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INTRODUCTION 

Using overdeterministic analysis to determine fracture 
parameters leads to unstable solutions in some cases 
because of ill-conditioning problems. The problem arises 
because some of the functions that constitute the overall field 
expressions are similar. In these cases, the solution is best 
obtained using singular value decomposition, which solves for 
the coefficients effectively even when ill-conditioning is 
present, and quantifies the condition of the matrix. The 
method is explained and its use is demonstrated with two sets 
of results for interfacial cracks in thermally loaded bimaterials. 

DEVELOPMENT 

In a homogeneous, linear elastic, isotropic material, the 
horizontal component of displacement in a cracked body under 
mode I loading can be expressed as an infinite series: [1] 

Z(r,9)   = ux = 

- E C,n-£^l{(l-v)cos[(n + l/2)6] 
E  "o   2nn + l/2 

- (1+v) (ji + l/2)sin(9)sin[ (n+ 1/2)9]}       (1) 

+ C,n+1^-{2cos[(n + l)9] 
in * n + 1 

- (1+v) (n + l)sin(n9) sin(9)} 

Here E is Young's modulus, ux is the horizontal displacement 
component, rand 0are polar coordinates, and i^is Poisson's 
ratio. Methods such as the local collocation method or the 
boundary collocation method require the truncation of this 
expression to a finite size. The researcher then measures the 
left-hand side of eq. (1) at m discrete points, yielding an 
overdetermined system that can be solved for the n unknowns 
by assuming random measurement errors and formulating this 
least-squares using linear algebra. [2] 

One possible difficulty lies with the experimental data. A moire 
method, for example, measures overall displacements, which, 
in addition to the crack-induced displacement component of 
eq. (1), includes a displacement component related to 
translation and rotation of the body about some point: [1] 

M(r,9)   = Prcos(9)   +Qrsin(9)   +R (2) 

The parameters P, Q, and R must also be treated as 
unknowns so the actual field equation used in the 
overdeterministic method is a combination of eqs. (1) and 
(2): [1] 

W(r,9)   = i(r,9)   + M(r,i (3) 

Trying to use linear algebra to solve this equation will give poor 
results unless the researcher realizes that the Pterm in eq. (2) 
and the C1 term in eq. (1) are linearly dependent terms. The 
two terms can be combined so that a nonsingular matrix is 
formed. Such a linear dependence will be manifested as a 
singular matrix. A similar situation occurs with the Q term 
when uy fields are measured. 

In the case of an interfacial crack lying between two materials, 
a field expression similar to eq. (1) exists, but is much more 
complicated because the solution for the bimaterial problem 
has complex eigenvalues. [3] The imaginary part of these 
eigenvalues is denoted e and is called the bimaterial 
parameter. The value for the bimaterial parameter depends on 
the stress state (plane stress or plane strain) and the material 
properties on each side of the crack. The crack induced fields 
can be expressed as: [4] 

i(r,9)=-^-[a0rr
1/2(f0r)1 -ä0jr

U2(f0j) 

V^OA-^^STOJ'J y*° 

2 Us 
la0ir

U2(f0T) 
2-<3oj

r (■f„J 
(4) 

Oj'2 

barr^orh'boir{g( ■>aj' 2 • y<0 

Here p, and \}2 are the two shear moduli. The actual 
expression is an infinite series but for simplification has been 
truncated here. The terms with the r1/2 dependencies are 
associated with the complex stress intensity factor, and those 
linear in rwith constant stress terms. The functions fand g 
shown in eq. (4) depend on the polar coordinate 6, the material 
properties, and e. 

One might expect that the combination of rigid body motion 
and crack induced displacement components would again give 
two linearly dependent terms, resulting in a singular matrix. 
However, due to the presence of the bimaterial parameter, 
these terms are almost, but not quite, linearly dependent. In 
the limit as e goes to zero, the matrix becomes singular, and 
the condition number approaches infinity. [4]    For most 
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combinations of materials, however, e is small (on the order of 
0.01 - 0.10) resulting in a nonsingular but ill-conditioned matrix. 

Ill-conditioning of the matrix for interfacial fracture problems 
can then come from two sources: (i) the presence of similar 
(but not identical) terms when combining eqs. (2) and (4) and 
(ii) the errors introduced by lack of computational precision. 
Ill-conditioning caused by precision errors can sometimes be 
improved by the use of double precision numbers, but the 
similar terms in the field expression are an inherent feature. 
Worse yet, a researcher unaware of the ill-conditioning can still 
obtain a solution, and it may appear to be correct. The 
unstable solution is manifested by sporadic changes in the 
values for the determined parameters as the size of the 
truncated series is changed. [5] 

A resolution is to use a more robust solution method. Linear 
algebra methods such as Gauss-Jordan elimination, Gaussian 
elimination with partial pivoting, and the Gauss-Seidel iterative 
technique have frequently been used with homogenous 
cracked bodies. Regardless of which of these is used, the 
design matrix, [f], is formed from the functions in the combined 
expression and depends on the measured locations of the 
experimental data points. The vector of displacement 
component measurements, {A/}, and the vector of unknown 
parameters, {C}, relate to [f[ through: 

(w) = [f] (c) 
mxl   mxn nxl (5) 

The conventional matrix approach proceeds by 
premultiplication with the transpose of [f\ to produce a square 
matrix, [a], which is then solved using one of these 
techniques [2]: 

[f]T {W} = [f}T If]  { c} 

Let    {d}  =  [f ]T{N],     [a]   =  [f ]T[f ] 

{d}  =  la]{C} 
nxl    nxn nxl 

(6) 

Attempts to apply this algorithm to the interfacial problems 
results in unstable solutions. A preferred technique is to use 
the Singular Value Decomposition (SVD) technique to 
decompose the design matrix into three separate parts: [5] 

Also, the condition number of [f\ can be defined as the ratio of 
the maximum to the minimum value of the diagonal elements 
of [w]. Large condition numbers indicate ill-conditioning. 
When the reciprocal of the condition number approaches the 
computational precision, the presence of ill-conditioning will 
significantly affect solution accuracy. If this occurs, the 
adverse effects can be minimized by setting the terms 1/Wj in 
eq. (8) equal to zero for all sufficiently small wr In this work, 
1/Wj was replaced by zero if it was less than 1 x 10"12 of the 
maximum diagonal value. [5] 

The effect of ill-conditioning is to produce an infinite set of 
solutions that all approximately solve the linear equation 
{N} = [f]{Q- Zeroingthese diagonal elements selects from 
this set the solution^toe^neMhat minimizes the residual 
R = | {N} -[f]{Q |. The result is that the SVD method with 
correction is often better than both direct methods and 
uncorrected SVD methods, as is shown by the experimental 
results below. [5] 

RESULTS 

Singular Value Decomposition has been used in two examples 
provided here. In both cases, a specimen had a heat source 
applied to its upper surface and a cooling plate applied to its 
lower surface, so that heat transfer occurred vertically and the 
temperature field was one-dimensional. We used implanted 
thermocouples to determine the temperatures and then used 
this data with finite element models to determine the J integral 
and the magnitudes of the complex stress intensity factors. 
Figures 1 and 2 show the two specimens. The first specimen 
was made from aluminum and copper, and the second was 
made from steel and a thermocouple cement. The material 
properties for the four materials are given in Table 1. The 
bimaterial parameters for these two combinations were 0.026 
and 0.113, respectively, for the aluminum-copper and 
steel-cement material combinations. 

Tablel Material properties for the bimaterial components 

(Art = [f ]{c) [U][w][V] 
mxn nxn nxn 

(C) 

Material Young's 
Modulus [GPa] 

Poisson's ratio 

aluminum 71.7 0.34 

copper 120.0 0.33 

steel 218.0 0.29 

thermocouple 
cement 

3.2 0.30 

(7) 

The matrix [w] is a diagonal matrix with all nonnegative 
diagonal elements. These vectors and matrices and their 
various parts have interpretations from linear algebra that can 
be applied to the overdeterministic interfacial fracture problem. 
For example, since [w] is diagonal, the inverse is easily found, 
and linear algebra operations give the unknown coefficient 
vector as: [5] 

{C) =  [V]-[diag(l/wj)]- (UMN)) (8) 
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Figure 1 Geometry of the steel-thermocouple cement 
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Figure 2 Geometry of aluminum-copper specimen 

Identical thermal boundary conditions were applied to 
analogous specimens with moire interferometry gratings. The 
resulting u„ displacement components were recorded as fringe 
patterns and used with the local collocation method. The real 
and imaginary parts of a0 in eq. (4) are a0j and a0n and are 
related to the real and imaginary parts of the complex stress 
intensity factor. Figure 3 shows the calculated values for a0j 

and a0r for the aluminum-copper specimen, and Figure 4 
shows the results for the steel-cement specimen. The other 
curves shown in the figures are obtained using the SVD 
method without correcting for ill-conditioning (in test cases, the 
use of Gaussian elimination gave identical results to the 
uncorrected SVD method). Table 2 gives the magnitudes of 
the complex stress intensity factors calculated using the local 
collocation method with the SVD method and the related finite 
element calculations. 

Table2 Magnitude of complex stress intensity factors 
for the two experiments [MPa m1'2] 

Material Pair SVD-Local 
Collocation 

Method 

Finite 
Element 
Results 

aluminum-copper 0.613 0.601 

steel-thermocouple 
cement 

12.1 11.1 
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Figure 3 Comparison of results for aluminum-copper 
specimen 
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Dissertation, Texas A&M University, College Station, 
Texas, 1998. 

[5] Press, W. H., Flannery, B. P. and Vetterling, W. T., 
Numerical Recipes in FORTRAN: The Art of Scientific 
Computing, 2nd ed., Cambridge University Press, 
New York, 1992. 

Figure     4     Comparison     of     results 
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CONCLUSIONS 

Ill-conditioning caused by a weak dependence of terms in full 
field interfacial crack data can cause instabilities in the solution 
of overdeterministic methods. An alternative solution 
technique, the singular value decomposition method, is 
available, and gives stable results that are unobtainable with 
direct methods. Applying this technique to experimental data 
for two different bimaterial combinations gave results that 
agreed with computational results. 
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