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Abstract. The goal of this paper is to present the development of 
a new reconstruction methodology for restoring Magnetic 
Resonance Images (MRI) from reduced scans in k-space. The 
proposed approach considers the combined use of Neural 
Network models and Bayesian restoration, in the problem of 
MRI image extraction from sparsely sampled k-space, following 
several different sampling schemes, including spiral and radial. 
Effective solutions to this problem are indispensable especially 
when dealing with MRI of dynamic phenomena since then, 
rapid sampling in k-space is required. The goal in such a case 
is to make  measurement time smaller by reducing scanning 
trajectories as much as possible. In this way, however,  
underdetermined equations are introduced and poor image 
reconstruction follows. It is suggested here that significant 
improvements could be achieved, concerning quality of the 
extracted image, by judiciously applying Neural Network and 
Bayesian estimation methods to the k-space data. More 
specifically, it is demonstrated that Neural Network techniques 
could construct efficient priors and introduce them in the 
procedure of Bayesian reconstruction. These ANN Priors are 
independent of specific image properties and probability 
distributions. They are based on training supervised Multilayer 
Perceptron (MLP) neural filters to estimate the missing 
samples of complex k-space and thus, to improve k-space 
information capacity. Such a neural filter based prior is 
integrated to the maximum likelihood procedure involved in 
the Bayesian reconstruction. It is found that the proposed 
methodology leads to enhanced image extraction results 
favorably compared to the ones obtained by the traditional 
Bayesian MRI reconstruction approach as well as by the pure 
MLP based reconstruction approach. 

I. INTRODUCTION 

A data acquisition process is needed to form the MR images. 
Such data acquisition occurs in the spatial frequency (k-
space) domain, where sampling theory determines resolution 
and field of view, and it results in the formation of the k-space 
matrix. Strategies for reducing image artifacts are often best 
developed in this domain. After obtaining such a k-space 
matrix, image reconstruction involves fast multi-dimensional 
Inverse Fourier transforms, often preceded by data 
interpolation and re-sampling.  

Sampling the k-space matrix occurs along suitable 
trajectories [1]. Ideally, these trajectories are chosen to 
completely cover the k-space according to the Nyquist 
sampling criterion. The measurement time of a single trajectory 
can be made short. However, prior to initiating a trajectory, 
return to thermal equilibrium  of the nuclear spins needs to be 
awaited. The latter is governed by an often slow natural 
relaxation process that is beyond control of the scanner and 
impedes fast scanning. Therefore, the only way to shorten 
scan time in MRI when needed, as for instance in functional 
MRI, is to reduce the overall waiting time by using fewer 
trajectories, which in turn should individually cover more of k-
space through added curvatures. Although, however, such 
trajectory omissions achieve the primary goal, i.e. more rapid 
measurements, they entail undersampling and violations of 
the Nyquist criterion thus, leading to concomitant problems 
for image reconstruction. 

The above mentioned rapid scanning in MRI problem is 
highly related with two other ones. The first is the selection  
of the optimal scanning scheme in k-space, that is the problem 
of finding the shape of sampling trajectories that more fully 
cover the k-space using fewer numb er of trajectories. Mainly 
three such alternative shapes have been considered in the 
literature and are used in actual scanners, namely, Cartesian, 
radial and spiral [1], associated with different reconstruction 
techniques. More specifically, the Cartesian scheme uses the 
inverse 2D FFT, while the radial and spiral scanning involve 
the Projection Reconstruction, the linogram or the SRS-FT 
approaches [1].  

The second one is associated with image estimation from 
fewer samples in k-space, that is the problem of omitting as 
many trajectories as possible without attaining worse 
reconstruction results. The main result of such scan 
trajectories omissions is that we have fewer samples in k-
space than needed for estimating all pixel intensities in image 
space. Therefore, there is an infinity of MRI images satisfying 
the sparse k-space data and thus, the reconstruction problem 
becomes ill-posed. Additionally, omissions usually cause 
violation of the Nyquist sampling condition. Despite the fact 
that solutions are urgently needed, in functional MRI for 
instance, very few research efforts exist in the literature. The 
most obvious and simplest such method is the so called “zero-
filling the k-space”, that is, all missing points in k-space 
acquire complex values equal to zero. Subsequently, image 
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reconstruction is achieved as usually, by applying the inverse 
Fourier transform to the corresponding k-space matrix. Instead 
of zero-filling the k-space it might be more advantageous to 
interpolate it by using nonlinear interpolation procedures, like 
neural networks, as proposed by the authors [2]. The 
Bayesian reconstruction approach, developed by two of the 
authors [1], briefly presented in the next section is another 
alternative solution. Both these last two mentioned MR 
reconstruction solutions yield good results [1,2]. The main 
contribution, however, of this paper is to develop a novel MR 
reconstruction methodology by involving both Bayesian and 
Neural reconstruction techniques and present its competence 
and advantages over the other rival approaches.  

II. THE BAYESIAN RECONSTRUCTION APPROACH. 

The Bayesian reconstruction approach recently proposed 
by two of the authors [1], attempts to provide solutions 
through regularizing the problem by invoking general prior 
knowledge in the context of Bayesian formalism. The 
algorithm amounts to minimizing the following objective 
function [1], by applying the conjugate gradients method, 
 
| S – T I |2/ (2σ2) + (3/2) ∑x,y log { α2 + (x∆xy)2 + (y∆xy)2 }   (1) 
 
with regards to I, which is the unknown image to be 
reconstructed that fits to the sparse k-space data given in S. 
The first term comes from the likelihood term and the second 
one from the prior knowledge term of the Bayesian formulation 
[1]. In the above formula, T((kx, ky),(x,y)) = e-2πi(xk

x
 + yk

y
)  

represents the transformation from image to k-space data 
(through 2-D FFT). The second term symbols arise from the 
imposed 2D Lorentzian prior knowledge. x∆xy  and y∆xy  are the 
pixel intensity differences in the x- and y- directions 
respectively and α is a Lorentz distribution-width parameter. 
Assuming that P(I) is the prior, imposing prior knowledge 
conditions for the unknown MRI image, then, the second term 
of (1) comes as follows. 

The starting point is that P(I) could be obviously expanded 
into P(I)=P(I0,0) P(I1,0| I0,0) P(I2,0| I0,0, I1,0 )… If, now, it is assumed 
that the intensity Ix,y  depends only on its left neighbour ( Ix-1,y 

), then the previous P(I) expansion takes on the form P(I) =  
∏(x,y )  P(Ix,y | Ix-1,y), provided that the boundaries are ignored.  
Next, we assume that P(Ix,y |  Ix-1,y) is a function only of the 
difference between the corresponding pixels. This difference 
is written down as x∆xy  = Ix,y  - Ix-1,y . It has been shown that the 
probability density function of  x∆xy  is Lorentzian shaped (see 
[1]). These assumptions and calculations lead to computing 
the prior knowledge in the Bayesian reconstruction as in the 
second term of  (1). 

Although this Bayesian reconstruction approach tackles 
the problem of handling missing samples in k-space, it 
exhibits, however, the disadvantage that assumes the 
existence of special probability distributions, given in closed 
form descriptions, for representing the unknown ones 

occurred in MRI, which is an issue under question. In this 
paper we attempt to remedy this problem by proposing 
additional priors in the Bayesian formulation in order to 
capture the probability distribution functions encountered in 
MRI. These priors are constructed through applying a 
specifically designed Multilayer Perceptron (MLP) neural filter 
for interpolating the sparsely sampled k-space. 

III. DESIGN OF MLP NEURAL NETWORK PRIORS 

The method herein suggested for designing efficient Priors 
for the Bayesian reconstruction formalism, is based on the 
attempt to extract prior knowledge from the process of filling 
in the missing complex values in k-space from their 
neighboring complex values. Thus, instead of assuming a 
Lorentzian prior knowledge to be extracted from the 
neighboring pixel intensities in MRI, as a constraint to be 
applied in the conjugate gradient based Bayesian 
reconstruction process, the proposed strategy doesn’t make 
any assumption. Instead, it aims at extracting priors without 
any specific consideration concerning the shape of the 
distributions involved, by transforming the original 
reconstruction problem into an interpolation one in the 
complex domain. While linear interpolators have already been 
used in the literature [2] and nonlinear estimations are well 
established in MRI [2], ANN models offer several advantages 
when applied as sparsely sampled k-space interpolators [2]. 
The methodology to extract prior knowledge by applying the 
ANN filters in MRI reconstruction is described in the 
following paragraphs. 
Step1. We compile a set of R representative N X N MRI 
images with k-space matrices completely known, which 
comprise the training set of the MLP interpolators. 
Subsequently, we scan these matrices following the specific 
sampling schemes mentioned above and then, by randomly 
omitting trajectories the sparse k-spaces are produced.  
Step2. The original k-space matrix as well as its corresponding 
sparse k-space matrix associated with one N X N MRI training 
image, is raster scanned by a (2M+1) X (2M+1) sliding 
window containing the associated complex k-space values. 
The estimation of the complex number in the center of this 
window from the rest of the complex numbers comprising it is 
the goal of the proposed interpolation procedure. Each 
position of this sliding window is, therefore, associated with a 
desired output pattern comprised of the complex number in 
the original k-space corresponding to the window position, 
and an input pattern comprised of the complex numbers in k-
space corresponding to the rest (2M+1) X (2M+1) -1 window 
points.  
Step3. Each such pattern is then, normalized according to the 
following procedure. First, the absolute values of the complex 
numbers in the input pattern are calculated and then, their 
average absolute value |zaver| is used to normalize all the 
complex numbers belonging both in the input and the desired 
output patterns. That is, if z1 is such a number then this 



normalization procedure transforms it into the z1/|zaver|. In the 
case of test patterns we apply the same procedure. That is, the 
average absolute value |zaver| for the complex numbers zi of the 
test input pattern is first calculated. Then, the normalized 
complex values zi/|zaver| feed the MLP interpolation filter to 
predict the sliding window central normalized complex number 
znorm

centre. The corresponding unnormalized complex number is 
simply znorm

centre  *  |zaver|. 
Step4. The next step is the production of training patterns for 
the MLP interpolators and their training procedure. To this 
end, by randomly selecting sliding windows from the 
associated k-spaces of the R training images and producing 
the corresponding input and desired output training pairs of 
patterns, as previously defined, we construct the set of 
training patterns. The assumption underlying such an 
approach of training MLP interpolators is that there are 
regularities in every k-space sliding window, the same for any 
MRI image, to be captured by the MLPs without any prior 
assumption for the probability distributions.  MLP training 
follows by applying the conjugate gradient technique of 
Polak-Ribiere. 
Step5. After training phase completion, the MLP filter has 
been designed and can be applied to any similar test MRI 
image as follows. To this end, the  (2M+1) X (2M+1) sliding 
window raster scans the sparse k-space matrix associated with 
this test image, starting from the center. Its central point 
position moves along the perimeter of rectangles covering 
completely the k-space, having as center of gravity the center 
of the k-space array and having distance from their two 
adjacent ones of 1 pixel. It can move clockwise or 
counterclockwise or in both directions. For every position of 
the sliding window, the corresponding input pattern of 
(2M+1) X (2M+1) – 1 complex numbers is derived following 
the above described normalization procedure.  Subsequently, 
this normalized pattern feeds the MLP interpolator. The 
wanted complex number corresponding to the sliding window 
center, is found as zcentre = zMLP

out
  *  |zaver|, where zMLP

out is the 
MLP output and |zaver| the average absolute value of the 
complex numbers comprising the unnormalized input pattern. 
For each rectangle covering the k-space, the previously 
defined filling in process takes place so that it completely 
covers its perimeter, only once, in both clockwise and 
counterclockwise directions. The final missing complex values 
are estimated as the average of their clockwise and counter-
clockwise obtained counterparts. The outcome of the MLP 
filter application is the reconstructed test image, herein named 
MLP_Img (equation (2)). Its difference from the image I(t) 
obtained during the previous step of conjugate gradient 
optimization in the Bayesian reconstruction formula (1), 
provides the neural prior to be added  for the current 
optimization step. 
 

IV. INCORPORATION OF NEURAL NETWORK PRIOR 
KNOWLEDGE INTO THE BAYESIAN PRIOR 

Following the 5 steps above we can formulate the 
incorporation of MLP priors to the Bayesian restoration 
process as follows. 

• Design the MLP Neural filter as previously defined 
• Consider the Bayesian reconstruction formula (1). The 

image to be optimized is I given the k-space S. The initial 
image in the process of conjugate gradient optimization is the 
zero-filled image. At each step t of the process a different I(t) 
(the image at the t step, that is, the design variables of the 
problem) is the result. Based on fig. 1, by applying the MLP 
filter on the original sparse k-space, but with the missing 
points initially filled by the FFT of I(t)  (in order to derive the 
I(t) k-space)- and afterwards refined by the MLP predictions, 
we could obtain the difference I(t) -MLP_Img(t) as the Neural 
Prior. 

• The Neural Network (NN) Prior form, therefore, is:   

∑ −
yx

tt yxIyxgMLP
,

)()( |),(),(Im_|                  (2) 

where, MLP_Img (t)(x,y) is the NN estimated pixel intensity 
in image space (NN reconstructed image: Inverse FFT of NN 
completed k-space) at step t and I(t)(x,y) is the image obtained 
at step t of the conjugate gradient optimization process in the 
Bayesian reconstruction  

• The proposed Prior in the Bayesian reconstruction is 
given as  
Final Prior = Lorentzian Bayesian Prior + a* NN_Prior  (3) 

• That is, the optimization process I(t) is attempted to be 
guided by the MLP_Img (t)  produced by the NN 
 
 
   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. The difference between the image to be optimized I(t) and the 
MLP reconstructed image MLP_Img(t) constitutes the neural prior. 
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V. EVALUATION STUDY AND CONCLUSIONS 

An extensive experimental study has been conducted in order 
to evaluate the above defined novel Bayesian reconstruction 
methodology. All the methods involved have been applied to 
a large MRI image database downloaded from the Internet, 
namely, the Whole Brain Atlas http://www.med.harvard.edu/ 
AANLIB/home.html  (copyright © 1995-1999 Keith A. 
Johnson and J. Alex Becker). We have used 10 images 
randomly selected out of this collection for training the MLP 
filters, and 10 images, again randomly selected for testing the 
proposed and the rival reconstruction methodologies. All 
images are 256 by 256. Their k-space matrices have been 
produced applying the 2D FFT to them. Radial trajectories 
have been used to scan the resulted 256 X 256 complex k-
space arrays. 4 X 256 = 1024 radial trajectories are needed to 
completely cover such k-spaces. In order to apply the 
reconstruction techniques involved in this study, each k-
space has been sparsely sampled using 128 only radial 
trajectories. Regarding the sliding window raster scanning the 
k-space, a 5 X 5 window was the best selection. 

Concerning the MLP filter architecture, the 48-10-2 one was 
found to be the best. This MLP has been trained using 3600 
training patterns.  The compared reconstruction techniques 
involved in this study are: the proposed novel Bayesian 
reconstruction approach, the traditional Bayesian 
reconstruction technique as well as the MLP filtering 
interpolation technique. Moreover, the simplest 
“interpolation” approach, namely filling in the missing 
samples in k-space with zeroes and then, reconstructing the 
image, has been invoked. All these methods have been 
implemented using the MATLAB programming platform.  

Concerning the measures involved to quantitatively 
compare reconstruction performance, we have employed the 
usually used Sum of Squared Errors (SSE) between the 
original MRI image pixel intensities and the corresponding 
pixel intensities of the reconstructed image. Additionally, 
another quantitative measure has been used, which expresses 
performance differences in terms of the RMS error in dB [2]:  

lambda=(image_recon(:)'*image_orig(:))/(image_recon(:)'*im
age_recon(:));residu=image_orig-lambda*image_recon; 
dB=10*log10((image_orig(:)'*image_orig(:))/(residu(:)'* 

   residu(:))); 
The quantitative results obtained by the different 

reconstruction methods involved are outlined in table 1 
(average SSE and RMS errors for the 10 test MRI images). 
Concerning reconstruction performance qualitative results, a 
sample is shown in figure 2. Both quantitative and qualitative 
results clearly demonstrate the superiority of the proposed 
Bayesian reconstruction methodology embedding MLP 
filtering based prior knowledge, in terms of MRI image 
reconstruction performance over the other three rival 
methodologies (simple Bayesian, MLP filter and zero-filled 
reconstructions).  Future trends of our research effort include 

implementation of the 3-D Bayesian reconstruction with NN-
priors for f-MRI as well as applications in MRI image 
segmentation for tumor detection. 
Method SSE (average in 

the 10 test MRI 
images) 

dB (average in the 
10 test MRI 
images) 

Proposed Bayesian 
reconstruction with 
NN Prior 

2.85 E3 16.67 

Bayesian 
reconstruction 

3.40e3 15.92 

MLP filtering 3.30E3 15.98 
Zero-filling 
reconstruct. 

3.71E3 15.26 

Table 1. The quantitative results with regards to 
reconstruction performance of the various methodologies 

involved 

 
Fig. 2. From left to right and top to down: The proposed 
Bayesian with NN prior, the sparsely sampled k-space 
(nr=128)–zerofilled image reconstruction, the MLP filtering and 
the traditional Bayesian reconstruction results. The Test 
Image illustrates a brain slice with Alzheimer’s disease 
(http://www.med.harvard.edu/ AANLIB/cases/case3/mr1-
tc1/020.html).   
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