. 
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Figure 46. Static pressure as a function of IGV clocking, 9igv= 10°, Nc= 15,000 rpm 

Vane Unsteady Aerodynamic Response 

The unsteady aerodynamic response of the downstream vane row over one 
complete rotor revolution is also examined. To illustrate the fundamental temporal 
periodicity, the response data are presented for 20 rotor blade pass periods. These 
detailed response data are acquired at corrected speeds of 15,000 and 18,000 rpm for IGV 
staggers of 10° and 20° with the IGV row in the unclocked position. The steady vane 
pressure distributions are presented in' Figure 47. The pressure distributions for angles- 
of-attack of -1.0° and 8.5° are in good qualitative agreement with the results obtained in a 
linear oscillating cascade with the airfoils staggered at 60°. 
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Figure 47. Steady vane pressure distributions 

Figures 48 and 49 show the rotor wake generated forcing function and the 
resultant vane row unsteady aerodynamic response at corrected speeds of 15,000 and 
18,000 rpm for the 20° IGV stagger. Presented are the rotor wake velocity deficit, flow 
angle, and static pressure together with the resulting vane unsteady lift and moment with 
the two speeds corresponding to design (subsonic) and off-design (transonic) rotor flow. 

At 15,000 rpm, the rotor wake velocity deficit and flow angle variations are on the 
order of 15% and 12°, with blade-to-blade wake variability of approximately 5% and 2° 
Figure 48. The stator response exhibits considerable variability over one complete rotor 
revolution, most notable in the unsteady lift. Also, the responses over the 1st and last 
(20 ) blade pass periods are identical. This shows that blade-to-blade wake variability 
results in variability in the unsteady aerodynamic response of a downstream row, with the 
fundamental periodicity of both the forcing function and the resultant vane response one 
complete rotor revolution. Also, the shape and phase of the unsteady lift and moment 
waveforms closely resemble the unsteady static pressure measured 18.75% stator chord 
upstream of the vane. This suggests that part of the static pressure variation is indeed due 
to an acoustic interaction generated by the stator response to the rotor wakes. 

- At 18,000 rpm, the rotor wake velocity deficit is much more erratic, with the 
blade-to-blade wake differences of the same magnitude as the wakes themselves, Figure 
49. The flow angle variation is much more uniform, but the profiles differ from blade-to- 
blade and are much wider than at 15,000 rpm. The stator response as well as the unsteady 
static pressure upstream of the vane also exhibit erratic behavior, with the variability 
much more pronounced than at 15,000 rpm. The erratic vane response is attributed to the 
erratic behavior of the forcing function, with the temporal periodicity over one complete 
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rotor revolution. Again, the phase and shape of the unsteady static pressure upstream of 
the vane closely resemble the vane unsteady aerodynamic response. 
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Figure 48. Rotor wake and vane response, AS/Sigv= 0.00, 0igv= 20°, Nc= 15,000 rpm 'igv 
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Figure 49. Rotor wake and vane response, AS/Sigv= 0.00,0igv= 20°, Nc= 18,000 rpm 
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Figures 50 and 51 show the rotor wake and resultant stator vane unsteady 
aerodynamic response at corrected speeds of 15,000 and 18,000 rpm for the 10° IGV 
stagger. The rogue wake is clearly evident at 15,000 rpm, with the velocity deficit nearly 
twice as large as the other wakes, Figure 50. However, the rogue wake flow angle 
variation is the same as the other wakes. In fact, there is considerable variability in the 
velocity deficit but the flow angle is fairly uniform from blade-to-blade. There is also 
large variability in the vane response, again most pronounced for the unsteady lift. 
However, the stator does not respond to the rogue wake. This may be due in part to the 
signal conditioning, with the pressure transducer signals high-pass filtered at 500 Hz and 
the rogue wake having a passing frequency of 250 Hz. Also, the responses for the first 
and last (20 ) blade pass periods differ slightly. This may be due to errors associated 
with the integration of the discrete pressure data and also the phase-lock averaging 
procedure, with 500 ensembles possibly insufficient to average out all random 
unsteadiness due to the high steady vane loading at this IGV stagger. 
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Figure 50. Rotor wake and vane response, AS/Sigv= 0.00,0igv= 10°, Nc= 15,000 rpm 

At 18,000 rpm, the wakes are wider and deeper, Figure 51. However, the rotor 
exit flow is not as erratic as at 20° IGV stagger. This is because the rotor inlet relative 
Mach number is lower at the 10° IGV stagger due to less inlet pre-swirl. The rogue wake 
is also much less pronounced, with the rogue wake wider but the velocity deficit only a 
few percent larger than the other wakes. In contrast to the 15,000-rpm results, the blade- 
to-blade wake flow angle variability is large, on the order of 5°. From the flow angle 
data, the wakes of the 15th, 16th, and 17th blades also appear much wider than those of the 
other blades. The variability of the unsteady lift and moment has also increased relative 
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to the corresponding 15,000 rpm results, attributed to the larger blade-to-blade wake 
variability. Also, the responses for the first and last blade pass periods are identical, 
again indicating that the fundamental periodicity is one complete rotor revolution. 
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Figure 51. Rotor wake and vane response, AS/Sigv= 0.00,0igv= 10°, Nc= 18,000 rpm 

Blade-to-BIade Wake & Response Variability 

The variability in the phase-lock averaged wake velocity deficit and stator vane 
unsteady aerodynamic lift are also quantified with the IGV in the unclocked position. To 
obtain an integer number of data points per blade pass period, a new sampling rate was 
defined based on the measured rotor speed and the waveforms interpolated. This allows 
all 19 rotor wakes and the corresponding stator vane unsteady aerodynamic response to 
each wake to be directly compared to one another and the statistical variations 
determined, with the mean and standard deviation calculated by averaging corresponding 
points along each of the 19 wake and vane response blade pass periods. 

Figures 52 and 53 present the 19 rotor wakes and the vane unsteady lift response 
to each wake for corrected speeds of 15,000 and 18,000 rpm at the 20° IGV stagger. The 
average or mean wake and vane response are denoted by the solid symbols, with the 
vertical bars representing ±2 standard deviations (±2a) from the mean. The wake and 
corresponding vane response between the 17th and 18th blade pass periods are also shown 
by dashed lines since this was the time interval associated with the rogue wake. 

At the design speed of 15,000 rpm, the largest variability is on the rotor wake 
suction side, with the pressure side of the wake and free stream region fairly uniform 
from blade-to-blade, Figure 52. This variability is quite large, with the average velocity 
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deficit approximately 13%, and the 2a bands about ±5%, ±2%, and ±1% of the time- 
average velocity for the suction side, pressure side, and free stream respectively. For this 
clocking position, the rogue wake is not evident in the time traces. However the wake 
that occurs between the 17th and 18th blade pass periods exhibits the greatest'variability 
from the mean. Thus, even in the unclocked position, the rotor blade that generates the 
rogue wake has a higher loss than the other blades. Also, the deeper wakes exhibit larger 
suction side semi-wake widths, indicating that the rotor loss varies from blade-to-blade 
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Figure 52. Wake & vane response variability, AS/Sigv= 0.00,6igv= 20°, Nc= 15,000 rpm 

The vane response variability is even more marked, with the 2a bands ±0.015 
nearly half the maximum of the average unsteady lift coefficient over one blade pass 
period. Thus, small blade-to-blade differences in the wake forcing function lead to even 
greater variability in the resultant vane response. This indicates that the vane row does 
not respond to individual rotor blade wakes in a quasi-steady manner. Rather, the 
fundamental forcing function period is one rotor revolution. 

At 18,000 rpm, there is considerable variability over the entire blade passage due 
to transonic flow effects, Figure 53. This variability is very significant, with the 2a bands 
for the free stream, pressure side, and suction side of the wake ±4%, ±2%, and ±5% 
respectively, with the average profile having a velocity deficit of 8%. The vane response 
variability is also much more marked than at 15,000 rpm, with the 2a bands as large as 
±0.047, 160% of the maximum average unsteady lift over one blade pass period. This 
large vane response variability is attributed to the increased blade-to-blade variability of 
the forcing function generated by off-design rotor operation, with this variability spread 
out over the entire 2a band. 
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Figure 53. Wake & vane response variability, AS/Sigv= 0.00, 6igv= 20°, Nc= 18,000 rpm 

Figures 54 and 55 show the forcing function and vane response for the 10° IGV 
stagger. At 15,000 rpm, the blade-to-blade variability in the velocity deficit is fairly small 
except for the rogue wake, Figure 54. Since the rogue wake has a velocity deficit almost 
twice as large as the mean for all 19 blades, it contributes substantially to the standard 
deviation. The 2a bands for the free stream, pressure side, and suction side of the wake 
are near ±1%, ±1.5%, and ±4% respectively, and the average velocity deficit is near 6%. 
Also, the rogue wake is outside the 2a band. Thus, it is not part of the Gaussian 
distribution describing the statistical variations of the wake. In fact, with the exclusion of 
the rogue wake, the variability associated with the suction side of the wake is on the order 
of ±la. The vane response variability for this configuration is smaller than that at 20° 
IGV stagger, but is still large, with the 2a bands ±0.021, nearly 1/3 of the maximum 
average unsteady lift occurring over one blade pass period. 

At 18,000 rpm, the rogue wake is much less pronounced but is still outside the 2a 
band, Figure 55. The variability is also smaller than at the 20° IGV stagger, with the 
average velocity deficit 9% and the 2a bands ±2%, ±3%, and ±4% for the free stream, 
pressure side, and suction side of the wake respectively. The vane response variability is 
also very pronounced, with the 2a bands as large as ±0.021, nearly 90% of the maximum 
average unsteady lift. 
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Figure 54. Wake & vane response variability, AS/Sigv= 0.00,0igv= 10°, Nc= 15,000 rpm 
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Conclusions 

High-speed rotor blade-to-blade wake variability and the resultant unsteady 
aerodynamic response of a downstream stator were experimentally investigated. The 
rotor wake changed markedly with IGV clocking, with both the wake character and the 
blade-to-blade variability affected. This was attributed to both wake chopping and 
transport of the IGV wake segments by the rotor and also the spinning acoustics modes 
generated by blade row coupling. At certain IGV clocking positions, the chopped IGV 
wake segments merged with the rotor wakes, thereby resulting in a very different forcing 
function to the downstream stator. A rogue wake was also generated by these multistage 
interactions, with the velocity deficit dependent upon IGV clocking position and IGV 
stagger. The temporal periodicity of these multistage interactions was shown to be one 
complete rotor revolution due to the unequal number of blades and vanes. The time- 
variant waveforms corresponding to the unclocked and full cycle IGV positions were also 
different, showing that the fundamental spatial periodicity of these interactions was over 
the entire annulus. 

The variability in the unsteady aerodynamic response of the downstream stator 
over one complete rotor revolution was also investigated. Off-design rotor operation 
resulted in the largest blade-to-blade wake variability, which generated the largest 
variability in the vane response. The unsteady static pressure waveform upstream of the 
vane was markedly similar to the downstream vane unsteady response waveforms, 
indicating that the measured unsteady pressure field is due in part to the vane acoustic 
response to the rotor wakes. 

The blade-to-blade rotor wake and resultant vane response variability were 
quantified. The wake width and depth exhibited considerable variability, most notably on 
the wake suction side. In fact, this variability can be of the same order as the average 
velocity deficit. Off-design rotor operation resulted in the largest variability, with the free 
stream region exhibiting almost as much variability as the wakes themselves. The rogue 
wake velocity deficit was also greater than 2a from the mean. The vane response 
variability was even more pronounced, with the unsteady lift variability ranging from 
33% to 160% of the maximum average unsteady lift. 

In summary, IGV clocking alters the rotor wake, demonstrating it may be a viable 
passive stator vibration control technique. Multistage interactions also contributed to 
rotor blade-to-blade wake variability and to the generation of a rogue wake. Typically, 
data are acquired over only a few wake-passing periods. However, to accurately assess 
multistage interaction phenomena and determine if rouge wakes exist, data corresponding 
to one complete rotor revolution must be acquired since this is the fundamental 
periodicity of these interactions. Also, CFD analyses must correctly account for unequal 
numbers of blades and vanes in the machine in order to accurately predict multistage 
interactions. Finally, small blade-to-blade wake differences lead to large variations in the 
downstream vane row unsteady aerodynamic response. Thus, models are needed to 
address aerodynamic mistuning effects on airfoil response, including rogue wake effects. 
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FLUID-STRUCTURE INTERACTION SIMULATIONS 

TAM-ALE3D (Turbomachinery Aero-Mechanics Arbitrary Lagrangian Eulerian 
3D) is a three-dimensional Euler solver using a finite element scheme. The equations 
stating conservation of mass, momentum and energy are marched forward in time, with 
the physical domain discretized by an unstructured assembly of finite elements. These 
elements are not required to move with the material, nor must they remain stationary, 
making the scheme an "Arbitrary" Lagrangian Eulerian (ALE) scheme. For each step 
forward in time, there are three distinct calculation procedures: (1) The Lagrange 
calculation, (2) mesh relaxation, and (3) the advection calculation. 

The elements move with the material with no flux of mass or energy through the 
element faces in the Lagrange calculation. Thus, conservation of mass requires that the 
mass of the elements be constant during this calculation. Conservation of momentum is 

— ipuid¥ = -J(P+q)njdS + JpbidV 
v s v (1) 

where summation notation is used with i representing the three coordinate directions, and 
D/Dt is the material derivative showing that the control volume moves with the material 
and the term q is a mathematical device that smears shocks over distances comparable to 
the mesh interval. 

To discretize the conservation equations, the integration volumes are taken to be 
the finite elements. Physical quantities are assigned to staggered locations in the element. 
Velocities and accelerations are stored at the nodes (vertices) and are assumed to vary 
linearly over the element. The pressure, energy, and q term are stored at the center and 
are constant over the element. The element mass is stored at both the center and element 
nodes, with the nodal mass being one-eighth the sum of the surrounding element masses. 

In the time discretization, the velocities and the q terms are taken at half time 
levels, denoted by superscript "n±l/2", while all other quantities are evaluated at full 
time levels. Evaluating the velocities and q terms at half time levels produces difference 
equations that are centered in space and are thus second order accurate. The body force 
per unit mass b; is required to account for Coriolis and centripetal accelerations in a 
rotating reference frame. 

In Equation 1, the density of the volume is constant in space and time, so the left- 
hand-side is the product of mass and acceleration. Since acceleration is stored at the 
element nodes, it is convenient to discretize Equation 1 by using a "node-centered" 
element. The pressure and q term acting on the surfaces of this element are considered in 
the evaluation of the surface integral of Equation 1. In discretized form, Equation 1 is 

< =^?(pn -Ov^r +^* (2) 

where M' is the mass of a node; n[and AS' are the outward normal and surface area of 
the node-centered element contained within element e; and the subscript e on the 
summation denotes summation over all the elements surrounding the node, eight 
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elements for an interior node or four, two, or one element for a boundary node. The F,h8 

term represents the hourglass viscous force required to damp the hourglass modes. 

After finding the nodal acceleration from Equation 2, a centered-difference 
formula is used to find the velocity at time level n+1/2. The centered-difference formula 
is again applied to the velocity to find the new position of the node at time level n+1. 

Using energy conservation to update the elemental energy completes the Lagrange 
step. For a control volume with no energy flux through its faces, energy conservation is 

^JpEd¥ = -J(P+q)uMd¥ 
Utv V 

The average velocity divergence of a finite element is the non-dimensional rate of 
change of volume of the element, i.e. (l/¥)(D¥/Dt). Substituting this for uy, and 
substituting the equation of state for a fluid for P gives 

DPE¥      W     ,\ T,     iD¥ — = -[(Y-l)pE+q]— 

If q were zero, this could be integrated in closed form. However, since q is not 
necessarily zero, a third-order Runge-Kutta method is used to integrate this to find the 
elemental energy at time level n+1. 

In the Lagrange calculation, the elements change position. Clearly, the fluid 
elements cannot continue moving in a Lagrangian fashion; otherwise the solution will be 
destroyed as the elements exit the solution domain. Therefore, before proceeding to the 
next time step it is necessary to relax the finite element mesh to a new position and 
calculate new elemental and nodal quantities via an advection calculation. In this study, 
solid boundaries such as blades and vanes are not moving. Thus, mesh relaxation is 
accomplished with a straightforward placement of the elements back to their original 
position at the beginning of the Lagrange step. 

As an element moves from its position at the end of the Lagrange calculation to its 
new position after mesh relaxation, there is a flux of mass, momentum, and energy 
through the six faces of the element. The mass, momentum, and energy of the element 
are updated by simply summing the flux of these quantities through the element faces. 

Consider a single face of an element that moves from its old position to its new 
position after mesh relaxation. The volume between the old and new face positions, 
termed the face-swept volume and denoted by A¥f, is positive if the face moves into the 
element. The change in mass, momentum, and energy of the element is then 

AM = -l(p*A¥f) A(M'Ui) = - i [(pu^ÄV/l A(ME) = -£[(pE)*A¥f 1 
j=i J j'=iL Jj. j=]L Jj 

where the summation is over the six faces of the element. 

The starred quantities in these equations are the values at the center of the face- 
swept volume and are determined with a second-order upwinding scheme. The scheme 
requires information from the two elements upwind of the face and the one element 



62 

downwind of the face. Monotonie limiters are employed to assure that the starred 
quantities are never greater or less than the corresponding quantities in the upwind and 
downwind elements. The momentum advection calculation is performed with the node- 
centered element since the velocities are stored at the element nodes. 

The airfoils are modeled with immovable shell elements. At the end of both the 
Lagrange and advection calculations, the fluid nodes adjacent to the airfoils could be 
away from the surface due to airfoil curvature. They are thus projected normally onto the 
airfoil at the end of these two calculations. In addition, at the end of both calculations, 
the velocity of the nodes next to the airfoil is made tangent to the surface. 

During the Lagrange calculation, the exit static pressure and inflow velocity are 
specified. As the mesh is relaxed after each Lagrange step the inflow boundary moves 
into the region upstream of the domain. Consequently, the advection step requires the 
specification of two other boundary conditions at inflow, namely p* and (pE)*. The 
momentum flux (puO* at inflow is deduced from the previously defined inflow velocity. 
To minimize reflections at the inflow and outflow boundaries, one-dimensional partially 
non-reflecting unsteady boundary conditions are used. 

Modeling the 18/19-airfoil count of the IGV-rotor geometry would require the 
simulation of the complete annulus. To alleviate this difficulty, the vane count of the 
IGV row is altered so that IGV and rotor rows each have 19 airfoils, enabling them to be 
modeled with one passage per row. Increasing the IGV vane count by one changes the 
geometry of the IGV passage, but does not affect the rotor blade pass period. 

IGV Response to Rotor-Generated Forcing Functions 
Part-Speed 

The downstream rotor potential field is the forcing function generating the 
upstream IGV unsteady aerodynamic response and is determined in both the experiment 
and the simulation. Experimentally this is accomplished by an unsteady static pressure 
probe at 90% span, 21.4% vane chord downstream of the IGV trailing edge and halfway 
between vane stacking axes. Care must be taken when situating an equivalent simulated 
static pressure probe since the simulation has 19 IGVs while the experiment has 18. The 
vane surface pressures from both the simulation and experiment are compared on the 
upper vane. Thus a simulated static pressure probe is located in the same position relative 
to the upper vane, i.e. 10° below the upper vane. 

The predicted and measured forcing functions are shown in Figure 56, with the 
mean pressure subtracted. The initial vane-blade position at t = 0 corresponds to a rotor 
stacking axis being midway between experimental vane stacking axes, equivalent to the 
rotor stacking axis being aligned with the static pressure probe. Note that the rotor blade 
pass frequency is the largest frequency component in both the simulation and experiment. 
However, the experimental forcing function has a significant higher frequency component 
at two times blade pass frequency. The source of this higher frequency component is 
unclear, although it could be related to the IGV viscous wake periodically altering the 
rotor potential field, with this effect not being captured by the inviscid TAM-ALE3D 
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model. Nevertheless, overall agreement between the experimental and simulated forcing 
function is good. 
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Figure 56. Rotor-generated forcing function at 15,000 rpm 

The time-averaged IGV surface pressures are shown in Figure 57. The simulation 
over-predicts the pressure on the suction side and also on the aft half of the pressure 
surface. However, this over-prediction is slight, never exceeding a 0.6% difference. 
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Figure 57. Time-averaged IGV surface pressure at 15,000 rpm 

The time-averaged vane-to-vane flow field colored by Mach number is shown in 
Figure 58. The dark spots in these PIV data are areas where flow field information is not 
resolved due to high flow gradients or laser reflections. The IGV trunnion is also visible 
in the data, preventing flow field visualization near the vane at mid-chord. Note that the 
IGV vane-to-vane spacing is smaller for the TAM-ALE3D results than for the data 
because of the increased vane count used in the simulation. There are very similar flow 
field structures in the simulated and experimental time-averaged results, with the Mach 
number increasing in the vane passage due to the blockage of the vanes and a localized 
high Mach number region evident on the suction side of the IGV. 
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Experiment TAM-ALE3D 

Figure 58. IGV time-averaged vane-to-vane flow colored by Mach number 

Both experimental and simulated vane surface pressures are shown at ten time 
instants during one rotor blade pass period in Figure 59. The relationship between the 
IGV loading and the pressure just aft of the IGV trailing edge is shown via the forcing 
function plot in the figures. Recall that the forcing function probe is located 10° below 
the vane on which the surface pressure data are referred. Thus the probe's static pressure 
measurement lags the static pressure aft of the upper vane trailing edge by 0.585 times the 
blade pass period. The vertical lines in the forcing function denote the expected static 
pressure directly aft of the IGV 21.4% chord downstream for the times t/TBP = 0.0, 0.1, 
etc, in the surface pressure results. 

The trends predicted by TAM-ALE3D and exhibited by the data are similar, but 
TAM-ALE3D tends to predict larger unsteady pressure fluctuations over the entire IGV 
chord. In both the prediction and the experiment, the suction side loading begins to be 
larger than that on the pressure surface over the aft chord starting at t/TBP = 0.0. From 
this time until t/TBP = 0.5 the suction side loading is larger than the pressure side loading 
over most of the chord. At t/TBP = 0.5, both predicted and experimental loadings begin to 
cross over again, with the pressure side loading larger from t/TBP = 0.6 to t/TBP = 0.9. 
Although it appears that the suction side of the vane has higher loading over the majority 
of the cycle, the vane surface pressure plot showed that the pressure side has the higher 
loading on a time-averaged basis. 
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Figure 59. Predicted and measured time-variant IGV surface pressures at 15,000 rpm 

The predicted and measured overall lift per unit span experienced by the vane tip 
at part-speed is shown in Figure 60, with the nondimensional time-averaged lift per unit 
span shown on the left. The instantaneous lift is normalized by the time-averaged lift, i.e. 
the instantaneous TAM-ALE3D predicted lift by the TAM-ALE3D time-averaged lift and 
the experimental instantaneous lift by the experimental time-averaged lift. 
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Figure 60. Time-averaged and time-variant IGV lift per unit span 
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For the time-averaged lift, TAM-ALE3D predicts 12% less lift than the data. This 
is partially due to the differing vane counts, i.e. the spacing between vanes is 5.3% less 
for the simulation than for the experiment. A linearized cascade analysis at similar 
conditions gives a decrease in steady lift of 6% for this same decrease in spacing. 

For the instantaneous lift, the magnitude of the simulated lift is often over 100% 
larger than the measured lift, but the relative phase between the data and the prediction is 
similar. This large difference in unsteady lift magnitude can also be attributed to the 
scaling of the geometry in the simulation. 

Figure 61 shows the vane-to-vane Mach number field at ten instants of time 
during one rotor blade pass period. 
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Figure 61. IGV vane-to-vane flow colored by Mach number at 15,000 rpm 

There is good agreement between the predicted and measured flow fields, with the 
potential field from the downstream rotor affecting the entire IGV passage flow. A 
slightly higher Mach number region associated with an acoustic wave is seen to propagate 
upstream through the IGV passage. This high Mach number region enters the IGV 
passage at t/TBp = 0.8, and continues propagating upstream through the passage until it 
leaves the IGV passage at t/TBP = 0.6. The TAM-ALE3D simulation captures this 
acoustic disturbance well. 
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Figure 62 shows the predicted and measured time variation of the vane surface 
pressure at several locations along the chord - 5%, 55%, and 90% chord from the leading 
edge. The vertical scales in all plots are the same, so it is evident that the unsteady effects 
are largest in the mid-chord region. 

The trend of the prediction matches that of the data. There are, however, 
quantitative differences. The biggest difference is the presence of higher harmonics in the 
data, while only the blade pass frequency is evident in the predictions. The best 
agreement between prediction and data is at mid-chord on the suction side of the vane, 
with the poorest agreement at 90% chord on the suction side. Here the data have a 
relatively small blade-pass frequency component, while the blade-pass frequency is 
dominant in the prediction. 
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Figure 62. Predicted & measured vane surface pressures, 15,000 rpm 

The trend of the prediction matches that of the data. There are, however, 
quantitative differences. The biggest difference is the presence of higher harmonics in the 
data, while only the blade pass frequency is evident in the predictions. The best 
agreement between prediction and data is at mid-chord on the suction side of the vane, 
with the poorest agreement at 90% chord on the suction side. Here the data have a 
relatively small blade-pass frequency component, while the blade-pass frequency is 
dominant in the prediction. 

Design-Speed 

The design-speed flow field is transonic, with a shock located on the upper half of 
the rotor blade. In the simulation, the location of the rotor shock differs from that in the 
experiment. The rotor shock structure is approximated as a straight line based on the PIV 
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data and the static pressure probe measurement. The simulated shock structure is 
obtained directly from IGV and rotor flow field visualization tools. This simulated shock 
is curved and is located further aft on the rotor. 

For the design-speed operating point, the predicted and measured forcing 
functions are shown in Figure 63, with the mean pressure subtracted. The simulated 
shock impacts the probe 5% of a blade pass period earlier than the experimental shock. 
This is consistent with the shock structure shown in Fig. 13 since the simulation time zero 
has been adjusted to be two-tenths of a blade pass period later than experimental time 
zero. With this adjustment, both shocks impact the IGV at the same time and place, but 
the curvature of the simulated shock causes it to impact the static pressure probe before 
the experimental shock. 
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BP 

Figure 63. Rotor-generated forcing function at 20,000 rpm 

The saw-tooth pattern indicative of the shock emanating from the downstream 
transonic rotor flow is evident in both the prediction and data. The peak-to-peak unsteady 
forcing function pressure is 30% of the upstream stagnation pressure and is 300% larger 
than the corresponding unsteady forcing function pressure at part-speed. 

The time-averaged IGV surface pressures for simulation and experiment are 
shown in Figure 64. The prediction and data are very close over the suction side. Over 
the pressure side of the vane, the prediction under-predicts the pressure, with the 
maximum difference between prediction and data 1.2% near the leading edge. 
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Figure 64. Predicted and measured time-variant IGV surface pressures at 20,000 rpm 

The time-averaged vane-to-vane flow field colored by Mach number is shown in 
Figure 65. There are very similar flow field structures in the simulated and experimental 
time-averaged results, with a high Mach number region evident on the suction side of the 
IGV. Within the passage, the simulation has a slightly higher Mach number. This is 
expected because the increased vane count creates more blockage and thus higher 
velocities through the passage are required for the same mass flow rate. 

Experiment TAM-ALE3D 

Figure 65. IGV time-averaged vane-to-vane flow colored by Mach number - 20,000 rpm 
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The predicted and measured overall lift per unit span experienced by the vane tip 
is presented in Figure 66, with these lifts normalized as before. The time-averaged lift 
prediction is 19% lower than the data, partially explained by the geometry scaling. With 
regard to the instantaneous lift, first note that the differences between the instantaneous 
time-averaged lift are smaller at design-speed than at part-speed. This is understood by 
noting that the instantaneous lift is proportional to the area between the suction side and 
pressure side loading curves versus chord. Because of the large variations in IGV loading 
along the chord at design-speed, the net area between the curves varies relatively little 
from one time to the next. In contrast, at part-speed, the loading varies relatively slowly 
along the chord. Thus, although these curves do not have localized loadings as large as at 
design speed, the total area between the suction and pressure side curves (i.e. the lift) 
becomes relatively large. Thus, in terms of net lift on the vane, part-speed has more 
unsteadiness than does the design-speed condition. However, in terms of localized 
loadings along the chord, the design-speed flow produces more unsteadiness. 
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Figure 66. Time-averaged and time-variant IGV lift per unit span at 20,000 rpm 

The predicted and measured instantaneous lift differ significantly at times and are 
in good agreement at times, with the best agreement at t/TBP = 0.1 and 0.8. This is 
associated with the large pressure variations along the chord. Namely, with the large 
spatial variations in the surface instantaneous loading, small variations can cause large 
differences in the instantaneous lift. Hence, very accurate unsteady pressure predictions 
are necessary to accurately predict the instantaneous lift. Specifically, the simulated lift 
tends to follow a simple sinusoidal pattern in time. In contrast, the data have a more 
complicated time history, containing significant higher harmonic contributions. 

Figure 67 shows the Mach number field at ten time instants during one rotor blade 
pass period. The strong shock from the transonic downstream rotor, indicated by the dark 
green regions just aft of the high Mach number red regions, is seen to propagate through 
the IGV passage. At t/TBp = 0.0, the shock impacts the IGV trailing edge. The shock 
reflection by the IGV pressure surface at later times causes a large increase and then a 
large decrease in Mach number along this surface. This large gradient region propagates 
upstream along the pressure surface until it reaches the IGV leading edge at t/TBp = 0.8 
and exits the passage. The reflected shock on the pressure surface makes an angle equal 
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and opposite to the incident shock angle, and thus angles back toward the downstream 
direction. Starting at t/TBp = 0.2, this reflected shock breaks the high Mach number 
region in the middle of the passage into two parts. The simulation shows excellent 
agreement with the data in the context of these highly complex flow phenomena. 
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Figure 67. IGV vane-to-vane flow colored by Mach number at 20,000 rpm 

Figure 68 shows the predicted and measured time variation of the vane surface 
pressure at locations 5%, 55%, and 90% chord from the leading edge. Note that the 
variation in pressure on the vane pressure side is much larger than on the suction side. 
On both suction and pressure sides, a significant difference between the prediction and 
the data is the higher harmonics in the data. 
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Figure 68. Predicted and measured vane surface pressures - 20,000 rpm 

On the vane pressure side, the movement of a large pressure disturbance is evident 
over the entire chord. This is the incident shock and its reflection propagating from 
downstream to upstream. The peak in pressure in the simulation and experiment occurs 
at a similar time at 90% chord. However, this pressure pulse appears to move upstream 
more slowly in the simulation than in the experiment. The magnitude of this peak is 
similar between experiment and simulation at 90% chord, but at 55% chord the 
simulation peak drops approximately 15% while the experimental peak remains the same. 
Between 55% and 5% chord the experimental peak drops 15% and the simulated peak 
remains about the same, so they have approximately equal magnitude at 5% chord. 

On the vane suction side there is poor agreement between experiment and 
simulation at 90% chord. This could be attributed to inadequate mesh resolution in the 
trailing edge region. Surprisingly, the agreement improves at 55% and 5% chord. Both 
in the experiment and in the simulation, the suction side disturbance increases in strength 
as it moves from trailing edge to leading edge. 
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Vane Row Mistuning For Hcf Minimization 

This study is directed at coupled fluid-structure HCF prediction in a multi-stage 
environment, with a special emphasis on detuning strategies for HCF minimization. This 
is accomplished utilizing TAM-ALE3D, a finite element model that solves the three- 
dimensional Euler equations to simulate the blade row interaction generated unsteady 
flow and vibration phenomena in the IGV row of the Purdue Transonic Compressor. A 
trailing edge flapping mode in the IGV's is excited by the downstream rotor operating 
subsonically (15,000 rpm). Two detuning strategies are evaluated: (1) decreasing the 
rotor-generated forcing function to the upstream IGV's, accomplished by detuning the 
rotor by unequal blade tangential spacing and (2) altering the IGV-rotor unsteady 
aerodynamic interactions, thereby decreasing the IGV modal forcing. These two 
strategies are quantified by the unsteady aerodynamic modal force and internal IGV 
stresses, with the unsteady stresses a key HCF metric. 

The IGV's experienced cracking during operation at 15,000 rpm, Figure 69. 
These cracks are due to excitation of the trailing edge flapping mode, with the 4,750 Hz 
excitation from the downstream 19-bladed rotor potential field. The frequency of this 
flapping mode is 4,200 Hz, close enough to the excitation frequency to cause HCF 
problems. This case is ideal for the application and evaluation of HCF passive detuning 
techniques that reduce aerodynamically induced unsteady stresses while minimally 
impacting performance and reliability. Two detuning strategies are evaluated: (1) 
decreasing the rotor-generated forcing function to the upstream IGV's, accomplished by a 
4° shift in the tangential location of every other rotor blade and (2) decreasing the IGV 
modal forcing by altering the IGV-rotor unsteady aerodynamic interactions through a 4° 
shift in the tangential location of every other vane. 

Cracks 

Cracks 

Figure 69. IGV cracking experienced at 15,000-rpm operation 

Although not required for the TAM-ALE3D analysis, dynamic characterization of 
the IGV without aerodynamics is appropriate to verify that the IGV dynamic behavior is 
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similar to that observed in experiment, especially for the trailing edge flapping mode. 
The TAM-ALE3D IGV-only model is a mesh having 2,204 hexahedron elements and 
3,000 nodes. Four elements across the thickness are needed for acceptable natural 
frequency results. Special effort is made to pack elements around the four high stress 
regions where cracking occurred, Figure 70. 

High Stress Areas 

z 
—► 

Fixed nodes 

Figure 70. High stress areas on the IGV. 

Characteristics of the IGV trailing edge flapping mode are obtained by applying 
an impulse from hub-to-tip at the vane trailing edge. After the impulse, the vane is 
allowed to respond freely for 4 milliseconds. The resulting mode shape is captured by 
sampling the displacement of the nodes at vane mid-thickness at a time when the vane 
displacement is largest. The frequency of the mode is deduced from this time trace at 
4,024 Hz, close to the 4,200 Hz frequency observed in experiment. 

For the baseline case, only one airfoil passage for each airfoil row is analyzed, 
with periodic boundaries accounting for the presence of the other vanes/blades in the 
rows. Each passage is modeled with an unstructured assembly of hexahedron elements, 
with the IGV fluid mesh having 9,680 hexahedron elements and 11,688 nodes. The IGV 
structural mesh is the same as that used for the IGV structural analysis. The rotor fluid 
mesh has 9,152 elements and 11,064 nodes. The steel rotor blade is modeled with 532 
elements and 900 nodes. There are 11 layers of elements in the spanwise direction for the 
rotor and IGV fluid meshes. These relatively coarse meshes are required because of the 
small time steps and thus large CPU times necessary for these fluid-structure interaction 
studies. 

The computational procedure is as follows. The airfoils are modeled as rigid 
while the flow is established using a 0.25 microsecond time step. The IGV's are then 
allowed to move freely in response to the flow and the time step is reduced by an order of 
magnitude to 0.016 microseconds to capture the vane short time scale response. The 
aerodynamics and response of the IGV's are simulated for 11 milliseconds which requires 
approximately 10 days on two SGI RS10000 processors running in parallel. 

The four HCF failure locations on the IGV, Figure 70, are investigated by writing 
out the stress tensor at these locations throughout the simulation. Transforming these 
stresses to an equivalent Von-Mises stress yields the four stress time-histories shown in 
Figure 71. The beating pattern in the stresses is due to the proximity of the forcing 
frequency (4,500 Hz) to the mode natural frequency (4,024 Hz). The response at the 
mode natural frequency is damped and accounts for the decay in the signals. Ideally, the 
simulation would be run until the natural frequency response is negligible, resulting in the 
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periodic steady state stress at the forcing frequency. However, computational resources 
dictate that the simulation run for a short time period (10 days), with post-processing 
tools used to extract the periodic steady state stress amplitude. 
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Figure 71. Stress time-histories for four high stress locations on the IGV 

The peaks of the stress time form envelopes that follow 

Ahe -t/T + A„ 

where An is the decaying homogeneous solution amplitude, and Ap is the steady state 
stress amplitude and are found by a least squares curve fit. 

The periodic steady state stress amplitude Ap is the unsteady stress experienced by 
the airfoil for t -> °°, and thus is a key HCF metric. The upper left-hand plot 4 shows the 
calculated envelope for the IGV pressure side at the hub. The periodic unsteady Von- 
Mises stress amplitude as t -» °° is 5.36 MPa. 

Rotor-Spacing Detuning 

The rotor detuning strategy offsets every other blade 4° tangentially. With this 
approach, the aerodynamic forcing function to the IGV's, i.e. the rotor-generated potential 
field, will have less energy at the dominant blade pass frequency (4,500 Hz). This is 
desirable since any energy near the IGV trailing edge flapping mode natural frequency 
(4,024 Hz) contributes to HCF. 

With this rotor-spacing detuning, the fundamental spatial period of the flow is two 
airfoil passages. Thus, the TAM-ALE3D simulation is accomplished by placing two IGV 
passages side-by-side and two rotor passages side-by-side, with periodic boundaries 
accounting for the remainder of the row. The number of elements and nodes per passage 
is the same as the baseline. The simulation time is 24 CPU-days, over twice that of the 
baseline because of the doubling of the domain sizes. 

After the flow has converged to a periodic steady state and before the airfoils are 
allowed to respond, the aerodynamic flow field is analyzed. The unsteady pressure 
21.4% of the IGV chord downstream of the IGV is sampled and plotted in the frequency 
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domain for the baseline and detuned configurations, Figure 72. The BPF component for 
the detuned geometry is 89% of that for the baseline geometry. Note that some of the 
energy for the detuned potential field has moved to 2,250 Hz. 
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Figure 72. TAM-ALE3D predicted frequency spectra for tuned and rotor-spacing 
detuned geometries. 

Figure 73 shows the vertical axis of Figure 5 along the horizontal axis and the 
modal forcing at BPF for the IGV flapping mode on the vertical axis. The red line is an 
IGV-rotor axial spacing study which demonstrates that the IGV modal forcing decreases 
as IGV-rotor axial spacing increases. The single solid triangle is the rotor-spacing 
detuning result. Unfortunately, the rotor-spacing detuning, while decreasing the 
excitation source at BPF, decreases the IGV modal forcing at BPF less than that observed 
by an equivalent increase in axial spacing. 
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Figure 73. IGV modal force versus downstream forcing 

The results of the full fluid-structure interaction simulation are shown in Figure 
74, with the periodic unsteady Von-Mises stress amplitude and a comparison to the 
baseline results given in Table 1. The last column shows that the rotor-spacing detuning 
actually increases the periodic steady state stress amplitude by about 70%. It is likely that 
although the 4,500 Hz component decreases with the rotor-spacing offset, the new 2,250 
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Hz component adds enough energy to the IGV flapping mode to make this detuning 
strategy undesirable. 
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Figure 74. IGV stress time-histories for rotor-spacing detuned geometry 

Tuned Detuned Ratio 
detuned/tuned 

Hub Pressure Side 5.36 8.93 1.67   t 
Hub Suction Side 5.65 9.16 1.62  t 
Tip Pressure Side 2.59 4.76 1.84  T 
Tip Suction Side 4.92 8.62 1.75   t 

Table 1. Periodic unsteady stress amplitude (MPa) with rotor-spacing detuning 

IGV-Spacing Detuning 

The second detuning strategy is to offset every other IGV by 4° tangentially. With 
this approach, the IGV-rotor unsteady aerodynamic interactions are altered, providing a 
substantial decrease in the IGV modal forcing. Having equal numbers of airfoils 
corresponds to a zero interblade phase angle, with the effect of this acoustic excitation on 
the IGV unsteady forcing analyzed by a two dimensional linear detuned aerodynamic 
model developed by Sawyer and Fleeter. The model superimposes the linear solutions 
from two flat plate cascades having different geometries, thus providing the unsteady 
loadings for a single detuned cascade. The upwash boundary condition is specified as an 
upstream-going acoustic wave with zero interblade phase. 

Figure 75 shows the IGV loading versus detuned spacing ratio, i.e. the ratio of the 
tangential spacing. A spacing ratio of 0.5 represents a uniformly spaced or tuned cascade 
and a spacing ratio of 0.4 represents a 4° offset for the 18-vaned IGV row. Cascade A 
and B are the two cascades comprising the single detuned cascade in this linear model. 
There is a significant decrease in the unsteady IGV loading away from the tuned 
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condition, indicating that the detuning disrupts the acoustic wave. The unsteady loading 
decreases by a factor of approximately five for the 4° offset. 
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Figure 75. IGV unsteady loading versus detuned spacing ratio. Excitation provided by 
upstream propagating zero-lobed IGV-rotor interaction acoustic mode 

The TAM-ALE3D model uses the same number of elements for the two IGV and 
two rotor passages as used in the rotor-spacing detuning study. An analysis of the 
periodic steady state aerodynamics of the TAM-ALE3D simulation is performed before 
allowing the airfoils to respond, with the resulting IGV modal forcing versus the 
downstream forcing at BPF. Because of the loss of symmetry, the forcing at two 
downstream positions are considered, each 21.4% IGV chord downstream and 
tangentially centered in adjacent IGV passages. In addition, the modal forcings for two 
adjacent IGV's are shown as the solid diamonds. As expected, the IGV-detuning does 
not decrease the downstream generated forcing, but the average IGV modal forcing 
decreases by a factor of approximately 6.5 over the baseline, thus corroborating the linear 
detuned model predictions. 

The full fluid-structure interaction simulation is performed with TAM-ALE3D by 
allowing the IGV and rotor airfoils to respond to the aerodynamic forces. This simulation 
is performed for 11 milliseconds, with the resulting internal IGV stress time-histories 
monitored and post-processed. The periodic unsteady Von-Mises stress amplitudes at the 
four critical stress locations on two adjacent IGV's are given in Table 2. The detuned 
stress amplitude decreased from the baseline by a factor of approximately six, thus 
validating that IGV-spacing detuning is an excellent strategy for alleviating the large HCF 
stresses in the IGV's at the 15,000-rprri operating condition. 

Tuned Detuned Ratio 
tuned/detuned IGV#1 IGV #2 

Hub Pressure Side 5.36 0.984 0.778 5.4/6.9  I 
Hub Suction Side 5.65 0.956 0.897 5.9/6.3  4 
Tip Pressure Side 2.59 0.314 0.459 8.2/5.6  I 
Tip Suction Side 4.92 0.507 0.981 9.7/5.0  I 

Table 2. Periodic unsteady stress amplitude (MPa) with IGV-spacing detuning 
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Conclusions 

This study was directed at coupled fluid-structure HCF prediction in a multi-stage 
environment, with a special emphasis on detuning strategies for HCF minimization. This 
was accomplished utilizing TAM-ALE3D, a finite element model that solves the three- 
dimensional Euler equations, to simulate the blade row interaction generated unsteady 
flow and vibration phenomena in the IGV row of the Purdue Transonic Compressor. 
Aerodynamic excitation to the IGV's is caused by the downstream rotor row operating at 
subsonic conditions, which excites a trailing edge flapping mode in the IGV's. Two 
detuning strategies were evaluated: (1) decreasing the rotor-generated forcing function to 
the upstream IGV's, accomplished by detuning the rotor by unequal blade tangential 
spacing and (2) altering the IGV-rotor unsteady aerodynamic interactions, thereby 
decreasing the IGV modal forcing. Evaluation of these strategies was quantified by the 
unsteady aerodynamic modal force and internal IGV stresses, with the unsteady stresses a 
key HCF metric. 

The rotor-spacing detuning was aimed at decreasing the BPF component of the 
unsteady forcing, which is near the IGV flapping mode frequency. This detuning did 
decrease the BPF component, but it also created a component at Vi of the BPF. The full 
fluid structure TAM-ALE3D simulation showed that the unsteady internal IGV stresses 
actually increased due to rotor-spacing detuning, with the Vi BPF component likely 
contributing to this increase. 

The IGV-spacing detuning was aimed at disrupting the zero interblade phase IGV- 
rotor interaction mode. A two dimensional linear analysis predicted a factor of five 
decrease in the IGV loading by offsetting every other IGV 4°. The TAM-ALE3D 
simulation showed the unsteady internal IGV stresses decreased by a factor of 
approximately six due to this passive IGV detuning strategy. 

Flutter Suppression Via Structural Mistuning 

Structural mistuning, defined as small structural differences between blades in a 
row, has long been known to have a favorable effect with regard to flutter. Whitehead 
showed that this result is valid regardless of nature of the aerodynamic coefficients, as 
long as the coefficients linearly relate the airfoil displacement or velocity to the 
aerodynamic force. This has led to the concept of designed structural differences between 
rotor blades, i.e. intentional structural mistuning, for passive control of flow-induced 
vibrations. 

The effects of mistuning on blade row flow-induced vibrations were initially 
analyzed with lumped parameter models. More recently, component mode synthesis and 
receptance techniques combined with finite element models have been developed. These 
structural mistuning models do not, however, utilize unsteady aerodynamic analyses to 
calculate the unsteady aerodynamic forces generated by the blade motion. Unfortunately, 
blade row unsteady aerodynamics play a key role in flow-induced vibrations. Namely, 
the driving phenomena for these vibrations are the blade row unsteady aerodynamics. 
Hence, for accurate prediction of mistuned blade row flow-induced vibrations, it is 
necessary to incorporate an unsteady aerodynamics model with the structural mistuning 
model. 
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In the classical flow-induced vibration approach, the fluid and airfoil motion are 
not coupled, i.e., the fluid and airfoil structure are modeled separately. They are coupled 
by specifying the kinematic boundary conditions at the fluid-airfoil boundary, with the 
airfoil motion specified as a boundary condition to the unsteady flow analysis. Thus, the 
fluid and structure are coupled only in that the unsteady aerodynamic forces and airfoil 
state are passed between each model after each time step. Unfortunately, this uncoupling 
of a truly coupled fluid-structure interaction problem introduces errors, specifically this 
pseudo-coupling produces phase-lagging errors that can act as energy sources or sinks in 
the system. 

The analysis of blade row flow-induced vibrations is, in fact, a coupled fluid- 
structure interaction problem. Namely, the blade row unsteady aerodynamics is 
dependent on the airfoil motion and, in turn, the airfoil motion is dependent on the 
unsteady aerodynamics. Thus, instead of utilizing separate fluid and structural models, a 
coupled interacting fluid-structures analysis is needed to accurately predict flow-induced 
vibrations of both tuned and mistuned turbomachine blade rows,. Such an analysis would 
enable quantitative intentional mistuning issues for passive flutter control to be 
addressed, for example the level of mistuning and the mistuning pattern needed to 
increase the flutter velocity by a certain percentage 

A fluid-structure interaction model that predicts the energy exchange between the 
fluid and structure is obtained by modeling both the fluid and structure with consistent 
numerical schemes. The TAM-ALE3D finite element model maintains this consistency 
by modeling both the fluid and structure with the same finite elements and simultaneously 
marching them forward in time. This consistent approach makes the TAM-ALE3D 
analysis suitable for flutter calculations, wherein accurate modeling of the energy 
exchange between the fluid and structure is essential for flutter boundary prediction. 

In this paper, the 1st torsion-mode flutter boundary for a baseline-tuned rotor is 
first predicted utilizing TAM-ALE3D, with the flutter boundary determined by impulsing 
the blading and observing its oscillatory growth/decay rate. This is accomplished by 
marching the fluid equations of motion forward in time with the blades fixed until the 
flow has reached steady state. The blades are then released and allowed to respond freely, 
thereby enabling the flutter boundary, specifically the nondimensional damping factor to 
be determined. The airfoil row is then intentionally structurally mistuned by changing the 
Young's modulus of every other blade from its nominal value. The structurally mistuned 
rotor dynamics and unsteady aerodynamics are then analyzed utilizing TAM-ALE3D. 

TAM-ALE3D Flutter Simulation 

Preliminary design of the baseline rotor with a 1st torsion mode flutter instability 
was accomplished utilizing the linearized unsteady aerodynamic analysis LINSUB. It 
predicts that the tuned rotor design, Table 3, will be unstable in its 1st torsion mode for an 
interblade phase angle of 90° with an oscillation frequency less then 565 Hz. 

The TAM-ALE3D simulations in a vacuum for this aluminum blade with a 
Young's modulus of 0.717 Mbars, a Poisson's ratio of 0.368, and density of 2.793xl03 

kg/m show that the blade oscillates with a 1st torsion natural frequency of 373 Hz. This 
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is well below the LJNSUB stability limit of 565 Hz, so the blade row should be unstable 
in its 1st torsion mode with an interblade phase angle of 90°. 

Baseline Tuned Rotor Geometry 
Blade Chord 0.07 m 
Blade thickness 0.004 m 
Radius hub/tip 0.2 m / 0.4 m 
Stagger hub/mid-span/tip 43.0°/54.4°/61.8° 
Number of blades 72 

Table 3. Unstable tuned rotor properties 

To allow for a 90° interblade phase angle in TAM-ALE3D, four blade passages 
are modeled simultaneously, with four processors each running a single blade passage. 
Figure 76 shows a schematic of the rotor including the four blade passages that are 
simulated. 

Blade numbers 

Figure 76. Front view of unstable rotor and the four blade passages being simulated 

The mesh for the metal blade has 2,262 elements, 39 spanwise, 29 chordwise, and 
2 across the thickness. Each blade passage for the fluid mesh has 772 elements for a 
constant radius sheet with 19 elements spanwise for a total of 14,668 elements. This 
relatively coarse fluid mesh is required to reduce run times for the computationally 
intensive fluid-structure interaction simulations. 

The first step in the TAM-ALE3D simulation is to march the fluid equations 
forward in time with the blade fixed until the fluid has reached steady state. The blades 
are then allowed to respond freely to the aerodynamic and centripetal forces until they 
reach their steady state position, with the time step reduced since the short time scales in 
the responding aluminum blades must be captured. The blade motion is stopped at key 
instants to damp unwanted vibrations and accelerate the blade movement to their 
equilibrium positions. 

To accelerate the initiation of self-induced oscillations, Blade 0 is impulsed with a 
nose-down moment while Blade 2 is simultaneously impulsed with a nose-up moment. 
Blades 1 and 3 are not impulsed.  The impulse is a force of 5 Newtons applied for 0.2 
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milliseconds to each of the four nodes at the blade tip. The response of the leading edge 
of the four blades in the form of displacement time histories is shown in Figure 77. There 
are two major frequency components in the response after 20 milliseconds, with the 
amplitude of both growing in time. The lower frequency component corresponds to the 
1 bending mode, while the higher one corresponds to the 1st torsion mode. By 85 
milliseconds, the displacements have become as large as 2 millimeters, or 2.8% of the 
chord. The interblade phase angle for the 1st bending mode response is 90°, with post- 
processing tools showing that the 1st torsion mode response also has a 90° interblade 
phase angle. The instability in the 1st torsion mode response is expected from the 
LINSUB analysis, but the instability in the 1st bending mode was not predicted by 
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Figure 77. Blade displacement normal to chord 

Mistuning strategies to stabilize blade response are most needed in the vicinity of 
the rotor neutrally stable point. Thus, the blade stiffness in the TAM-ALE3D model is 
gradually increased until the turned rotor blading becomes stable, accomplished by 
increasing Young's modulus from its value for the previous case of 0.717 Mbars. 

By considering the response of the leading and trailing edges of Blade 0 for 
various Young's modulus, it is determined that the 1st torsion mode is dominant for 
Young's modulus of 1.25 Mbars and larger, and it is this mode that is the focus of this 
study. The 1st torsion mode response is analyzed by: (1) isolating this response by 
filtering in the frequency domain, (2) identifying and storing the peaks and troughs of the 
response, (3) determining the mean frequency with its standard deviation and the 
growth/decay rate based on these peaks and troughs. A band pass filter is used in Step 1, 
with the band-center frequency set to the torsion natural frequency and the band half- 
width set to 200 Hz. For Step 3, the initial part of the response is not included so that 
transient effects are excluded. 

The 1st torsion mode exponential decay envelope, e"0*' where to is the natural 
frequency in-flow, is shown in Figure 78. In-flow, the neutrally stable point occurs at 576 
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Hz, approximately 11 Hz above the neutrally stable point predicted by LINSUB. The two 
stable cases correspond to Young's modulus of 2.0 and 2.8 Mbars or natural frequencies 
of 595 Hz and 706 Hz. 
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Figure 78. Decay rate for 1st torsion mode, e"DD 

With Young's modulus =1.4 Mbars, the tuned rotor is near the neutrally stable 
point. Hence, this case is examined in detail. First it is observed that the torsion mode 
response has an interblade phase angle of 90°, Figure 79. 
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Figure 79. Tuned rotor blade leading edge displacement showing 90° interblade phase 
angle 

The time-variation of the unsteady moment for Blade 0 about mid-chord is shown 
in Figure 80 as the blue line. Also shown as the red line is the time-variation of the blade 
pitch angle for one cycle of pitching oscillation. Both the unsteady moment and pitch 
angle vary harmonically in time, with the moment leading the pitch angle. This is an 
indication that the this tuned rotor is unstable from an unsteady aerodynamics point of 
view since a component of the unsteady moment is in phase with the pitching velocity. 
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Figure 80. Unsteady moment and pitch angle versus time 
Intentional Structural Mistiming 

Intentional structural mistuning is considered to stabilize the baseline-tuned rotor 
tiiat has been shown to be unstable in torsion for blades with a torsion natural frequency 
less than 580 Hz. The structural mistuning strategy is to alternate Young's modulus 
around the rotor. Blades 0, 2,4,... have a Young's modulus of 1.4 Mbare, while Blades 
1, 3, 5 have a Young's modulus of 1.2 Mbars. The stiffer set of blades has a torsion 
natural frequency of 495 Hz, while the "softer" ones have a torsion natural frequency of 
437 Hz, an 8% difference. Both blade sets are well within the unstable region for the 
tuned rotor. ^ 

Before impulsing this mistuned rotor, the blades are relaxed to their equilibrium 
state. The simulation time required to reach equilibrium for this mistuned rotor is 
approximately three times longer than that for the tuned rotor. The reason is traced to the 
mistuned steady aerodynamics. Starting from the first stop at 2.3 milliseconds, the blades 
with the smaller Young's modulus, Blades 1 and 3, have been displaced more toward the 
pressure side than Blades 0 and 2. Thus the flow passages between Blades 0 and 1 and 
Blades 2 and 3 are narrower than the flow passages between Blades 3 and 0 and Blades 1 
and 2 Under these conditions, the steady aerodynamics creates a mismatch in pressure 
from blade passage-to-passage, the wide passages having higher pressure and the narrow 
passages having lower pressure. These non-equal pressures tend to bend the blades 
further so that the wide passages are widened and the narrow passages narrowed This 
aerodynamic mistuning effect creates ,an equilibrium blade position that features blade 
spacing mistuning. The equilibrium spacing at the tip for the wide passages is 3 525 cm 
and that for the narrow passages is 3.457 cm, a 1.9% difference from blade passage-to-' 
passage. 

After reaching their equilibrium positions, Blades 0 and 2 are impulsed with a 
nose-down and nose-up impulse. The resulting displacement time history for the blade 
trailing edges, Figure 81, shows that the blade vibration is damped and the mistuned rotor 
is stable. Recall that the natural frequencies for the two blade sets used on this mistuned 
rotor are well within the unstable region for a tuned rotor.    Thus, the intentional 
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mistiming strategy of alternating Young's modulus around the rotor is effective for 
increasing the stability of a rotor near its flutter boundary. 
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Figure 81. Displacement time history after impulse for mistuned rotor 

The mistuned rotor unsteady aerodynamics is examined to determine the 
mechanism that stabilizes the mistuned rotor. Figure 82 shows the blade leading edge 
displacement. The dominant frequency component for Blades 0 and 2 is from the 1st 

torsion mode, with the vibration of these two blades 180° out of phase. By comparison, 
the 1st torsion mode is only slightly visible for Blades 1 and 3, indicating that the pitching 
mode is only marginally excited for these blades. The pitching motion of Blade 3 is 
approximately in phase with that of Blade 0, and the pitching motion of Blade 1 is 
approximately in phase with Blade 2. 
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Figure 82. Close-up of leading edge displacement for mistuned rotor 

A band-pass filter so that only the torsion mode is passed is applied to the 
mistuned rotor displacements , , with the result shown in Figure 83.    The mean 
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frequencies and standard deviations for Blades 0 and 2 are 492 Hz (4.3 Hz) and 491 Hz 
(2.9 Hz) respectively. The natural frequency for Blades 0 and 2 on a tuned rotor in-flow 
is 496 Hz, with these blades thus responding to the initial impulse at their natural 
frequency. The mean frequencies and standard deviations for Blades 1 and 3 are 490 Hz 
(14.5 Hz) and 491 Hz (13.4 Hz), respectively. The natural frequency for Blades 1 and 3 
on a tuned rotor is 457 Hz, with these blade thus responding to the aerodynamic forcing 
generated by the motion of their neighboring blades. The beating is a result of the 
external aerodynamic forcing at 490 Hz being close to the 458 Hz natural frequency of 
these blades. 
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Figure 83. Displacement for mistuned rotor with bending frequency removed 

The nondimensional damping factor £ for Blades 0 and 2 is 0.0097 and 0.0082, 
much larger than the values for the tuned rotor studies. Table 4 summarizes £ for the 
unstable tuned rotor and the stable mistuned rotor, where the value for the mistuned rotor 
is the average value from Blades 0 and 2. 

D 

Tuned, E= 1.2 Mbars -0.0034 Unstable 

Tuned, E= 1.4 Mbars -0.0022 Unstable 

Mistuned, E = 1.2 Mbars/1.4 Mbars 0.0090 Stable 

Table 4. Quantitative stability improvement resulting from mistuning 

Figure 84 shows the unsteady moment and pitch angle for the mistuned rotor 
blades. The pitching amplitude is largest for Blade 0, approximately 0.20°, with Blade 2 
amplitude not much smaller - 0.14°. These are the two blades that were initially 
impulsed. In contrast, the pitching amplitude for Blades 1 and 3 is 0.03°, nearly an order 
of magnitude smaller. Similarly, the unsteady moment is much smaller for Blades 1 and 
3 than for Blades 0 and 2. The unsteady moment is essentially in phase with the pitch 
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angle for Blades 0 and 2, while it is approximately 180° out of phase for Blades 1 and 3. 
Having an unsteady moment in phase or 180° out of phase with the pitch angle 
corresponds to a neutrally stable condition. However, the decaying response indicates 
that a component of the unsteady pitching moment is out of phase with the pitching 
velocity the majority of the time. 
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Figure 84. Unsteady moment and pitch angle for mistuned rotor 

The blade surface pressures are Fourier decomposed to extract the unsteady 
pressure at the pitching natural frequency for the tuned and mistuned rotors. The pitching 
frequency for the tuned rotor is 496 Hz and the average of the four blades - 491 Hz. - for 
the mistuned rotor. The tuned and mistuned rotor blade surface unsteady pressure 
magnitudes are shown in Figure 85. The pressure surface unsteady pressure distributions 
on mistuned rotor Blades 0 and 2 are similar to that of the tuned rotor. Blades 1 and 3, on 
the other hand, have much less unsteady forcing on their pressure surfaces. On the 
suction surface, Blades 1 and 3 have a peak in the unsteady forcing at about mid-chord, a 
feature also seen for the tuned rotor blades. However, Blades 0 and 2 do not have this 
peak. 
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Figure 86 illustrates the regions of large unsteady aerodynamic effects and thus 
qualitatively explains the results of Figure 85. The pitching motion of all the tuned rotor 
blades causes relatively large unsteady pressures in the forward half of the blade row. 
However, for the mistuned rotor, the pitching of Blades 0 and 1 creates large aerodynamic 
unsteadiness in a region that extends from their own pressure sides near the leading edge 
to the mid-chord region of the adjacent blades. Hence the unsteady forcing on the 
mistuned blades looks similar to the tuned rotor for the pressure sides of Blades 0 and 2 
and the mid-chord suction sides of Blades 1 and 3. 

Ml Regions of largest 
■^ unsteady aero effects 

~ Stationary 

~ Stationary 

Tuned Mistuned 

Figure 86. Regions of large unsteady aerodynamic effects for tuned and mistuned rotors 
Conclusions 

The TM-ALE3 simulation demonstrated that this mistuning strategy was very 
effective in stabilizing the baseline tuned rotor. Specifically, the 1st torsion natural 
frequencies for the two types of blades were such that they would be unstable as part of a 
tuned rotor, i.e. both types of blades on this structurally mistuned rotor within the tuned 
rotor unstable region. However, when incorporated into the mistuned rotor, these blades 
become stable. The precise increase in stability was quantified by the nondimensional 
damping factor for the tuned and mistuned rotors. The technique presented herein and 
made possible by the TAM-ALE3D analysis can be applied to other mistuning patterns, 
e.g. every fourth blade mistuned, and other mistuning amounts, e.g. 20% change in 
frequency, with the precise stability enhancement the result predicted by the simulation. 
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SHUNTED PIEZOELECTRICS FOR PASSIVE VIBRATION CONTROL 

The application of shunted piezoelectric elements to provide passive structural 
damping is investigated by means of a series of experiments performed in the Purdue 
High Speed Axial Compressor Research Facility. Piezoelectric elements are bonded to 
three airfoils in the stator row. The airfoils are excited by the wakes generated by an 
upstream rotor. As the wakes drive the airfoil vibrations, the piezoelectrics experience a 
strain and in response produce an electric field. Tuned electrical circuits connected to the 
piezoelectrics as shunts dissipate this electrical energy. This electrical energy dissipation 
and the corresponding reduction in the airfoil mechanical energy result in a reduction in 
the magnitude of the resonant vibrations. 

Piezoelectric Model and Theory 

Piezoelectric materials have the ability to transform electrical energy to 
mechanical energy and visa versa. Thus, they can provide passive damping by using 
electrical impedance as a dissipating shunt. This is accomplished by bonding a 
piezoelectric element to a structure such as a plate or beam. As the structure vibrates, the 
piezoelectric experiences a strain and in response produces an electric field. The 
electrical shunt in turn dissipates the electrical energy, thereby reducing the systems 
mechanical energy. The conversion of mechanical energy to electrical energy causes a 
reduction in the resonant vibrations of the structure. 

Figure 87 illustrates a thin piezoelectric material element representing those that 
could be bonded to or embedded in surface of an airfoil. In this model, direction "3" is 
the direction through which the electric field and current act on the element, or the poling 
direction, and is perpendicular to directions "1" and "2" which lie along the surface of the 
host structure. It is generally assumed that the properties in the "1" and "2" directions are 
isotropic, and symmetry is used throughout the derivation. An understanding of the 
relationship between the deformed shape of the piezoelectric and its electrical response 
allows for an analysis of the vibratory motion of the airfoil by coupling its motion to that 
of the attached piezoelectric element. 

Applied Current, 13 

Poling direction 

Applied field, E3 

Figure 87. Piezoelectric element model 
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To develop this coupling of electrical and mechanical properties, three 
constitutive relationships are defined. The constant "d" is the piezoelectric strain 
constant and is defined as the relation between material strain and the applied field. The 
constant "g" represents the relation between charge density and applied strain. The 
constant "k" is the electromechanical coupling term, which defines the electrical- 
mechanical energy transfer properties of the material. Numerically, the square of k is 
equal to the ratio of electrical energy, which is converted to mechanical energy to the 
input electrical energy. The general expression for the material constants of a linear 
piezoelectric is 

d 

■H (1) 

where D is the electrical displacement vector (charge/area), E is the electrical field vector, 
S is the strain vector (volts/meter), T is the material stress vector (force/area), e is the 
permittivity (farad/meter), s is the elastic compliance (meterVnewton), and d is the 
piezoelectric strain constant. 

The form of the vectors D and S are 

D = 
A 
D, 
D 3j 

S = 

'Sx 

£,Et+ dl5Ts 

etE2+dlsT4 

le3E3+d3l(Tx+T2)+d33T3_ 

s*Tt+S?2T2+s?3T3+d3lE3 

'fc +S&1 +4r3 +d3iE3 

sZOl+TJ + sfft+daE, 
sE

uTA+dl5E2 

sfa+daE, 
4T6 

(2a) 
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and the E and T vectors conform to standard nomenclature for stress and electrical 
vectors. 

E = T = 

'22 

'33 

'23 

|7.2J 

(2c,d) 

where the superscript T denotes the property measured under constant stress conditions 
and the superscript E that the property was measured in a constant electrical field. 
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The first equation of Equation 1 represents the direct piezoelectric effect, or the 
creation of an electrical charge due to the application of a stress to the material. The 
second equation represents the converse effect or a stress resulting from the application of 
an electrical charge. 

To perform an analysis using the traditionally defined concepts of admittance and 
impedance, the electrical field vector (E) and the electrical displacement vector (D) must 
be replaced by current (I) and voltage (V). Using standard definitions, 

Vi-jK-A, / = fDA (3) 
o «, ' 

and assuming uniform fields and displacements throughout the piezoelectric, a transfer to 
the Laplace domain yields 

V(J) = L-E(S) l(s) = sA-D(s) (4) 

where L is the diagonal matrix of the lengths of the piezoelectric element in the i* 
direction, A is the diagonal matrix of the areas of the surfaces of the piezoelectric element 
orthogonal to the ia direction, and s is the Laplace parameter. 

Taking the Laplace transform of Equation 1 in conjunction with these definitions 
leads to the following expression for the piezoelectric in terms of external current and the 
applied voltage. 

sAerL_l 

d.L"1 
sAd 

Defining the capacitance between perpendicular surfaces in the i   direction as 

rr_M. 

(5) 

(6) 

and grouping the components into a CT matrix, Equation 5 can be written in the form 

YD(s)   sAd 
d,L- *£X 

(7) 

where YD(s) = sCT
p and is defined as the open circuit admittance of the piezoelectric. The 

open circuit admittance relates the voltage applied across the materials electrodes to the 
external current input to the piezoelectric. 

Piezoelectric Shunting 

For shunting, a passive electrical circuit is placed between the electrodes of the 
piezoelectric element. The circuit is parallel to the capacitance of the piezoelectric and 
therefore the total admittance of the device, Y^is the sum of the individual admittances 
from the device, YD, and the shunt, Ysu, or Ya = YD + Ysu. 

To find the overall effect on the system, or effective impedance of the 
piezoelectric shunt, their properties must be combined with the properties of the other 
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damping elements acting on the system. Using the method of combining viscoelastic 
damping elements, the relationship between the loss factor of damping components and 
the loss factor of the overall structure can be expressed as an average of the component 
loss factors multiplied by their fraction of the total strain energy. Defining Uj as the strain 
energy in the i   component of the structure, the total loss factor is 

rfm -V 1iUi 

»5>, (8) 
M 

Maximizing the loss factor for the piezoelectric device does not necessarily 
maximize the loss factor for the structure. The total damping of the system consists of a 
combination of all damping methods in the system, weighted by their fraction of the 
strain energy dissipated. 

One method of determining the system damping is to consider the piezoelectric 
shunt as a viscoelastic material with frequency dependent properties. For the resistive 
shunted device, the properties are similar to those of a linear solid. However, for the 
resonant shunted device, the properties are non-linear functions of frequency and the 
tuning parameters. As a result, a prior knowledge of the properties must exist to 
effectively predict the effect of the resonant shunt on the system. 

The second method of obtaining the system damping is to represent the system by 
a simple 1-DOF system including the piezoelectric device. The mass and stiffness of this 
1-DOF system can represent a particular mode of a multi-DOF system. In the Laplace 
domain, the modal velocity of the system can be expressed as 

v(s) =  v ' 
Ms+ (yj + ZTto W 

where F(s) is the magnitude of the forcing function and Ms, K/s, and ZT^ ^ the 

impedances associated with the modal mass, stiffness, and resistive shunt respectively. 
The impedance of an element is the inverse of its admittance. 

Nondimensionalization and reduction results in the following transfer function. 

where Ktot is the total modal stiffness of the system,K* = [—^Y-^Ois ^ 

generalized electromechanical coupling coefficient, tf = )(*+*?)   ^^ Y-JL and 
"    V     M r~toE

n 

r = RiC5
piü)E = f\mmaf are the nondimensional frequency and the electric damping ratio. 
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The generalized electromechanical coupling coefficient describes the fraction of 
the modal strain energy, which is converted into electrical energy, and therefore serves as 
a direct measurement of the shunt's effect on the system. A miscalculation of this energy 
fraction greatly affects the circuit sizing. Noting that the natural frequency of the 
structure changes as the damping due to the piezoelectric elements varies, the effect of 
short versus open shunting circuit can be seen in the frequency of vibration. The open 
circuit and short circuit natural frequencies are 

\K+     " 

«f.i"--■■•** M (11) 

eo.E 

V      M (12) 

where K is the effective stiffness of the underlying structure, K*is the effective stiffness 
of the piezoelectric elements, and M is the mass of the system. 

Combining Equations 11 and 12 

•«JaM. as, 
K) 

Utilizing this method of determining the generalized electromechanical coupling 
coefficient, most variables due to construction of the system can be taken into account. 
With the various natural frequencies known, and thus the generalized electromechanical 
coupling coefficient determined, the shunting circuit can be designed. 

Due to the nonlinear dependence of the resonant shunted effective natural 
properties on the frequency and tuning parameter, optimization by considering energy 
dissipation is difficult. Hence, optimization must be based on another criteria. A 
common method in the transfer function technique wherein the transfer function is 
evaluated at an electric damping ratio of zero, r=0, and where the ratio goes to infinity. A 
quadratic expression is found for their intersection points. In proof mass dampers, these 
points are termed the S and T locations. From the sum of the roots of this quadratic 
expression, the optimal tuning parameter is determined to be 

. $r=vi+*ff (14) 

When the optimal tuning parameter is specified, the optimal damping in the 
electrical circuit can be determined. A convenient method for optimization sets the 
amplitude of the transfer function at the desired operating frequency to that of the system 
at the S and T points. The resulting analysis shows that the optimum circuit damping is 

1A14K„ 
1 + K« . (15) 
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In resistive shunting, a resistor is placed in the circuit parallel to the inherent 
capacitance of the piezoelectric element. The resistor provides a means for dissipation of 
the electrical energy developed through the vibration of the underlying structure. 

Returning to the nondimensional electrical impedance and identifying that the 
shunted impedance is the value of the resistor 

Zf"(s) = Ri (16) 

the nondimensional electrical impedance for resistive shunting is 

-EL R,Cl,S 
Zl w'(^l) (17) 

Substituting into the piezoelectric nondimensional mechanical impedance, the 
nondimensional impedance of a resistive shunted piezoelectric is determined. 

—RES k„ 
Z' W-!-ö=fc) (,8) 

where pt = R^a = <Jl-ky is the nondimensional frequency. 

In resonant circuit shunting, a resistor and an inductor are placed in series with the 
inherent capacitance of the piezoelectric element to create an L-R-C circuit. The 
electrical resonance of the new circuit can be tuned to the frequency of the mechanical 
vibration. The electrical resonance greatly increases the modal damping ratio. It has 
been shown that the effect of resonant piezoelectric shunting is similar to a mass damper 
or a resonant vibration absorber. 

The electrical impedance of the resonant shunt is a function of both the resistor 
and inductor values. Substituting into the nondimensional mechanical impedance 

Z?M = l-tl(-* -) (19) 

where r is the damping parameter, 5 = -~- is the nondimensional tuning frequency, 

to . 
Y = — is the nondimensional frequency and 

,*-.   1 <=-r= (2°) 

is the electrical resonant frequency. 

With the relationships between the electrical and mechanical properties of the 
shunted system determined, the following summarizes the equations needed to practically 
apply the technique. Before a shunt can be applied, the basic properties of the system, 
piezoelectric elements, and their interactions must be understood. The inherent 
capacitance of each piezoelectric element is determined. 
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A,ST 

Cl=?9- (6) pi 

The open and short circuit natural frequencies of the shunted system are 
determined experimentally. Using a vibration driver, the system is excited to determine 
its resonant response frequency with the piezoelectric elements. For the open circuit 
configuration, a peak voltage output from the piezoelectric elements can be used to 
determine the resonant location. For the short circuit configuration with the leads of the 
piezoelectric elements connected, a peak current reading is appropriate. 

With these natural frequencies determined, the generalized electromechanical 
coupling coefficient is calculated. 

k) 
The optimal tuning parameter and the circuit damping can now be determined. 

1.414 A:,.,. 
r«i» _ L n5) 

For a resistive shunt, the required resistance is. 

p^R^co^^ki (18) 

For a resonant shunt, the required inductor and resistor values are 

4^li (20) 
r = R>C>n=A^ (10) 

Forced Response Experiments 

The application of shunted piezoelectric elements to provide passive structural 
damping to turbomachine blade rows is investigated by means of a series of experiments 
performed in the Purdue High Speed Axial Compressor Research Facility. Piezoelectric 
elements are bonded to three airfoils, in the stator row. The airfoils are excited by 
upstream rotor generated wakes. The piezoelectrics experience a strain and in response 
produce an electric field, with tuned electrical circuits connected to the piezoelectrics as 
shunts designed to dissipate this electrical energy. 

Three vanes with bonded piezoelectric elements are evaluated. The volume of the 
piezoelectric elements are the same on two of the vanes, with a single large element 
bonded on one vane and two smaller elements mounted on the other. The third vane has 
a piezoelectric element approximately 20% larger extending completely across the span. 
For the two vanes with a single element, the piezoelectric element is placed to cross two 
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nodal lines, whereas on the vane with two elements, each element acts across a large 
strain area independently. For reference, the vanes with the same piezoelectric volume 
are known as the SPE vane for the vane with the single piezoelectric element and as the 
2PE vane for the vane with the two piezoelectric elements. The third vane, with the 
larger piezoelectric volume is known as the LPE vane. The location and dimensions of 
the piezoelectric elements is presented in Figure 88. 

SPE Vane 

0.375" 

1.1250" 

2PE Vane 

-0.1250" 

X 

2.00" 

-1.75"- 

TrailingEdge 

Element Size: 0J95"il J8" 

LPE Vane 

—0.1250" 

0.375' 

Each Element Size: 0.395"x0.79" 

Pressure Surface of Stator vanes 

Element Size: 0J95"x2.0" 

Figure 88. Location and dimensions of piezoelectric elements 

The piezoelectric stator airfoils are excited by the rotor wakes. The piezoelectric 
patches bonded to the airfoils are lead zirconate titanate G1195. Based on the vane 
dimensions, the effective capacitance of the piezoelectric elements for each configuration 
was determined. For the SPE and 2PE vanes, an effective capacitance of 2.79* 10"8 

Farads was calculated and for the LPE vane the capacitance was 3.532* 10"8 Farads. 

In applying the design criteria for the resonant shunting circuit, a critical issue 
arises in evaluating the generalized electromechanical coupling coefficient. As defined, 
the generalized electromechanical coupling coefficient Ky describes the fraction of the 
modal strain energy converted into electrical energy, and therefore is a direct 
measurement of the effect of the shunt on the system. As previously discussed, the 
miscalculation of this energy fraction greatly affects the circuit sizing. Noting that the 
natural frequency of the structure changes as the damping due to the piezoelectric 
elements varies, the effect of short versus open shunting circuits is seen in the frequency 
of vibration. Hence, the electromechanical coupling coefficient is determined 
experimentally. 

With the open and short circuit airfoil natural frequencies measured, the general 
parameters needed to size the resonant shunting circuit can be calculated. Based on 
holographically recorded resonant frequencies, the generalized electromechanical 
coupling coefficient Ky for the SPE vane is determined to be 0.0031. For the 2PE vane, it 
is also 0.0031, and for the LPE vane it is 0.0032. 

Assuming a value of 0.0031 for each case, the optimum circuit tuning parameter 
£op'for the vanes is 1.0015, and the optimum circuit damping, r"* is 0.0785.   The 
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variation in circuit tuning and circuit damping values based on generalized 
electromechanical coupling coefficients ranging from 0.0031 to 0.0032 is 
indistinguishable. 

Based on the experimentally determined tuning parameter and circuit damping, 
the resistance and inductor values are calculated for the passive damping circuits. Based 
on the effective capacitance of the SPE and 2PE vanes, the required resistance for a 
resistive shunt is 6,900 QWith the resonant shunt, the required resistance and inductance 
are 530 Q and 1.3 H. For the LPE vane, the required resistance for a resistive shunt is 
5,500 Q and for the resonant shunt, the required resistance and inductance is 435 Q. and 
1.1 H. 

Experiments incorporating shunted piezoelectric elements to damp the vibratory 
motion of stator vanes are performed in the Purdue High Speed Compressor Facility. 
With the upstream rotor providing the aerodynamic forcing function excitation, shunted 
piezoelectric passive damping effectiveness is demonstrated. Finite element codes and 
laser holography were used to structurally and dynamically analyze the stator row with 
bonded piezoelectric elements. The analyses and data were evaluated to determine 
placement of strain gages and piezoelectric elements for sensing and damping of the 
airfoil vibrations. 

For these experiments, three stator vanes with bonded piezoelectric elements are 
evaluated for passive flow induced vibration control with various passive electrical 
shunting circuits. A speed transient that crosses a stator resonant mode at 5,333 Hz is 
obtained for each configuration of vane and circuit. Due to the sharpness of the resonant 
excitation band for this mode, Figure 89, an extremely slow transient was utilized to 
capture the vane response. For the transient extending from 15,000 rpm to 17,000 rpm, 
the rotor speed is increased at a rate of 25 rpm/second. Three transients are obtained for 
each vane: a baseline response with no circuit connected to the piezoelectric; a resistively 
shunted response; and a resonant shunted response. The effect of each circuit on the vane 
response is determined through strain gages located at the vane trailing edge and the 
electrical output of the piezoelectric elements. 

Third Mode Resonant Response Present in 600 rpm range 

Nondimensional Rotor Speed 

Figure 89. Resonant condition with respect to compressor operating range 
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The baseline response and the effect of the resistive and resonant damping shunts 
on the vibratory response of the SPE vane, as determined by the strain gages, are 
presented in Figure 90. For this vane, the decrease for both the resistive and resonant 
shunts is nearly identical. Application of the resistive shunt to the SPE vane results in an 
amplitude reduction of 8%, with a 9% reduction for the resonant shunt. Based on the 
relationship between the stress at the strain gage location and the maximum dynamic 
stress, a reduction of 9% in the strain gage signal is estimated to result in a reduction of 
1.4 ksi in the maximum dynamic stress as compared to the baseline piezoelectric vane. 
Due to the increased stiffness of the piezoelectric vanes, the total reduction in maximum 
dynamic stress is estimated to be 4.8 ksi compared to the baseline steel vane. 

BMCUDC Rontme y~'~~V ™° —««^ 
M       "i. X X Bueline Response /^ ^V 

 ^/;;;;;\";;  ^/ -- \ 

Noodinruunal Frequency " 
Noadimessioml Frequency 

Figure 90. Piezoelectric controlled response of SPE vane 

The reduction in the electrical output of the piezoelectric element is 
approximately 17% for the resistive circuit and 19% for the resonant circuit. The 
electromechanical coupling relationship for this system verifies that these values 
correspond to the strain gage reduction values achieved. 

The results near the resonant peak show the traditional peak shift that occurs as 
damping is increased. In each case, a system damping increase results in the resonant 
peak shifting to a lower frequencyi Due to the sharpness of the peak, and the 
magnification needed to compare the peak responses, a valid estimate of the frequency 
shift is not practical. The half power bandwidth method estimate of the damping ratio of 
the baseline system is 0.0079. With the shunts attached to the airfoil, an increase in 
damping ratio is present for all circuits. The increase in damping ratio for the resistive 
and resonant circuits is 0.0005 and 0.0007. 

The baseline response and the effect of the resistive and resonant damping shunts 
on the vibratory response of the 2PE vane are presented in Figure 91. The decrease for 
the resonant shunt is approximately twice that of the resistive shunt. Application of the 
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resistive shunt to the 2PE vane results in an amplitude reduction of 3%, with a 6% 
reduction for the resonant shunt. Based on the relationship between the stress at the strain 
gage location and the maximum dynamic stress, a reduction of 6% in the strain gage 
signal is estimated to result in a reduction of 0.9 ksi in the maximum dynamic stress as 
compared to the baseline piezoelectric vane. Due to the increased stiffness of the 
piezoelectric vanes, the total reduction in maximum dynamic stress is estimated to be 4.3 
ksi compared to the baseline steel vane. 

Nondirnensniu] Frequency Nondtmenttona] Frequency 

Figure 91. Piezoelectric controlled response of 2PE vane 

The reduction in the electrical output of the piezoelectric element is 
approximately 6% for the resistive circuit and 13% for the resonant circuit. As for the 
SPE vane, the electromechanical coupling relationship for this system verifies that these 
values correspond to the strain gage reduction values achieved. The half power 
bandwidth method estimate of the damping ratio of the baseline system is 0.0095. With 
the shunts attached to the airfoil, an increase in damping ratio is present for all circuits. 
The increase in damping ratio for the resistive and resonant circuits is 0.0004 and 0.0008. 

The baseline response and the effect of the resistive and resonant damping shunts 
on the vibratory response of the LPE vane are presented in Figure 92. Application of the 
resistive shunt to the LPE vane results in an amplitude reduction of 8%, with a resonant 
shunt reduction of approximately 11%. Based on the relationship between the stress at 
the strain gage location and the maximum dynamic stress, a reduction of 11% in the strain 
gage signal is estimated to result in a reduction of 1.7 ksi in the maximum dynamic stress 
as compared to the baseline piezoelectric vane. Due to the increased stiffness of the 
piezoelectric vanes, the total reduction in maximum dynamic stress is estimated to be 5.1 
ksi compared to the baseline steel vane. 
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Figure 92. Piezoelectric controlled response of LPE vane 

The reduction in the electrical output of the piezoelectric element is 
approximately 17% for the resistive circuit and 23% for the resonant circuit. Once again, 
the electromechanical coupling relationship for this system verifies that these values 
correspond to the strain gage reduction values achieved. The half power bandwidth 
method estimate of the damping ratio of the baseline system is 0.0132. With the shunts 
attached to the airfoil, an increase in damping ratio is present for all circuits. The 
increase in damping ratio for the resistive and resonant circuits is 0.0007 and 0.0014. 

Conclusions 

These passive vibration control experiments demonstrate that shunted 
piezoelectrics have significant damping capability and could be practical for the 
elimination or minimization of gas turbine fan and compressor blading flow induced 
vibrations. The use of a single large element is shown to be more effective than a series 
of smaller elements for this application. In comparing the SPE and 2PE results, vanes 
with identical piezoelectric volume but different element configurations, the single large 
element is more effective than two small elements in converting the kinetic energy of the 
vibratory motion to electrical energy. Additionally, in comparing the effectiveness of the 
two large element vanes, SPE vs. LPE, it appears that for the resonant shunt, the 
effectiveness is strongly coupled to the volume of piezoelectric material present in the 
system. The LPE vane has a 20% larger piezoelectric volume than the SPE vane and an 
increase of approximately 20% in amplitude reduction over the SPE vane. 
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Abstract 

The interactions between stationary and rotating blade rows in turbomachinery lead 
to unsteady aerodynamic forces acting on the blades.   These unsteady forces may 
cause blade fatigue and structural failure.  A number of methods have been devel- 
oped to predict the interaction within a coupled rotor-stator pair. However, because 
of their high computational cost, most of these methods cannot currently be used 
efficiently in design and development.  An alternative method based on the time- 
linearized approach is developed in this report for three-dimensional inviscid flows. 
The flow is represented as a sum of a time-averaged nonlinear mean flow and a 
small perturbation unsteady flow resulting from blade vibration or an incoming gust. 
The small perturbation unsteady flow is identified with a finite set of discrete fluid 
modes called "spinning modes" each with a distinct frequency and an interblade 
phase angle. The mean multistage flow is first computed using the Euler equations 
and conventional fluid dynamics techniques.  To couple the solutions from the dif- 
ferent blade rows, the circumferentially averaged flow quantities are matched at the 
inter-row boundaries at each radial station. To find the small perturbation unsteady 
flow, the linearized Euler equations are solved for each pair of frequency and an in- 
terblade phase angle associated with spinning modes concurrently using a pseudo-time 
time-marching finite-volume Lax-Wendroff scheme. At each iteration, information is 
exchanged among various spinning mode solutions at the inter-row computational 
boundaries. The time-linearized equations are solved in the frequency domain, time 
does not appear explicitly in the governing equations. Instead, frequency appears as 
a parameter.  Since the "steady-state" solution of the linearized Euler equations is 
desired, the discretized equations are not marched time-accurately. Therefore, local 
time stepping and multigrid acceleration techniques can be employed, significantly 
increasing the convergence rate. A number of numerical examples are presented to 
validate the method and to demonstrate the influence of neighboring blade rows on 
aerodynamic damping of a cascade of blades.  In addition, it is shown that a good 
estimation of aerodynamic damping can be obtained retaining a small number of 
spinning modes in the model. 



Chapter 1 

Introduction 

1.1    Statement of the Problem 
Turbomachinery blades are subjected to unsteady aerodynamic forces arising from 
inlet distortions, interactions between stationary and rotating blade rows, random 
excitations and motions of the blades themselves. These unsteady pressure loads 
produce vibratory motion of the blades which may lead to a blade's structural fatigue 
and subsequent failure. Blades in rotors are particularly susceptible to high cycle 
fatigue (HCF) because of the large mean stress resulting from centrifugal forces. To 
predict the life of the blade, and to design blades for longer high cycle fatigue life, 
one must be able to estimate accurately the unsteady aerodynamic forces acting on 
the blades. 

A simplified view of the forces acting on a blade is shown in Fig. 1.1. The basic 
equation of motion describing this system is 

Mx + Cx + Kx = Fmotion(x, x, x,...) + Fgust(t) (1.1) 

where x represents the vector of the blade's displacement and the dots correspond 
to the differentiation with respect to time. The structural dynamic properties of the 
blade are contained in the mass matrix M and the stiffness matrix K. The structural 
damping is represented by the matrix C. The aerodynamic forces are divided into 
external forces, F^, and self-induced forces, Fmotion. External forces, F^t, that are 
independent of the displacement of a blade are generated by air flow nonuniformities 
called "gusts". In practice, these gusts can be attributed to a number of sources 
including potential fields produced by neighboring blade rows, inlet distortions, and 
viscous wakes. The external forcing induces a response which in some cases may 
lead to high cycle fatigue failure of the blade, and is referred to as forced response. 
Self-induced forces, Fmoti0n, are created as a result of the blade displacement. These 
forces are functions of the displacement, velocity and acceleration of the blade itself. 
If the work of these self-induced forces on the blade is positive, then the blade will 
absorb the energy from the airstream as the blade vibrates. If the energy absorbed 
from the airstream is greater than that dissipated by the structural damping, then the 
blade vibratory amplitude will increase exponentially with time. This phenomenon 
is called flutter. 
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Figure 1.1: Turbomachinery blade model. 

A prediction of forced response and flutter in the design and development stage re- 
quires an accurate knowledge of the unsteady flowfields that result from blade motion 
and gusts. Since the flow physics of modern compressors and turbines is extremely 
complex, developing the computational models of these flows is a challenging task. 
Generally, these flows are three-dimensional, viscous, and compressible. Moreover, 
since blade rows in a real turbomachinery are typically placed a fraction of a chord 
apart, multistage effects are likely to be important. 

A number of methods have been developed to model complex multistage flows 
of turbomachinery. Most of these methods are based on time-marching techniques. 
In this approach, the governing equations of fluid motion are "marched" in time 
from one time level to the next simulating the flow through the turbomachine. This 
approach is very powerful and is also computationally very expensive. An alternative 
approach is the time-linearized technique. In this technique, the time-averaged mean 
flow is computed first. Then, one linearizes the governing equations assuming that 
the unsteadiness is small compared to the mean flow and is harmonic in time. The 
linearized equations are solved numerically using conventional finite element of finite 
volume techniques. The main advantage of the time-linearized approach is that it is 
very efficient compared to time marching methods. 

Several methods capable of modeling unsteady flows through multiple blade rows 
machines are available now. Among them are time-marching methods by Rai [51, 52], 
Giles [17]; and time-linearized methods by Kaji and Okazaki [39], Hanson [28,' 29]] 
Buffurn [5], Hall and Silkowski [26, 55, 56], Namba [45]. Most of above time-linearized 
methods are applied to two-dimensional configurations. The objective of this report is 
to develop an efficient numerical method for modeling three-dimensional flows through 
a multistage turbomachinery. The presented method is based on the time-linearized 
approach. The computational time is much smaller than the current time-domain 
calculations making it desirable for use in aeroelastic design. 
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1.2    Previous Work 

For the past several decades, unsteady aerodynamic models of flows in turbomachin- 
ery have been extensively developed. Fig. 1.2 classifies mathematical models that can 
be used to simulate turbomachinery flows. They appear in the figure roughly in the 
order of their complexity. At the extreme left there are fiat plate cascade models; 
at the extreme right there are nonlinear unsteady Navier-Stokes multistage models. 
As models become more sophisticated, the computational cost increases dramatically. 
At the present time, computational cost associated with nonlinear unsteady three- 
dimensional methods is high, so that these methods, while very general, cannot be 
easily used in routine design computations. 

Historically, analytical and semi-analytical models of flows in turbomachinery 
known as classical were developed first. A common simplification is to treat the blades 
as flat plates. The resulting mean flow is uniform and all unsteady disturbances can 
be considered small in comparison to the mean flow. These assumptions reduce the 
equations governing the unsteady flow to linear constant coefficient equations. These 
simplified equations are then solved using classical analytical techniques. Whitehead 
[61, 62, 63] studied unsteady flows about two-dimensional flat plate cascades isolated 
in infinitely long duct. He constructed solutions from combinations of singularities 
for incompressible and compressible subsonic flows. Similar approach was applied to 
supersonic flows by Verdon and McCune [38], Nagashima and Whitehead [46], and 
Adamczyk and Goldstein [2]. It is possible to extend the semi-analytical approach 
to incompressible flows with mean flow turning [63]. However, it is difficult to define 
singularity solutions and their related kernel functions for flows that are both com- 
pressible and contain mean flow nonuniformities. The main advantage of the classical 
approach is its computational efficiency. However, these methods are limited to cases 
unrealistic for turbomachinery aeroelasticity. 

The numerical methods for modeling turbomachinery flows can be divided into 
time-linearized and time-marching techniques. In the time-linearized approach, one 
first solves for the time averaged "steady" flow through the turbomachine using the 
governing nonlinear fluid equations. Then, one linearizes the governing equations 
assuming that the unsteadiness in the flow is small compared to the mean flow, is 
harmonic in time, and has a fixed interblade phase angle. As a result, one can 
discretize the equations on a single blade passage and solve a problem for each in- 
terblade phase angle and frequency. This technique provides a good compromise 
between computational efficienc}' and modeling fidelity of the flow physics. Typically 
the linearized approach requires several orders of magnitude less computer time than 
time marching the nonlinear equations. The linearized approach was applied suc- 
cessfully to single blade row computations by Hall and Crawley [23], Hall and Clark 
[22], Holmes and Chuang [32] (two-dimensional linear Euler codes); Hall and Lorence 
[24] (three-dimensional linear Euler codes), Clark and Hall [9] (two-dimensional linear 
Navier-Stokes code). 

In time-marching techniques, the governing nonlinear equations of fluid motion 
are solved using a time-accurate discretization of the time-dependent terms. The 
approach was applied to two-dimensional Euler equations by Huff [35], He [41] and 
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Figure 1.2: Modeling strategy (after Clark [??]) 

to three-dimensional Euler equations by Gerolymos [16], He [30]. It is also possible 
to include boundary layer effects by a process known as viscous-inviscid interaction 
131]. In this technique, viscous effects are modeled only near the solid boundaries and 
inviscid equations are solved in the rest of the domain. Thus, viscous effects can be 
modeled without resorting to the fall Navier-Stokes equations reducing significantly 
the computational time. 

All of the above mentioned methods have been applied, for the most part, to an 
isolated blade row in an infinite duct. However, the isolated blade row model does 
not represent the actual operating environment and may lack the essential physics 
of real machines, such as unsteady potential, wake and shock wave interactions be- 
tween neighboring blade rows. These interactions between neighboring blade rows 
may significantly alter the unsteady flowfield of a given blade row. Recently, several 
investigations which model multistage blade row interactions in turbomachinery have 
been reported in the literature. 

The most common approach is to perform direct time marching simulations of 
the flow field. This approach was implemented by Giles [17] (two-dimensional Eu- 
er equations), Rai [50] (two-dimensional Navier-Stokes equations), Giles and Saxer 

154] (three-dimensional Euler equations), and Rai [51, 52] (three-dimensional Navier- 
Stokes equations). In these methods, separate grids are generated for the stator and 
for the rotor with a common interface between the blade rows. The equations are 
marched in time, and at each time step of the simulation the information at sta- 
tor/rotor interface is exchanged. A key issue in these methods is how to model this 
interface boundary. An assumption in Rai's work [51, 52] is that the blade pitches of 
the two blade rows are equal or integer ratios. In case of integer ratios, calculations 
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axe performed on a domain including multiple blades which increases significantly the 
computational cost. Giles [17], on the other hand, introduces a "time-inclining" tech- 
nique whereby a space-time transformation is made on the governing flow equations 
that allows unequal pitches for the stator and the rotor to be modeled using just a 
single blade passage from each row (under some circumstances). 

Several time-linearized methods have been likewise developed for multiple blade 
row machines. In a time-linearized analysis for an isolated blade row, one assumes 
that the initial flow disturbance has a fixed frequency and a fixed interblade phase 
angle. As this initial disturbance interacts with the blade row, it scatters into multiple 
pressure, vortical, and entropy waves with the same frequency and phase shift over 
one blade pitch. When two or more blade rows are involved, the relative motion due 
to the rotation of the rotors produces a shifting of the frequencies of waves as they 
propagate from one blade row to the next. This frequency shift is analogous to the 
familiar Doppler effect. When the fluid waves impinge on another blade row, they 
will act as an excitation in this second blade row, and will scatter into another set 
of waves which propagate upstream and downstream. Some of these waves impinge 
on the original blade row and the entire process repeats. The final result is that 
a multiplicity of waves with different frequencies and wavelengths interact with one 
another, violating the original assumption of a single frequency and an interblade 
phase angle. 

Among time-linearized models for multistage turbomachinery are the semi-analytical 
methods by Kaji and Okazaki [39], Hanson [28], Namba [45]. In these analyses, flat- 
plate rotors and stators are modeled by distributed singularities. Kaji and Okazaki 
retained one harmonic in the coupling. Hanson and Namba included several harmon- 
ics and incorporated the concept of scattering. These semi-analytical methods are 
extremely fast, and are useful for understanding the importance of multistage effects 
in turbomachinery. Unfortunately, analytical solution techniques cannot be easily 
applied to realistic geometries, i.e. blades with thickness and camber. 

Hall and Silkowski [26, 55, 56], Hanson [29], and Buffum [5] have developed an 
alternative method for modeling the influence of multistage effects on the unsteady 
aerodynamic response of (two-dimensional) compressors and turbines. In this method, 
the different blade rows are coupled through the spinning modes - pressure, vorticity 
and entropy waves at discrete frequencies and nodal diameters that propagate between 
blade rows. Each blade row is modeled by a set of transmission/reflection/scattering 
coefficients calculated using conventional frequency domain solvers for an individual 
blade row. These coefficients provide the information on how individual spinning 
modes interact with a given blade row. The isolated blade row influence coefficients, 
explicit inter-row coupling relationships and appropriate boundary conditions are all 
assembled into a linear system of equations, which is solved by lower upper (LU) 
matrix decomposition. 

The described above method by Hall and Silkowski [56] (later referred to as Cou- 
pled Mode Method or CMM) is computationally very efficient. Furthermore, it offers 
some flexibility because the influence coefficients may be calculated by using any iso- 
lated blade row solver (e.g., Euler, Navier-Stokes, etc.). The only disadvantage of 
this method that it cannot be easily extended to three-dimensional cases. Note that 



CHAPTER 1.   INTRODUCTION n 

in this method the influence coefficients are computed by running code separately for 
each spinning mode for each blade row. In three dimensions, accounting for radial 
eigenmodes in addition to circumferential modes increases the computational cost 
of the problem significantly. Additionally, in two dimensions the eigenmodes of un- 
steady flow are book kept by frequency and interblade phase angle, whereas in three 
dimensions one has to find radial eigenmodes and axial wavenumbers (eigenvalues) 
numerically, which also contributes to the total computational cost. 

In this work, a new unsteady aerodynamic analysis of multistage flows in turboma- 
chinery is presented that is capable of efficiently analyzing complex three-dimensional 
flows. 

1.3    Summary of Present Research 

The objectives of this work are to develop an efficient method for modeling multistage 
flows in turbomachinery, and to study flutter vibration in a modern three-dimensional 
compressor. 

The present method is based on the time-linearized approach. We assume that the 
initial unsteady excitation (e.g. vibration of rotor blades, incoming gust) has a fixed 
frequency and a fixed number of nodal diameters. This initial excitation shifts and 
scatters into a multiplicity of frequencies and wavelengths because of relative motion 
of adjacent blade rows in turbomachinery. Hence, the unsteady flow is given as an 
infinite sum of fluid modes (spinning modes) identified by a frequency and a number 
of nodal diameters. In practice, this sum is truncated. We assume and demonstrate 
later that the unsteady solution converges as more modes are added to a model. 

The outline of the method is given as the following. First, we generate separate 
computational grids for each individual blade row. Only one blade passage for each 
blade row is needed for computations because the flow is periodic in the circumferen- 
tial direction. Then, the steady multistage flow is computed using the Euler equations 
and conventional fluid dynamic techniques. At the interface boundaries, the circum- 
ferentially averaged flow variables are matched at each radial station. This insures 
that mass, momentum, and energy are conserved. This matching procedure is similar 
to the "mixing planes" technique developed by Denton and Singh [151 Dawes [131 
Denton [14], and Hall [20]. 

Once a mean nonlinear flow is obtained, the Euler equations are linearized. Then, 
we discretize and solve the linearized Euler equations on each computational grid for 
each spinning mode solution concurrently. A time-linearized technique [24] that has 
been developed for an isolated blade row is used to compute each of these solutions. 
At each iteration of flow solver, information is exchanged among solutions at the 
inter-row boundaries coupling together the various spinning modes. This iteration 
procedure continues until convergence is reached. Note, that mode coupling in the 
present method is performed by matching the circumferential Fourier modes of flow 
variables rather than characteristic waves, which are used in the influence coefficients 
methods [56]. 

There are several features of the present method that make the calculations more 
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efficient. First, while calculating the mean steady and unsteady flows, only steady- 
state solution are obtained (unsteady flows are solutions of time-linearized Euler 
equations where the term d/dt is replaced by the term jco, so time is not explicitly 
present in the equations). This allows us to use local time stepping and multi-grid 
acceleration techniques. 

Finally, the overall size of numerical problem is a function of a number of blade 
rows and the number of modes retained in a computational model. It will be shown 
that a good estimation of the unsteady pressure on a blade surfaces can be obtained 
by keeping in the model only the neighboring blade rows and a few spinning modes. 
This reduces the size of the problem significantly. 

1.4    Outline 

In Chapter 2, the three-dimensional Euler equations governing the motion of an in- 
viscid compressible flow are presented in a Cartesian reference system rotating at a 
constant angular speed. From this form, the equations in absolute frame (stator) of 
reference are easily derived. Next, the process whereby the unsteady flow is decom- 
posed into a nonlinear mean flow and a harmonically varying small perturbation is 
developed. Finally, the linearized Euler equations used to solve the unsteady flow 
model are presented. 

In Chapter 3, the numerical algorithm used to integrate the governing equations 
is developed. A Lax-Wendroff scheme developed by Ni [47, 48] is presented. The 
conservation, accuracy and stability properties of this scheme are discussed next. 
Finally, the numerical smoothing and model convergence acceleration techniques are 
addressed. 

In Chapter 4, the boundary conditions required to solve steady and unsteady con- 
servation equations for a single blade row are developed. These conditions are divided 
into near-field and far-field. Near-field conditions include the boundary conditions 
at the solid walls and the periodic boundaries. Far-field conditions are developed 
to minimize spurious reflections from the upstream and downstream computational 
boundaries. 

In Chapter 5, the kinematic behavior of unsteady flows through multiple blade 
rows is discussed. Then, the method for modeling these flows is presented with a 
detailed discussion on the algorithm used to couple solutions at the inter-row bound- 
aries. 

In Chapter 6, a number of test cases are presented to validate the multistage lin- 
earized Euler analysis and to demonstrate the multistage effects on unsteady flows. All 
cases in this chapter are designed to demonstrate the significance of the multistage 
effects. First, simple two-dimensional configurations are considered and validated 
against available two-dimensional multistage methods. Second, we examine a three- 
dimensional stage composed with flat helical plates, which enables us to validate 
the present method againt a semi-analytical multistage three-dimensional method. 
Finally, one and one-half stages of a modern three-dimensional compressor is consid- 
ered. 



CHAPTER 1.   INTRODUCTION 13 

In Chapter 7, the contributions of the present work are outlined and the possible 
extensions for future research are discussed. 



Chapter 2 

Governing Equations 

In this Chapter, the governing nonlinear and liner Euler equations are presented. 
In Section 2.2, the nonlinear Euler equations in both integral and differential forms 
are introduced. In Section 2.3, the computational grid is linearized about a fixed 
position, so that the grid continuously deforms with the blade. In Section 2.4, the 
Euler equations are linearized in a frame of reference attached to the moving grid. 

2.1    Nomenclature 
Cv,Cp specific heats 
E total rotary internal energy per unit mass 
e internal energy per unit mass 
ex,ey, ez basis vectors of Cartesian coordinate system 
ei, ee, e~R basis vectors of cylindrical coordinate system 
F, G, H flux vectors in the x, y and z directions 
/> <?> h grid perturbation in the x, y and z directions 
/ rothalpy 
[J] Jacobian matrix of transformation from physical to computa- 

tional coordinates 

p pressure 
S vector of source terms (centripetal and Coriolis forces) 
T temperature 
t time 
U vector of conservation variables 
u, v, w components of velocity in Cartesian coordinates 
Ux,ue, UR components of velocity in cylindrical coordinates 
X vector of spatial coordinates (x, y, z) 
x,y,z,t Cartesian coordinate system - physical domain 
x, R, 9, t cylindrical coordinate system - physical domain 

14 
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£, V, C, r Cartesian coordinate system - computational domain 
7 specific heat ratio 
p_ density 
fi, fi angular velocity of a rotor 
w frequency 

()Q6s quantity in absolute frame of reference 
Orel quantity in relative frame of reference 
0 "steady" (mean) quantity 
0' small perturbation quantity 

2.2    Three-Dimensional Euler Equations 

We consider the time-dependent and three-dimensional adiabatic flow, with negligible 
body forces, of a non-heat conducting perfect gas through a turbomachinery For 
many flows of practical interest the Reynolds number (Re), is sufficiently high that 
viscous effects axe concentrated in relatively thin layers. Outside these regions the 
gas is assumed to be inviscid. ' 

The Euler equations governing the inviscid flow describe the conservation of mass 
momentum and energy. The conservation laws are derived for either a fixed or a 
moving control volume in space, see for instance Refs. [4, 42]. The differential form 
of the Euler equations is obtained from the integral form by shrinking the control 
volume to a point and applying the divergence theorem. For a detailed development 
of the three-dimensional Euler equations, the reader is referred to Ref. [44] 

The algorithm developed in this report solves the flow fields associated with non- 
rotatmg and rotating blade rows in their own Cartesian coordinate systems The 
rotating and non-rotating blade rows are called rotors and stators respectively Abso- 
lute values (subscripted abs) are used in the stators, fixed frame of reference, whereas 
rotor-relative quantities (subscripted rel) are used in the rotating coordinate system. 
After finding the flow through all rotors and stators, appropriate transformations are 
applied at the stator/rotor interface boundaries to match the flow fields from the both 
sides. 

Consider a Cartesian coordinate system with its x axis aligned with the axis of 
rotation of an engine. The y and z axes rotate about the x axis with angular speed 
U -uz. The governing Euler equations will be written in the in the rotating frame 
of reference. The integral form of the equations for an arbitrary control volume V 
with a surface area A is given by 

I///VU-+//.(F-4G-UI.H-4)-^=///,^ (") 
where /, g, and h describe the displacement of the control volume in x y and z 
directions respectively; dV is the elemental volume of the control volume; and dA is 
the elemental surface vector. 
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The differential form of the equations is given by 

3U     OF     dG     #H_s_n 

dt      dx      dy      dz 
(2.2) 

In Eqs. (2.1)-(2.2), U = (p, pu, pv,pw,pE)Jel is the vector of flow conservation vari- 
ables where p is the density and the vector (u, v, w)Jel is the flow velocity. The total 
rotary internal energy per unit mass E is defined as 

Erei = e + -(u2 + v2 + w2)rel--Q2R2,   R=^yi + z>. (2.3) 

Here e is the internal energy per unit mass. It is defined as e = CyT. The symbol c„ 
denotes the specific heat at constant volume and T is the static temperature. 

The vectors F, G,H represent fluxes of mass, momentum and energy in x,y and 
z directions. They are given by 

F = 

(     pu     \ 
pu2 + p 

puv 
puw 

\    pul    ) 

( 

,G 

pv 
puv 
,2 

\ / 

,H = 

rel 

pw 
puw 
puw 

\ 

rel 

pwz +p 
\     pvl     J 

(2.4) pir +p 
pvw 

\    pvl    J 

For an ideal gas with constant specific heat ratio 7, it can be shown that the 
pressure p is given by 

rel 

(2.5) 

(2.6) 

p = (7 - l)p[Erel - ±{u2 + v2 + w2)rel + ]p2R2). 

In Equation (2.4), I is the rothalpy defined as 

pErd+p     ipErd     7-I    2      2       2 7-l/rim2 / = = — g-K + v2 + w2)rel + —^-{ttR)2 

The vector S is a source term that includes the centripetal and Coriolis forces per 
unit volume, i.e. 

/ 0 \ 
0 

p{ü2y + 2üw) 
p{Ct2z - 2Qv) • 

0 

S = 

\ 

(2.7) 

/ rel 

The system of fluid equations will be solved in Cartesian coordinates. However, 
it is more convenient to use a cylindrical coordinate system to apply boundary con- 
ditions. The relationship between cylindrical coordinates (x, 6, R) and Cartesian co- 
ordinates (x, y, z) is given by 

y   =   Rsm6 

z   —   R cos 6 

R   =    y/yl+z* 

9   =   arctan ( - ) 

(2.8) 

(2.9) 

(2.10) 

(2.11) 



^xabs    —    "Uxrei 

UOabs    =    UQrei - ■SIR 

URabs    =    Ufirei 
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The unit normals of the cylindrical coordinate system is expressed in terms of the 
unit normals of the Cartesian coordinate system as 

e"*   =   e~x (2.12) 
eg   =   ey cos 9 - ez sin 9 (2.13) 

er   =   €y sin 9 + ez cos 9. (2.14) 

Using cylindrical coordinates, the vector of velocity in the absolute frame of ref- 
erence, Vabs = (MX,«*,«*),,!«, is related to the one in the relative frame of reference, 
Vrei = (ux, ue, uR)rd, by 

Va6s = VTel + Vwheei (2.15) 

where VwheeI is the rotor wheel speed given by Vwheel = -ÜRe9 . Hence, components 
of velocity are related as 

(2.16) 

(2.17) 

(2.18) 

2.3     Computational Coordinate System 

In this work, the time-dependent or unsteady fluctuations in the flow are assumed to 
be small compared to the mean flow. This unsteadiness may arise from self-excited 
blade motions or upstream/downstream flow distortions called gusts. 

Traditionally, computational grids for computing unsteady flows have been fixed 
in space. If the grid is fixed in space and the blade is vibrating, the pressure on the 
surface of the blade has to be extrapolated when the blade is not at its mean loca- 
tion. Making this extrapolation can cause large errors especially near the leading and 
trailing edges of the blade. To eliminate the difficulty of applying the boundary con- 
ditions in this work a different approach is used. In this approach the computational 
grid continuously moves and deforms with blades [7, 21, 22]. 

In this work, blade motion is assumed to be harmonic, with frequency w. The 
physical coordinates (x, y, z, t) are related to the computational coordinates (f, 77, £, r) 
by 

*(£,77,C,T) = t + ffcriiQe*" (2.19) 
V(Z,V,C,T)' = 77 + ^,77,0^ (2.20) 

*(£,»7,C,T) = C + Äfö^Oe*" (2.21) 
*(£, f?, C> T) = T (2.22) 

where (/, p, h) are amplitudes of displacement of the grid in the x, y and z directions 
respectively. On the boundaries of the blades, the vector (/, g, h) is the amplitude of 
the blade vibration. The computational coordinate system (£,T7,C,T) is the zeroth- 
order approximation to the physical coordinates (x,y,z,t). The mean or steady flow 
is computed in the computational coordinates (^, 77, C)- 



CHAPTER 2.   GOVERNING EQUATIONS 18 

A relationship between derivative operators in the physical coordinate system and 
derivative operators in the computational coordinate system is given by 

/ d/dx \ 
d/dy 
d/dz 

V d/dt ) 
( d/dH \ 

d/drj 
d/dC 

\ d/dr J 

= [J] 

= PI"1 

/ d/d£ \ 
d/dr] 
d/d( 

\ d/dr J 
( d/dx \ 

d/dy 
d/dz 

\ d/dt j 

( & Vx Cc rx \   I d/di \ 
iy Vy Cy ry d/dr} 
& Vz C rz d/dC 

\ 6 Vt Ct rt J \ d/dr J 
( xt  Vt  zt  k \ 

Xr Vv   zn 
H  vc  H  k 

\ %r    VT    ZT    W 

( d/dx \ 
d/dy 
d/dz 

\ d/dt ) 

(2.23) 

(2.24) 

[J]"1 (2.25) 

where [J] is the Jacobian of the transformation. 
Using Equations (2.19)-(2.22), one can express the matrix [J]-1 in terms of (/, g, h), 

so that 
(l + U     gs        ht     0\ 

/,      l+9t,      hv      0 

k 9c       1 + ^c   ° 
\     U 9T K       1 ) 

The matrix [J] is found by inverting the matrix [J]-1. The matrix [J] is given to first 
order by 

/ 1 - ft     -9t       -h(     0 \ 
-ft,     1 - 9n     ~

hv     ° 
-fc       -gc     l-hc   0 

V     -fr -9T -K       1  ) 

The steady and unsteady grid generation technique will be discussed in Chapter 4. 
Note that for the gust response problems, moving grid terms (/, g, h) are equal to zero, 
and [J] is reduced to the identity matrix. 

[J] (2.26) 

2.4    Linearization of the Euler Equations 

Assuming that unsteadiness in the flow is small, each flow variable can be decomposed 
into a "steady" mean part and a small perturbation "unsteady" part. If u is the 
frequency of an unsteady perturbation, then the flow variables can be represented as 

pu(Z,V,{,r) = 7M(Z,V,0 + (pu)'(Z,ri,0ejuJT 

PV(S,V,C,T) = W&V,0 + (pv)'&ri,OeJWT 

pw(Z,r,,t,r) = W(Z,ri,() + (pw)'(Z,ri,Oej"T 

pE(£,V,C,T) = pE&ViO + ipEy&r,^)^ 

(2.27) 

(2.28) 

(2.29) 

(2.30) 

(2.31) 

or in the more compact notation 

U = U + UVW. (2.32) 
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Here, U is the vector of conservation variables representing the zeroth-order or mean 
flow field, and U' is the vector of small perturbation amplitudes of the conservation 
variables representing the first order unsteadiness in the flow field. 

Similarly, the flux and source vectors can be expanded in a perturbation series. 
Taylor expanding about the mean flow, one finds that 

F = F(U) + — _UVW + —    (fa h)Tp^T 

  an 
G=G<U>+'!üIüUV <9p, 

lurr 

H = H<u> + |jlüuV° 
S = S(ü) + § ,UVWT + 

m 
dX 
öS 

Af,9,h)Te* IÜJT 

M9,h)T<J %JT 

(2.33) 

(2.34) 

(2.35) 

ü~~      ' öxxu,y,"; c (2-36) 
where X and X is the vector of spatial coordinates (x,y,z) and its mean value re- 
spectively. The first term on the right-hand side of Eqs. (2.33)-(2.36) represents the 
mean flux/source vector. In general this term is a function of the spatial coordinates 
(£,»7,<) and the mean values of conservation variables U. This term is zeroth order 
in the expansion and is found by solving the steady equations. The second and the 
third terms on the right-hand side of Eqs. (2.33)-(2.36) are the first order terms arising 
from perturbations in the conservation variables and the motion of the computational 
mesh respectively. 

The Jacobian matrices in Eqs. (2.33)-(2.36) are given by 

(2.37) 
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(2.39) 
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(2.42) 

(2.43) 

ÖS 

3X 

where 

(2.44) 

(2.45) VT = ü2 + v2 + w2 + (nR)2. 

To linearize the Euler equations, one needs first to substitute the flow decomposi- 
tion expressions, Eqs. (2.32)-(2.36), into the full Euler equations, Eq. (2.2). Collecting 
terms of zeroth order, one obtains the mean flow equations, 

dF     dG     #H 
(2.46) 

These are just the original nonlinear steady Euler equations. 
Collecting terms of first order, one finds the unsteady perturbation equations are 

given by 

.  TT,      d fdF\      d 

du        dc dU     j 

dS_ 
ÖÜ 

U' = b (2.47) 

where the right-hand side b represents a source term arising from the moving grid 
terms. This source term b is given by 

,       .  ,.     ,,_-,.   dÜf      .   dug      .   dVh 
d£ drj dC 

d       -      Ö (dF lr     1S„ d    „—      d  (dG,r > 
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Note that the source term b is a function only of the grid motion and the mean 
nonlinear flow. The grid motion terms are prescribed and the mean flow is known 
after solving the steady Euler equations, Eq. (2.46). Hence, the source term b can be 
computed once at the beginning of the computation of the unsteady flow. 

Similarly, we can linearize the Euler equations in the integral form, Eq.(2.1). First, 
the differential volume and area are linearized. Up to this point, the differential 
volume and area have been written as dV and dA respectively. Using computational 
coordinates, the differential cell volume can be written as 

dV = dx dy dz = (df + df) {drj + dg) (d( + dh) (2.49) 

To first-order, this expression can be written as 

dV = dV + dV = df dr) d( + (df drj d£ + df dg dC, + df d-q dh) (2.50) 

Similarly, the differential cell area can be written as 

,    dA = d~K + dA' (2.51) 

Substituting Eqs. (2.50)-(2.51) as well as the flow decomposition, Eq.(2.32)-(2.36), 
into the integral form of the Euler equations, Eq. (2.1), and collecting terms of zeroth 
order, one obtains the steady Euler equations 

JJ (F, G, H) • dK - jjj SdV = 0 (2.52) 

Collecting the first-order terms results in the integral form of the linearized Euler 
equations, i.e. 

=~ IIIviumv'+JLjJÜ(f'9> hydÄ- /^F'ü'H) •dA' 

+II^dV'+Ew{f^h)TdV- <2-53' 



Chapter 3 

Numerical Integration 

In this chapter, the numerical method used in this report to solve the steady and 
linearized unsteady Euler equations is presented. In Section 3.2, the numerical meth- 
ods used to generate the steady and unsteady grids are discussed. In Section 3.3, the 
modified Lax-Wendroff explicit scheme used to integrate the linearized Euler equa- 
tions is developed. In Section 3.4, the stability condition of the scheme is discussed. 
In Section 3.5, the issues of numerical smoothing are addressed. The conservation and 
accuracy of the scheme is discussed in Sections 3.6, 3.7. In Section 3.8, the multiple 
grid technique used in this work to accelerate the convergence is presented. In Section 
3.9, the differences between the solvers for the steady and linearized unsteady Euler 
equations are explained. 

3.1    Nomenclature 
A area 
b source term vector due to moving grid 
E total rotary internal energy per unit mass 
F,G,H vector of flux variables 
f,g,h grid perturbations in the x, y and z directions 
i rothalpy 
3 v^T 
V pressure 
R radius 
S vector of source term (centripetal and Coriolis forces) 
t time 
u vector of conservation variables 
(u,v,w) velocity vector in Cartesian coordinates 
V volume 
x,y,z,t Cartesian coordinate system - physical domain 

22 
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5 residual/correction of solution between two time levels 
A change of a quantity in time 
e(2), ew solution dependent smoothing coefficients 
v2, v4 user specified smoothing coefficients 
^. \, \ Lagrange multipliers 
p density 
{, V, C)T Cartesian coordinate system - computational domain 
fi, £2 angular velocity of a rotor shaft 
<JJ frequency 
tp grid dependent weighting 

()n nth time level 
()(1) related to the first order correction 
()(2) related to the second order correction 
()' small perturbation quantity 
()f related to the fine grid (multi-grid) 
0C related to the coarse grid (multi-grid) 
() mean (steady) quantity 

3.2    Grid Generation 

Before one can discretize the governing equations, one must generate a computational 
grid. The quality of a mesh is important for obtaining an accurate flow solution. 
Generally speaking, grids with smooth variations in cell volumes and with minimal 
amounts of shear are desirable. 

In recent years, different approaches have been used to generate grid systems for 
arbitrary two and three-dimensional flow regions. These methods include conformal 
mapping [12, 36], algebraic methods [19, 57, 53], and partial differential equation 
techniques [59, 58]. In the present work, a modified version of an elliptic mesh gen- 
erator developed by Thompson [59] is used. The principle behind this grid generator 
technique is to prescribe the boundary points in the physical domain and then map 
the specified computational grid into the irregular physical domain by solving an el- 
liptic partial differential equation (PDE) with appropriate boundary conditions. The 
main advantage of this method is that the resulting grids are generally very smooth 
and one can control to some extent the amount of shear in the grid. The three most 
common types of grids in turbomach'inery applications are C-grids, O-grids, and H- 
grids. C and O-grids are commonly used in steady flow calculations and provide good 
resolution around the airfoil. However, these grids lack resolution in the far-field to 
resolve acoustic, vortical, and entropic waves. H-grids provide uniformly good res- 
olution throughout the computational domain. Since the present work is concerned 
with the flow-field in the entire domain including the far-field, H-grids have been 
chosen for calculations. Figs.3.1, 3.2 show an example of a computational grid for a 
three-dimensional turbomachinery blade. 

For unsteady flow calculations involving blade motion, the complex amplitude of 
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Figure 3.1: Side view of a blade row. 

Figure 3.2: Mesh at the midspan. 



CHAPTER 3.  NUMERICAL INTEGRATION 25 

the grid motion (/, g, h) at each node must be specified. For a given mode shape of a 
blade, the motion of the interior of the grid must be calculated. To provide a smooth 
variation in the grid displacement, an elliptic grid generator can be used. That is /, 
g, and h may be obtained as solutions to Laplace equation, 

VV   =   0 (3.1) 
V29   =   0 (3.2) 

^h   =   0. (3.3) 

Boundary conditions must be imposed on the boundaries of the computational grid 
On the blade surfaces, the displacement of the grid must match the displacement of 
the blades.  Upstream and downstream of the blades, the grid motion must satisfy 
the complex periodicity condition. On the hub and tip case there is no radial motion 
however the grid may move tangent to these surfaces. In the far-field and along the 
interface boundaries, the grid motion terms are specified to be zero so that they do 
not complicate the implementation of the far-field and interface boundary conditions 
A finite element scheme using eight-node isoparametric elements is used to discretize 
the equations, and the resulting system of equations is solved using Successive Line 
Over-Relaxation (SLOR) [3]. 

3.3    Modified Lax-Wendroff Integration Scheme 

The numerical scheme implemented for both mean (steady) and unsteady flow cal- 
culations is an explicit time-marching Lax-Wendroff algorithm first introduced by Ni 
[47] and then, extended to three dimensions by Ni and Bogoian [48]. Some modifica- 
tions to this scheme were introduced by Hall [27] and Saxer [54]. It is a second-order 
accurate scheme in space and in time. 

The following development of the numerical scheme will be applied to the lin- 
earized Euler equations. For the moment, we will assume that the mean nonlinear 
flow, U, is known and the unsteady conservation variables, U', need to be computed 

The linearized Euler equations, Eqs. (2.47),(2.53), are written in the frequency 
domain, so that time does not appear explicitly. To take advantage of the explicit 
time-marching Lax-Wendroff algorithm, Ni and Sisto [49] proposed the pseudo-time 
technique. Using this technique, the unsteady conservation variables, U', are assumed 
to be functions of time. The full conservation variables now are given by 

U(£, 7?, C, r) = U(£, 77, C) + U'(£, t}, (, r)e>^ (3.4) 

Using Eq. (3.4), the linearized Euler equations in differential form may be rewritten 
as 

9U' dF'    dG'    dw _+^u+_+__+___s=b (35) 

where 
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The pseudo-time linearized Euler equations in the integral form are given by 

III w*7+III *>™+JJjr-G' H'> •dX - IIISdV=B    (3-6> 
where the term B is the same as the right hand side of Eq. (2.53). 

Since Eq. (3.5) is hyperbolic in time, it can be marched in time subject to appro- 
priate boundary conditions. If these boundary conditions are independent of time, 
then as time advances the solution, U', will converge to time-independent values 
and dXJ'/dr will approach zero. In other words, the solution of the linearized Euler 
equations will be recovered. 

The Lax-Wendroff algorithm is based on a Taylor series expansion in time for U'. 
At the time level n + 1, the expansion for U' is given by 

«~-* + *r{%)' + \*>{g)' + OW (3,, 
Here AT is the time step size. 

At this point, the linearized Euler equations are discretized on a computational 
mesh. The flow variables are located at the vertices of the hexahedral cells and are 
assigned according to an initial condition. The Fig.3.3 illustrates a fragment of a 
computational domain. In this figure, eight computational cells surrounding node 1 
are denoted by A, B, C, D, E, F, G, H. The centers of these cells are located at the 
corners of pseudo-mesh cell P. Using Eq. (3.6), the first derivative of U' with respect 
to time at node 1 is approximated as 

dU'i 
dr k I- IL(F'G'H<) •dA+III(s' - j"v')dV+B (3.8) 

where Vi is a control volume of pseudo-mesh cell P surrounding node 1. A\ is the 
area of this cell. 

Differentiating Eq. (3.6) with respect to time and multiplying the result by the 
time step Ar, one obtains 

IIIATl^dV+IIl^AV'dV+IIA(
AF''AG'AH') •&~IHASdV-» 

(3.9) 
where 

i 

AU' = f A,    AF=|§AU',    AG = fAU< 

AH = |EAU',    AS = J|AU'. (3.10) 

Using Eq. (3.9), the second derivative of U' with respect to time is approximated by 

d2V\ 
dr2 -AT ~y[- fjA (AF', AG', AH') • dA + jjj\ (AS' - juAV')dv\     (3.11) 
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CELL A 

CELL B 

PSEUDO-MESH CELL P 

COMPUTATIONAL MESB 

. _ _ _  PSEUDO-MESH 

Figure 3.3: Control volume of pseudo-mesh cell P surrounding node 1. 

After substitution Eqs. (3.11),(3.8) into Eq. (3.7), a correction to U'j at (n + l)th 
time step, 6V[ = V[n+1 - U;", is given by 

5XJfl * IT [~ IfAt 
(F'' G'' R,) ' M + f!fVl 

(S' ~ JUJX3>) dV + B] 
+ 2^ [" ffAl 

(AF' AG>AH) *m + JJfVi (
AS " J»XU')Jr] ■ (3.12) 

The two parts of Eq. (3.12) correspond to the first and second order corrections, 
which will be noted as SV™ and SV'^ respectively. In this short-hand notation, 
Eq. (3.12) can be rewritten as 

SV'^SU'W+SU* ■'(2) 
(3.13) 

For the convenience, both the first and second order corrections will be split into 
contributions from the eight computational cells of which node 1 is a corner, i.e. 

8 cells 8 cells 

*U; = £ SU}p + £ Slf}*>,    i = A,B,...,H. 
i=l i=l 

(3.14) 

The surface integral representing the first-order flux contribution to the correction 
(the first integral in the Eq. (3.12)) will be approximated as one eighth of the sum 
of the surface integrals over the computational cells of which node 1 is a corner. The 
volume integral in the first-order correction (the second integral in the Eq. (3.12)) 
will be represented as a sum of the products of the source terms taken in the middle 
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of the computational cells surrounding node 1 and one eighth of the corresponding 
volumes of these computational cells. As a result, the contribution to the first-order 
correction at node 1 from cell A is given by 

*U12 = g if [" JJSA (*"' G'> H') • 52 + (S' - juV')A VA + B, 

where SA and VA are the area and the volume of cell A. 
Eq.(3.15), when discretized, becomes 

(3.15) 

«j£» = IATI 

8~vT 
6 faces 8 nodes 

J2 [F'IAxI + G'IAyI + H'IAzI} +   £  -^(S'-JUV^JVA + BA 
i=i 

(3.16) 
where Axi,AyI and Aj/ are the projections of the face area / in the x, y and z 
directions respectively. The average fluxes of a face I, noted as F'j, G'7 and Hj, are 
computed as one fourth of the sum of the fluxes at four corner nodes of this face. 
The notation B^ refers to the discretized right hand side of Eq. (2.53). The first 
order contribution to node 1 from the remaining cells B, C, D, E, F, G, H are derived 
similarly. 

To compute the second order correction, 5U'[2), at node 1, the first order changes 
AU', AF, AG, AH, AS are first computed at the centers of the computational cells 
surrounding node 1. The first order change AU' for cell A is then given by 

^"f // (*c,»).Ä+(*tf-*ir) K.+ BAdV 

Comparing Eq. (3.18) and (3.15), we obtain 

The changes AFA, AG^, AH^, AS^ for cell A are computed as 

(3.17) 

(3.18) 

AF.4 
'&F\ 

AU' * AGA = {m) AXJ'A' AHA AU A> 

AS„ = 
as 
m)r* (3.19) 

In Eq. (3.19) the Jacobians are evaluated using the mean value U^, the cell-average 
of the eight nodes. For computational efficiency it is best not to actually compute 
the Jacobian matrices and perform the matrix-vector multiplication. Instead, the 
following equations are used 

AF. = 

/ A(pu)' \ 
üA(pu)' + püAu' + Ap' 

üA(pv)' + pvAu' 
üA(pw)' + pwAv! 

\ ü(A(pE)' + Ap') + pIAv! ) 

AGA = 

( A(pv)' \ 
vA(pu)' + püAv' 

vA{pv)' + pvAv' + Ap' 
vA(pw)' + pwAv' 

\ v(A(PE)' + Ap') + pi At/ ) 
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8 
CELL A 

CELL B 

face        i       n      III      IV      V       VI 

nodes  2376  1485 3487  1562  5678  1234 

Figure 3.4: Contribution of cell A to the second order flux integration. 

/ 

AH.= 

where 

\ A(pw)' 
wA(pu)' + püAu' 
wA(pv)' + pvAu' 

wA(pw)' + pwAv! + Ap' 
\ w(A{pE)' + Ap') + pIAv! ) A 

AS.= 

/ 0 \ 
0 

Ü2yAp - 2ÜA{pw)' 
ü2yAp - 2QA(ptu)' 

\ o J 

AV'A   = (Ap',A(fm)',A(pvy,A(pwy,A(pE)% 
Au'   = (A(pu)'-üAp')/p 

Av'   = (A{pv)'-vAp')/p 

Aw'   = (A(pw)'-wAp')/p 

Ap'   = (l - l)(A{pE)'- üA(pu)'- vA(pv)'- wA(pw)' 

+ ^f(ü2 + v2 + w2 + Q2R2)) 

The second-order flux contribution to node 1 from cell A (the third integral in 
Eq. (3.12)) is approximated as one fourth of the sum of integrals over I,III,V cell 
surfaces, see Fig. 3.4. The fourth integral in Eq. (3.12) is computed in the same 
manner as the volume integral in the first order correction term. The second-order 
contribution from cell A to node 1 is given by 

//o\ ATI  r   l  ft  v    i 
sv>* = 2^ h iL,„,.v(AF'AG- AH> •dA+8(AS - ***WM 



CHAPTER 3.   NUMERICAL INTEGRATION 30 

+ 
2 • 8 • Vx 

J2   {&FAAxJ + AGAAyJ + AHAAzJ) 
J=I,HI,V 

(ASA-juAU'A)VA (3.20) 

The total contribution to a change at node 1 from cell A is obtained by combining 
the Eqs. (3.16)-(3.18) and the Eq. (3.20), i.e. 

'\A 

1ATl    £   (AFAAxJ + AGAAyJ + AJiAAzj) + ^^ASAVA 
8   vi   J=I,III,V 16 Vi 

(3.21) 

Now that the contribution of cell A to node 1 is defined, the same procedure applies 
to the cells B,..., H. The contribution of these cells to node 1 are given by 

lAn VB 
<5Ui IB (l - ^ATB) AU^ 

sv[ 

8 Vi ATB 

l^T    E    (AFBAxj + AGBAyj + AHBAzJ) + ^-^ASBVB 

I An Vc 
w (l - ^Arc) AU'C 

«JUin    = 'ID 

8 14 Arc 

STT    E    (AFc^xJ + AGcAyj + AHcAzJ) + -^ £sScVc 
8 ^  J=II,IV,V lb Ki 

1 ATJ. J^_ /  _ ju 
8 Vi  ArB V        2 

1Ari    X)   (AFö^j + AG^V + AHßA^ + ^^ASoVb 

Aro) AV'D 

8 Vi j=i,rv,v 16 Vx 

SV'      = 'IE )AVE 8 Vi Ar£ V        2      B 

iTT    E   (AF^^ + AG^j + AH^^ + i^AS^^ 
8 "i  J=I,III,VI 16 n 

aj'   = 'IF 
1       JWA 1 — AT; F) AU'F 

aji 

lAri VF 

8 Vi ArF 

^T?     E    (AFjP^j + AGjPi^j + AH^^ + ^^ASjpyj, 
8 "i  J=II,III,VI lb ^1 

lAn vG 
\G (l - ^ArG) AU'G 

8 Vi ArG 

1    Tl     53    (AFG^ + AGG^ + AHG^^ + I^ASGVG 

*u'lff = 

° *l J=II,IV,VI 

lArx VH  (,     ju)       \ ATT/ 

16 14 
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5 IT      /tie 

face     I n       in     IV     V        VI 

nodes   1458   2367   1256   3478  1234   5678 

Figure 3.5: Average face I-II. 

IAT! 

8~vT    ^    (AF»A*J + AGHAyJ + AHHAZJ) + ±^lAS HV„ 
° Vl J=I,IV,VI 16 Vx 

(3.22) 

The algorithms of computing cell volumes and areas are outlined in the Ap- 
pendix A. y 

3.4    Numerical stability 

Numerical stability sets an upper limit on the time step sizes that can be used for 
marching Eq. (3.5). Since we are only interested in finding a converged solution 
the solution of the linearized Euler equations, Eq..(2.47), then we can use different 
time steps for different cells to accelerate the convergence. A local time step will 
be defined for each computational cell of a domain, and it will depend on a cell's 
geometry and the local flow conditions. The detailed discussion of stability condition 
for the modified Lax-Wendroff scheme is given in the Ref. [54]. Here only a brief 
outline of how to calculate the time step will be presented. 

Consider cell A depicted in the Fig. 3.5. The average face between face I and face 
II of cell A is defined by the following two vectors 

di   =   2^4 + ^3~^~^'^ + 7?3-%-%,C4 + C3-C5-C6) 

d2   =   2^7 + £8-£i-&,777 + %-77i-%,C7 + C8-Ci-C2) 
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where (6, rji, 6) are the coordinates of node number i. 
A unit vector perpendicular to the average face I-II, denoted as UVn, is given by 

n i—ii — )—z^— {Ö.26) 
\[di x d2}\ 

The coordinates of the centers of faces I and II, noted as (£cl, rjci, 61) and (62, rjC2, 62) 
respectively, are calculated as 

Cci = 0.25(6 + & + & + 6) &2 = 0.25(6 + 6 + 6 + 6) 
?7ci = 0.25(T?I + 774 + 775 + %) 77c2 = 0.25(772 + 773 + 776 + 777) 

Cd = 0.25(6 + 6 + 6 + Cs)        62 = 0.25(6 + 6 + 6 + 6) 

The average perpendicular distance between the faces I and II, denoted as Di_n, 
is given by 

D1-11 = (62 - 61, *7c2 ~ Vci, 62 - Cci) • "ni-11 

If V A is the average steady velocity vector and a A is the average speed of sound 
for cell A, then the maximum time step for cell A is defined by 

Ar^minf ^" -, ^     ^ , _     ^V-VI )   (3.24) 
\| VA- nVn| + aA   I VA- n*ni-iv|+ aA   | VA ■ n*V-vi| + aA/ 

where the average quantities for faces III-IV and V-VI are computed in the similar 
way to those for faces I-II. 

The time step at node 1 (see Fig. 3.3) that is a node of cells A, B, C, D, F, E, G, H 
is given by 

ATI = min(ArA, ATB, ATC, ATD, ATE, ArF, ArG, ATH) (3.25) 

3.5    Numerical smoothing 

An artificial viscosity or smoothing operator must be added to the Lax-Wendroff 
scheme described in the Section 3.3 to prevent undesirable high-frequency waves in 
smooth flow regions, and to capture shocks for transonic flows. It can be shown, see 
for instance [60, 37], that the Lax-Wendroff finite difference approximation introduces 
a third-order dispersion error. As a result, non-physical oscillations known as odd- 
even decoupling modes are allowed as a part of numerical solution. To damp out 
these unwanted oscillations, a fourth-difference smoothing operator is introduced. In 
addition, a second-difference operator is used to stabilize the scheme in the vicinity 
of shocks. 

The following sections discuss second and fourth difference smoothing operators. 
The development of these smoothing operators is built on previous work in Refs. 
[34, 54, 8]. 
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3.5.1    Second-Difference Smoothing 

Second difference smoothing is introduced by adding the term e(2>V • (VU') to the 
right-hand side of Eq. (3.5). Here e(2) is a smoothing coefficient. Discretizing, the 
correction due to the second order smoothing at node 1 (see Fig. 3.6) is given by 

(«j;)smth2 = (£)_8g* £f > (iL)((u; - u;> (3La6) 

where e^ is the cell averaged smoothing coefficient and Ü* is the cell averaged un- 
steady conservation variable vector. The correction (5U'1)smth2 is presented as a sum 
of contributions from eight cells of which node 1 is a corner. A cell averaged unsteady 
conservation variable vector is given by 

  1 8 nodes 

U; - g  E u; (3.27) 

where the summation is over all nodes of a cell. Similarly, a cell averaged smoothing 
coefficient [8] is given by 

18 nodes 

& = I  E  42) (3-28) 
where 

*W - „ (3.29) 

8  i-i 

Sffi'Vjfa-Pi) 

Here nodes at which quantities for summations are taken refer to nodes neighboring 
node 1, see Fig. 3.6. The coefficient v2 is a constant specified by a user. In the 
present study, it was set to 0.25. A symbol p denotes a mean (steady) pressure. The 
coefficient ea

2 is constructed in a such way that it is close zero in the smooth flow 
regions and it is small and positive in the vicinity of a shock, ipj is a grid dependent 
weight that is designed to be close to unity to ensure an even dependence on all of 
the neighboring nodes. It is defined as tp3, == 1 + A^, where A^ is defined from the 
minimization of a Laplacian L given by 

6 nodes 

L =   £ (A^)2 (3.30) 

with the constraints 

6 nodes 

T{M>i) =   Y. (1 + M>j){ij - 6) = 0 (3.31) 
j=i 

6 nodes 

GVWj) =   E (1 + Wj)(m - Vi) = 0 (3.32) 
3=1 

6 nodes 

W(A^) =   E (1 + A^XG - Ci) = 0 (3.33) 
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cell A 

Figure 3.6: Stencil for pseudo-Laplacian. 

The purpose of the constraint equations is to ensure that the smoothing operator has 
no effect on linear solutions on irregular meshes. The importance of this first was 
established by Lindquist and Giles [43]. 

To minimize the Laplacian L subject to constraints Eqs.(3.31)-(3.33), a Lagrange 
multiplier technique can be used. Using this technique, a Lagrange function, £, is 
formed, i.e. 

C(A1>j) = L-\T- \Q - \U (3.34) 

where A^A,,, A^ are Lagrange multipliers. If the function L, Eq. (3.30), achieves a 
conditional extremum at the point (A^, A^>|,..., AT/>|), then 

= 0, i = i,..,6. 

The conditions given by Eq. (3.35) are equivalent to 

Wj = h&j - 6) + \{r}j - Vi) + AC(0 - Ci),   3 = 1, ■ 

(3.35) 

(3.36) 

The multipliers (A?, A,,, Ac) are found from Eqs.(3.31)-(3.33). After some algebra, one 
can show that , 

Xn (3.37) 

Xr = -RdhvJvc ~ Vsc) + Rvih^vc - hnhd ~ Rdhd-> rrn %,) 

hdVK ~~ ^c) ~ hvihvkc ~ kc^c) + hdhvJvc ~ V«) 
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where 

6 nodes 6 nodes 6 nodes 

% = E &-6), **= E (Vi-vi), rc= £ (O-CI) 
J'=I i=i j=i 

6 nodes 6 nodes 6 nodes 

'« = E to-eo2, /TO= E (^-^i)2, /«= E (0-Ci)2, 
J'=1 .. 7=1 j=\ 

6 nodes 6 nodes 

6 nodes 

^c= E (Vj- Vi)(Cj-Ci) 
i=i 

The optimum weights fy for some distorted grids may differ significantly from 
unity. Holmes and Connel [34] suggested that the weights be limited to 0 < ^ < 2. 

Because the smoothing coefficient, e[2), defined in Eq.(3.29), depends only on the 
grid and steady background flow, it can be calculated just once and stored at every 
node of the computational domain. 

3.5.2    Fourth-Difference Smoothing 

Fourth difference smoothing is introduced by adding the term -e(4)V • [V(V2U')] to 
the right-hand side of Eq. (3.5). The correction at node 1 (see Fig. 3.6) due to this 
term is given by 

<«j;UM = (£)t ZT-^ (£)( <B? - Dj) (3.38) 

where 

eS4) = max[0>4-eS2))] (3.39) 

The coefficient u4 is a constant (usually, uA = 0.002-0.005). The term Df is a pseudo- 
Laplacian operator based on the six edge nodes surrounding node 1 (see Fig. 3.6). It 
is defined as 

6nodes 

D?=   E tfi(U}-Ui) (3.40) 
3=1 

where U' is the vector of unsteady conservation variables. D2 is an averaged pseudo- 
Laplacian for a cell i. It is calculated as one eighth of a sum of pseudo-Laplacians at 
eight corner nodes of a cell i: 

         8nodes -i 

D? -  £  |UJ. (3.41) 
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The fourth difference smoothing is constructed in such a way that it is equal to 
zero in the regions of shocks where only second difference smoothing is needed to 
stabilize a solution. 

The smoothing terms given by Eqs. (3.26) and (3.38) are calculated after the 
numerical integration routine and then added to the corrections obtained during the 
Lax-Wendroff integration. 

3.6    Conservation 

The Euler equations state the conservation laws of mass, momentum and energy. 
A finite-difference scheme that maintains the discretized version of the conserva- 
tion statement exactly (except for round-off errors) for any number of grid points is 
conservative. It is important for a scheme to be conservative since this property guar- 
antees the correct Rankine-Hugoniot shock jump relations and the correct treatment 
of other discontinuities such as contact surfaces. 

The linearized Euler equations in the integral form are given by 

Tr Illy V'dV + II(F' G' H,)'Ä - IllyQdV (342) 

Here V denotes an arbitrary control volume with surface area A. The symbol Q 
denotes the source term of Eq. (3.5) and is equal to S' + b — juJJ'. The Lax-Wendroff 
scheme decomposes the domain into cells and approximates Eq.(3.42) by a discrete 
equation. This algorithm is proven to be numerically conservative [11] as long as 

all   nodes 

y^     (— 5U')   = ^[(boundary fluxes) + (source terms)] (3.43) 
7=1 ^T ' 3 

where ÖXJ'j is a total correction at node j, Vj is the volume of pseudo-cell around node 
j. The right hand side of Eq. (3.43) contains only the flux terms at the boundaries 
and the source terms. The flux terms inside domain cancel each other. This property 
often is referred to as the "telescoping property." 

According to the present scheme a correction SXJ'j at node j is equal to a sum of 
contributions from all surrounding cells (see Eq. (3.14)). These contributions con- 
sist of the first and second order corrections (Eq.(3.14)) and the smoothing terms 
(Eqs.(3.26),(3.38)). The left-hand side, of Eq. (4.43) can be expanded as 

all   nodes   , \r * all   cells 

J2     (irölJ)   =    £   [(lstorder)i + (2ndorder)i + (smoothing)*] (3.44) 

After examining Eqs. (3.16) and (3.20) one can discover that the scheme is written 
such that the flux out of a particular cell across a particular face is equal an opposite 
to the flux out of the neighboring cell across the same face. Smoothing operators 
are constructed in a such way that the sum of smoothing contributions to the corner 
nodes of a cell is zero. Hence, Eq. (3.43) holds true and the scheme is conservative. 
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 j- -j  

fine grid (Oth level) 
coarse grid (1st level) 

coarse grid (2nd level) 

Figure 3.7: Generation multiple grids. 

3.7    Accuracy 

The discretization procedure described in Section 3.3 is spatially second-order accu- 
rate, except when second difference smoothing is active, in which case the scheme is 
first-order accurate. This is typical for schemes that use artificial viscosity to capture 
shocks. 

3.8    Multi-Grid Acceleration Technique 

To obtain accurate solutions, relatively fine grids must be used for computations. The 
computational work required to reach the convergence is strongly affected by the size 
of the computational domain and the number of cells. To make the computations both 
efficient and accurate, Ni [47] proposed a multiple-grid technique. In this technique, 
fine and coarse grids are used simultaneously to obtain a solution where the finest grid 
provides fine spatial accuracy and the coarse grid provides rapid convergence rates. 
To implement the technique, a series of grids of varying spatial resolution has to be 
generated. First, we generate a fine grid. The fine grid will be referred to as a "zeroth 
level." A higher level grid is constructed by removing every other grid plane in each 
of three directions. Fig. 3.7 depicts the process of obtaining coarse grids for multiple- 
grid technique. If, for example, the fine grid has 2fc + 1 nodes in each direction, 
then k coarse grid levels can be constructed. In practice, the number of grids points 
in different directions will not be the same, in which case the maximum number of 
multiple-grid levels is dictated by the minimum of the number of multiple-grid levels 
allowable in each direction. 

Once the Lax-Wendroff numerical integration has been performed on the zeroth 
(fine) level and the boundary conditions have been applied, the flow variables are 
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Figure 3.8: Nomenclature used in multiple grid technique. 
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updated. The multiple-grid process then begins with the first level grid and proceeds 
with each successively coarser grid. As with the basic scheme, a multi-grid scheme 
is constructed in a way that all operations are performed on a cell by cell basis. See 
Fig. 3.8 for a description of the geometry associated with the multiple grid procedure. 
In this figure, the nodes of a cell of the first coarse grid level are numbered. The center 
of this cell is denoted by A. The first step of the multiple grid procedure is to transport 
the fine grid residuals to the coarse grid. The first-order change at the center of a cell 
A is [10, 27] 

AU^ 
-l 8nodes r A 

*ui + £ E [™/-~*(AS?-MU/)] 

+ 

+ 

+ 

E (AFlAxj + AGlAyj + AWyA^ 
ATA 

8VA J^3,5 

~   £ (AFc
2AxJ+ AGc

2AyJ + AHc
2AzJ 

OVA .7=2,3,5 

ATA 

8V, £ (AFlAxj + AGc
3AyJ + AHc

3AzJ 
A .7=2,4,5 

ATA 

+   «T   E (&VC4Axj + AGc
4AyJ + AW4AzJ 

+ 

8VA
 .7=^4,5 

TA   £ (^c
5AxJ + AGlAyj + AW5AzJ 8VA 

ATA 

.7=1,3,6 

+   W:   E (&nAxj + AGc
6AyJ + AHc

6AzJ 
OVA .7=2,3,6 

+   -^T   E  (AF^ + AG^yV + AH^., 
A .7=2,4,6 

Ar 
+   8TÄT   E  (AF^ + AG^V + AH^.; 

OVA .7=1,4,6 
(3.45) 

where 6XJf is the residual from the fine grid and vectors AFC, AGC, AHC, ASC are 
computed as 

"-^l*   **-«£*.   AH<=§5>,   AS<=|>, 
AXJ, AyJ, and AzJ in Eq. (3.45) are the projections of the area of face J in the x, y, 
and z directions respectively. Once the first-order change for a cell is determined the 
total changes at the nodes can be computed. The contribution to the total change at 
node 1 from the cell with a center A is given by 

suu = ^(AU^I-I^A^ + IAS^A^) 

-   g-TT-   E  (^AAxJ + AGAAyJ + AHAAzJ). 
A   .7=1,3,5 

(3.46) 
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The contributions to the change at node 1 from the cells with centers at B,C,...,H 
are computed in a similar way. 

After the changes are computed, boundary conditions in the near field are applied. 
Then the changes at the fine grid are computed by linearly interpolating the coarse 
grid residuals. Then, boundary conditions at the far-field and the interface boundaries 
are applied. And finally, the solution is updated. 

3.9    Steady Euler Analysis 

In the previous sections, the solution of the linearized unsteady Euler equations has 
been discussed. In practice, of course, the steady Euler equations are solved first, as 
the steady solution is required before the linearized Euler equations can be solved. 
The numerical algorithm presented in the previous sections is based on marching the 
linearized unsteady Euler equations in pseudo time until the converged (steady state) 
is reached. The same algorithm is used for advancing the discretized nonlinear steady 
Euler equations, Eq. (2.2), to steady state. However, there are a few differences 
between the solution of the steady and unsteady flow solutions. First, the steady 
flow calculations are performed on the non-deforming (steady) grid so there is no 
source term associating with the moving grid. Second, for the steady flow, since local 
time steps depend on the mean flow conditions, they are calculated each iteration. 
Similarly, the second-order smoothing coefficients, Eq. (3.29), are determined at the 
each iteration since they depend on the mean flow pressure. 



Chapter 4 

Boundary Conditions 

In this chapter, the boundary conditions required to solve numerically the conser- 
vation equations for an isolated blade row are developed. In Figure 4.1 a two- 
dimensional view of a computational domain is presented indicating the different 
types of boundary conditions. The boundaries are classified as being either near-field 
or far-field depending on their relative position to the blades. In the present work, 
the near-field boundary conditions include both solid surface and periodic boundary 
types whereas far-field boundaries include the inflow and the outflow boundaries. 

Solid surface and periodic boundary conditions are presented in Subsections 4.2.1 
and 4.2.2 respectively. Far-field boundary conditions are discussed in Section 4.3. 
One-dimensional non-reflective boundary conditions are presented in Subsection 4.3.1. 
Quasi-three-dimensional non-reflective boundary conditions are developed in Subsec- 
tion 4.3.2. Implementation of reflective boundary conditions for the present mean 
(steady) flow solver is discussed in Subsection 4.3.3. 

4.1    Nomenclature 
a speed of sound 
(/) 9, h) grid perturbations in x, y, and z directions 
n outward unit normal 
V pressure 
R- position vector 
[T], [T]-1 matrix of left and right eigenvectors 
U vector of conservation variables 
(u, v, w) velocity vector in Cartesian coordinates 
(ux, ue, uR) velocity vector in cylindrical coordinates 
W vector of characteristic variables 

41 
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x,0,r,t cylindrical coordinate system - physical domain 

p density 
PT total density 
a interblade phase angle 
n,n angular velocity of a rotor shaft 
uj frequency 
0G angular blade to blade gap 

()' small perturbation quantity 

0 circumferential average 

OP refers to primitive variables 

4.2    Near-Field Boundary Conditions 

4.2.1     Solid Surface Boundary Condition 

Solid surface boundary conditions are applied at the blade's surfaces and on the 
hub and tip casings. First, it is assumed that the computational grid at the wall 
is a stream-surface of the flow. To obtain the proper values of the flow variables 
corrections, it is assumed that there is a "ghost" cell inside the solid surface. In 
practice, the changes computed during Lax-Wendroff integration at the solid walls 
are doubled to produce the proper effect. Second, the solid wall boundary condition 
specifies that there is no flow through the surface. For an inviscid model, this means 
that the normal velocity of the fluid at the solid surface must equal to the normal 
velocity of this surface. Hence, 

(«, v, w) ■ n(Sl, s2, r) -   R(y2,T) • n(s1( s2, r). = 0 (4.1) 

where Si and s2 are two directions in which the surface is splined, n(si, s2, r) is a unit- 
normal to body surface, {u,v,w) is the velocity vector, and the vector R(sl, s2,r) 
describes the location of a point of a solid surface (see Fig 4.2). To perform the 
linearization of the condition, Eq. (4.1), we decompose the parameters as 

R(si,«2,r)   =   K(Sl,s2) + (f,g,h)e^T (4.2) 

n(si,s2,T)   ='n(s1,52) + nVwr (4.3) 

(u,v,w)   =   {u,v,w) + (v!,v',w')e?WT (4.4) 

where R(s!,s2) is the mean location of a point of a solid surface, (f,g,h) are the 
amplitudes of solid surface vibration, n is the mean normal vector, n' is the pertur- 
bation of a normal vector, (v,, v, w) is the steady velocity vector. After linearization, 
the steady part of Eq. (4.1) is given by 

(ü, v, w) ■ n = 0, (4.5) 
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inlet 
periodic 
boundary 

periodic boundary 

airfoil 
boundary 

oulet 
far-field 
boundary 

Figure 4.1: Identification and location of numerical boundary types in computational 
domain. 
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airfoil's perturbed 
location 

R(S,S2,T) 

Figure 4.2: Illustration of position vectors for vibrating airfoil. 

and the unsteady part is given by 

(u', v', w')-fi= -(% v, w) ■ n' + ju(f, g, h) ■ n. (4.6) 

To compute the steady and perturbed normals, consider two directions, si and s2, 
in which the solid surface is splined. The cross product of derivatives of a position 
vector with respect to the spline direction results in the normal (unnormalized) vector 
to the surface, nsurf, i.e. 

fdR     ÖR'\     fdR     dR'\ ' , nsurf=fe + ^JXfe + ^j (4?) 

To the first-order, vector, nsurf, is given by 

_      ,    ,        OR    OR     fdR     dR'    OR'     dR\ ,    , 
nsurf.nsurf + nsurf = -x-+^_x — + — x-J (4.8) 

where the zeroth-order and first-order terms are denoted by nsurf and ngUrf respec- 
tively. Next, to compute the unit normal and the perturbation of the unit normal, 
vectors nsurf and n^ must be normalized by the magnitude of nsurf. In addition, 
the component of the perturbation of the unit vector in the nsurf direction must be 
removed to prevent stretching of the grid from inducing an upwash. Finally, the 
expressions for unit mean and perturbed normals are given by 

_ _   nsurf , _   nSurf   _ / n;
surf   ^   Hsurf \    ^surf , .    v 

|nsurf|' |nsurf|     I |nsurf|    |nsurf|i |nsurf|' 
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4.2.2    Periodic Boundary Condition 

In this work, we consider only circumferentially periodic flows. This assumption 
permits one to model an entire cascade while numerically simulating the flow in a 
single blade passage. For the mean flow, the periodicity condition is given by 

V(Z,e,R) = V(Z,6 + 0G,R) (4.10) 

where U is the vector of conservation variables in the cylindrical coordinates and 9G 
is the angular blade to blade gap. 

In this analysis, we assume the unsteady flowfield can be modeled as a small har- 
monic perturbation about the mean (steady) flowfield. Since the governing equations 
for an unsteady flowfield are linear, then the response of the blade row to arbitrary 
blade motions or gusts may be determined by decomposing the disturbance into a 
sum of traveling wave modes. Each mode will have a unique frequency, u, and a phase 
shift over one blade pitch (the interblade phase angle), a. Because linear solutions 
can be superposed, the total response of the blade row is equivalent to the sum of 
the responses to each of individual modes. Therefore, without loss of generality, only 
one traveling mode need to be considered at a time. The periodicity condition of an 
unsteady linearized flow is given by 

U'(x,0 + 0G, R) = U'OE, 9, R)e>°. (4.11) 

4.3    Far-Field Boundary Conditions 

In this section, the implementation of the far-field boundary conditions will be dis- 
cussed for steady and unsteady flow calculations. Typically, far-field boundaries are 
placed close to the blades to reduce computational resources. Ideally, the far-field 
boundary conditions for unsteady flows should allow all outgoing unsteady distur- 
bances to pass out of the domain without being reflected. These conditions are 
referred to as non-reflecting boundary conditions. Pull one and two dimensional non- 
reflecting boundary conditions have been developed in recent years [18, 23, 25]. In this 
work, quasi-three-dimensional non-reflecting boundary conditions are implemented 
according to Giles and Saxer [54]. 

For the steady analysis, the far-field boundary conditions enforce the desired inflow 
(the total pressure, the total density, the circumferential and radial components of 
velocity) and outflow (the static pressure) operating conditions. 

4.3.1    One-Dimensional Nonreflecting Boundary Conditions 

A one dimensional boundary condition is the simplest model for non-reflective far-field 
boundaries. In this model it is assumed that there is no grid motion in the far-field, 
which means that in the far-field the computational coordinates are the same as the 
physical coordinates. The next assumption is that the variations in the unsteady 
flowfield in the radial and circumferential directions are small, i.e. d/dO « d/dr « 0. 
In addition, it is assumed that the effects due to rotation are small, so that the source 
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terms are ignored. Based on these assumptions the unsteady Euler equations can be 
written in cylindrical coordinates as 

dt       dx 
(4.12) 

It is also assumed that the steady flow does not vary in the axial direction in the far 
field. Eq. (4.12) then becomes 

'd\J'     dFdW 
dt  + ÖÜ dx 

0 

or in primitive variable form 

dV     rA1dU'     n 
+ [A]— = 0 dt dx 

(4.13) 

(4.14) 

where 

U'p = 

( P' \ 
v!. 

U R 

[A] = 

(ü 
0 
0 
0 

V P' ) 

p 
v, 
0 
0 

0 0 0 \ 
0 0 i 
ü 0 0 
0 M 0 

\ 0   7p   0   0   u ) 

The far-field behavior of the system can be examined by performing an eigenanalysis 
of the matrix [A]. Eq. (4.14) can be decoupled by premultiplying the equation by the 
matrix of left eigenvectors T given by 

[T] 

(0   1 0   0 -l/pä \ 
0   1 0   0 l/pa 
1   0 0   0 -1/ä2 

0   0 0   1 0 
V o o 1   0 o    ) 

(4.15) 

Eq.(4.14) then becomes 

~dt 
+ [A] 

aw 
dx 

= 0. (4.16) 

Here [A] is a diagonal matrix given by 

( u — a 0 0   0   0\ 
0 ü + ä 0   0   0 

A=m[A][Tl-1 = 0 0 ü   0   0 
0 0 0   ü   0 

{   o 0 0   0   ü / 

(4.17) 

and 
w = [T]U; 

are the characteristic variables (eigenvalues). 

(4.18) 
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In Eq. (4.17) each diagonal component of [A] is equal to the propagation speed 
of each of the five associated characteristic waves. Positive eigenvalues correspond to 
downstream traveling waves and negative eigenvalues correspond to upstream trav- 
eling waves. For axially subsonic flows (ü < ä), there are four downstream moving 
characteristic waves and one upstream moving wave. 

The first characteristic of Eq. (4.16) can be written as 

,     V' 
Wl = u _ _. (4 19) 

This characteristic denotes an upstream traveling pressure wave. Similarly, the second 
characteristic is given by 

w2 = u' + — (4.20) 

and physically is a downstream traveling pressure wave. The third characteristic, 

™3 = p'-§2, (4.21) 

is an entropy wave. The fourth and the fifth characteristics are given by 

W4 = u'R (4.22) 

W5 = u'e, (4.23) 

and physically are vorticity waves. The entropy and vorticity waves convect down- 
stream with the mean flow. The velocity of their propagation is equal to the axial 
velocity of the mean flow, ü. 

Far-field boundary conditions are applied after each step of the basic numerical 
integration algorithm at every node of the far-field boundaries. First, at the (n+ l)st 
time level after the Lax-Wendroff integration, the estimated solution is computed as 

USS" = U? + SU?M (4.24) 

where the subscript "old" refers to a value of a variable after the Lax-Wendroff in- 
tegration, but before applying the far-field boundary conditions. Next, the "old" 
values of characteristic variables are obtained by W0id = [T]U^oId. The next step is 
to eliminate downstream traveling waves in case of the inlet far-field boundary, and 
upstream traveling pressure wave in case of the outlet far-field boundary. This is 
accomplished by setting corresponding characteristic values to zero, i.e 

Winew   =   0   @inlet, if   t = 2,...,5 

Winew   =   0   ©outlet, if   i = l 

Then, the "new" values of solution, Uj^>, are obtained, i.e. 

UftJ? = [T]-1Wnew (4.25) 

The "new" changes at the (n + l)st time level are given by 

£U'(n+1) = Tj/(n+1) - TJ'n (A oa\ 
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4.3.2    Quasi-Three Dimensional Analytical Nonreflecting Bound- 
ary Conditions 

The quasi-three dimensional approach for the implementation of far-field boundary 
conditions is based on a two-dimensional linearized Euler analysis by Hall and Crawley 
[23]. Hall's two-dimensional boundary conditions were applied at every radial station 
making the analysis "quasi-three-dimensional". In this analysis we assume that the 
flow variations are small in the radial direction and that there is no grid motion in 
the far-field. Also we neglect rotational effects. Incorporating these assumptions into 
the linearized Euler equations in cylindrical coordinates, one obtains 

dt + dx \dÜ    ) + rdO \ÖÜ    , 
0 (4.27) 

Additionally it is assumed that the steady flow, does not vary in the axial and cir- 
cumferential directions in the far-field. Equation (4.27),then, becomes 

dV     dFdV     1 dG dW _ 
dt  + 8Ü dx + r &Ü 86 

or in primitive variable form 

8U'p + [A)^E + IfB,^E = 0 
dt dx d6 

(4.28) 

(4.29) 

where 

U'p = 

/ ft \ 
v! 
u'e [A] = 

( ü p 0 0 0 \ 
0 ü 0 0 | 
0 0 ü 0 0 
0 0 0 ü 0 

y o 7p o o a) 

[B] = 

/«« 0     p 0 0 \ 
0 He    0 0 0 
0 0 He o I 
0 0     0 wö 0 

\ 0 0 7p 0 Ü0 ) 

We can decompose the unsteady flow, U'p, at each radial station into Fourier har- 
monics since it is circumferentially periodic. The Fourier representation of a solution, 
U'p, is given by 

U'p(:r, 6, r, t) =   £, U'Pm (r)e;M+fc-*+(<H-2™)ö/eG] (4.30) 

where u is the frequency, a is the interblade phase angle and km is a spatial wave 
number to be determined. 

The first step in finding spatial wave numbers km is the substitution of Eq. (4.30) 
into Eq. (4.29): 

£ MI] + km[A] + l^[B))V'Prn^
t+k-x+^ = 0 (4.31) 
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Here [I] is the identity matrix and ßm = (a + 2nm)/6G. For Eq. (4.31) to hold true, 
each term in the series must independently vanish, hence 

(u,[I] + MA] + ^[B])U'Pm=0 (4.32) 

or 

- [A^MI] + ^[B])U'Pm = kmV'Pm (4.33) 

Since u) and ßm are prescribed quantities, Eq. (4.33) is an eigenvalue problem for the 
eigenvalue km and the corresponding right eigenvector U'Pm. For the construction of 
the non-reflecting boundary conditions, we will need to know the left eigenvectors 
which satisfy the equation ' 

-Ut[A]-(a;[I] + ^[B]) = ^ut (4.34) 

Note that the right eigenvector is a column vector and the left eigenvector is a row 
vector. The eigenvalue problem, Eqs. (4.33)-(4.34), is solved analytically. For each 
fixed m there are five eigenvalues and five corresponding left and right eigenvectors. 

A critical step in the construction of boundary conditions is to separate eigensolu- 
tions of the eigenvalue problem, Eqs. (4.33)-(4.34), into incoming and outgoing modes. 
Once the spatial wave numbers km are known, this is accomplished by looking at the 
group velocity, VG = --£-. A positive group velocity corresponds to a wave traveling 
downstream, a negative group velocity corresponds to a wave traveling upstream. 

The first eigenvalue and corresponding left eigenvector are given by 

u       _    -*(» + *?*)- äyj^tjü* + vl - q2) + 2^uü9 + a;2 

lm ^T^  (4.35) 

U'L 
r ' r    '     U> pi   J 

(4.36) 

This pair defines an upstream traveling pressure wave, provided ü < ä. When 
the wave number, klm, switches from real to complex, the propagation behavior of 
this pressure wave changes. When the wave number is real, the amplitude of this 
wave is constant. When the wave number is complex, the amplitude is decaying 
exponentially as x decreases. The division point between these two behaviors (the 
square root term in Eq. (4.35) is equal to zero) is called the acoustic resonance point 
Constant amplitude waves are referred to as superresonant or cut-on, while decaying 
waves are referred to as subresonant or cut-off. 

The second eigenvalue and corresponding left eigenvector of Eq.(4.34) are given 

h 2m 
=   -fi0" + &f&)+ äy/$(ü> + vl - q2) + 2^ume + ^ 

(4.37) 

U'2m     =     (   0,     &nM+u^     -ftnfi      Q       \/^^2+^-^)+2e^um$+^    j        ^ 
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This pair defines a downstream traveling pressure wave. 
The third set eigenvalue and left eigenvector correspond to a traveling down- 

stream entropy wave 

_      ßmü0/r + cv 
K3m    — Z  (4.39) 

U'L   =   ( 1,   0,   0,   0,   -£ ) (4.40) 

The fourth and the fifth eigenvalues and left eigenvectors correspond to traveling 
downstream vorticity waves. 

_ _    ßmüe/r + u) 
K4m    —    ^5rn — Z  (4-41) 

U'L   =   ( 0,   0,   0,   1,   0 ) (4.42) 

U'L   =   (0,   Äifi,   £f*+u,,   0,   £) (4.43) 

Note that the entropy and vorticity waves are cut-on since k3m, k4m, and k^ are 
always real. 

Before constructing non-reflective boundary condition, let us recall that left and 
right are orthogonal. It can be shown that if a left eigenvector U'fm corresponds to 
an eigenvalue kjm and a right eigenvector V'fm corresponds to an eigenvalue kim, then 

U'^Ut = 0 if t^j 

UtmU'fro = 1  if i = j. (4.44) 

After all eigenvalues and eigenvectors are known, we can present each Fourier 
harmonic of a solution as a sum of its five eigenmodes. Four of these eigenmodes 
travel downstream, and one eigenmode travels upstream. To make a far-field bound- 
ary non-reflective, one must exclude from a solution all waves traveling inside the 
computational domain. More specifically, Eq. (4.30) can be rewritten in a form: 

°° oo        5 
U'p(x,e,r,t)=   £   U'pjx,ry^+ßme) =   £   ^aimufm(r)^+^x+An9) 

(4.45) 
where the index i refers an eigenmode number i, V'fm is its right eigenvector, and 
aim is the amplitude of this eigenmode. To make a far-field boundary nonreflective 
one has to set the amplitudes aim to zero for the waves entering the computational 
domain, i.e. aim (i = 2,3,4,5) is set tb zero for an upstream boundary and alm is set 
to zero for a downstream boundary. If one multiplies a Fourier coefficient VPm by a 
left eigenvector U'fm, one obtains J771' 

5 
U'^U'Pm = £ aimV%V't^+k^^e) = a.m^+kmiX+ßme) {AM) 

j=i 

Here the orthogonality of left and right eigenvectors, Eq. (4.44), was used. Eq. (4.45) 
shows that setting an amplitude ajm to zero is equivalent to setting the quantity 
U'LU' „ to zero. jmu Pm 
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The detailed discussion of the numerical implementation of quasi-three-dimensional 
boundary condition follows. 

Discretization of an unsteady far-field boundary condition 
The following operations are performed at each radial station at a far-field bound- 

ary. 

• Compute circumferentially averaged steady flow quantities. 

• Update the unsteady solution after the Lax-Wendroff integration and smoothing 
routines. Go from conservation variables to primitive variables. 

• Calculate the Fourier coefficients, U'Pm(x,r), of an unsteady flow, U'p(x,0,r). 
Typically, a finite number mmax of Fourier harmonics is considered. For clarity, 
let us rewrite the first part of Eq. (4.45) as 

"»mux 

U'PM,r)=     £     U'Pm(x,r)^ (4.47) 
m=—mn 

Here the left hand side U'p(x,0,r) is known. It is the earlier updated un- 
steady solution vector. A vector U'Pm(x,r) has to be determined. To compute 
it, we have to invert a matrix Lim = {ejßm9i}, where i = 1,..., Jmax - 1 and 
m ~ —"Wx,...,mmax. Jmax is a number of grid points in the circumferential 
direction. Note that the first dimension of the matrix L is equal to Jmax - 1 
because the first and the last grid points in the circumferential direction are 
periodic. Since the matrix L is not square, a pseudoinversion is used to invert 
it. A pseudoinverted matrix L is given by 

L-1 = (L^L)-1!/ (4.48) 

where the symbol LT stands for a conjugated and transposed matrix L. 

• For each m a vector U'Pm(x,r) is multiplied from the left by a matrix T the 
rows of which are the left eigenvectors: 

Wm = [T]U'Pm(x,r) (4.49) 

/ 

[T] 

0      An fig  _|_ U) ßmü 0 

0 &fz+u; 
1 0 
0 0 

V o &^ 
\ r 

-ßmü Q 
r 
0 0 
0 1 

^+w 0 

V^(fi2+"g-ä2)+2^-üms+^   ^ 

j—2 £2  

0 
ßjn 
pr 

(4.50) 

where Wm is a vector (Wm = (wlm,w2m,w3m,w4m,wbm)T). 

To exclude waves entering the computational domain specify wim = 0, 
2,3,4,5 for the inlet boundary, and iulm = 0 for the outlet boundary. 

i — 
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• Compute new values for Fourier coefficients as 

U'^new = [T^W™ (4.51) 

where [T]_1 is an inverted matrix of left eigenvectors [T]. 

• Compute new values of primitive variables as 

U'p(zAr)new=     £     UV»n,(z,r)e>A»* (4.52) 
m=—mmax 

4.3.3    Steady Reflecting Boundary Conditions 

In the present work, the steady solution is obtained by advancing the governing 
equations in pseudo time until a steady state is reached, hence far-field boundary- 
conditions are applied at each time level. At a far-field boundary at a given radius 
r a steady solution at the (n + l)st time level (after applying the Lax-Wendroff 
integration, but before applying the far-field boundary conditions) is given by 

TJ£\x, r, 9) = TT(x, r, 9) + SO£\x, r, 9). (4.53) 

The subscript "old" refers to a value of variable before applying the far-field boundary 
conditions. 

Since the solution is spatially periodic (Jjn+1(x, r, 9) = TT+\x, r,9 + 9G)), it can 
be decomposed into Fourier harmonics as 

ro=co 

V£(x,r,6)=   £  U^d(*,ry2™^. (4.54) 
m=—oo 

Here U^oidO>r) is the amplitude of the ra-th Fourier harmonic of the solution. In 
practice, a finite number mmax of harmonics is kept in the sum in Eq. (4.54). We 
assume that in the far-field region the m-th harmonic (m ^ 0) of a flow is a small per- 
turbation about a circumferentially averaged mean flow. All harmonics with m ^ 0 
should be non-reflective. Quasi-three-dimensional conditions described in the pre- 
vious section are implemented for each harmonic U^+

0w(:r,r), m ^ 0 with u = 0 
and ßm = 2Trm/9G. A steady background flow is assumed to be equal to the zeroth 
harmonic of a solution at the nth time level. 

At the inlet and exit boundaries we specify physical quantities that correspond to 
the time-averaged values expected during operation. At the inlet boundary we specify 
the total pressure, pTsPec, the total density, prspec, the radial, uRspec, and tangential, 
v-espec, components of velocity. The total density, pr, and the total pressure, pT, are 
given by 

PT = p(l + ~- Aß») ^ (4.55) 

PT = p(l + 2^ML)^ (4.56) 
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where Mabs is the Mach number computed in the absolute frame of reference. At the 
exit boundary we specif}' the static pressure, Pexitspec- To insure that a circumfer- 
entially averaged meanjsteady flow matches the specified values, a correction to the 
estimated mean flow, V^\x,r) = (p,ü,üe,üR,p)^d

+1\ has to be made. For this, 
one-dimensional reflective boundary conditions are applied at the inlet and outlet 
boundaries at each radial station. 

The change in the mean steady flow at the (n+ l)st time level at the inlet boundary 
is determined by matching the specified inlet flow values and by keeping unchanged 
the upstream traveling pressure" wave. Assuming that the change is small comparing 
to the mean flow, one obtains 

/ PTspec 

PTspec 

^■9 spec 
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\ Su0\d - 
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A inflow 
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SüR 

8p 
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(4.57) 
where 5uo}d = <+x - un and 5po]d = ft*1 - p* are the changes in the mean axial 
velocity and the mean static pressure at the (n + l)st time level before applying far- 
field boundary conditions. The derivatives of the total pressure and the total density 
with respect to the flow primitive variables are calculated using Eqs. (4.55)-(4.56). 
From Eq. (4.57) the new changes in mean steady flow at the (n + l)st time level are 
computed and the new mean steady flow is given by 

TjTl+l 
Onew Un„a„, - U0 +<5U0new (4.58) 

At the outflow boundary, the new changes in mean steady flow are determined 
from the requirement that the static pressure has a prescribed value. One specifies an 
average exit pressure poutsPec at a certain radius (usually at the hub casing). Then, 
static pressure is computed as a function of radius along the span using a radial 
equilibrium condition, given by 

dp, out   spec 

dr = P 
{üe? abs 

(4.59) 

The change in the mean steady flow at the (n+l)st time level at the outlet bound- 
ary is determined by matching the specified static pressure and by keeping unchanged 
the downstream traveling pressure wave, the entropy wave and the two vorticity 
waves. Similarly to the inlet boundary, the new changes in mean steady flow at the 
(n + l)st time level are obtained from the equations: 

/    Pspec-P"    \ 

(Kid + ^ 

<Wd - ^ 
Sue old 

\     6u lRo\d outflow 

/ 0 0 0 0 
0 10 0 
10 0 0 
0   0   10 

V o o o i 

1   \n 

\/{pa) 
-1/ä2 

0 
0 / outflow 

( sp \n+1 

Sü 
Sü0 

SÜR 

Sp 

(4.60) 

/ 
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Once the new changes axe obtained, the mean steady flow is updated at the outflow 
boundary using Eq. (4.58). 

The final solution at the (n + l)st time level is given by 

m=oo . 

UTM=   £  K^^mJ5- (4-61) 
m=—oo 

where Uprnnew are the new amplitudes of Fourier harmonics of the solution. 



Chapter 5 

Coupling of Multiple Blade Rows 

The behavior of unsteady flows through multistage machines and the numerical 
method used to model these flows are discussed in this chapter. An incoming gust 
or blade vibration creates an initial fluid mode disturbance that travels through the 
fluid. When this initial disturbance encounters a blade row, the blade row reflects 
transmits, and scatters the fluid mode into a set of outgoing fluid modes When 
these outgoing modes encounter other blade rows, the process repeats. In addition 
frequencies of these modes are shifted as they are viewed in the frames of reference of 
neighboring blade rows because adjacent blade rows (rotors and stators) move rela- 
tive to each other. Eventually multiple waves at certain frequencies and spatial wave 
numbers are excited in the fluid.  The unsteady flow is modeled as a sum of these 
Tiro irao waves. 

In Section 5.2, the generation of unsteady pressure, vorticity, and entropy waves 
in the fluid flow resulting from an initial unsteady disturbance is explained. In Sec- 
tion 5.3, the numerical algorithm for multiple blade rows is outlined. The inter-row 
boundary conditions are discussed in Section 5.4. 

5.1    Nomenclat lire 
B number of blades in a row 
ko nodal diameters of initial excitation 
N nodal diameters 
V pressure 
u vector of conservation variables 
(ux,ug,uR) velocity vector in cylindrical coordinates 
x, R, 0, t cylindrical coordinate system - physical domain 

55 
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p density 
a interblade phase angle 
n,n angular velocity of a rotor shaft 
u> frequency 
eG angular blade to blade gap 

()' small perturbation quantity 

0 circumferential average 

5.2    Spinning Mode Generation 

To illustrate the physical process to be modeled, let us consider just one stage which 
includes a stator and a rotor as shown in Fig. 5.1. The relative motion is provided 
by the rotor shaft spinning at the rotational frequency, ft. The relative and fixed 
coordinate systems are denoted by (x, 9, R) and (xr, 9', R') respectively. The stator 
has Bx blades, while the rotor contains B2 blades. 

Suppose that the rotor blades vibrate with frequency u>0 and small amplitude. The 
resulting unsteadiness in the flow is assumed to be small compared to the mean flow 
and will be governed by the linearized Euler equations. Therefore, unsteady solutions 
may be superposed and we cah decompose the motion of the rotor into a sum of 
traveling wave modes to analyze each traveling mode separately. Hence, without loss 
of generality, we can assume that the rotor blades vibrate with frequency UJ0 and k0 

nodal diameters. As a result of this vibration, pressure, vortical, and entropy waves 
with frequency UJ0 will radiate away from the rotor. These radiated waves will satisfy 
the complex periodicity condition given by 

U'(x, 9, R)ej<7° = U'Or, 9 + 9G2, R) (5.1) 

where U' is the complex amplitudes of the unsteady perturbation conservation vari- 
ables, and 9Q2 is the angular blade to blade gap in the rotor. The interblade phase 
angle of the motion, oo, is given by 

2vrfco 
a°= ~BT    ■ (5'2) 

The unsteady flow upstream and downstream of the rotor satisfying the periodicity 
condition, Eq. (5.1), can be presented in the form of Fourier series, i.e. 

oo 

u'{x,9,R,t)=   £  U'fc(x,R)ei^t+(ko+kB2)e} (5^ 
k=—oo 

where k takes on all integer values. Each component of the sum, Eq. (5.3), will be 
referred to as a spinning mode. The kth spinning mode has N = k0 + kB2 nodal 
diameters. 

Due to the relative motion of blade rows, waves expressed in the moving frame 
of reference of the rotor will experience a frequency shift when viewed in the fixed 
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Figure 5.1: Spinning mode generation. 

frame of reference of the stator. This phenomenon of frequency shifting is known as 
the Doppler effect. In our example, the coordinate transformation is given by 

x' = Ax + x,    6' = -Üt + 9,    R' = R (5.4) 

where Ax is the axial distance between the leading edges of the stator and the rotor. 
Substitution of Eq. (5.4) into Eq. (5.3) gives 

u'{x\ 6', R', t) =   £ V'k{x' - Ax, jjy K*+<*o+*B2M 
fc=—oo 

(5.5) 

where u/ = u;0 + (*o + kB2)Q. Note, that the original frequency cuQ is shifted to the 
frequency u/ = u0 + (k0 + kB2)Q when viewed in the stator frame of reference. In 
particular, each wave leaving the rotor is viewed in the stator frame of reference at 
a different frequency. As a result of the subsequent interaction with the stator, each 
of these waves excite additional waves which radiate away from the stator. These 
radiated waves will have the same phase shift over one blade pitch as the incident 
wave. Hence, the solution can be expressed as 

oo oo 

u'(x',e',R',t)=   £    £ \J'kn(x' - Ax,i?)e^'t+(fc°+nßi+*ß^ (5.6) 
n=-oofc=-oo 

where u' = u0 + (k0 + kB2)Ü. When viewed in the rotor frame of reference, the waves 
have the form 

00      00 

U'(X,0, R,t)=    £      Y,   V'^X, R)^t+(ko+^B1+kB2)9) 
n=-oofc=-oo 

(5.7) 

where now u = u0 - nBtf. Note, that the frequency of waves as viewed in the rotor 
frame does not depend on k. Therefore, the original disturbance with frequency u0 
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and k0 nodal diameters has scattered into a number of discrete nodal diameters and 
has shifted into a number of discrete frequencies. Note that the mode numbers n and 
k, wheel speed, blade count, original frequency and nodal diameters determine the 
frequency and the nodal diameters of a spinning mode. 

The previous example of spinning modes generated in a turbomachinery stage can 
be extended to machines with several blade rows. Consider nmax blade rows with 
B\,..., Bnmax blades respectively. Even numbered blade rows are rotors rotating at the 
angular frequency Q,; odd numbered blade rows are stators. If the initial disturbance 
with (wQ, k0) starts in any of the rotors, the possible nodal diameters and frequencies 
can be expressed as 

N = k0 + n1B1+ n2B2 + ... + nnmaxBnmax (5.8) 

Ui = UJQ + (ho + ... + ni_2ßi_2 + mBi + ni+2Bi+2 + ...)fi (5.9) 

Uj =u0- (... + nj-2Bj-2 + rijBj + nj+2Bj+2 + ...)Q (5.10) 

where i and j are blade row numbers, where i is odd and j is even. The indices n 
take on all integer values. 

Furthermore, individual spinning modes will be identified by a set of indices nt 

which are needed to define the nodal diameters and the frequency of a mode, see 
Eqs. (5.8-5.10). The fundamental mode, the mode that is excited initially, will be 
associated with a set of indices given by n* = 0, with i = 1,.., nmax. 

It has been shown that an initial excitation with a specific frequency and an in- 
terblade phase angle leads to an excitation of an infinite number of spinning modes. In 
practice, the sums describing the unsteady small perturbation solution, as in Eqs. (5.6- 
5.7), are truncated to a finite number of modes. We assume that including more spin- 
ning modes does not significantly change the unsteady response of the fundamental 
spinning mode. 

When choosing spinning modes for a model, one should always include the fun- 
damental mode. Then, the indices nt are varied to create more modes. The modes 
with lower nodal diameters are added first. While adding more modes to the model, 
it is necessary to satisfy the connectivity condition. For instance, in a single stage, 
the fundamental mode (0,0) excites the modes (a, 0) and (0, b) where a and b are 
any non-zero integers. Modes (a,0) and (0,6) excite the modes (a,b). If the mode 
(a, b) is needed in the model, then at least one mode from sets (a, 0), (0, b) must be 
kept to provide a connection between (a, 6) and (0,0) modes. Apart from these rules, 
choosing an appropriate set of spinning modes for a given machine is as much art as 
science. 

5.3    Outline of the Method 

Having described the mechanism of spinning mode generation, we will now outline 
the numerical approach for computing the unsteady flow through a multiple blade 
row machine using time-linearized CFD techniques. 
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To begin, we generate a computational mesh for each blade row of a given mul- 
tistage configuration. Because both mean steady and small perturbation unsteady 
flows satisfy complex periodicity conditions in the circumferential direction, we only 
need to generate grid for a single blade to blade passage of each blade row. We 
generate the three-dimensional grids so that there is the same number of grid points 
in the radial direction for all blade rows and the radii of the radial stations at the 
interface boundaries are equal on both sides. These grid features simplify coupling of 
the solutions at the inter-row boundaries. 

The second step is to compute the mean steady flow through the whole machine. 
Our technique is based on the previously described method for a single blade row. 
We march the full Euler equations in pseudo-time simultaneously for all blade rows. 
The circumferentially averaged mean flow variables are matched at each of the radial 
stations of the inter-row boundary after every time step. A detailed discussion of how 
solutions are matched at the inter-row boundaries is deferred until the next section. 

Once the mean steady solution has been computed, we can linearize the Euler 
equations. We define a set of spinning modes, each with a different frequency and 
interblade phase angle to find a small perturbation unsteady solution. The flows as- 
sociated with each of these spinning modes are found in parallel for an entire compu- 
tational domain using the method developed for a single blade row. At each iteration 
of the flow solver, information is exchanged among the various spinning modes at 
the inter-row computational boundaries (see Section 5.4). This iteration procedure is 
continued until a converged solution is obtained. 

5.4    Interface Boundary Conditions 

To begin, we first discuss the steady flow interface boundary conditions. At the 
stator/rotor interface, mass, momentum and energy must be conserved. The objective 
of the interface boundary conditions is to make the flux of these quantities out of the 
stator equal to the flux into the rotor. To achieve this, the following circumferentially 
averaged flow quantities are matched at the each fixed radius, 

Pstator    = Protor (5.11) 

«stator    = «rotor (5.12) 

Öfctator    = Ü$TOtOT + QR (5.13) 

«Rstator ' = ÜRrotor (5-14) 

Pstator    = Protor (5.15) 

The rotor wheel speed SIR is introduced into the condition matching circumferential 
velocities, because relative flow variables are used in the flow calculations. Note 
that, similar matching equations can be written for the circumferential averages of 
conservation variables. 

Inter-row boundary conditions are applied after the Lax-Wendroff integration and 
smoothing routines. The primitive flow variables at time level n and the computed 
changes at time level n + 1 are decomposed into Fourier components at the interface 
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boundary at each radial station for both stator and rotor, i.e. 

m—mmax e 

\J;(XAR)=   £   ü^,i?y'27rm^ (5.16) 
m=—77lmax 

<m£+1M,#) =     £     MC^^i?)^2^^ (5.17) 
m=—mmax 

where mmax is the number of Fourier harmonics one chooses to keep. The zeroth 
harmonics in Eqs. (5.16)-(5.17) equal to the circumferential average of a quantity 
at a given radius. For Eqs. (5.11)-(5.15) to hold true, the "new" zeroth harmonic 
changes at the (n + l)st time level are computed as 

"Po   NEWlstator = oPo      Istator + dPo      Irotor + Po'rotor — Po Istator (5.18) 

"Po   NEWIrotor = "Po   NEWIstator — Po Irotor + Po Istator (5.19) 

"U0O   NEWlstator = "UQQ    Istator + "u00    Irotor + ueoIrotor — u0oIstator + R** (5.20) 

"u60   NEwlrotor = Ou$o   NEW Istator ~ UQQ |rotor + Ug0 |stator ~ R*l \p-^-) 

The "new" changes of the zeroth harmonic of the axial velocity, the radial velocity, 
and the static pressure are computed similarly to Eqs. (5.18)-(5.19). 

To allow circumferential variations in the flow variables, the quasi-three-dimensional 
non-reflective boundary conditions are applied to the non zero harmonics of changes 
(see Sees.4.2.2-4.2.3).  Once the "new" changes to all Fourier harmonics are found, 
we compute the "new" changes for primitive variables according to Eq. (5.17). 

In the unsteady flow calculation code spinning modes are coupled similarly to 
the circumferential average flow (the zeroth Fourier harmonic) of the steady flow. 
The quasi three-dimensional non-reflective boundary conditions are applied to those 
Fourier harmonics which are not coupled. To illustrate, consider a single stage (see 
Fig. 5.1) with four spinning modes retained in the model: (n, k) = (0,0), (0,1), (1,0), 
and (1,1). The linearized Euler equations are solved simultaneously for the following 
pairs of frequency and an interblade phase angle for the stator and rotor blade rows, 

STATOR ROTOR 

[w0 + k0tt, 27rk0/Bi] [u;0,27rk0/B2] 

[uo + {ho + B2)n, 2Tr(k0 + B2)/B1]    [u0 - #A 2TT(A;O + B1)/B2] 
After the Lax-Wendroff integration and smoothing routines the computed changes to 
the flow variables are decomposed into Fourier components at the interface boundary 
at each radial station. Frequencies and nodal diameters of these Fourier components 
are given by 

STATOR ROTOR 
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wo + kofl, 

fco — 2JDI 

ko 
ko + Bj 
fco + 2Bi 

wb, 

KQ — 2B2 

fco — B<i 

ko 
k0 + B2 

fco + 2B2 

cü0+(k0+B2)ü, 

fco + B2 — 2B\ 
fco + B2 — B\ 
k0 + B2 

ko + B2 + Bi 
fco + B2 + 2BX 

U)Q - BXQ,    < 

fco + B\ — 2B2 

fco + B\ — B2 

ko + B! 
ko + Bi + B2 

fco + Bx + 2B2 

Here nodal diameters of spinning modes which are coupled are in bold. For these 
modes we match perturbations in density; axial, circumferential, radial components 
of velocity; and pressure as in Eqs. (5.18)-(5.21). For the rest of modes quasi-three- 
dimensional boundary conditions are applied to prevent their reflections from the 
interface boundary. 



Chapter 6 

Code Validation and Results 

To validate the present multistage method and to demonstrate the significance of 
multistage effects in turbomachinery, a number of test cases are examined in this 
chapter. Section 6.1 presents results for two-dimensional multistage configurations. 
In Section 6.2, the present method is validated against a three-dimensional semi- 
analytical multistage method for a case of a stage composed of flat helical plate 
blades. Section 6.3 presents multistage results for a typical modern high pressure 
axial compressor. 

6.1    Two-Dimensional Configurations 

6.1.1     Flat Unloaded Plates 

The first test case is one and one-half stage machine (stator/rotor/stator2) com- 
posed of flat-plate airfoils that do no steady turning. The configuration is depicted 
in Fig. 6.1. The ratio of blades in the three blade rows is 16:20:25. The specifications 
of the geometry and the mean steady flow parameters are given in Table 6.1. In 
this table, the relative quantities are associated with the rotor frame of reference and 
the absolute quantities with the stator frame of reference. All lengths are nondimen- 
sionalized by the chord c of the blades of the middle row, velocities by the relative 
steady velocity Vrei, densities by the mean steady-density p, and pressures by the 
quantity pV?el. The nondimensional axial gap between statori and rotor is 0.25; the 
nondimensional axial gap between rotor and stato^ is 0.2. 

The driving unsteady aerodynamic1 excitation to this one and one-half stage system 
is the plunging motion of the middle blade row with a unit plunging velocity, h, at a 
reduced frequency, u, of 0.5. The interblade phase angle, a, is varied from —180° to 
180°. Calculations are carried out using zero (uncoupled case), one (fundamental), 
eleven and twenty seven spinning modes as grouped in Table 6.2. Figure 6.2 shows 
the resulting fundamental spinning mode of unsteady lift on the middle blade row 
as a function of the forcing phase angle. The results are compared to the results 
obtained using the Coupled Mode Method (CMM) of Hall and Silkowski [56]. CMM 
is a two-dimensional multistage method which is based on modeling an individual 
blade row as a matrix of reflection/transmission coefficients.   For the current case 
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stator rotor Stator 

Figure 6.1: Flat Unloaded Plates. Mean Flow Path. 

Table 6.1: Flat Unloaded Plates. Geometry and mean flow properties. RQ = 1.25. 

Parameter Stator Rotor Stator 
Blade Count 16 20 25 
Gap 1.00 0.80 0.64 
Chord 1.25 1.00 0.80 
Stagger,deg 37.522 -60.000 37.522 
Static pressure 1.458 1.458 1.458 
Absolute total pressure 2.022 2.022 2.022 
Relative total pressure 1.666 1.666 1.666 
Static density 1.000 1.000 1.000 
Absolute total density 1.263 1.263 1.263 
Relative total density 1.100 1.100 1.100 
Relative velocity 1.00 1.00 1.00 
Absolute velocity 0.63 0.63 0.63 
Relative Mach number 0.700 0.700 0.700 
Absolute Mach number 0.441 0.441 0.441 
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Figure 6.2: Multistage machine with flat plate unloaded airfoils. Unsteady funda- 
mental spinning mode of lift for middle blade row. Plunging excitation of middle row 
at a = 0.5 and -180° < a < 180°. Lift is nondimensionalized by pVTJic. 
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Table 6.2: Indices of spinning modes used for a coupled analysis. N = niBi + n2B2 + 
n3B3 

Mode 7ll n2 7*3 Mode ni n2 "3 
1 0 0 0 14 -1 -2 1 
2 0 0 -1 15 1 -2 1 
3 0 -1 0 16 -1 1 -1 
4 -1 0 0 17 0 2 0 
5 0 1 -1 18 0 -2 1 
6 1 -1 0 19 1 0 -1 
7 -1 1 0 20 -1 2 -1 
8 0 -1 1 21 1 -2 1 
9 1 0 0 22 -1 0 1 
10 0 1 0 23 0 2 -1 
11 0 0 1 24 1 -1 1 
12 -1 0 -1 25 -1 2 0 
13 0 -2 0 26 1 2 -1 

27 1 0 1 

these coefficients were calculated using LINSUB [61], a code which is based on semi- 
analytical approach for determining the unsteady aerodynamic response of a linear 
flat plate cascade. Uncoupled results in Figure 6.2 were obtained for the middle blade 
row in the isolation using LINSUB. 

As nondimensionalized here, the aerodynamic work per cycle is proportional to the 
real part of the unsteady lift. Therefore, if the real part of the unsteady lift becomes 
positive, this would represent negative aerodynamic damping. In the absence of any 
structural damping, flutter would occur. Figure 6.2 shows the substantial differences 
between the aerodynamic damping of a blade row in isolation and in the presence 
of neighboring blade rows. There are regions in which the amount of damping is 
significantly reduced or increased for the coupled case as compared to the uncoupled 
one. Clearly, multistage effects should not be neglected in an unsteady aerodynamic 
analysis for flutter stability or forced response. 

Note that the large difference in the damping occurs in the regions with a < -48.5° 
and a > 10.4°. Over these regions the pressure waves of the fundamental mode are 
cutoff, which means that the amplitudes of these waves are decaying exponentially as 
the axial distance from the vibrating blade row increases. Since the distances between 
blade rows are relatively short, the decaying pressure waves are still strong when they 
are reflected by the neighboring blade rows. These reflected pressure waves alter the 
unsteady response of the middle (vibrating) blade row. 

The lift curves shown in Fig. 6.2 have distinct slope discontinuities. These dis- 
continuities correspond to the acoustic resonance points, which are shown by vertical 
lines. The curve corresponding to the uncoupled case has resonances at a = -48.5° 
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and a = 10.4°. These axe the resonance points of the fundamental mode. The 
one mode coupling case shows two additional resonance points at a = —114.3° and 
a = 135.1°. These are the resonances of spinning modes with indices (ni,n2)n3) = 
(1,0,0), (-1,0,0). These two spinning modes belong to the scatter group that is 
excited by the fundamental mode in the first blade row. Hence, they influence the 
unsteady response of the fundamental mode. There are more resonance points in the 
11 mode case. These points are not indicated in Fig. 6.2. 

Next, Figure 6.2 shows a mode convergence study. In our example, a solution 
obtained with eleven modes is very close to a solution obtained with twenty seven 
modes. In other words, the solution is "mode converged", becuase the addition of 
more modes does not change the solution. Also when the convergence is achieved, the 
solution becomes periodic. For example, the one mode coupling solution at a = 180° 
does not equal the solution at a = -180°. As more modes are included, however, this 
periodicity is achieved. Finally, note that for this case keeping only one fundamental 
mode in the coupled calculations is enough to obtain a good estimation of the unsteady - 
lift. 



CHAPTER 6.   CODE VALIDATION AND RESULTS 67 

Flow Stations 

1 2 3        4 

\x\x^ 
Rotor        Stator       Rotor   Stator Rotor 

Figure 6.3: 2D Linear Compressor. 

6.1.2    Two-Dimensional Compressor 

In this section, we consider compressible flows in the (two-dimensional) two and one- 
half stage linear compressor section shown in Fig. 6.3. This test case was designed 
to be representative of current axial flow compressors. The airfoils of each blade row 
of the compressor are NACA four digit series airfoils, for which a description can be 
found in the Ref. [1]. The specific geometry for the compressor is given in Table 6.3. 
As before, lengths are nondimensionalized by the chord c of the rotor blades of the 
middle rotor, velocities by the relative inflow velocity Vrel at station 2, and pressures 
by the quantity pV?el at station 2. 

First, the steady flow is computed through all five blade rows using the steady 
multistage code. The computational grid used for this calculation was an H-grid 
with 57x17 grid points (57 nodes in the streamwise direction, and 17 nodes in the 
circumferential direction) for each blade row. The same computational grid was used 
to compute the steady and unsteady flow solutions. The computational grid for the 
middle three blade rows is shown in Fig. 6.4. Shown in Fig. 6.5 is the computed 
steady pressure distribution on the surface of the blades of the middle blade row For 
the cases considered, the flow through the multistage compressor is entirely subsonic. 

The first unsteady case examined is similar to the case for the flat plate airfoil 
geometry described in the previous section. Only the middle three blade rows are 
considered. The blades of the middle rotor are prescribed to vibrate in plunge normal 
to the chord with a reduced frequency, u, of 0.5 for a range of interblade phase angles 
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Table 6.3: 2D Linear Compressor. Geometry and mean flow properties. Rti = 1.25. 

Parameter Rotor Stator Rotor Stator Rotor 
Airfoil NACA 

3.5,506 
NACA 
4.5,506 

NACA 
4.5,506 

NACA 
4.5,506 

NACA 
4.5,506 

Blade Count 13 16 20 25 31 
Gap 1.231 1.000 0.800 0.640 0.516 
Chord 1.539 1.250 1.000 0.800 0.645 
Stagger, deg -44.0 43.0 -49.5 52.0 -55.0 
Axial gap 0.31 0.25 0.2 0.16 
Inlet Static pressure 0.939 1.213 1.458 1.797 2.131 
Exit static pressure 1.213 1.458 1.797 2.131 2.524 
Inlet Total pressure, abs 1.180 1.666 1.666 2.346 2.346 
Inlet Total pressure, abs 1.473 1.473 2.022 2.022 2.739 
Inlet Static density- 0.730 0.877 1.000 1.161 1.312 
Inlet Flow Angle, rel deg -52.0 -40.0 -60.0 -45. -65.5 
Inlet Flow Angle, abs deg 28.6 53.5 37.5 62.3 47.3 
Inlet Relative Velocity 1.112 0.744 1.000 0.609 0.919 
Inlet Absolute Velocity 0.780 0.959 0.630 0.926 0.562 
Inlet Relative Mach number 0.829 0.535 0.700 0.414 0.609 
Inlet Absolute Mach number 0.581 0.689 0.441 0.629 0.373 
Exit static pressure 1.213 1.458 1.797 2.131 2.524   

a. The blade rows are coupled using zero, one, 11, and 27 spinning modes (see Table 
6.2). The zero mode case corresponds to an isolated blade row. 

Figure 6.6 shows the unsteady lift associated with the fundamental spinning mode 
on the reference airfoil of the middle blade row. The lift for the coupled cases is seen 
to be significantly different than the lift for the uncoupled case. The calculations 
also demonstrate mode convergence. Like the flat plate airfoil case, the model with 
one (fundamental) mode gives a good estimate of unsteady lift for almost the entire 
range of interblade phase angles. This fact is very important, because keeping just 
one fundamental mode decreases significantly the CPU time required to compute the 
unsteady multistage response. 

Figure 6.7 shows the unsteady lift associated with the fundamental mode com- 
puted for different placements of the interface boundaries for one mode case. Note 
that the computed lift is virtually unaffected by the position of the interface boundary 
indicating that the interface boundary conditions have been properly implemented. 

Finally, we include the first and last blade rows to create a full two and one-half 
stage machine. Figure 6.8 compares the unsteady lift on the reference airfoil of the 
middle blade row for the models with three and five blade rows. Just the fundamental 
spinning mode is used to couple the blade rows. The results are nearly the same for 
both cases indicating that only the closest neighboring blade rows make a significant 
contribution to the unsteady response of the middle blade row. 
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Figure 6.4: 2D Linear Compressor. Computational Mesh. 



CHAPTER 6.   CODE VALIDATION AND RESULTS 70 

0.2 0.4 0.6 0.8 
Distance Along Chord, x/c 

1.0 

Figure 6.5: 2D Linear Compressor. Pressure Coefficient in the middle blade row. 
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Figure 6.6: 2D Linear Compressor (3 blade rows). Unsteady fundamental spinning 
mode of lift for middle blade row. Plunging excitation of middle row at w = 0.5 and 
—180° < o < 180°. Lift is nondimensionalized by pVreihc. 



CHAPTER 6.   CODE VALIDATION AND RESULTS 72 

0 

— Interface @ middle 
D Interface @ L.E. 
O Interface @ T.E. 

E     1- 

■o 

o 
CO c 
Z) 

-180     -135      -90       -4,5 0 45 90 
Interblade Phase Angle, a, (deg) 

135       180 

Figure 6.7: 2D Linear Compressor (3 blade rows). Different placements of inter- 
face boundary. Unsteady fundamental spinning mode of lift for middle blade row. 
Plunging excitation of middle row at u = 0.5 and —180° < a < 180°. Lift is nondi- 
mensionalized by pVreihc. 
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Figure 6.8: 2D Linear Compressor. Comparison of models with different number 
of blade rows. Unsteady Fundamental spinning mode of lift for middle blade row. 
Plunging excitation of middle row at u = 0.5 and -180° < a < 180°. Lift is 
nondimensionalized by pVreihc. 
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6.2    Three-Dimensional Flat Plates 

To further validate the present method, in this section, the linearized multistage Euler 
computational results are compared to Namba's unsteady three-dimensional multi- 
stage semi-analytical analysis [45]. The configuration considered here is one stage 
(rotor/stator). The blades are helical surfaces with zero steady pressure loading. The 
rotor has 38 blades, while the stator contains 50 blades. In the following, lengths are 
nondimensionalized by the tip radius rT, velocities by the axial velocity U, densities 
by the steady density p, and pressures by the quantity pU2. Axial chords of blades 
are assumed constant along the span. The nondimensional axial chord of the rotor 
cal is 0.11203, whereas that of the stator ca2 is 0.12566. The axial gap between the 
blade rows is cai/2. The nondimensional rotation rate of the rotor, Q, is 1.73205. 
The geometry of this multistage configuration is summarized in Table 6.4. 

The blades of the rotor are vibrating in plunge with a reduced frequency, a;, of 1.0 
based on local chord and local relative flow velocity. Note that ratio of local chord to 
local relative flow velocity does not vary along the span for this configuration. The 
displacement of the blade is normal to the local blade chord, and its radius-dependent 
amplitude is given by 

a(r) = CaiAi(r)/Vl + ß2r2 (6.1) 

where hi(r) denotes the spanwise distribution of amplitude of a cantilever beam for 
the first bending mode. 

The unsteady aerodynamic response was computed using zero and nine modes 
(see Table 6.6). The zero mode case corresponds to an isolated blade row (no inter- 
row coupling). Figure 6.9 shows the computed unsteady pressure difference across 
the rotor surface at the tip, middle span, and the hub stations for an interblade phase 
angle, a, 207r/38. Note that there is a substantial difference in unsteady pressure dis- 
tribution for the coupled and uncoupled cases. Next, we compare the present coupled 
mode analysis to the Namba's semi-analitycal multistage method in Fig. 6.10. Note 
that there is a good agreement between the two methods. These results show that the 
linearized multistage Euler method produces accurate predictions for the unsteady re- 
sponses of a three-dimensional multistage configurations with three-dimensional (that 
is, radial) mode shapes. 



CHAPTER 6.   CODE VALIDATION AND RESULTS 75 

Table 6.4: 3D Flat Plates. Geometry and mean flow properties. 

Parameter Rotor Stator 
Blade Count 38 50 
Tip radius 1. 1. 
Hub radius 0.5 0.5 
Axial Chord 0.11023 0.12566 
Axial Mach number 0.35 0.35 
Flow angle @ hub, (deg) 40.89338 0. 
Flow angle @ tip, (deg) 60. 0. 

Table 6.5: Mode shape function of circumferential bending displacement, h^r). 

r Mr) 
0.50000 0.0 
0.58333 0.04512 
0.66667 0.16559 
0.75000 0.33962 
0.83333 0.54705 
0.91667 0.77104 
1.00000 1.00000 

Table 6.6: Indices of spinning modes used for a coupled analysis. N = 71^ + n2B2 

Mode nx n2 Mode n-i n2 
1 0 0 6 -1 1 
2 -1 0 7 1 1 
3 1 0 8 1 -1 
4 0 -1 9 1 1 
5 0 1 



CHAPTER 6.   CODE VALIDATION AND RESULTS 76 

Q. 

CO 

tr 

-1 
0 

I                     I — i i 

/                               A y Hub 

i  f \y^^L^ 

WT            ''-'Midspan 
jar /          i               i i 1 

0.2 0.4 0.6 0.8 

Q. 
.< 

Midspan 

—A 3D Euler (uncoupled) 
n a 3D Euler (9 modes) 

0.4 0.6 
Axial chord 

0.8 

Figure 6.9: Comparison of the coupled and uncoupled solutions for a stage composed 
of annular flat plates. Bending vibration of rotor at u = 1.0 and a = 94.7368°. The 
unsteady pressure is nondimensionalized by pU2. 
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Figure 6.10: Comparison of three-dimensional linearized Euler solution to Namba's 
semi-analitical three-dimensional multistage method. Bending vibration of rotor at 
w = 1.0 and a = 94.7368°. The unsteady pressure is nondimensionalized by pU2. 
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Figure 6.11: 3D Compressor. Computational grid at the middle span. 

6.3    Modern Three-Dimensional Compressor 

The next configuration considered is a section of a modern axial high pressure com- 
pressor. The flow through the front three blade rows is examined. These are the inlet 
guide vanes (IGV), and the first stage, rotor (Rl) and stator (Si). 

The operating condition considered is close to the design point of the compressor. 
Table 6.7 shows some typical parameters of the mean flow for this case. 

First, the mean (steady) flow is calculated using the three-dimensional steady flow 
code. The computational grid used for this calculation was an H-grid with 81 x 17 x 17 
grid points (81 nodes in the streamwise direction, 17 nodes in circumferential direc- 
tion, and 17 points in radial direction). The grid is generated for only a single blade 
passage of each blade row, because the flow is periodic in circumferential direction. 
Figure 6.11 shows a computational grid at the midspan. 

When the mean (steady) flow is computed, we only specify the flow parameters 
in the far-field. In particular, the circumferential averages of the total pressure, the 
total density, the circumferential and radial components of velocity are specified along 
the span at the inlet of the inlet guide vanes. The static pressure is specified on the 
hub at the exit of the stator. Figure 6.12 shows the mean static pressure contours at 
the midspan. Of particular interest is the behavior of the solution near the interface 
boundaries and in the far-field. The pressure contours are seen to pass smoothly out 
these boundaries without reflection demonstrating the effectiveness of the boundary 
conditions. Note that the pressure contours do not match at the interface boundaries, 
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Figure 6.12: 3D Compressor. Static pressure contours at the middle span at design 
conditions. 

because only the circumferential averages of the flow variables are matched at the 
inter-row boundaries during the flow calculations. 

Now consider the case where the rotor blades vibrate in plunge with the first- 
bending mode shape with a reduced frequency, u>, of 0.37 based on the upstream rotor 
relative velocity and rotor chord at the tip. The unsteady aerodynamic response was 
computed with zero, one, and seven spinning modes for a range of interblade phase 
angles. 

Figure 6.13 shows the computed unsteady pressure on the surface of the rotor 
at the midspan station for the case where a single mode is used to couple the three 
blade rows. Also shown is the unsteady pressure distribution for the uncoupled case. 
One can integrate the unsteady pressure distribution on the surface of the blade to 
obtain the aerodynamic work per cycle. Fig. 6.14 shows the aerodynamic work per 
cycle associated with the fundamental mode on a rotor blade for a range of interblade 
phase angles. The aerodynamic work per cycle for the coupled cases is seen to be 
substantially different than that for the uncoupled case. 

Similar calculations were performed for the case where the rotor blades vibrate in 
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Figure 6.13: 3D Compressor. Fundamental harmonic of unsteady surface pressure on 
the rotor at the middle span. First bending mode of vibration of the rotor at u = 0.37 
and a = -30.857140°. 
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Table 6.7: 3D Compressor. Mean flow properties. 

Parameter IGV Rl SI 
Inlet     mean      Mach     @ 
midspan, abs 

0.505 0.572 0.776 

Inlet     mean     Mach     @ 
midspan, rel 

1.121 1.103 0.715 

Inlet mean total pressure @ 
midspan, abs 

1.000 0.993 1.743 

Inlet mean static pressure @ 
midspan 

0.840 0.795 1.170 

Outlet mean static pressure 
@ midspan 

0.795 1.170 1.363 

the first-torsional mode shape with a reduced frequency, w, of 1.09. The aerodynamic 
work per cycle for the coupled and uncoupled cases is shown in Fig. 6.15. Note that in 
both Figs. 6.14 and 6.15, the mode convergence is observed. Like before, the model 
with one fundamental mode gives an estimate of aerodynamic damping very close to 
that obtained using multiple spinning modes. 

Figures 6.16, 6.17 show typical convergence histories of the computer code for 
steady and unsteady calculations (one mode) for one and one-half stage of three- 
dimensional compressor. The lines in these figures correspond to calculations with a 
different number of levels of multigrid. The computations were performed on a single 
processor Silicon Graphics workstation with an R10000 processor. The unsteady code 
requires around 1000 iterations and about 60 minutes of CPU time to converge when 
a single mode is used to couple three blade rows. Typically, a computational time 
required for a solution to converge is roughly proportional to the number of grid nodes 
and to the number of modes one keeps in the model. 
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Figure 6.14: 3D Compressor. Fundamental spinning mode of aerodynamic work per 
cycle on the rotor. First bending mode of vibration of the rotor at üjtip = 0.37 
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Figure 6.15: 3D Compressor. Fundamental spinning mode of aerodynamic work per 
cycle on the rotor. First torsional mode of vibration of the rotor at wtip = 1.09 
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Figure   6.16:     3D   Compressor.       Steady   code   convergence   history.       Grid: 
IGV(81x 17x17), Rl(81xl7xl7), Sl(81xl7xl7). Total number of nodes 70,227. 



CHAPTER 6.   CODE VALIDATION AND RESULTS 84 

o 
Ö 

o 
c\i 

< 
a 
CO 
w 

a 
o 

o 

o 
in 

o 
(6 

2 LEVELS 
60min 

_i_ 

0. 500. 1000. 1500. 2000. 
N, NUMBER OF ITERATIONS 

2500. 3000. 

Figure 6.17: 3D Compressor. Unsteady code convergence history for one mode cou- 
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Chapter 7 

Conclusions and Suggested Future 
Work 

7.1    Summary and Conclusions 

An accurate and efficient method for solving three-dimensional unsteady flow prob- 
lems in multistage turbomachinery has been presented. To obtain accurate estimates 
of the unsteady aerodynamic response of modern turbomachinery blades, one needs 
to model multistage effects, because stator and rotor blades are closely spaced in 
real compressors and turbines. Three-dimensional effects are also important, because 
modern turbomachinery contain large amounts of bow, sweep and have highly three- 
dimensional vibratory mode shapes producing unsteady lift distributions not weU 
predicted by the traditional strip theory and quasi-three-dimensional approaches. 

The method in this report is based on the time-linearized Euler approach; work 
is underway to extend the method to the three-dimensional Navier-Stokes equation. 
Using the current method, the flow through a turbomachinery is decomposed into 
a time-averaged nonlinear flow plus a small unsteady perturbation flow resulting 
from blade vibration or an incoming gust. The unsteady fluctuation part of the 
flow is assumed to be harmonic and circumferentially periodic. Because adjacent 
blade rows (rotors and stators) move relative to one another, an initial unsteady 
disturbance at a given frequency and nodal diameters is shifted and scattered into a 
multiplicity of frequencies and nodal diameters. In the present method, the unsteady 
flow is identified with a set of fluid modes called "spinning modes," each with a 
different frequency and an interblade phase angle. All these modes are computed 
for each blade row in parallel, using a time-linearized CFD techniques developed 
for an isolated blade row. At each iteration of the flow solver, the information is 
exchanged among various modes of the solution at the inter-row boundaries. This 
is accomplished by decomposing the solution into circumferential Fourier modes and 
then by matching the appropriate Fourier modes across inter-row boundary. The 
technique described for coupling adjacent blade rows is computationally efficient and 
can be easily implemented for both two- and three-dimensional flows. 

In the present analysis, we solve for the flow in two steps. First, the steady Euler 
equations are solved to obtain the mean "steady" flow. Second, the unsteady time- 

85 
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linearized Euler equations, obtained by linearizing the full Euler equations about 
the mean operating condition, are solved to obtain the unsteady perturbation flow. 
Because the pertubation flow is harmonic in time (e?w), the time derivative operator 
d/dt can be replaced by the constanst ju. Thus, for both the steady and unsteady flow 
problems, time does not appear explicitly in the governing equations. An artificial 
time dependence (pseudo-time) is introduced so that traditional time-marching can 
be used to solve both the nonlinear steady and linearized unsteady Euler equations. 
These equations do not have to be marched time-accurately, because only the "steady- 
state" solution is desired. Thus, multiple-grid and local time stepping are used to 
accelerate the convergence rate of the numerical algorithm, making the method nearly 
two orders of magnitude faster than conventional time-accurate simulations. 

For problems where the source of unsteadiness is the vibration of rotor or stator 
blades, a deformable grid that conforms to the motion of the moving blades is used 
instead of a computational grid fixed in space. Hence, no extrapolation terms are 
required to apply the boundary conditions or to compute the unsteady pressure on 
the surface of the vibrating blade. The motion of the grid is assumed to be a small 
harmonic perturbation about the mean grid location. Substitution of this deforming 
grid assumption into the nonlinear Euler equations results in an inhomogeneous term 
in the time-linearized Euler equations. The use of a deformable grid increases the 
accuracy of the solution, particularly near the surface of the blades. 

Non-reflecting boundary conditions need to be imposed at the far-fields to elim- 
inate spurious reflections of outgoing waves. These boundary conditions enable the 
computational grid far-field boundaries to be placed fairly close to the blades with- 
out affecting the resultant unsteady flowfield. Quasi-three-dimensional nonreflecting 
boundary conditions were implemented in this report. 

Results of the present method were presented for both linear and annular geome- 
tries. The accuracy of the technique was validated against existing two and three- 
dimensional methods. The computed results showed that the interactions between 
blade rows can significantly influence the unsteady surface pressure distributions on 
a blade and, therefore, the aerodynamic damping of a blade. This is an important 
result because most current models do not account for multistage effects, and thus 
may significantly over or under predict aerodynamic damping. The calculations in 
the present report show that aerodynamic damping could be predicted using just 
a few spinning modes. We observe a convergence of the unsteady aerodynamic re- 
sponse of the fundamental mode of the unsteady solution as more spinning modes 
are added to the model. In fact, for most flutter calculations in this work, a good 
estimation of aerodynamic damping can be obtained by keeping only the fundamen- 
tal spinning mode. This is a very encouraging conclusion, because the computational 
cost is proportional to the number of spinning modes in the model. 

Next, it was shown for a case of a linear cascade that the two neighboring stator 
blade rows adjacent to a rotor have the strongest influence on the unsteady aerody- 
namic response of the rotor. The next nearest blade rows are less important, but still 
have a modest influence. By modeling only the nearest blade rows instead of all the 
blade rows of a multistage machine, the computational time is significantly reduced. 

For the reasons discussed above, the present unsteady analysis is computationally 
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very efficient compared to nonlinear time-marching multistage solvers, requiring one 
to two orders of magnitude less computer time. This efficiency makes the present 
analysis a viable design tool of turbomachinery blade rows. 

7.2    Ongoing and Future Work 

Although the present work has demonstrated the advantages of the multistage lin- 
earized Euler method, some issues remain to be resolved before the method can be 
fully exploited in aeroelastic design. For example, the effects of other engine compo- 
nents, e.g., fan inlets, should be incorporated into the present model. 

A current Duke University graduate student and a post-doctoral researhcer are 
working to convert the multistage Euler analysis to a multistage Navier-Stokes anal- 
ysis. A number of modifications to the previous computer code are required if the 
code is to model viscous flows. First, the original computational code used an H-grid 
structure. H-grids, while relatively simple to use in a CFD code, do not have adequate 
resolution to resolve boundary layers, especially near the leading and trailing edges 
of an airfoil. Therefore, we are implementing using an H-O-H grid structure, with an 
U-grid around the airfoils, with H-grid extensions upstream and downstream of the 
O-grids. We now have a single blade row Navier-Stokes code that uses an H-O-H grid 
structure. We have included the additional viscous terms in the Navier-Stokes in- 
cluding Reynolds stress terms modeled using the Spalart-Allmaras turbulence model 
We are currently in the process of debugging this analysis, and hope to have both 
steady and linearized unsteady three-dimensional viscous analysis capability within 
the next two months. (This work will continue under a NASA sponsored GUIde III 
project.) 

In addition, to improve our understanding of the physics of unsteady flows the 
development of an efficient technique for implementing fully three-dimensional nönre- 
liecting fax-field boundary conditions is desirable. These conditions would allow us to 
model cases with radial modes that do not decay, i.e., superresonant and subresonant 
cases with slowly decaying mode shapes. One promising approach has already been 
formulated by Hall et al. [25], where the radial eigenmodes are calculated numerically. 

It would also be useful to make comparisons between results obtained using the 
present linearized method and by other nonlinear methods to determine the bound- 
ary where linear unsteady aerodynamic analyses are not viable and fully nonlinear 
modeling is required. 

Finally, the speed of the present method can be increased. Since the integration of 
the equations on the grids for the different blade rows can be performed in parallel the 
algorithm is easily parallelized for calculations on computers with multiple processors 



Appendix A 

Cell Volume and Face Area 

The volume of an hexahedral cell can be computed very efficiently using the method 
described by Kordulla [40]. For instance, with reference to Fig. A.l, the volume, V, 
of the cell is given by 

V = -r71 • [(r31 x r24) + (r6X x r52) + (r81 x r45)] (A.l) 

where r71 = {x7-xi,y7-yi,z7- z2) and the rest vectors r31, r24, r61, r52, r81j r45 are 
defined in a similar way. The first-order perturbation series for vector r7i is given by 

r7i = f 7i + r'71 = (f7 - tuft - 771, CT - Ci) + (A - /1,9r ~ 9i, h - h)^     (A.2) 

where (£, 77, C) is the mean location of a point and (/, g, h) is the amplitude of a point 
vibration. 

To compute the mean cell volume, V, and the perturbation in the cell volume, V, 
substitute the first-order perturbation series for r = r + r' into Eq. (A.l). Collection 
of the zeroth-order terms results in the mean cell volume, 

V = -r7i • [(r31 x f24) + (r61 x r52) + (r8i x r45)] (A.3) 

Collection of the first-order terms results in the perturbation in the cell volume, 
1 
65 V = -rn ■ [(r3i x r24) + (r'31 x r24) + (r61 x r'52) 

+(rei x r52) + (r8i x r^5) + (r^ x r45)) 

+gr71 • [(r31 x r24) + (f61 x r52) + (f81 x f45)] (A.4) 

The area of the cell face is equal to half the cross product of the two diagonal 
vectors, ri3 and r24 (see Fig. A.l), 

A = -[r13xr24] (A.5) 

Since the grid is moving, each vector has a mean part and a perturbation part. Hence, 
to the first-order cell area is given by 

A « X + A' = -(r13 x f24) + -[(r13 x r24) + (r'13 x r24)]. (A.6) 
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6 

Figure A.l: Typical Computational Cell and Cell Face. 



Appendix B 

Aerodynamic Work per Cycle 

Nomenclature 
A surface area of a blade 
j V^ 
n outward unit normal vector 

p pressure 
t time 

V vector of unsteady velocity 
Wcycie aerodynamic work per cycle 

uf frequency of vibration 

Re() real part of complex expression 
() mean (steady) part of quantity 
()' small perturbation (unsteady) part of quantity 
()r real part of complex expression 
()i imaginary part of complex expression 

An important quantity for an aerodynamic analysis is the unsteady aerodynamic 
work done on the blade. If this work is positive, then the blade extracts the energy 
from the flow. If this energy is greater than the energy dissipated by the structural 
damping, then the motion is unstable. On the other hand, if the aerodynamic work 
per cycle is negative, then the blade motion is damped by the resulting unsteady 
aerodynamic load and the motion is stable. 

The unsteady aerodynamic work per cycle is defined as the integral over one 
vibratory cycle of the product of unsteady force (pressure times area) and unsteady 
velocity: 

2-rr/w 

Wcycie = - J jRe(p)Re(V) • Re("n )dAdt (B.l) 
0     A 

where p is the unsteady pressure, V, the unsteady velocity of the blade surface, if, 
the outward unit normal vector, A, the surface area of the blade. 
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The quantities of the Eq. (B.l) are decomposed into their mean (steady) part plus 
a small harmonically varying perturbation (unsteady) part as in the following 

Re(p)   =   P + M(j>'r+JPri)eju't}=p + p'rcos(ut)-p'ism(ut) (B.2) 

Re(V)   =   V + Re[(Vr+jV'i)ei»t]=V + V'rcos(üJt)-V'ism(ut)     (B.3) 

Re(lT)   =   n + Re[(i^+j^ej<vt} = n + n'Tcos(cut)--n'ism(u;t). (B.4) 

After substituting Eqs. (B.2)-(B.4) into Eq. (B.l) one obtains 

Wcycle = -   f   J\p + Pr COs(wi) - p\ sm(ujt)] 
0     A 

[V + V; cos(urt) - V; sin(ut)] • [n + n'r cos(u;t) - n[ sin{ut)]dAdt. (B.5) 

In the expression (B.5) the order of integration can be reversed.   Also recall that 
V • n = 0 (see Eq. (4.5)). After the integration with respect to time one has 

Wcycie = ~ / (V • \p'Tn'r + ptfi) + n • [p;Vr + pJVJ + pK • v; + n', • V^]) dA. 

(B.6) 
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