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Introduction 

A frequent site for the development of cracks is along the interface between two materials, for example, 
the interface between the rubber liner and the propellant grain in a solid rocket motor. Cracks along this interface 
experience plane strain conditions and are bounded by two incompressible materials. These conditions lead to 
a simplified analysis so that complete determination of the complex stress intensity factor is straightforward [1,2]. 
To study plane strain interfacial cracking in incompressible material pairs, researchers used the photoelastic stress 
freezing method. Transparent materials which exhibit changes in the index of refraction when stressed are loaded 
at a temperature above a temperature Tc, known as the stress freezing temperature. Lowering the temperature 
below Tc while maintaining the load "locks in" the stress data through local variations in the index of refraction. 
Illumination with laser light reveals fringe patterns; these fringes are proportional to the maximum in-plane shear 
stress. Subsequent slicing of the specimen does not affect the fringe patterns and allows for analysis of the 
stresses in three dimensions [1]. 

To analyze plane strain incompressible interfacial fracture, specimens were constructed from two 
materials. The first was a plastic, araldite, and the second was the same plastic with the addition of aluminum 
particles. Young's moduli for these two materials were 18.6 and 36.9 MPa, respectively, for the araldite and the 
araldite-aluminum, so that the two moduli differed by a factor of about two (in solid rocket motors, the mismatch 
of the two moduli is between two and three). Different mode mixities were introduced by varying the crack 
orientation in different specimens while keeping the loading direction constant. Crack orientations of T = 0°, 15°, 
30°, and 45° were considered, where T = 0° corresponds to mode I loading (see Fig. 1). Analysis of the 
photoelastic fringe pattern provided results for the magnitude and phase angle of the complex stress intensity 
factor for a range of mode mixities [1]. 

Figure 1 shows one of the finite element meshes used to model these specimens. The mesh used eight 
noded plane strain quadrilateral elements. Elements around the crack tip are quadrilaterals degenerated into 
triangular elements with quarter point nodes. All of the singularity elements have the same node at the crack tip. 
The notch geometry shown matches that used in the photoelastic experiment. Boundary conditions are applied 
using point loads at the top of the aluminum grips (to which the specimens were glued) which were allowed to 
rotate freely (as were the actual grips used in the experiment). In the experiment, an adhesive was used to bond 
the two materials together. The modulus of the adhesive was similar to that of the araldite-aluminum (they 
differed by 12%), and the adhesive layer was thin (less than 0.5 mm). Because the layer was thin and its 
properties were similar to one of the other materials, the adhesive layer did not affect the fracture parameters, and 
was not incorporated into the finite element models. 
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Figure 1 - Typical Finite Element Mesh Used 
in Numerical Computations (crack 
orientation = 15 degrees). 

Mixed Formulations and Incompressiblity 

Plane strain conditions in incompressible materials require special solution techniques; in particular, a 
mixed mode formulation must be used. The constitutive model for an isotropic linear elastic material can be 
expressed as: 

o.. = Kevö.. + 2^.. 

E 
Y-        E 

^      2(1  + v) 3(1 - 2v) 

ev = ekk        - 
/                 1     ä e .. = e.. - —e o.. 
y       ij      2   v 'J 

(1) 

Here o^ is the stress tensor, e^ is the strain tensor, ei}' is the deviatoric strain tensor, and ev is the 
volumetric strain component. The bulk modulus and shear modulus, K and u, characterize the resistance of the 
material to compression (or expansion) and shear deformations. However, as Poisson's ratio, v, approaches Vz, 
the bulk modulus becomes infinite and the volumetric strain approaches zero. This makes the constitutive form 
of eq. (1) indeterminate, so that the stresses require an additional variable (such as pressure or hydrostatic stress) 
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for their characterization [3-5]: 

ay. = -pby + 2uV.,  p = -Kev . (2) 

When attempting to model an incompressible material using the finite element method, as v - Vi, the 
diagonal terms of the local stiffness matrices approach zero, resulting in an ill-conditioned global stiffness matrix. 
This ill-conditioning leads to poor predictions of stress if a conventional (i.e., displacement based) finite element 
formulation is used. The remedy is to use a mixed formulation, where the pressure is a solution variable as well 
as the displacement components. The problem is then solved by minimizing the total potential energy, which 
now incorporates the additional constraint p = -Kev as a Lagrange multiplier term. Minimizing this revised 
potential energy expression is realized in the finite element analysis as a mixed mode solution incorporating 
hybrid elements [3]. The solution variables for each element are the two components of displacement at each 
node and three pressure terms (which allow for linear pressure variations within each element) [4,5]. 

Determination of Fracture Parameters 

The general solution for a crack along an interface between two isotropic linear elastic materials consists 
of terms related to an infinite series of complex eigenvalues [6]. In a region near the crack tip, the first eigenvalue 
term dominates, so that without mode III loading the asymptotic field equations are given by [7]: 

% J2n. 
:{Re(Kr'^pq(e) + /m(JTr'6)2£(6)}    . (3) 

Here 2^(6) and Spq
n(0) are dimensionless mode I and inode II angular functions and K is the complex 

stress intensity factor, which is commonly characterized either by its real and imaginary parts or in a polar form 
(K = K, + iK2 = Ke'*).1 The coordinate system is at the crack tip, with the x axis parallel to the interface. The 
two modes of loading are coupled in that their proportions vary with distance from the crack tip for any given set 
of Ae applied loads. The bimaterial parameter e is really the complex part of the asymptotic eigenvalue 
X = V2 + ie, and is related to the second Dundurs parameter, ß [2]: 

1      T   A   -   ß^ R ^(K-,   -   1)   -   ^(K,   -   1) 

^^W ß   =    ,,(K2   +   1)   +   U2(Kl   +   1)       ' W 

Here u is the shear modulus, K = 3 - 4v (in plane strain), and the subscripts index the two materials. The 
presence of the complex part of the eigenvalue causes the inherent mode coupling and leads to other 
complications such as predicting crack face interpenetration. However, substituting v = V2 and K = 3 - 4v in the 
equations above gives e = ß = 0, so that for incompressible materials and plane strain conditions, these 
complications vanish. Similar expressions can be written that use «f the complex variables representation. In 
particular, along the bonded portion of the interface [8]: 

'Throughout the text, K denotes the complex stress intensity factor, and K denotes its 
magnitude. 
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K        *i + iK2 

This equation shows that tan"1 [K2/K, ] and tan'1 [(q^ /a^ },=0 ] are equal in the asymptotic region. The finite element 
data near the crack tip can be used to determine tan"1[K2/K1] easily, or the phase angle of K, by extrapolating to 
r = 0. To implement this algorithm, stress components o^ and ow are averaged at the nodes along the bond line, 
then their arctangent is plotted versus r (normalized by the crack length, a) in a certain region near the crack tip. 
In this work, the first four points near the crack tip were excludedfdue to difficulties with adequately modeling 
the high gradients very near** the crack tip. Also, points with r/a > 1 were excluded; far from the crack the 
stresses approximate those of a plate subjected to combined tension and shear loadingjor approach a traction free 
surface condition (as the free surface is approached). The remaining data is fit with a cubic polynomial, and the 
limit is taken as r - 0, so that the constant term in the polynomial is an estimate of Y: 

•Y=I//n(r-0)   [(aja^j » Lim(r/a-0)   i|r(r/a). (6) 

Here Y is the complex stress intensity factor phase angle and i|/ is the fitting function for 
tan"'[(oxy/ayy) e=0]. In practice both the fitting function and its domain can be arbitrarily chosen provided that they 
adequately represent the data near the crack tip. 

Magnitudes can also be determined easily when e = 0. The magnitude of K is related to the energy release 
rate [8]: 

T       n        K2 1 1 r 1 1 , -FT El -F-  _        E2 J = G = —,       = = -[— + — ],      £j =  -,      E2    . (7) 

E*        E*      2 El      E2 l - v? 1 - v\ 

The J integral can be easily calculated using techniques such as virtual crack extension or the domain 
integral method, mA K can then be determined. Finite element data can be used to characterize the complex 
stress intensity factor completely by (a) simple curve fitting and extrapolation of bond line traction data to 
determine the phase angle and (b) deriving the magnitude from J values and the effective plane strain modulus, 
E*. 

Results 

Figure 2 shows aw contour plots for each of the four geometries considered (in these plots, each specimen 
has been subjected to a remotely applied tensile stress of 9.65 kPa). The mode mixity for the crack increases 
approximately linearly with the crack orientation angle V, so that the contour plots show the variance of ow with 
mode mixity. A comparison of the four contour plots shows that the size of the o^ contours decreases as the 
loading changes from mode I to mode II. Figure 3 shows the commensurate increase in the size of the oxy 

contours. The invariance in the shapes of the contours shown in these two figures suggests that the asymmetries 
shown here are caused by the mismatch of the two elastic moduli rather than changes in the mode mixity. This 
shows that experimental methods that use fringes proportional to either ow or axy cannot be used to determine 
the mode mixity. The shape of the maximum in-plane shear stress contours depends strongly on the mode mixity, 
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so that experimental methods that exploit this (such as the photoelastic stress freezing method) can be used for 
mode mixity determination. 

For the contour plots shown, the applied stresses were all identical, but in the photoelastic experiment the 
loads weee varied. Experimental results presented here are for slices taken from the mid-thickness of the 
specimens, so that plane strain conditions were being measured (the finite element models use plane strain 
elements to model these slices). Table 1 gives a comparison of the experimental and computational results. 
Residual and machining stresses induced during specimen fabrication caused the high experimental stress 
intensity magnitudes shown for the T = 0° and 15° specimens. These stresses cause "no load" fringes that lie 
parallel to the bond line. When V = 0°, these residual stress fringes affect the gradient of the fringes in the y 
direction, which is used to calculate K, but this effect diminishes as the crack orientation angle increases. The 
finite element model assumes an initial state free from these residual stresses, so that the computational 
calculations for K are perhaps more accurate than the experimental results for the lower values of T. However, 
additional experimental testing can be used to adjust for the effects of residual and machining stresses if 
necessary. Table 1 also shows the phase angle comparisons. The computational and experimental results agree 
within 5° for each specimen tested. This suggests that the finite element models can be used to characterize K 
for other similar geometries, such as those found in solid rocket motors. 

magnitudes [kPa m1/2] phase angles [deg.] 

crack orientation 
[deg] 

nominal 
stress 
FkPal 

computational     experimental computational     experimental 

0 60.3 15.8                    19.0 4.0                      0.0 

15 96.5 24.0                     30.2 11.5                      7.8 

30 96.5 20.8                    20.3 19.5                     17.1 

45 48.3 7.2                       8.3 25.8                     30.0 

Conclusions 

When a crack experiences plane strain conditions and lies along the interface between incompressible 
materials, the near tip field equations are simplified by the vanishing of the bimaterial parameter, e. Finite 
element models that use a mixed formulation can be used to characterize the complex stress intensity factor of 
these cracks completely. This is done by using J integral calculations and a regression of the ratio of bond line 
traction components to r = 0. 
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Figure 2 - Contour Plot of Stresses for Different Mode Mixities 


