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Numerical prediction of the hypersonic

boundary-layer over a row of microcavities

By Vassilios Theofilis †
Rohnsterrassen 14, D-37085 Göttingen, GERMANY

tel./fax: +49 551 48 76 25 vassilios.theofilis@nu-modelling.com http://www.nu-modelling.com

The present effort has addressed the issue of stabilization of hypersonic boundary layer flow on
account of porous coating of the wall, a phenomenon discovered by Fedorov & Malmuth (2001) and
demonstrated experimentally by Rasheed et al. (2001). Two aspects of the problem have been considered
numerically, recovery of two–dimensional, essentially nonparallel basic states and three–dimensional
BiGlobal instability analysis of such basic states. A set of two–dimensional direct numerical simulations
have addressed slow flow inside a single or a pair of microcavities embedded in the wall. An efficient
algorithm has been presented for the recovery of basic states in isolated cavities, driven by constant
shear, with or without superimposed small–amplitude perturbations originating in the boundary layer.
Further, the essential modification of the boundary layer flow in the presence of a row of microcavities
has been documented using spectral–element DNS. Parameter ranges have been identified within which
it is permissible to employ simplified models to describe flow in a single microcavity and calculate the
effect on the boundary layer flow in an analytic, integral manner. Finally, BiGlobal instability analysis
has revealed analogies in the most unstable eigenmodes of the shear–driven and the lid–driven cavity
flow (Theofilis, 2000a). Research directions in the continuing quest to guide associated experimental
efforts to control hypersonic boundary layer flow have been proposed.

† This material is based upon work supported by the European Office of Aerospace Research and Development, Air
Force Office of Scientific Research, Air Force Research Laboratory, under Contract No. F61775-01-WE049 monitored by
Dr. John D. Schmisseur.
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4 V. Theofilis

1. Introduction/Theoretical aspects

The motivation for the present study is in the development of a better understanding of the flow inside
porous coatings which have recently been shown to have very beneficial effects in controlling hyper-
sonic boundary–layer instabilities (Fedorov & Malmuth, 2001; Rasheed et al., 2001). In the present
model, two–dimensional cavities are considered and a non–parallel (global) linear instability analysis
of unsteady three–dimensional disturbances developing upon the laminar steady flow inside an isolated
cavity is performed. The analysis is distinct from the plethora of approaches which monitor the insta-
bility of the shear–layer formed at the forward lip of the cavity, and is akin to spatial direct numerical
simulation in that two spatial directions, those which define a two–dimensional cavity, are resolved
while the third is taken as homogeneous and resolved by a Fourier expansion. The ability to resolve
two spatial dimensions in the global eigenproblem permits a proper and rational treatment of factors
affecting flow instability, such as variable aspect ratio, different heights of forward/rearward wall of the
cavity and spacing between cavities. This approach is parallel to the effort of Duck (2002) who monitors
the external flowfield inside the boundary layer; the link between the two approaches is provided by
the boundary conditions at the open end of the cavities. The objective of the analyses is to determine
global three–dimensional linear perturbations and the frequencies of such disturbances in a quest to
guide associated experimental efforts to control the entire flowfield.

Interest in BiGlobal instability of this boundary layer has been raised by the discovery of Fedorov &
Malmuth (2001) and Rasheed et al. (2001), who have recently demonstrated theoretically and experi-
mentally, respectively, that mode II instability, which prevails in hypersonic boundary–layer flow under
a variety of environmental conditions, can be effectively controlled passively by coating the surface on
which the instability develops by a porous material. The objective of the present effort is to provide
detailed numerical predictions of the flowfield in the neighbourhood of this porous material. The key
feature of this technology is the large disparity of scales between a typical mode II wavelength and the
diameter of each of the microscopic cavities on the coating, schematically depicted in Figure 1. The
porous material can thus be modelled by a row of cavities which are embedded in the wall–coating; the
cavities are of small size compared with the thickness of the boundary layer and are referred to as mi-
crocavities. The optimal distribution of the microcavities on the coating surface is currently limited by
the unknown nature of the interaction between the flowfields in the immediate vicinity of neighbouring
microcavities. The present effort addresses this issue by monitoring separately the flow regimes firstly
in the boundary layer over the porous wall and secondly inside the microcavity with the aim to arrive
at theoretically founded predictions on control of mode–II–driven laminar–turbulent transition in this
configuration. The boundary condition at the wall of the boundary layer is used to provide the link
between the two flow regimes. The flow inside the boundary layer and its instability characteristics are
discussed in the related effort of Duck (2002); he argues firstly that, the flow inside the microcavity is
expected to be of a viscous nature, driven by a constant shear at the open end of the microcavity and,
secondly, that an incompressible model may be used for the description of the basic state inside the
microcavities. The focus of the present numerical effort is on the description of the flowfield inside a
single microcavity in isolation as well as in the basic flow in the near–wall region of a boundary layer
in which the minimum nontrivial number of two microcavities is embedded into the wall.

Specifically, a number of simplifications can be employed in order to gain first insights into the
configuration at hand. Those pertaining to the external boundary layer flow are discussed by Duck
(2002); here we concentrate on the simplifications of the flowfield inside the microcavities. These amount
to neglecting the three–dimensionality of the geometry for the purposes of the present effort as far as
the basic state is concerned. Regarding global instabilities, a Fourier decomposition of the spanwise
spatial direction is considered. As has been mentioned, the flow inside the microcavity is essentially
incompressible driven by constant shear, which leaves two parameters to be considered besides Reynolds
number, namely the length over the depth of each microcavity and the spacing between two neighbouring
microcavities. In the absence of prior information on the flow at hand, here we focus on the basic state
inside a single microcavity and its global instability. The latter is contrasted with that in the classic
lid–driven cavity (Theofilis, 2000a).

The basic flow is calculated by numerical solution of the vorticity transport equation alongside the
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Numerical prediction of the hypersonic boundary-layer over a row of microcavities 5

relation between streamfunction and vorticity,

∂ζ

∂t
+
{
∂ψ

∂y

∂ζ

∂x
− ∂ψ

∂x

∂ζ

∂y

}
−Kζ = 0, (1.1)

Kψ +
1
Re

ζ = 0, (1.2)

where K = (1/Re)
(
D2
x +D2

y

)
, while ζ = −∂ū/∂y + ∂v̄/∂x is the vorticity of the basic flow and ψ is its

streamfunction, for which ū = ∂ψ/∂y and v̄ = −∂ψ/∂x holds. An efficient direct numerical simulation
algorithm for the solution of (1.1-1.2) is presented in the next chapter.

A constant shear is imposed at the open lip of a single microcavity and two distinct situations are
considered, one in which the equations of motion (1.1–1.2) are integrated in time until convergence to
a steady state, and one in which such a state is perturbed harmonically on account of linear instability
originating in the boundary layer. However, both basic flows obtained in this manner suffer from the
restrictive assumption of prescribed (and limited) communication between flow in the boundary layer
and the microcavity. Furthermore, interaction between the microcavities, which represents one of the
main interests of the present research, cannot be addressed by monitoring microcavities in isolation.
The influence of variation of geometric parameters of individual microcavities on the induced flowfield
inside the boundary layer (and, consequently, on the stability characteristics of the flow) is a further
issue worthy of investigation. Finally, despite the low Reynolds numbers encountered, it is by no means
clear that the flow in the neighbourhood of the microcavities remains steady in the parameter range of
interest. In order to address all these issues, basic states have also been obtained, considering the entire
domain encompassing the near–wall portion of the boundary layer and a nontrivial minimum of two
microcavities embedded in the wall.

BiGlobal instability analysis of the flow is addressed by numerical solution of the linear eigenvalue
problem (Theofilis, 2002) in which the linear disturbance equations can be recast after substitution of
a decomposition into the two–dimensional O(1) basic quantities q̄ = (ū, v̄, 0, p̄)T and three–dimensional
O(ε) disturbance quantities q̃ = q̂(x, y)ei {βz−Ωt}, with q̂ = (û, v̂, ŵ, p̂)T into the equations of motion,
subtraction of the basic flow terms and neglecting terms at O(ε2). In the present temporal framework
β is taken to be a real wavenumber parameter describing an eigenmode in the z−direction and solve for
the complex eigenvalue Ω. Ωr ≡ <{Ω}, the real part of the eigenvalue is related with the frequency of the
global eigenmode while the imaginary part is its growth/damping rate; a positive value of Ωi ≡ ={Ω}
indicates exponential growth of the instability mode q̃ in time t while Ωi < 0 denotes decay of q̃ in
time. When the wavenumber vector βez is perpendicular to the plane on which the basic flow (ū, v̄, 0, p̄)
develops, as the case is in the present basic flow, it is possible to simplify the two–dimensional eigenvalue
problem by rewriting it as one with real coefficients, which requires half the amount of storage compared
with the standard form (Theofilis et al., 2001). The absence of a basic flow z−velocity component in
the linear operator in conjunction of the redefinitions

Ω̃ = i Ω, (1.3)
w̃ = i ŵ (1.4)

result in the following generalised real nonsymmetric partial derivative EVP after linearisation and
subtraction of the basic–flow related terms.

[M− (Dxū)] û− (Dyū)v̂ −Dxp̂ = Ω̃ û, (1.5)

−(Dxv̄)û+ [M− (Dy v̄)] v̂ −Dyp̂ = Ω̃ v̂, (1.6)

+Mw̃ − βp̂ = Ω̃ w̃, (1.7)
Dxû+Dy v̂ − βw̃ = 0, (1.8)

where
M = (1/Re)

(
D2
x +D2

y + β2
)
− ūDx − v̄Dy. (1.9)

The ability to solve a real eigenvalue problem is essential in the case of the present high Reynolds
numbers flow. This point has been clearly manifested in the literature in the difficulties encountered by
the investigators who tackled the problem of linear instability in the classic lid–driven cavity to produce
consistent results.
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6 V. Theofilis

2. Numerical methods

In a manner analogous to classic linear theory, in which one spatial direction is resolved and two are
considered homogeneous and represented by Fourier expansions, the details of the basic state of a global
linear instability analysis crucially condition the quality of the stability analysis results. For this reason
effort has been paid to develop a novel accurate and efficient numerical approach for the calculation of
the basic state, details of which are presented here.

The principles of the algorithm can be applied to recover three two–dimensional velocity compo-
nents or indeed a three–dimensional flowfield (Ku et al., 1987); however, for simplicity we confine the
present discussion to solutions of the system (1.1-1.2) which deliver the basic flowfield, q̄, inside a two-
dimensional rectangular microcavity. The main advantage of the velocity–vorticity formulation is that
the continuity equation is exactly satisfied. However, the problem of imposition of boundary conditions
within the framework of an overall efficient numerical solution algorithm remains. This is compounded
by the fact that the number of points discretising the two spatial directions in the subsequent analysis
cannot be increased at will; while interpolation of a basic flow solution obtained on a very large number
of points onto a modest EVP grid is one possible option, it is more elegant to avoid the interpolation
procedure altogether and seek an accurate basic flow solution on the same small number of discretisation
points on which the subsequent global instability analysis is to be performed. This appears tailor–made
for a spectral numerical solution approach (Canuto et al., 1987); in what follows we discuss a different
solution based on an efficient real–space eigenvalue decomposition (EVD) algorithm.

Chebyshev polynomials have almost exclusively been used in the past in the context of spectral
simulations of the time–accurate Navier–Stokes and continuity equations, mainly due to the availability
of fast transform algorithms necessary for efficient time–integration. However, for the present problems
we have not restricted ourselves to this class of orthogonal polynomials. Considerable freedom exists in
the choice of the expansion functions and the associated collocation grids by using Jacobi polynomials
P (q,r) for the discretization of both spatial directions; of course, q = r = −0.5 may be related to the
Chebyshev– while q = r = 0 are the Legendre polynomials. Collocation derivative matrices for both
Jacobi Gauss-Lobatto and equidistant grids can be constructed from first principles; if (xj , j = 0, · · · , n)
is the collocation grid chosen, the entries dij of the (0 : n) × (0 : n) first-order derivative collocation
matrix D, derived analytically from the interpolating polynomial, are

dij =

n∏
k=0

(xi − xk)

(xi − xj)
n∏
k=0

(xj − xk)
, i, j, k = 0, · · · , n, i 6= j 6= k, (2.1)

dii =
1

n∑
k=0

(xi − xk)
, i, k = 0, · · · , n, i 6= k. (2.2)

These formulae result in the well–known ones if the analytically known Chebyshev Gauss-Lobatto grid
(xj = cos jπ/n, j = 0, · · · , n) is used (Canuto et al., 1987). Values of order m derivatives on the
collocation grid xj are obtained by (D)m.

As far as temporal discretization of (1.1) is concerned, the viscous nature of the problems in which
we are interested introduces scales which dictate an implicit treatment of the linear term in this equa-
tion; the nonlinear term may be treated explicitly. Within the framework of solution methods which do
not resort to splitting and introduction of intermediate fields but rather address the governing equa-
tions directly the combination of Crank–Nicholson (CN) with second–order Adams–Bashforth (AB2)
or Runge–Kutta (RK) schemes has been extensively used for the time–integration of the viscous and
the convective terms, respectively (Canuto et al., 1987). However, the family of compact schemes pro-
posed by P. R. Spalart et al. (1991) (SMR) presents more accurate and more stable alternatives to the
CN–AB2 algorithm although it does not require additional computational effort to the latter scheme.
The SMR algorithm may be written in compact form as

q
′′′

= q
′′

+ ∆t
{
L(κq

′′
+ λq

′′′
) + µN (q

′′
) + νN (q

′
)
}
, (2.3)
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Numerical prediction of the hypersonic boundary-layer over a row of microcavities 7

where the superscript denotes fractional time–step, L(q) and N (q) are, respectively, the linear and
nonlinear operators in the problem to be solved and ∆t is the time–step. The rationale behind the
derivation as well as sample values of the constants κ, λ, µ and ν of a self–starting SMR algorithm may
be found in P. R. Spalart et al. (1991). The time–discretization of (1.1) using (2.3) delivers the following
problem to be solved for (ζ, ψ) at each fractional time–step

M1 ζ
′′′

= R, (2.4)

M2 ψ
′′′

+ ζ
′′′

= 0, (2.5)

where M1 = ∂2/∂x2 + ∂2/∂y2 − Re/(λ∆t) and M2 = ∂2/∂x2 + ∂2/∂y2, subject to the boundary
conditions appropriate to the problem in consideration. R comprises the nonlinear and the terms arising
from the discretization at previous fractional time–steps,

R = −(κ/λ)
[
∂2

∂x2
+

∂2

∂y2
−Re/(κ∆t)

]
ζ
′′

+ (µRe/λ)
(
ψ
′′

y ζ
′′

x − ψx′′ζ
′′

y

)
+ (νRe/λ)

(
ψ
′

yζ
′

x − ψx′ζ
′

y

)
. (2.6)

The accuracy of the overall procedure clearly depends on the scheme utilised for calculation of the
spatial derivatives. The spectral discretisation chosen introduces dense matrices and can only become
competitive against other numerical approaches from the point of view of efficiency on account of
the existence of a fast algorithm for the inversion of the implicit operators M1 in (2.4) and M2 in
(2.5). WhileM2 is time–independent, the first implicit operator is a function of a time–step ∆t that is
controlled by the Courant–Friedrich–Lewis condition and needs to be inverted at every time–step. If one
sacrifices the advantage of an adjustable time–step and keeps ∆t fixed at a slightly lower than its optimal
value, a powerful EVD algorithm may be constructed for the efficient solution of the incompressible
two–dimensional Navier–Stokes and continuity equations in streamfunction–vorticity formulation.

Key papers on EVD algorithms are the work of Haidvogel & Zang (1979) and that of Ku et al.
(1987). The first authors discuss the solution of Poisson’s equation subject to homogeneous Dirichlet
boundary conditions in transform space while the second authors present an eigenvalue decomposition
algorithm for the Poisson equation resulting from a time–splitting of the incompressible Navier–Stokes
and continuity equations in primitive–variables formulation in the context of real–space spectral collo-
cation using Neumann boundary data. Here we present a variant of the EVD algorithm for the solution
of the equations of motion in real–space using the streamfunction–vorticity formulation. Using this for-
mulation within a direct, as opposed to time–splitting or iterative, time–integration methodology one
Poisson and one Helmholtz problem are to be solved within each fractional time–step. This minimizes
the necessary computing effort and makes the present algorithm one viable candidate to obtain the
desired basic states.

(a) Single cavity, steady runs

Physical boundary conditions can only be provided for the stream–function ψ itself and its derivatives
on the domain boundary. We refrain from discussion of the Ku et al. (1987) algorithm for the standard
testbed lid–driven cavity problem, which we term EVD2 for reasons which will become apparent in
what follows, and concentrate on our novel EVD4 algorithm which permits addressing problems in
which both Dirichlet and Neumann boundary conditions are imposed on the stream–function while no
boundary data are necessary for the flow vorticity. We take a rectangular cavity to be defined in the
two–dimensional domain (xi ∈ [0, AR], i = 0, · · · ,m) × (yj ∈ [0, 1], j = 0, · · · , n), where AR is the
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8 V. Theofilis

aspect ratio of the cavity. The boundary conditions on ψ are

ψin = ψ0j = ψi0 = ψmj = 0, (2.7)
(∂2ψ/∂y2)in = F (xi), (2.8)

(∂ψ/∂x)0j = 0, (2.9)
(∂ψ/∂y)i0 = 0, (2.10)

(∂ψ/∂x)mj = 0, (2.11)

where fij ≡ f(xi, yj) represents either of ψ or ζ grid–values at a fractional time–step and F (x) is a
function used to distinguish between a constant-shear boundary condition, F (x) ≡ 1, and a function
derived from the external boundary layer flow. The numerical discretisation of (2.4-2.5) leads to a system
of simultaneous equations of the type

Mf + fN + cIf = g, (2.12)

where M represents the (0 : m) × (0 : m) discrete analogon of D2
x, N represents the transpose of the

(0 : n) × (0 : n) discrete analogon of D2
y, I is the identity matrix, c = −Re/(λ∆t) and g = R if (2.4)

is being solved, while c = 0, g = −ζ in the case of (2.5). On account of the homogeneous boundary
conditions (2.7) on ψ (2.5) becomes

m−2∑
i=2

Mkiψil +
n−2∑
j=2

Nljψkj = −ζkl −Mk1ψ1l −Mkm−1ψm−1l −Nl1ψk1 −Nln−1ψkn−1. (2.13)

The boundary conditions (2.8-2.11) may be expressed using the discrete analoga X,Y and Y 2 of the
collocation derivative matrices Dx,Dy, and D2

y, respectively, as given by (2.1-2.2). It follows that

ψ1l =
m−2∑
i=2

δ1iψil , ψm−1l =
m−2∑
i=2

δm−1iψil, (2.14)

ψk1 = κ̄k +
n−2∑
j=2

ε1jψkj , ψkn−1 = λ̄k +
n−2∑
j=2

εn−1jψkj , (2.15)

where κ̄k and λ̄k are used to impose the boundary condition on the lid,

κ̄k =
−FkY0n−1

Y01Y 2
nn−1 − Y 2

n1Y0n−1
, λ̄k =

FkY01

Y01Y 2
nn−1 − Y 2

n1Y0n−1
, (2.16)

and the vectors δ1i, δm−1i and ε1j , εn−1j are known functions of the entries of X,Y and Y 2,

δ1i =
X0m−1Xmi −Xmm−1X0i

X01Xmm−1 −Xm1X0m−1
, δm−1i =

Xm1X0i −X01Xmi

X01Xmm−1 −Xm1X0m−1
, (2.17)

ε1j =
Y0n−1Y

2
nj − Y 2

nn−1Y0j

Y01Y 2
nn−1 − Y 2

n1Y0n−1
, εn−1j =

Y 2
n1Y0j − Y01Y

2
nj

Y01Y 2
nn−1 − Y 2

n1Y0n−1
. (2.18)

The essence of the EVD4 algorithm is to diagonalise the (0 : m − 4)2 matrix M̂ and the (0 : n − 4)2

matrix N̂ whose entries are

M̂ki = Mki +Mk1δ1i +Mkm−1δm−1i, k, i = 0, · · · ,m− 4, (2.19)
N̂lj = Nlj +Nl1ε1j +Nln−1εn−1j , l, j = 0, · · · ,m− 4. (2.20)

The Poisson problem (2.13) becomes

M̂fkl + fklN̂ = −ζkl − N̂l1κ̄k − N̂ln−1λ̄k = rkl, (2.21)
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Numerical prediction of the hypersonic boundary-layer over a row of microcavities 9

in which the non–singular matrices M̂ and N̂ may be diagonalised using their eigenvalue decomposition

M̂ = (M∗)µ∗(M∗)−1 and N̂ = (N∗)ν∗(N∗)−1, (2.22)

to yield
µ∗(M∗)−1fkl(N∗) + (M∗)−1fkl(N∗) = (M∗)−1rkl(N∗). (2.23)

As a consequence, instead of having to solve the (m − 3) × (n − 3) system of simultaneous equations
(2.21) one solves the (m− 3)× (n− 3) algebraic equations

f∗ = r∗/(µ∗ + ν∗) (2.24)

for f∗ = (M∗)−1fkl(N∗), given r∗ = (M∗)−1rkl(N∗). The structure of the EVD4 algorithm is sum-
marised in table 2. Clearly, the cost of this algorithm is a negligibly small fraction of the cost of a direct
algorithm for the solution of the Poisson problem. This is documented in table 3 where memory and
runtime requirements are shown for solution of (1.1-1.2) in the lid–driven cavity problem.

(b) Single cavity, unsteady runs

The algorithm of the previous section accounts for flow inside the cavity set up by a constant shear–
driven flow in the (external) boundary–layer. However, on account of the first boundary condition in
(2.7), exchange of fluid between the external flow and the cavity is prohibited. This can easily be (partly)
remedied by specifying an alternative boundary condition at the North (N−)boundary of the cavity,
which models unsteady motion generated by instability in the external flowfield. One such model of
a boundary condition takes into account the fact that linear instability in the free–stream generates
harmonic motion at this boundary. Compared with the previous section an analogous in spirit, if not
in detail, algorithm can be constructed, in which small–amplitude perturbations in the boundary layer
generate harmonic unsteadiness at the lip of the cavity. In turn, such a motion is modelled by imposition
of the inhomogeneous boundary conditions

ψin = ε cos(2πxi) cos(2πft), (2.25)
(∂2ψ/∂y2)in = 1 + ε cos(2π(xi + φx)) cos(2πf(t+ φt)) (2.26)

to replace the first boundary condition in (2.7) and (2.8), respectively. Here ε � 1 is a small–
amplitude parameter, f is an imposed real frequency of the motion at the N−boundary, determined
by matching with instability in the external flow (Duck, 2002) and φx, φt are constant phase–shift
parameters in space and time, respectively.

The EVD4 algorithm is consequently modified in order to account for the boundary conditions (2.25-
2.26) while the last three of (2.7) and (2.9-2.11) are retained. The matrices M̂ and N̂ are then redefined
to incorporate the unsteady boundary conditions, while M̂ and N̂ are identical with those in §2(a) in
the limit ε = 0. In this manner the present algorithm generalises that of the previous paragraph without
loss in efficiency or accuracy.

(c) Row of microcavities, unsteady runs

Finally, an integral part of the current research focusses on a coupled solution of the external
boundary layer and the internal cavity flows. In this case a single–domain spectral spatial resolution,
as used in the previous sections, is no longer appropriate. Alternative approaches for the numerical
solution of such a problem include the spectral multidomain algorithm of Theofilis (2000a) or the
spectral element methodologies of Dubois-Pèlerin (1998) and Karniadakis & Sherwin (1999); the first
two algorithms have been employed here.

The minimum nontrivial configuration of two microcavities embedded in the wall has been consid-
ered, as schematically depicted in figure 7. The horizontal wall is defined by y = 0 while microcavities
having length d and depth D, placed at a spacing s apart have been considered. Although this does
not represent an essential constraint of the algorithms used, microcavities of identical dimensions have
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been taken in order to reduce the number of free parameters in the problem; in the same spirit, un-
less otherwise stated, square microcavities (d = D) have been considered throughout. In this manner,
the remaining geometric parameters are the distance between the inflow boundary and the upstream
corner of the first microcavity, that between the downstream corner of the second microcavity and the
outflow boundary and, finally, y = H, representing the distance from the horizontal wall along the
y−direction at which the integration domain is truncated. It is of interest to focus future research in
studying the modifications to the solutions obtained herein when the present choice of parameters is
altered, especially by considering identical cavities of different dimensions than those chosen here, or by
considering microcavities that are mildly different to one–another, as the case is likely to be in practical
applications.

Solutions obtained here have been confined to two spatial dimensions, but no assumption of pe-
riodicity at the inflow/outflow boundaries has been made; performance of a so–called ’spatial’ direct
numerical simulation (DNS) has been an explicit requirement in the early stages of designing the current
project (Fedorov, personal communication). Both the spectral multidomain and the spectral element
algorithm consider a partition of the configuration of figure 7 into a total of seven parent subdomains.
The first algorithm proceeds by defining independent conforming two–dimensional canonical (global)
mapped Chebyshev collocation grids to discretize each subdomain and an iterative procedure to ensure
C1 continuity across domain interfaces. The second algorithm, still considers the same space tessellation
but in addition permits independent prescription on the one hand of the number of regular subdomains
into which each of the parent subdomains is partitioned and on the other hand the degree of the polyno-
mial approximation within each subdomain. In this way, the spectral element approach has the potential
to resolve large gradient regions, such as that near the corners at the lips of the microcavities, more
efficiently than the global spectral multidomain approach. In both cases a semi-explicit time–integration
scheme has been used, employing low–storage Runge–Kutta or backward–differences for the convective
and Crank-Nicolson for the viscous terms. The boundary conditions used are

At the walls : u = v = 0, (2.27)

At inflow : u =
y

H
U∞ (2.28)

v = 0, (2.29)
At y = H : u = U∞, (2.30)

v = 0, (2.31)
At outflow : stress− free conditions (2.32)

Note that (2.28), after adjustment of constants, is consistent with the constant–shear flow assumption
used throughout this work.
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3. Results

(a) Basic flow

(i) Single cavity, steady runs

The EVD algorithm discussed in § 2 (a) has been employed, replacing the uniform tangential velocity
of the cavity roof (Theofilis, 2000a; Theofilis et al., 2001) by that of uniform wall shear stress, as detailed.
The issue of the singularity of the boundary conditions at the NE and NW corners of the cavity is thus
absent in the present calculations and the time–accurate spectral collocation scheme utilized for the
calculation of the basic flow demonstrates exponential convergence. Unlike the standard lid–driven
cavity, in which the condition ψy = 1 is imposed at the N boundary and defines the effective flow
Reynolds number, there is some ambiguity in the definition of a Reynolds number in the present case.
The input Reynolds number may be regarded as

Re = uy(y = D)d2/ν, (3.1)

given that in our approach the roof shear stress is constant (or ψyy = 1); here ν is the kinematic
viscosity of the fluid. Two additional Reynolds numbers useful for closer comparisons with the standard
lid–driven cavity problem may also be defined, namely an integral Reynolds number

Reint =
1
ν

∫ d

x=0

u(x, y = D) dx, (3.2)

as well as that based on the maximum streamwise velocity component attained at y = D,

Remax =
1
ν

max{u(x, y = D)}. (3.3)

While ν is a fixed parameter in the basic flow calculation code, u(x, y = D) is unknown a priori and is
determined from the converged basic–flow field. Taking d = D = 1 basic flow results have been obtained
using a rectangular grid comprising upwards of 96 collocation points per spatial direction. These have
been compared against the classic lid–driven cavity flow, the Reynolds number in the latter case taken
to be of O(Reint) in the former. As an example a comparison between the constant–shear and lid–
driven basic states in terms of the streamfunction ψ, the velocity components u = ψy, v = −ψx and the
vorticity ζ is shown in figure 2. The shear–driven cavity results have been generated using Re = 6250,
which yields an effective Reynolds number of Reint ≈ 300. Both sets of the first three quantities and
the vorticity of the shear–driven flow are presented by ten isolines between zero and the respective
maxima. The comparison points to a general qualitative agreement between the two model flows. That
the input Reynolds number (Re) in the shear–driven case is substantially higher than Reint shows how
relatively ineffective the constant shear driving mechanism is. In anticipation of the parameter range
necessary to produce globally unstable flows (Theofilis, 2000a; Theofilis et al., 2001), constant–shear
basic states were obtained at substantially larger values of the unit Reynolds number, as shown in
figure 3. A monotonic increase of both Reint and Remax as Re = 1/ν increases can be seen, which
enhances the viscous assumptions discussed earlier. The extent to which the quantitative differences
between the basic states modify the stability characteristics of the lid–driven cavity flow is examined
in § 3 (b).

(ii) Single cavity, unsteady runs

Before doing so, though, basic flow results have been obtained using the DNS algorithm of § 2 (b).
The objective has been to verify the ability of the code to couple unsteadiness generated by instability in
the external field, which penetrates inside the microcavity, or unsteadiness due to resonance originating
inside the microcavity which propagates in the boundary layer. As will be discussed in § 3 (b), this
coupling is pivotal in order to combine the analytic/numeric approach of Duck (2002) in the external
boundary layer flow with the present fully numerical approach required to describe flow inside the
microcavity.
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t ε f

< 20 0 0

20 < t < 40 10−4 1

40 < t < 60 10−4 0.5

> 60 0 0

Table 1. Parameters for the single–cavity unsteady simulations

To this end, a cavity of aspect ratio (depth over length) of 2 has been considered and constant
parameter values φx = φt = 0 have been used. The magnitude of the parameter ε, on the other hand,
is expected to have a critical qualitative influence on the results of the simulations: taking a low value
should result in linear response of the flow to the external forcing (see 2.25–2.26), where the imposed
frequency f is in resonance with that by which the cavity responds; progressively increasing ε will result
in departure from this behaviour towards nonlinearity.

Representative results of simulations are shown, in the form of time–dependence of a flow quantity
at a given position in the flowfield in figure 4 (here u is monitored, although others exhibit qualitatively
analogous behaviour) and in the form of the spatial distribution of ψ, u, v and ζ at two characteristic
times, t = 20 and t = 40, in figures 5 and 6, respectively; ν = 10−2, i.e. Re = 100 using the definition
(3.1), and the parameters of table 1 have been used for these simulations. In figure 4 it can be seen
that, starting from rest, at t < 20 a steady state solution is approached; components of this solution
are shown in figure 5. When non–zero amplitude forcing is applied at the N boundary of the cavity, the
flow responds in a periodic manner as would be expected from (2.25-2.26). After rather short transients
following the (Heaviside) changes of ε at t = 20 and of f at t = 40, the flow settles to two different
harmonic motions with periods T20−40 = 1/f = 1 at 20 ≤ t < 40 and T40−60 = 1/f = 2 at 40 ≤ t < 60.
Snapshots of the solution at t = 40 are shown in figure 6. At t = 60 the forcing is removed and, by
the end of the simulation, the flow approaches the same steady–state reached at t = 20−. At these
parameters, this steady state corresponds to Reint ≈ 14.

Using the same parameter values but higher resolution has demonstrated convergence of the results
presented and points to the reliability of the statements put forward in this section. Further, qualitatively
analogous results obtained at parameter values different to those presented in table 1 point to the
generality of the conclusions reached, namely that the imposition of harmonic motion at the open end
of the cavity sets up a linear response of the flow inside the cavity in resonance with the imposed
frequency, provided that the forcing amplitude ε is kept small. Another potentially significant result for
subsequent modelling is the finding that the bulk of the fluid flow motion, both unforced and forced, is
confined within a depth approximately equal to the length of the microcavity, as shown in the results
of figures 5 and 6.

(iii) Two microcavities, unsteady runs

Unsteady simulations have been performed, considering the entire flowfield which encompasses the
near–wall part of the boundary layer and two microcavities embedded in the wall. Such simulations
require orders–of–magnitude larger computing effort compared with the single–domain calculations
and, hence, a limited amount of results monitoring variations of the essential flow parameters have been
obtained. Nevertheless, these results suffice to highlight essential differences between the numerical
solutions obtained in the previous two sections and the present more elaborate approach and point to
the direction of future research. Specifically, two questions have been formulated and investigated:

• First, how does the flowfield in the near–microcavity region compare with solutions obtained
numerically using the assumptions of the previous section, or those used in the analytic model of
Fedorov & Malmuth (2001)?
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• Second, how do the geometric parameters s (spacing between successive microcavities) and D
(depth of a microcavity) affect the flowfield of a microcavity (including the induced boundary–
layer flow) and the interaction of this flowfield with neighbouring microcavities?

Answers to these questions can provide guidance to theory and experiment alike. Further mod-
elling can benefit from identification of the limitations, in terms of the minimum spacing/depth of
microcavities, for which the integral conditions used in the analysis (Fedorov & Malmuth, 2001) hold,
before interaction between the flowfields of the microcavities invalidates the assumption of isolated
microcavities under which these integral conditions are derived. On the other hand, experiment can
use information on the minimum spacing between microcavities when manufacturing materials whose
stability properties are reliably predicted by theory. Clearly, a major unanswered question in this con-
text is the influence of three–dimensionality on conclusions reached here. This is an issue that is partly
addressed in § 3 (b) and should be further expanded in future work.

Taking L = d = D = 1, some numerical experimentation was necessary in order to determine the
remaining geometric parameters, such that (a) the location of the inflow boundary does not interfere
with the flowfield in the neighbourhood of the upstream microcavity, on the one hand permitting
the boundary layer to develop on the upstream wall of the configuration and on the other hand not
placing excessive resolution requirements on account of a long upstream domain, (b) the location of the
outflow boundary be placed well downstream of the downstream cavity, such that the outflow boundary
conditions are physically plausible and, finally, (c) the location at which the domain is truncated in the
y−spatial direction be such that activity taking place in the neighbourhood of the microcavities is not
affected by this (artificial) domain truncation.

Having ensured all three requirements, the remaining physical parameters with which numerical
experiments were performed were the Reynolds number, defined as

Re =
U∞d

ν
, (3.4)

and the distance s between the microcavities. Additional numerical parameters that needed to be
determined were the time–step ∆t of the unsteady simulations and the number of subdomains in which
each of the parent subdomains (p1 − p7 in figure 7) was to be subdivided, as well as the degree of
polynomial approximation within each subdomain. The last two parameters determine the convergence
properties of the algorithm and the accuracy of the solutions obtained and are (alongside the Reynolds
number) intimately linked with ∆t via the CFL condition.†

Results have been obtained for Re ∈ [10, 103] and s ∈ [1, 4] while, in order to verify the conclusion
put forward in the previous section regarding the significance of the microcavity depth parameter,
simulations comparing the results of D = 1 and 2, keeping all other parameters identical, have also
been performed. In all calculations to be presented the spectral element code has been used, since it
has been found that this methodology is substantially more efficient in resolving sharp gradients (such
as those at the lips of the microcavities) by local refinement of the grid, as opposed to the spectral
multidomain code in which such geometric singularities impose global requirements on the grid and,
consequently, higher–than–necessary resolution away from the singularity. In this respect each of the
7 parent subdomains p1 − p7 was further subdivided into 42 subdomains, within each of which flow
quantities were resolved using a 7th degree polynomial. These values represent a compromise between
accuracy and efficiency; resolving a parent subdomain using 22 subdomains and lower degree polynomials
produces only qualitatively correct results, while further increasing the number of subdomains (62×7 =
252 being the next possibility, compared with the currently used 42 × 7 = 112 subdomains) would be
unnecessarily expensive. In the parameter ranges explored the unsteady algorithm has yielded stationary
solutions only; at convergence successive time–step results exhibit a relative time variation of less than
0.1× 10−6.

Of the results obtained most relevant for the problem at hand, as has been stressed here and by
Duck (2002), are low Reynolds number calculations. The spatial distribution of u(x, y) and v(x, y) at

† In the case of multidomain solutions the global spectral collocation grid utilised to resolve each parent subdomain is
the only means of improving the solution accuracy.
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Re = 50 and s = D = 1 is presented in figure 8; the slow motion of flow inside the microcavity can
be appreciated in this result. Closer examination of the normal (to the wall on which the boundary
layer develops) velocity component reveals two interesting aspects of the flow. On the one hand, it
can be seen that little communication takes place between fluid in the boundary layer and that in
the cavity; fluid in the microcavity is found to be in near–solid–body rotation, as expected by the
smallness of the Reynolds number. On the other hand, compensation of this phenomenon takes place
in the boundary layer, where the presence of the microcavity appears to exert influence on the flow
over a relatively large part of the domain outside the microcavity itself. The first result is in line with
the assumption of the previous two paragraphs and those of Fedorov & Malmuth (2001) and Duck
(2002). The second result is expected to have a strong influence on the stability characteristics of the
boundary layer and can only be predicted numerically by simulations, such as these presented herein.
Further inspection of the normal velocity component result appears to suggest that s = 1 is a distance
at which the fluid motion induced in the boundary layer by one microcavity interacts nonlinearly with
that induced by its neighbour. In other words, placement of microcavities at distances s ≤ 1 apart will
prohibit applicability to a row of microcavities (in an integral manner) of analytical models derived on
the basis of a single microcavity. Next, the effect of s on the solutions obtained at constant Re and D
is examined; representative results are presented in figure 9 at Re = 20, D = 1. It can be seen that
s ≥ 4 is necessary in order for the induced flowfield of the downstream microcavity to become similar
to that of the upstream microcavity. Unless three–dimensional instability modifies these basic flows,
this result suggests that using such a spacing between microcavities can ensure that the model used to
describe the induced flowfield of a single microcavity can be applied in an integral manner to describe
the interaction between the boundary layer and a porous material. The Reynolds number effect on
the conclusions put forward so far is next determined by obtaining solutions in the range of interest,
Re ∈ [10, 20], keeping s = 2, D = 1; the results at the extreme Reynolds number values are presented in
figure 10. It can be seen that, at least in the parameter ranges investigated, in which no unsteadiness
occurs, the Reynolds number effect is substantially less pronounced than that of the spacing between
microcavities. Finally, figure 11 essentially confirms the conclusions of the previous sections, namely
that the bulk of the activity inside the microcavity takes place within a depth equal to the width of
the microcavity; quantitative inspection of the solution in y ∈ [−2,−1] revealed a rapid decay of all
flow quantities with depth. The results obtained have been analysed quantitatively in different ways, f.e.
monitoring one–dimensional profiles of velocity components as a function of the wall–normal coordinate
y. This task, however, is physically relevant only if three–dimensional instability does not destroy the
two–dimensional basic states obtained; one means of addressing this instability is BiGlobal instability
theory (Theofilis, 2002) to which we return now.

(b) Global linear instability

Three–dimensionality can be introduced in the results of the previous section by receptivity, followed
by either linear instability or transient growth. Examination of all relevant mechanisms is beyond the
scope of the present work; focussing on BiGlobal linear instability, one result that may be inferred from
the steadiness of the basic states obtained is that the two–dimensional BiGlobal eigenmode (β = 0)
is stationary (Theofilis, 2000b). On the other hand, linear amplification of three–dimensional BiGlobal
eigenmodes (having β 6= 0) can be examined by numerical solution of the partial derivative eigenvalue
problem (1.5–1.8).

At present, only single–domain solutions of the EVP have been obtained, using the steady basic states
calculated in § 3 (a) (i) and monitoring the relative stability properties of shear–driven and lid–driven
cavity flow. The straightforward viscous boundary conditions on the disturbance velocity components
have been imposed on the three solid walls, while the issue of boundary conditions on the N−boundary
of the shear–driven cavity is expected to be the key linking the flowfield of an isolated microcavity
with that prevailing in the external flow, studied by Duck (2002). In the absence of prior information,
calculations reported here have been performed by imposing homogeneous Dirichlet or extrapolation
of the disturbance velocity components from the cavity interior; appropriate compatibility conditions
for the disturbance pressure have been used to close the system to be solved in both cases. In the
framework of a temporal global instability analysis the only parameters of the problem are the flow
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Reynolds number Re and the spanwise periodicity length Lz, associated with a wavenumber β = 2π/Lz,
while the complex temporal eigenvalue Ω and the two–dimensional amplitude functions (û, v̂, ŵ, p̂)T of
the disturbance quantities are determined by the numerical solution of the partial–derivative eigenvalue
problem.

At Reldc = Reint ≈ 300 the lid–driven cavity flow is known to be stable to both two– and all
three–dimensional perturbations. Comparisons between the two model flows are only possible in the
case of homogeneous Dirichlet boundary conditions being imposed at the N boundary in the shear–
driven case. The modification of the (least damped) leading eigenvalues of the eigenspectrum at β = 7.5
(approximately corresponding to least–damped conditions for mode T2 (Theofilis, 2000a; Theofilis et al.,
2001)) is shown in the upper part of figure 12. Owing to the disparity between Reldc and Re the shear–
driven flow experiences much weaker damping compared with its lid–driven counterpart. Noteworthy
is also the difference between the two flows in terms of the prevalence of stationary and low–frequency
disturbances (in the neighbourhood of Ωr = 0) in the shear–driven cavity case at Re = 6250. At
Re = 25×104, on the other hand, the flow is marginally unstable at β = 7.5; the corresponding spectrum
is shown in the lower part of figure 12. The amplitude function of the spanwise disturbance velocity
component ŵ and the disturbance pressure p̂ of the unstable global eigenmode is shown in figure 13.
The complexity of the (periodic in z) flowfield, setup by global instability inside the microcavity, can
be seen in this figure, while the analogies of the structure of the global eigenmode with that in the
lid–driven cavity (Theofilis, 2000a; Theofilis et al., 2001) can also be appreciated.

The currently imposed boundary condition of impermeability at the roof of the cavity has been
extended to that suggested by Duck (2002),

v̂ − Λp̂ = 0, (3.5)

which can provide the link between the external and internal disturbance flowfields. However, in view
of the basic flow results of § 3 (a) (iii), further stability calculations have not been performed until the
issue of the appropriate basic state to be used for such stability calculations has been addressed in a
satisfactory manner, a task constituting one of the possible interesting extensions of the present effort.
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4. Conclusions

This report may be regarded as a first step in modelling the flow inside porous media coatings which
are known to be useful in controlling hypersonic (in particular mode II) boundary–layer flow instabil-
ities. The practically incompressible nature of the flow inside the microcavities strongly suggests that
temperature perturbations in the outer flow are unlikely to be substantially affected by the presence of
the microcavities.

The first set of results obtained has assumed the outer flow to affect the inner (cavity) flow, but not
vice-versa. The nature of two–dimensional basic flow inside a microcavity driven by a uniform shear-
stress on one face was established by use of an accurate and efficient eigenvalue decomposition algorithm
(EVD) for direct numerical simulation. Details of the novel aspects of the EVD algorithm have been
presented. Some BiGlobal instability results of this flow have also been obtained; they strongly suggest
the flow to be quite stable in likely practical regimes (Reynolds numbers), particularly when compared
with the lid–driven cavity problem (Theofilis, 2000a; Theofilis et al., 2001).

The second set of results obtained has permitted small–amplitude harmonic perturbations super-
imposed upon the solutions obtained in the first leg of the investigations. An isolated microcavity has
been shown to respond to external forcing in a linear manner, periodic flow being set up inside the
cavity at the imposed external frequency. This extension is necessary in order to permit a more inter-
active regime, especially with respect to the perturbed flow. In particular a more realistic boundary
condition recently suggested by Duck (2002) can be used to relate the wall–normal component of the
disturbance velocity and disturbance pressure on the external face of the cavity, as derived from the
present numerical approach, with those of the external flowfield analysed by Duck (2002).

Finally, the basic flow results obtained using the previous two sets of approximations have been put
in perspective by performing (unsteady) DNS of the entire flowfield, which encompasses both the near–
wall boundary layer and two microcavities embedded in the wall. It has been shown that the parameter
on which the flowfield most critically depends on is the spacing between microcavities; beyond a spacing
s ≈ 4 (which scales with other geometric parameters of the flow) it appears to be permissible to study
microcavities in isolation from each other (but interacting with the boundary layer) and calculate the
effect of the induced flow motion on the boundary layer in an analytical (integral) manner. Other
parameters, such as the depth of the cavities and the Reynolds number have been found to have a lesser
impact on the flow, at least in the parameter range of interest where steady states prevail.

Future work aiming to aid optimization of the process of microcavity scale and distribution should
address the key issue left open in the current investigations, namely three–dimensionality. This can
be studied either as harmonic modification in the third spatial direction of the present (single– and
multiple–microcavity configuration) two–dimensional basic states or through consideration of essentially
inhomogeneous three–dimensional microcavities of different geometric characteristics embedded in the
boundary layer.
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1 Pre-processing Stage

a. Set up the matrices M̂ and N̂,

calculate their EVD and store the results

b. Set up the matrices M̃ and Ñ,

calculate and store their EVD

2 Time-advancement

i. First fractional time-step

a. Given an initial ψ
′′

calculate ζ
′′

= −∇2ψ
′′

or read-in (ψ
′′
, ζ
′′

) data generated at an earlier simulation

b. Calculate derivatives of ψ
′′

and ζ
′′

and form R

c. Use EVD2 to solve ∇2ζ
′′′

= R

d. Use EVD4 to solve ∇2ψ
′′′

= −ζ
′′′

e. Overwrite (ψ
′
, ζ
′
) by (ψ

′′
, ζ
′′

) and (ψ
′′
, ζ
′′

) by (ψ
′′′
, ζ
′′′

) respectively

ii. Second fractional time-step

a. Given ψ
′′
, ζ
′′
, ψ
′
and ζ

′
calculate their derivatives and form R

c. Use EVD2 to solve ∇2ζ
′′′

= R

d. Use EVD4 to solve ∇2ψ
′′′

= −ζ
′′′

e. Overwrite (ψ
′
, ζ
′
) by (ψ

′′
, ζ
′′

) and (ψ
′′
, ζ
′′

) by (ψ
′′′
, ζ
′′′

) respectively

iii. Third fractional time-step

a.-e. Same as 2 ii.

iv. Check convergence in time and either Go To 2 i. or Exit

Table 2. An algorithm for the solution of the two–dimensional incompressible Navies–Stokes and continuity
equations using the streamfunction–vorticity formulation and eigenvalue decomposition
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SUN Sparc 10 NEC SX4

problem EVD direct inversion EVD direct inversion

size size time size time size time size time

(Mb) (sec) (Mb) (sec) (Mb) (sec) (Mb) (sec)

16 × 16 0.4 4.4 1.1 3.7 4.03 0.03 4.03 0.1

24 × 24 0.5 5.4 3.6 10.5 5.03 0.14 6.03 0.3

32 × 32 0.6 6.6 10.0 39.7 5.03 0.25 13.03 1.1

48 × 48 0.8 15.3 46.9 460.6 6.03 0.56 48.03 8.4

64 × 64 1.1 31.8 143.9 5203.5 6.03 1.08 140.03 40.7

96 × 96 1.8 143.3 (*) (*) 8.03 2.48 680.03 417.4

128 ×128 2.8 523.1 (*) (*) 8.03 4.41 (*) (*)

Table 3. Comparison of memory and runtime requirements for a single solution of a two–dimensional Poisson
equation using direct inversion and the EVD4 algorithm on one processor of a workstation and a supercomputer.
Asterisks denote that the respective problem does not fit in the available memory on the workstation or that it
cannot be solved within the existing batch queue time–limit on the supercomputer.
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Figure 1. Schematic representation of the modelled geometry
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Figure 2. Comparison of the basic states for the shear-driven at Reint = 300 (upper row) and the lid-driven
cavity flow at the same Reynolds number (lower row). Left to right column: ψ, u, v, ζ.
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Figure 3. Dependence of Reint and Remax on 1/ν in a square shear-driven cavity.
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Figure 4. Periodic flow set up inside an aspect–ratio–two microcavity, as a consequence of a shear which is
harmonically–dependent on time; shown is u(x = 0.5, y = 1; t).
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Figure 5. The steady–state solution approached at t = 20−. Components shown are ψ (upper left), u (upper
right), v (lower left), ζ (lower right).
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Figure 6. Snapshots, at t = 40, of the periodic flowfield set up inside the microcavity by harmonic motion at
the cavity lip. Components shown are ψ (upper left), u (upper right), v (lower left), ζ (lower right).
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Figure 7. Sketch of the geometry considered.
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Figure 8. Re = 50 flow over two unit square microcavities, set apart by s = 1. Upper: streamwise velocity
component; lower: normal velocity component.
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Figure 9. Effect of spacing s ∈ [2, 4] on a two–unit–square–microcavity configuration at Re = 20.
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Figure 10. Reynolds number effect on the normal velocity component in a two–unit–square–microcavity
configuration at s = 2.
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Figure 11. Effect of depth D = 1 and 2 on in a two–microcavity configuration at Re = 20, s = 2.
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Figure 12. Upper: Comparison of the global eigenspectra in the shear-driven (+) and the lid-driven cavity (×)
at Re = 300. Lower: Unstable spectrum in the shear-driven cavity at Re = 25× 104
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Figure 13. Four isosurfaces of the spanwise disturbance velocity component (upper) and disturbance pressure
(lower) generated by global instability inside a square microcavity at (Re = 25 × 104, β = 7.5). Levels are
equidistributed between the respective minimum and maximum values.
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Nomenclature associated with the Final Report
F61775-01-WE049

Numerical Prediction of the Hypersonic Boundary-Layer Over a Row of Microcavities
by

V Theofilis

Latin Symbols
d, D 2D microcavity width, depth
f (dimensionless) frequency
H 2D microcavity domain height
Re Reynolds number
t time
x, y Cartesian coordinates/ collocation points
u, v, w Cartesian velocity components

Greek Symbols
β Spanwise wavenumber
∆t Timestep
ε Small-amplitude parameter
κ, λ, µ, ν Time-integration constants
φ Phase-shift parameter
?, ? Stream-function, vorticity
Ω Complex eigenvalue of the global eigenvalue problem
Ωr Real BiGlobal frequency
Ωi Real BiGlobal amplification/damping rate

Calligraphic symbols
D (analytic) collocation derivative
K, L, M, N Linear operators

Superscripts
‘, ’’, ’’’ Fractional timestep quantity
- Basic flow quantity
^, ~ Disturbance flow quantity
* Eigenvalue vector

Subscripts
i, j, k, l, m, n (discrete) indices


