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APPLICATION TO PATIENTS PRONE TO ATRIAL FIBRILLATION

Ronan Lepagel, Jean-Marc Boucher 1,Jean-J acques Blanc 2] ean-Christophe Cornilly 2
1 ENSTB, d partement SC, BP832, 29285 Brest Cedex, France
2 CHU de la Cavale Blanche, d partement de Cardiologie, Brest, France

Abstract- This paper presents an automatic analysis
method of the P-wave, based on lead II of a 12 lead
standard ECG, which will be applied to the detection of
patients prone to atrial fibrillation (AF), one of the most
frequent arrhythmias. It focuses first on the segmentation
of the electrocardiogram P-wave, which is performed in
two steps: first, detection of the QRS complexes, then
association of a wavelet analysis method and a hidden
Markov model to represent one beat of the signal. After
segmentation, the P-wave is isolated and a set of
parameters, which have the ability to detect patients
prone to AF, is calculated from it. The detection efficiency
is validated on an ECG database of 145 patients including
a control group and a study group with documented AF.
A discriminant analysis is applied and the results
obtained show a specificity and a sensitivity between 65%
and 70%.

Keywords : atrial fibrillation, ECG segmentation, P-wave,
hidden Markov model, wavelets, ECG database

1. INTRODUCTION

Atrial fibrillation (AF) is a very frequent arrhythmia,
which affects mainly elderly people: 2% to 5% of people
over 60 years old and 10% over 70 years old. It results in
partial disorganisation of the atrial electric activity, due to
two electrophysiological conditions: slowed conduction
velocity in various atrial areas and heterogeneity of the cell
refractory period. Although it is not a lethal disease, it can
lead to very disabling complications such as cardiac failure
and atrial thrombosis, with the subsequent risk of a stroke.

The aim of this study is to try to automatically detect
patients prone to atrial fibrillation (AF) during a routine
electrocardiogram (ECG) in a cardiology department.

II. DATABASE

We recorded a 12 lead ECG in resting conditions but we
only worked on lead II, where the P-wave is the most visible.
International ECG databases are available (CSE base, MIT-
BIH base) but they are not devoted to AF, with few records
on this subject and very little information on the patients. So
we decided to create our own database in collaboration with
the Brest University Hospital. The signal is sampled at 1 kHz
and bandpass filtered between 0.01 Hz and 40 Hz. The
records last 1 minute (about 60 beats)

In order to detect patients prone to AF, we considered 145
patients divided into two groups. For each patient, an
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echocardiogram was recorded to analyze cardiac chamber
dimension.

- The control group includes 63 patients (38.4 years old —
14.0, 48 men and 15 women) without any history of atrial
tachycardia and with normal echocardiographic atria. In spite
of the young age of the patients, this group might include
some patients prone to AF. However the mean age of the
group, lower than that of the study group, justifies the fact
that this group is reliable. An age-matched group has to be
built to confirm the results but we need to be sure the people
included will not have an AF accident in the years following
the recording.

- The study group includes 82 patients (61.4 years old —
13.8, 48 men and 34 women) with documented AF. We
included patients who had sinus rhythm restored a few hours
or days before analysis. These patients have a similar ECG as
they had before their fibrillation. But the results will have to
be confirmed via a long-term study.

III. AUTOMATIC SEGMENTATION

In order to obtain an automatic measurement of the P-
wave parameters used in the detection procedure, we need to
perform an ECG segmentation to accurately isolate the P-
wave. The association of wavelet analysis and hidden
Markov models (HMM) gives a robust segmentation taking
advantages of the ability of signal rupture detection by the
wavelet transform and of the statistical description in states
by HMM [4]. The ECG is segmented in three steps:

- a redundant multiresolution analysis scheme using a
Haar transform with 4-levels of resolution is applied to the
ECG signal.

- the QRS complexes are detected by thresholding the
wavelet coefficients, which leads to a segmentation of the
ECG signal into beats.

- each beat is segmented into waves by applying a HMM
to each resolution level , and then by fusing the informations.

Hidden Markov models are based on the hypothesis that
at a given instant, the state of the system only depends on the
previous state. In addition, the hidden process (the
electrophysiological process) is observed through a set of
stochastic processes producing the observation. Here, the
observations are the wavelet coefficients, whose probability
densities are estimated by a non-parametric model.

The ECG represents the electric activation of the heart
which takes place in a logical order: first the atria are
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depolarized (P-wave), then the ventricles (QRS complex) and
finally the ventricles are repolarized (T-wave). Each state can
be associated with a heart activation time [3]. An
experimental analysis on the database with various ECG
shapes led us to model a beat by ten states: four isoelectric
segments and two states per wave (figure 1):

A. state isol: isoelectric line
. state Py: first part of atrial activation
state P,: second part of atrial activation
state is02: isoelectric line
state Q: first part of the ventricular activation
state Q,: second part of ventricular activation
state is0s: isoelectric line
state T : first part of the ventricular repolarization
state T,: second part of the ventricular repolarization
state is04: isoelectric line
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Figure 1: the different states of the hidden
Markov model.

From the study of our database, we defined a left-right
model (figure 2) with:

- at most the possibility of jumping one state except after
P2, Q2 and T2 (if the model does not go back, it
necessarily goes to the following state),

-three back transitions allowed: P2-P1, Q2-Q1 and T2-T1.

Figure 2: the possible transitions of the hidden
Markov model for the ECG.

To estimate the probability densities of the wavelet
coefficients in each state we used a gaussian kernel estimator
[8]. The kernel density estimation is an attractive non-
parametric estimator and a diffeomorphism suppresses border
convergence difficulties by using an appropriate regular
change of variable.

This method is applied to each resolution level, which
produces four segmentations for one ECG signal (figure 3).
The problem is how to select the resolutions giving the best
results. Some of them are excluded on medical grounds: for
instance, it is known that a P-wave has a duration between 60
and 190 ms, and we can suppress those which are outside
these limits. For the others, the values are averaged.

The choice of the learning base is essential. All the cases
that might be encountered have to be included. However the
learning phase can be repeated when a new configuration
appears so that the model can be adapted. We tried to
include most of the configurations we encountered,
especially the different P-wave shapes [1]. We selected 24
patients and 10 beats for each of them in the segmentation
learning procedure. We compared the results between
manual and automatic segmentations by taking the duration
of the mean of the P-wave as a parameter. Two different
cardiologists (cardiologist 1, cardiologist 2) performed two
manual segmentations.
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Figure 3: P-wave segmentation at each resolution
level (indicated by *)

The coefficient of correlation between these two manual
segmentations was 79% and the associated standard
deviation: 11. We remark that there exist some differences
between the two cardiologists, but in fact these differences
are relatively unimportant (low standard deviation) and in
fact insignificant. The higher differences were noticed when
the beginning and the end of the P-wave were difficult to
choose in the presence of a lot of noise. The exact moment
of the beginning or end of the atrial depolarization can be
hard to find on some ECGs (the rise of the slope can be very
slow), but these exact moments are poor in information, so a
difference of 20 ms or more on a P-wave segmentation can
be acceptable for our study. Assuming that cardiologists did
not make mistakes in their segmentations, we considered
that both were correct and took them as references for the
rest of the study. In order to compare these with automatic
segmentation, we plotted the mean (cardiologist
1,cardiologist 2) versus automatic segmentation (figure 4).
We found a correlation coefficient of 77% and a standard
deviation of 13.
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After the isolation of a P-wave by segmentation,
parameters are measured on it in order to proceed to a
classification. The lengthening of the P-wave duration is a
classical parameter used by physicians for the detection of
patients who have suffered from atrial fibrillation. The P-
wave high frequency part seems to contain information on
the atrial conduction defect. The ratio of spectral power
contained in the 20-50 Hz band and in the 0-20 Hz is known
to be greater for patients with AF [5] and the ratio of the
power contained in the 20-30 Hz and in the 0-30 Hz to be
smaller [6]. For the detection procedure, the first step is to
measure such parameters on the P-wave, and the second step
to apply a discriminant analysis by using these parameters.
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Figure 4: Comparison between manual and automatic
segmentation on the P-wave duration mean

IV. DETECTION OF PEOPLE PRONE TO ATRIAL FIBRILLATION
We defined three types of parameters:

Time parameters: the P-wave duration which is easily
computed from the segmentation.

Shape parameters : one of them is computed by the
repartition function method [7]. If f (t) is the function
describing a shape, the repartition function is defined by

X
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(t), the area of the difference between F (X) and F’(X) is
computed and is compared to a threshold, which is estimated
from the learning base. The other parameters are the
coefficients of a 4™ order polynomial interpolation of the P-
wave .

. In order to compare two shapes f (t) and f°

Spectral parameters: these are extracted from a Morlet
continuous wavelet analysis [2] obtained on the segmented P-
wave. The QRS complex is suppressed, which avoids having
to take it into account (for low frequencies, the wavelet
extends to the QRS complex, which has higher amplitude and
disturbs the P-wave analysis). As we know the position of the
P-wave, we replace the rest of the ECG with an isoelectric
line. The following parameters were chosen: if D is the P-
wave beginning and F its end (in ms), the parameters are the
energy computed in the following temporal windows: D-32 to
D+32, D to D+64, D to F, F-64 to F, F-32 to F+32 and in the
following spectral bands: 0 to 15.625 Hz, 15.625 to 31.25
Hz, 31.25 to 46.875 Hz

A feature selection procedure using a Fisher’s discriminant
analysis led to a hierarchical choice of the parameters. For
the evaluation of the classification , we will consider two
cases :

.1=3 with three main features, which are

the repartition function value,

the energies in the band 3.9 and 7.8 Hz for
DtoF,31.2and 62.4 Hz for Dto F,
. I=10 with ten features :

two polynomial coefficients,

the repartition function value,

the energies in the band 31,2 to 62,4 Hz for
D to D+64,0,9 to 1,9 Hz for F-64 to F,15,6 to 31,2 Hz for F-
64 to F,31,2 to 62,4 Hz for F-64 to F,0,.9to 1,9 Hzfor Dto F,
3,9t0 7,8 Hz for Dto F,31,2 t0 62,4 Hz for D to F

From this study, it can be concluded that the P wave
duration is not the most pertinent feature to be used for the
classification of patients prone to AF.

IV. RESULTS OF THE CLASSIFICATION

The whole database (145 patients) is composed of 82
documented AF patients and 63 normal patients. The system
evaluation must take the low size of the database into account.
On one hand, the resubstitution method 2, which uses the
same set for training and testing, is known to be a biased
estimate of the error probability and to give an optimistic
value. On the other hand, the holdout method (H), which
consists in splitting the whole database in two, one part for
training, the other part for testing, gives an unbiased estimate
of the error probability, but overestimates it. A good
compromise is to compute the mean (M) of these estimators to
have a more realistic value of the true error probability. The
learning and test bases contain N samples, divided in two sets
of N; samples of AF patients and N, normal patients. The
number | of selected parameters must stay low, because the
ratio N/l must be large enough to preserve generalization
properties of the classification system. A classic linear
discriminant analysis is used for the detection. A 10 times trial
is made where we randomly choose the two bases among the
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145 patients and we estimate the specificity and sensitivity of
the test in function of the number of selected parameters.

Table I shows these values for N=64, N;= N,=32, 1=3 or
10.

I ] 3 10
R =069 (0,12 $5=0,76 (0,08)
Se=0,70 (0,08) Se=0,7 (0,07)
H Sp=0,696 (0,14) $p=0,55 (0,135)
Se=0,63 (0,14) Se=0,67 (0,09)
M Sp=0,65 Sp=0,69
Se=0,68 Se=0,67

Table 1 : Specificity and sensitivity of the discriminant
analysis with 1=3 or 10 for the resubstitution method, the
holdout method and the mean. (in parenthesis, the associated
standart deviation)

IV. DiscussION

A. Segmentation

One difficulty is to know whether segmentation is good or
not. We compared the mean values of the P-wave duration
resulting from automatic segmentation to those resulting from
manual segmentation performed by specialists for each
patient. Although the beats are amplified, specialists can make
erTors:

- the onset and end of the P-waves are difficult to define. If
those instants have a well-defined electrophysiological
meaning, they are not easily seen on the recording,

- the number of beats and the eye of the operator are also

sources of inaccuracy.

The main errors were due to configurations too rare in
our database and consequently not presented in the learning
base. However, results are good and the advantages of the
model are that it is quite simple and can evolve: it can be
modified for new configurations if the learning base is
adapted. Its robustness is good but can be increased:

- we may change the compromise between robustness to
noise and detection of small artefacts,

- we may increase the learning base to be able to recognise
as many configurations as possible,

- we may add new parameters to better describe each state,
for example using more than one lead.

B. Classification

Results obtained are very promising and leads us to think
that many people prone to AF could be detected. However, a
long-term study has to be made to know wether the
parameters are adapted to this purpose. Patients detected as
risking an AF risk must periodically be tested; we also need
to build reference groups including the different shapes of
the P-waves .

V. CONCLUSION

This paper presents a P-wave segmentation method
applied to an automatic classification of people prone to atrial
fibrillation, one of the most frequent heart arrhythmia. The
study is performed on lead II of a standard 12 lead
electrocardiogram. The segmentation procedure, based on
hidden Markov models and wavelets, takes into account
some statistical properties of the signal but also some
electrophysiological properties. However, it is simple,
evolutional and robust. The classification results presented
are good and show that this method could be of great help for
medical diagnosis.
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