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Model Predictive Control for Dynamic Unreliable 
Resource Allocation1 

David A. Castanön 2 and Jerry M. Wohletz 3 

Abstract 

In this paper, we consider a class of unreliable resource 
allocation problems where resources assigned may fail 
to complete a task, and the outcomes of past resource 
allocations are observed before new resource allocations 
are selected. The resulting temporal allocation prob- 
lem is a stochastic control problem, with a state space 
and control space that grow exponentially in cardinal- 
ity with the number of tasks. We introduce an approx- 
imation by enlarging the admissible control space, and 
show that this approximation can be solved exactly and 
efficiently. The approximation is used in a model pre- 
dictive control (MPC) algorithm. For single resource 
problems, the MPC algorithm completes over 98% of 
the task value completed by an optimal dynamic pro- 
gramming algorithm in over 1000 randomly generated 
problems. On average, it achieves 99.5% of the optimal 
performance while requiring over 6 orders of magnitude 
less computation. 

1 Introduction 

A common assumption in resource allocation problems 
such as multiprocessor scheduling or job shop schedul- 
ing is that, once a resource works on a task, the task will 
be completed successfully. However, there are many re- 
source allocation problems where resources can fail to 
complete the task, and further resource assignments are 
required for that task. We refer to this class of prob- 
lems as «ftreiiable resourpe aUocation; problems»; Ex- 
amples of these problems include assignment of search 
activity (e.g. sonobuoys) to sectors [12], assignment 
of ground-air missiles to aircraft, or more general as- 
signment of weapons to targets [5] in diverse military 
applications. In this paper, we are interested in the 
problem of dynamic resource allocation where resources 
are non-renewable and unreliable, and where the suc- 
cess of past resource allocations can be observed before 
new allocation decisions are made. These problems re- 

1This research was supported by AFOSR under Grant number 
F49620-01-1-0348, and by DARPA Information Systems Office' 
and AFRL/VACA under contract number F33615-01-C-3149. 

2ECE Department, Boston University, Boston, MA 02215, e- 
mail: dacQbu.edu 

3ALPHATECH, Inc., 50 Mall Rd., Burlington, MA 01803 , 
e-mail: jwohletzQalphatech.com 

quire selecting which tasks to process first, and what 
resources to hold in reserve for allocation after observ- 
ing the success of early allocations. 

There is an extensive literature on many variations of 
weapon target assignment problems that are formu- 
lated as unreliable resource allocation problems. How- 
ever, most of these variations consist of static problems 
[5] where no information on allocation outcomes is ob- 
served. Dynamic variations of these problems where 
outcomes of allocations were observed were studied in 
[6] and [2]. Recently, Murphey [8, 9] has addressed 
stochastic dynamic weapon assignment problems where 
new tasks arrive over time, and weapon assignments 
are unreliable. Murphey allows for observation of the 
new task arrivals, but no observation of the past al- 
location outcomes. The resulting problem formulation 
is a stochastic program [10]. The search theory litera- 
ture has extensive results on dynamic search problems; 
a good overview of these results is available in [12]. 
However, the results focus on dynamic search focus on 
sequential search for a single object, where search re- 
sources are allocated to a single site at a time. 

We focus on allocating unreliable resources to multiple 
tasks over two stages, where the outcomes of resources 
assigned in the first stage are observed before the sec- 
ond stage allocations are selected. We pose the problem 
as a stochastic control problem; although this problem 
can be solved using stochastic dynamic programming 
(SDP) [1], the number of states grows exponentially 
with the number of tasks. "^^opj^pi;rateaaa*iye 
afeor i|hm,Äbvas,ed.mh' ä%#P®i0PS3lei^BfeAJWA***11 

that-qan^e^oiv^ 
rmmbjyafjla^isand^^^ 
tion, *e develop a .model-predictive controller,. (M^) 

4*]*wh%h,:fener§^ 
solves the problem based-on the outcome information 
a^lj||eJftr thf,^^secawd;iStegft^§j|a|^nf5^e compare 
the per'förmälice of the MPC controller with that of the 
optimal SDP algorithm and a faster suboptimal SDP 
algorithm using random problems. Our results show 
that the model predictive algorithm achieves on aver- 
age over 99% of the performance of the optimal SDP 
algorithm, while computing allocations for nearly 1000 
tasks in under 1 second. 

The rest of this paper is organized as follows:   Sec- 

ASC  -0 2 -297^/ 



tion 2 describes the mathematical formulation. Sec- 
tion 3 discusses the exact SDP algorithm, and a sim- 
pler approximate SDP algorithm. Section 4 describes 
the fast approximate SDP formulation and its solution, 
and MPC approach. Section 5 discusses the numerical 
experiments. Due to space limitations, the proofs are 
omitted, and can be found in [4]. 

2 Problem Formulation 

Assume that there are N tasks, indexed by i = 
1,...,N, and that there are of M non-renewable homo- 
geneous resources which can be assigned to each task 
over two possible stages. Associated with each task is 
a value Vt which is obtained by completing the task. 
Use of a resource incurs a cost C. When a resource 
is assigned to task i in stage k, the event that the re- 
source successfully completes the task has probability 
Pi(k), and this event is independent of any other events 
generated by other resource assignments. 

Let Xj(l) denote the number of resources assigned to 
task i at stage 1. Under the independence assumptions, 
the probability that task i is not completed is given by: 

Ps(i,l) = (l-Pi(l))',W (1) 

At the completion of stage 1, the set of completed tasks 
will be observed. Let fi = {0,1}" denote the set of 
possible values of this observation, where Wj = 0 de- 
notes that task i was completed in stage 1, and u/j = 1 
denotes the complementary event for task i. Given a 
vector x(l), eq. (1) induces a probability distribution 
•Pfej|x(l)) on the possible outcomes. The stage 2 allo- 
cations are strategies x(2,w) that depend on the spe- 
cific observed outcome. We refer to these strategies as 
recourse strategies. 

Given resource allocations x(l) and recourse strategies 
x(2,w), the probability that task i is not completed 
either in stage 1 or in stage 2 is given by 

Ps(i,2) = J2 f(w|i(l))/(Wj = 1)(1 -pi(2))*'Ca-a) 
w€fl 

(2) 
where /(•) is the indicator function, and 

PbateM)  =     II  [i-(i-Pi(i))*'(1)]- 
{t|u.<=0} 

n (i-ft(i))*i(i) 

{i|wj=i} 

The stochastic control problem is to select resource al- 
locations x(l) and recourse strategies x(2, u) that min- 
imize the expected incomplete task value plus the ex- 
pected cost of using resources: 

N N 

E(£ *W«"> 2) + C j>i(l) + *4(2,a)}     (3) 

subject to the constraints 

N 

J](a:i(l) + x<(2)w))<M    for all u € SI     (4) 
t=i 

xi(l),xi(2,w)e{0,l,...,M}   forallwef2,i    (5) 

The above problem is a two-stage stochastic feedback 
control problem with a discrete state space that grows 
exponentially in the number of tasks N, and a deci- 
sion space which grows exponentially in the number of 
tasks. In the next section, we discuss the solution of 
this problem using stochastic dynamic programming. 

3 Stochastic Dynamic Programming Solution 

Consider the problem at the second stage, after the 
state (j has been observed. Without loss of general- 
ity, assume that there are N2 incomplete tasks in u, 
renumbered from j = 1 N2, and that there are M2 

resources remaining. The second stage problem can be 
expressed as follows: 

{xi™l,N^{V^-Vi)Xi+CXj}        (6) 

subject to 

][>;<M2,    Xje{0,l,...,M2} (7) 
i=i 

Define real-valued functions over nonnegative integer 
allocation variables n £ {0,..., M2} as 

fj(n) = Vj[(l-pj)
n]+Cn (8) 

and define /,(x),x e [0,M2] as the linear interpola- 
tion of the function fj(n). Note that fj(x) is convex in 
x G [0, M2], as it is the sum of two convex functions. 
Relaxing the second stage optimization problem to al- 
low for real-valued allocations results in a monotropic 
optimization problem [11] of the form 

N2 

mm 
**lOM2]E,iiXi) 

subject to 
N* 

Y^XJ<M2,       Xj>0 

(9) 

(10) 

t=i t=i 

The piecewise linear, convex nature of fj(x), together 
with the fact that M2 is an integer and all the points 
of nondifferentiability of fj(x) correspond to integer 
x, guarantees that the solution to eq. (10) is an in- 
teger [11].  Furthermore, the separable convex nature 

i>. «"" 



of the objective function and the single additive con- 
straint leads to simple computations of subgradients, 
and guarantees the existence of a scalar Lagrange mul- 
tiplier which satisfies the Karush-Kuhn-Tucker condi- 
tions [11]. The result is a fast algorithm for determining 
the optimal recourse allocations ^(t, w) and the corre- 
sponding optimal value J2(w, M2), which is equivalent 
to an incremental line search for the optimal Lagrange 
multiplier value. The key structural result is stated 
below: 

Lemma 1 Consider the second stage allocation prob- 
lem defined by (9-10). There exists a nonnegative value 
A* such that the optimal resource allocation {xfi is 
given by 

x) e aism!n,j€|0|M2][fj(xj) + A*Sj] (11) 

Furthermore, A* can be chosen as the negative of one 
of the slopes of the piecewise linear functions fj (x). 

The optimal solution has an incremental optimality 
property: The optimal solution for a given value of M2 

is part of an optimal solution for any value M > M2. 
This leads to efficient algorithms for solving the sec- 
ond stage allocation problem, of complexity 0(N + 
Mla(N + M)) [5]. These algorithms are used for each 
possible first stage outcome u and remaining resource 
level M2 to compute the optimal cost-to-go J2 (w, M2). 
The optimal cost-to-go has the following properties: 

Lemma 2 The optimal cost-to-go function J|(w,M2) 
has the following properties: 

1. J2(UJ,M2) is a convex, piecewise linear, nonin- 
creasing function of M2 with breakpoints only at 
integer values of M2. 

2. Consider two distinct outcomes yM\(J®.    If 
wjx) < wf) fori = l,...,N, then J2*(w(1),M2) < 

Unfortunately, the above optimization problem is a 
non-separable integer programming problem, and the 
objective function has 2N terms in the summation. Ex- 
act solution of this problem is a difficult combinatorial 
problem. However, the presence of the single constraint 
(13) suggests the use of an incremental optimization ap- 
proach similar to that used for the second stage prob- 
lem, based on an incremental optimization approach, 
as follows: Define the notation xf to denote the vector 

(a;i    ...   Xi-i   Xi + 1   Xi+i 
be defined as 

XN)  •   Let J(x) 

N N 

J(x) =X)P(w|2)J3*(w>M-53a:0+C753si(l) (14) 
i=i i=l 

i|gj|]|l|nGjr4ps^^ can be de- 

II 
"'   1. Initialize Xi =0,i = l,...,N. 

:.._"'2. For each i, compute MRi(x) = J(x) - J(xf). 

^,3. Select i* for which MRi*(x) > MRi(x) for all 
HI     i ^ »"*. 

>;A. If MRi* > 0 and Y,iLi xi < M> set Xi* =xi* + 1'> 
Sf    otherwise, stop. 

f|5. Repeat steps 2-4 until algorithm stops. 

Note that the solution to eqs. (12,13) is not guaranteed 
to have the incremental optimality property. Thus, 
the above algorithm is only an approximate algorithm, 
although our experimental results indicate its perfor- 
mance is indistinguishable from that of an enumera- 
tive search. Note also that computation of MRi{x) 
still requires summation over 2^ terms, an exponential 
complexity in the number of tasks. In the next section, 
we describe an alternative suboptimal approach, based 
on using Model Predictive Control [7] with an approxi- 
mate optimization model, which can generate solutions 
in complexity 0((N + M) In AT). 

Consider now the first stage problem. The solution of 
eqs. (3-5) satisfies the stochastic dynamic program- 
ming recursion 

N 

mm 
x(i)e{o,i,...,Af}" 

^P(ui\x(l))j;(ui,M - ]>i(l)) 

N 

+cj:< 
t=i 

•*(i) (12) 

subject to the constraint 

N 

X>(1)<M (13) 
t=i 

4 Model Predictive Control 

In order to avoid the exponential growth in complexity 
as the number of tasks and resources grow, we pro- 
pose an alternative algorithm based on model predic- 
tive control (MPC)^l^;kp#0$W$ 
g£ega|e^ng!^®£^ 
by equations (3-5). This aggregate model is based on 
replacing the 2* constraints in eq.(4) by one average 
resource utilization constraint. This 'feoft" constrain^ 
requires that the average number of resources across 
all sample paths cannot exceed the available number 
of resources. This approach is similar to the approach 



used in [3, 13] for other dynamic resource allocation 
problems. Mathematically, the new constraint is: 

N 

E E pMs(i))Mi) + *i(2,a) < M 
»=i wen 

(15) 

The optimization problem used in the MPC approach 
is to minimize eq. (3) subject to constraints in eqs. 
(15,5). The solution determines x(l) as well as strate- 
gies for future allocations. Only the first stage allo- 
cations are implemented; subsequently, based on the 
observed outcome «, the second stage allocations are 
determined using the approach discussed previously 
Note that every strategy which was feasible for the con- 
straints m eq.(4) satisfies the new constraint in eq.(15) 
Ihus, the relaxed problem overestimates the expected 
performance that can be achieved with the available 
rS^n#e second staSe-    Tt^^tfitÄte^ 

«qnfe(.3 15;5J.   As a prehminary step, we expand the 
set of admissible strategies to include a^steategies,. 
That,is, wrmöaidöee^aa^ddj$ronal r^mdönivvSiäblev 
|* mdeifcnd^nt o3 othes^miommiriables;;Wfibffitfttf» 
^mfm^m^t ;allo.wable decjsjon strategies are .r 

&^&m* (fc#)*«(W). Since &e nuinoW bfpure ^ 
strategies is finite, the use of mixed strategies allows for 
the full utilization of the available resources in eq (15) 
Note that, in the original stochastic dynamic program- 
ming, the use of mixed strategies does not change the 
optimal cost, as there exists an optimal solution which 
uses only pure strategies. However, the relaxed prob- 
lem m eqi«.(3,15,5) will typically have a better cost 
when mixed strategies are allowed, due to the knap- 
sack nature of the integer allocation problem: mixed 
strategies will allow full utilization of the available re- 
sources in the constraint of eqn.(15). 

Let (Jk,Rk) denote the expected performance and re- 
source utilization of pure strategy k; mixed strategies 
allow us to achieve any performance and resource uti- 
lization (J,R) in the convex hull of these expected 
performance-resource pairs. We define local strategies 
as follows: 

Definition 1 A local strategy consüts of a pure strat- 
em (2(1), 2(2,a;)) with the property that xj(2,w) = 
art(2,Wj). 

Thus local strategies generate recourse allocations for 
individual tasks based on the observed state of that 
task only. In contrast, general strategies use recourse 
allocations that depend on the combined states of all 
the tasks v. 

*$$%%£&■ ** Consider  the  optimization problem  in 
,:.* eqns.   (3,15,5).   Given any pure strategy, there is a 

mixed strategy using only local strategies that achieves 
the same expected performance and the same expected 
resource use. 

The result is based on the property that the objectives 
and the averaged constraints can be decomposed ad- 
ditively over tasks. This leads to an explicit construc- 
tion of the mixed local strategies which have equivalent 
expected performance and expected resource use as a 
given pure strategy. 

Let k denote an index over all local strategies, and let 
(J ,R ) denote the expected performance and resource 
utilization of strategy A:. The optimal mixed strategy 
is the solution of the linear program 

mmE«7*0* (16) 

k 

subject to 

E*fctffc<M;   Eöfe = 1>   o<0*<i 

This linear program is over mixtures of all local strate- 
gies, which is a large number. The next results provide 
a better characterization of the optimal strategy. 

Lemma 3 There is an optimal mixed strategy which is 
a mixture of at most two local strategies. 

Let (j/=, Rk) denote the expected performance and re- 
source allocation for task i under local strategy k. 
Then, 

Ji     =   D^(w*l*«(l)){ViJ(w4 = l)(l-ft(2))*'P*'«) 

+Cxi(2,u>i)} + Cxi(l) (17) 

Define the functions Fifa) as the solution of the fol- 
lowing single task resource allocation problem: 

^(T) = min^J^fc (i8) 

subject to 

J2e"Ri<Ti;   Eöfc = 1>       O<0*<1    (19) 
k k 

Lemma 4 F^Ti) are piecewise linear, convex, non- 
increasing functions ofTi. 

Lemma 5 The corners of the functions F,(r<) corre- 
spond to solutions the following equation for nonnega- 
tive values ofX 

x,V€Sn.,A.}(1-p*(1)^<Vr^1-P^2))V+(C+A)j/}+(G+A)a: 

Furthermore, the optimizing solutions x*(\),y*(\) are 
monotone nonincreasing in A. 



Using the above properties, one can develop a fast algo- 
rithm for computing the function Fj(Ti) in complexity 
0(M log M) for each i, as described in [4]. 

With the above notation, we can rewrite the MPC 
problem using mixed local strategies as the following 
hierarchical problem 

^..„E^) 
subject to 

Y^Ti<M,        Ti>0,t = l, ,N 

(21) 

(22) 

Tasks Resources IA Alg. MPC Alg. Worst MPC 

7 7 100% 99.92% 98.6% 

7 9 100% 99.82% 99.18% 

7 11 100% 99.996% 99.86% 

9 7 100% 99.91% 98.30% 

9 9 100% 99.89% 99.48% 

9 11 100% 99.82% 98.96% 

11 7 100% 99.92% 99.53% 

11 9 100% 99.93% 99.56% 

11 11 100% 99.74% 99.19% 

Table 1: Performance of the Model Predictive Control 
(MPC) and Incremental Algorithm (IA) as per- 
cent of value completed by DP 

This is another monotropic programming problem, of 
the type discussed earlier in the second stage of dy- 
namic programming. The only difference is that the 
corner points of Fi(Ti) do not occur at integer values 
of Tj. The optimal solution is obtained by the same 
algorithm: the negative of slopes of Fi(Ti) segments 
are possible values of the Lagrange multiplier A associ- 
ated with transitions in resource allocations. The max- 
imum number of possible transition values of A is 2M 
per task, for a total less than or equal to 2MN. Per- 
forming a line search over this value results in a poly- 
nomial time algorithm for exact solution of the Model 
Predictive Control problem; the solution will have the 
property that only one task (corresponding to a nega- 
tive slope equal to the final value of A will use a local 
mixed strategy. A faster algorithm that computes the 
slopes incrementally for each i, and keeps track only of 
the next slope for each task, can be shown to solve the 
problem in complexity 0((M + N) logiV). 

Once the model predictive control solution is deter- 
mined, the first stage allocations are assigned to each 
task. The only ambiguity occurs when the local mixed 
strategy for the final task is a mixture of two differ- 
ent first stage allocations; in this case, we allocate the 
smaller of the two first stage allocations to that task. 

5 Experimental Results 

In order to evaluate the effectiveness of the proposed 
MPC approach, we conducted several experiments with 
the following algorithms: 

1. The exact SDP solution, obtained by enumerat- 
ing the possible first stage allocations and finding 
a globed minimum. 

2. The Incremental DP (IA) algorithm discussed at 
the end of Section 3. 

3. The MPC algorithm described in Section 4. 

The first set of experiments consisted of random prob- 
lems with 7 to 11 tasks, with task values selected ran- 
domly in the range of 1-10, and task success probabil- 
ities selected randomly in the interval [0.7,0.9]. The 
number of resources for each number of task varied 
from 7 to 11 resources. For each number of tasks, we 
generated 100 random problems, and obtained the op- 
timal solution (in terms of value achieved) by SDP, IA 
and MPC algorithms. The statistics in the experiment 
report the percentage of the value achieved by the op- 
timal SDP algorithm averaged over the 100 problems. 
We also computed the worst case percentage difference 
in performance between the MPC algorithm and the 
SDP algorithm. The results are summarized in Table 
I. The results indicate that the performance of IA was 
optimal for all random problems generated. The results 
also show that the MPC algorithm yields near-optimal 
performance: The worst case performance across 900 
problems tested was within 2% of the optimal SDP 
performance, and the average performance was within 
0.3% of the optimal SDP performance. 

The second set of experiments used problems with 16 
and 20 tasks, and with a varying number of resources 
from 12 to 20. For these problems, computing the ex- 
act dynamic programming solution using enumerative 
techniques was prohibitively long. As a reference point, 
it required 3 days on a LINUX Pentium 1.7 GHz work- 
station to solve 100 instances of the 11 task problem. 
We compared results only for IA and MPC algorithms. 
The statistics reported are the percentage of the value 
achieved by the IA algorithm. The results are summa- 
rized in Table II. The results in Table II confirm the 
near optimal behavior of the Model Predictive Control 
algorithm. The average performance is within 0.2% of 
the performance of the IA algorithm, and the worst 
case performance is within 1% of the performance of 
the IA algorithm. The experiments confirm that the 
MPC algorithm's bias to commit more resources in the 
first stage has a nearly negligible impact in overall task 
performance. 



Tasks Resources Ave. MPC Worst MPC 
16 12 99.81% 99.22% 
16 16 99.82% 99.33% 
16 20 99.92% 99.67% 
20 12 99.85% 99.46% 
20 16 99.85% 99.52% 
20 20 99.88% 99.37% 

Table 2: Performance of the Model Predictive Con- 
trol (MPC) algorithm as percent of value com- 
pleted by Incremental Algorithm (IA) for differ- 
ent numbers of tasks. 

The IA algorithms required over 13 minutes to solve a 
single instance of a 20 task, 20 resource problem on a 
Pentium 1.4 GHz workstation running Linux. In con- 
trast, the MPC algorithm solved 100 instances of 1000 
task, 1000 resource problems in a total of 3.5 seconds. 
This suggests that the MPC algorithm is well suited to 
applications where information about available tasks 
and values becomes available in real time, and must be 
converted into resource allocation decisions quickly. 

6 Conclusion 

The problem of allocation of unreliable resources to 
tasks over multiple stages arises in many important ap- 
plications. In this paper, we have developed a stochas- 
tic dynamic programming formulation for this problem, 
which captures the opportunity for observing task com- 
pletion events and using recourse strategies. However, 
exact solution of this problem using Stochastic Dy- 
namic Programming is computationally intensive be- 
cause both the state space and the admissible action 
space grow exponentially with the number of tasks. As 
an efficient alternative, we developed a Model Predic- 
tive Control algorithm that is based on solving a re- 
laxed stochastic dynamic programming problem. We 
established that the relaxed problem can be solved 
very fast, in time nearly linear with the number of 
tasks. Furthermore, the resulting algorithm exhibits 
near-optimal performance across a range of random 
test problems. 

There are several important directions for extension of 
this work which have been pursued in [4]. The first 
of these is extension of the results to multiple resource 
classes and multiple stages. The main theorem in this 
paper, the representation of the optimal relaxed strate- 
gies in terms of local strategies, extends in a straightfor- 
ward manner to these cases. Another interesting exten- 
sion is to consider tasks that require multiple assign- 
ment of simultaneous resources to complete. Exten- 
sions of our techniques to this problem, and problems 
where tasks have precedence constraints, are currently 

under investigation. 
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