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Abstract-Amino acid substitution matrices which shows the
similarity scores between pairs of amino acids have been widely
used in protein sequence alignments. These matrices are based
on the Dayhoff model of evolutionary substitution rates. Using
machine learning techniques we obtained three dimensional
representations of these matrices while preserving most of the
information obtained in the matrices. Vector representation of
amino acids has many applications in pattern recognition.
Keywords - substitution matrices, machine learning, distance
mapping.

1. INTRODUCTION

Protein similarity score matrices are constructed from
substitution matrices which are obtained from multiple
alignment of several evolutionally related sequences[1-5].
The substitution matrices are derived from evolutionary
amino acid substitution frequencies of protein sequences.
Using information theory, these frequencies are converted
into similarity scores. These scores are correlated with the
physical and chemical properties of amino acids. These ma-
trices are used in protein sequence comparison, generating
sequence profiles and in database searches for similar se-
quences. They are also used in sequence and structural pat-
tern recognition problems such as secondary structure pre-
diction and finding contact maps of proteins.

The aim of this work is to simplify the representation of
the twenty amino acids in a metric space with minimum loss
of information. What is required is a mapping, y = f (x),
where the input value will be the similarity score from a
given matrix and the output value should be a multi-
dimensional vector for each amino acid.

Since only the x values are known, the problem can be
viewed as an unsupervised learning problem. Machine
learning techniques offer several alternatives to resolve the
problem. The typical approach is to refine iteratively the
representation of symbols into multi-dimensional space by
minimising the error for the obtained vectors that correspond
to the given similarity scores.

For this problem, usage of artificial neural networks
[6,7] may be practical, since neural network learning meth-
ods provide a robust approach to approximating real and
vector-valued functions, which is exactly the case in this
problem. The fact that the errors in training examples are
tolerable is another advantage that makes neural networks
convenient, because the score matrices are not guaranteed to
be reducible to a space of given dimensions.

On the other hand, usage of hybrid techniques that com-
bine the virtues of mathematical verities and machine learn-
ing techniques is also possible. The score matrix can be put
into a form that more readily reflects an N-dim space nature,
then this new form of representation can be used to obtain
the reduced number of dimensions through a refinement cy-
cle that converges to the target function.

Instead of going from similarity matrix into a metric
space and then into vector space, we can directly go from
similarity score matrices to multidimensional space using
nonlinear mapping techniques. This way we eliminate the
risk of loosing information during the similarity to distance
transformation stage.

II. METHODOLOGY

Linear mapping stage takes the similarity values as input
and uses a transformation to map the amino acids on the met-
ric space relying on the intuitive result that distance and
similarity are opposite concepts. So the inverse of similarity
should define distance, meaning that the higher the similarity
score, the closest the symbols are expected to be positioned
in space.

To transform similarity scores to distance values, several
formulas are used, out of which the ones that displayed a
better performance were chosen. The performance decision
was based on the weight ratio of the greatest N eigenvalues
to the 20 eigenvalues obtained from the distance matrix for N
dimensions. The greater the value of the ratio, the higher the
amount of the original information that is conserved during
this transformation. The top three performing distance for-
mulas are

D, (ij) =1/ (Si;- minS + offset)’
D, (ij) =1/ (Si;- minS + offset)’
D; (ij) =1/ ((S;j — minS )* + offset)

Where §;j is the similarity score between amino acids i and
j» and minS is the minimum score in the matrix. Since the
scores can be negative and distances have to be positive, we
subtracted the minimum score in the matrix from all the
scores in the matrix. Then the offset value is added to over-
come the division by zero error.

To have a fair representation in a metric space, all dis-
tances should conform the triangular inequality rule.

For any i, j and k

Dij < Dik + Djk

A linear mapping requires that this condition hold for
any triple distance values. Since the offset value is the only
variable in the equations, we tried different values for the
given scoring matrix until the triangular inequality rule is
conformed.

After the linear mapping of amino acids into a metric
space, we calculate the eigenvalues and the eigenvectors of
the distance matrix. 6. To map the data symbols into N-
dimensional space, eigenvectors of the greatest N eigenval-
ues are used. Therefore the greatest eigenvector multiplied
by its corresponding eigen value is the x-coordinate, the sec-
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ond greatest eigenvector multiplied by its eigenvalue is the
y-coordinate of the symbols and so on. The eigenvectors are
the new coordinate axes. Thus, we obtain the initial distance
vectors for the amino acids on the N dimensional space de-
fined by those eigenvectors.

These initial distance vectors are then subjected to an it-
erative refinement procedure. In this procedure, we first cal-
culate the distance ( L;; ) between amino acid i and j in the N-
dimensional space. Next, we calculate the total error of trans-
forming into N dimensions as 33, (Li-Dj; )>, where Dij is the
actual distance between amino acid i and j. The vectors are
updated so that the error is minimised. This procedure con-
tinues until the vector coordinates converge for all the amino
acids.

While transforming the similarity matrix into distance
matrix, we loose some information. Similarity of each amino
acid to itself is different for each amino acid, depending on
their observed substitution frequencies orchestrated via evo-
lution. On the other hand, ideally the distance of an amino
acid to itself should be zero, but this is not possible when we
have different self-similarity scores.

We avoided this problem by using encoding-decoding
technique. The main motive was the need for a nonlinear
method so that distances were not needed. We can use di-
rectly the similarity scores. Second, a transformation was
desired with the property that it would compress the data and
the data could be obtained back with minimum loss and at a
minimum cost. The encoding-decoding method described
below satisfies both conditions: It is nonlinear and its cost is
the time required to train the multilayer perceptron which
contains 2, 3 or 4 hidden units depending on the number of
dimensions we choose to explain the symbols.

As seen in Fig.1, the algorithm takes the similarity
scores and the dimension of the vector space as the input
values. After initializing the weights and the learning rate,
the algorithm calculates the coordinates as the sum of the
products of encoding weights and the similarity scores. Out-
put values are determined as the sum of the products of de-
coding weights and the coordinates. The error is the differ-
ence between the input and the output values of the amino
acids. We then take partial derivatives of the error function
with respect to the encoding and decoding weights in order
to minimise the error function. Then update the weights and
the learning rate factor. We continue this procedure until the
vector representation for each amino acid converges.

II. RESULTS

There are several similarity score matrices that represent
different evolutionary relations and are obtained by using
different statistical measures. In this work, we used four ma-
trices; BLOSUM 45[1], BLOSUM 60, PAM 250 and Day-
hoff[4] matrix. We used several distance measures in map-
ping the similarity scores into the metric space. The mapping
result obtained from top three-distance measure is summa-
rised in Table 1-3. On the following tables (a) stands for off-
set values, (b) is number of triples that the triangular ine-

quality does not hold, (c) is the ratio of the sum of the great-
est 3 eigenvalues to the sum of all eigenvalues.

The most successful distance measure for three dimen-
sional representation of amino acids was Dj since it has pre-
served the highest percentage of the similarity score infor-
mation for all the similarity score matrices (Approximately
60%) except BLOSUMA45 Table 3.

TABLE 1. Mapping with the formula D1 =1/ (Si,j - minS + offset)’

Blosum45 Pam250 Blosum60 Dayhoff
a b c a b cla b c a b c
8 20 52|16 8 57|17 14 58 (10 76 60
9 8 52 (19 2 5518 6 57|11 52 60
10 6 51 (20 0 541(9 0 57116 8 58
12 0 51122 0 52110 0 56120 0 55

TABLE 2. Mapping with the formula D2 =1/ J (Si,j - min$ + offset)’®

Blosum45 Pam250 Blosum60 Dayhoff
a b ¢ a b c|a b c a b c
6 8 52|09 22 5717 14 58|10 10 58
7 4 52|11 8 5718 6 57|12 2 56
8 0 51113 2 579 0 57|14 8 54
9 0 51114 0 56 |10 0 56|15 0 53

TABLE 3. Mapping with the formula D3 =1/ J ((Si,j — minS )*+offset)

Blosum45 Pam250 Blosum60 Dayhoff

a b c¢c|fa b c¢c]Ja b c¢c| a b ¢

10 2 51120 8 59(6 2 59|17 10 60
14 0 52122 0 59(7 0 58|22 0 59

| The Output Values
— The Hidden Untts -» Coordinates
. The Input Values

Figure 1 Architecture of encoding decoding technique



If we map the amino acids into four dimensional space
percentage of the preserved information increases by 7%
across the board. The results obtained from the four dimen-
sional representation of D3 are summarised in Table 4. The
best results are obtained from Pam250 and Dayhoff matrices
even though the difference is marginal.

The results obtained from Pam 250 are shown in Fig.2.
We see clustering of hydrophobic residues within this cluster
we see additional clustering of aromatic residues. Charged
and polar amino acids also form a cluster. The third cluster is
formed by small aliphatic amino acids. In evolutionary data
we observe accepted mutations within these clusters. As can
be seen in Fig.2 the amino Cystine stands alone. This is ex-
pected since cystine is the only amino acid that can form
disulfide bond, which is one of the most important stabilising
factors for the protein structure. Therefore Cystine does not
like to be substituted by other amino acids since they are the
functional sites of proteins.

As expected increasing the dimensionality decreases the
amount of lost information. The sum of the information
content of other dimensions is only 23% of the total. Going
into the 5™ dimension improves the result by a few percent-
age points in each case. There is always loss of some infor-
mation in going from similarity to distance and reducing the
dimensionality introduces new additional loss.

To overcome this problem we use the encoding decoding
technique. This technique performs direct mapping from
similarity score into N-dimensional space. Since this method
converges to a local minima, we perform several runs. Blo-
sum 60 similarity score matrix gave the best clustering of the
amino acids in all the runs. Even in two dimensions Blosum
60 forms the expected clusters that are intrinsic in evolution
Fig.3. But we cannot observe the distinction of Cystine from
the other amino acids in two dimensions. Adding the third
dimension separates the cystine from the other cluster Fig.4.

TABLE 4. 4-D imensional values

Offset Value Triangular Inequality ~Eigenvalues Info

Blosum45 14 0 59.2
Pam250 22 0 66.3
Blosum60 7 0 64.7
Dayhoff 22 0 66.9
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Figure 2. Blosum 60 with distance refinement
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Figure 3. Blosum 60 using encoding decoding

IV. DISCUSSION

In this work we studied three methods to decrease the dimen-
sionality of the similarity score matrices. Linear mapping
always gave consistent results bot information was lost while
converting the similarity to distance. Iterative distance re-
finement approach uses a different initial condition that’s
why better mapping could be as a result of better search of
the solution space. But there is the problem of convergence
in this approach, in some of the matrices amino acid position
vectors did not converge satisfactorily.

Encoding decoding approach gave the best results, because
of the direct transformation from similarity to metric space.
This method also starts from several initial states so it
searches the space more efficiently, but as in the distance
refinement approach it falls into local minima and it has
problems of convergence. But it converged faster than the
distance refinement approach.
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Figure 4. Blosum60 using encoding decoding in 3-D



V. CONCLUSION

In this work we successfully applied machine learning
techniques to the problem of reducing the dimensionality of
the amino acid similarity score matrices. Representing amino
acids as three dimensional vectors enables us to use these
vectors as the input instead of the letter code of amino acids,
while trying to find some sequence or structural patterns of
protein sequences. The idea is that these vectors preserve all
the necessary evolution information intrinsic in the similarity
score matrices. When we use these vectors instead of the
symbols we do not need to provide additional information
such as evolutionary data, size, hydrophobicity etc. Since all
these information are imbedded in the vector representations.
This simplifies the problem immensely.

When we transform the similarity data into distance data
some information is lost. Therefore, neural network imple-
mentation yielded better results. The distances between the
clusters and within the cluster were minimum in this ap-
proach. Although deviations to a tolerable degree were ob-
served, the clusters represented the actual groupings of the
amino acids represented in the score matrices.
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