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Abstract  A computer model was designed based on the 

concept of common drive which suggests that motor units 
(group of muscle fibers and the single alpha-motoneuron that 
innervates them) in a muscle are controlled by a common 
input to the entire motoneuron pool.  Where possible, the 
model utilized experimentally determined data and 
supplemented these with findings reported in the literature.  It 
was validated by matching the simulated mean firing rates, 
power spectra, and compound muscle force outputs to that 
produced by data from the Tibialis Anterior muscle. The 
model was implemented using Matlab’s  SIMULINK   
tool.  In this form, the model allows easy modification of 
parameters to allow for virtual experimentation that would 
otherwise be impossible with human or animal models.  The 
developed model was used to evaluate a commonly used 
technique, spike-triggered averaging (STA), to estimate the 
twitch force of an individual motor unit. It was concluded that 
STA has the potential to produce valid estimates only at firing 
rates below 3 pulses per second which are physiologically 
unfeasible.  Simulations suggest that the effects of common 
drive on reliable MU twitch estimation may not be as 
extensive as initially expected.   Additionally, hypotheses 
regarding the effect of various mechanical characteristics 
under certain physiological paradigms such as hand 
dominance or fatigue on the electrical properties can be 
investigated using the model. 

 Keywords Model, muscle, motor unit, spike-triggered 
averaging,  hand-dominance 

I. INTRODUCTION 

Computer models provide a means to investigate 
phyisological systems which are otherwise forbidding to 
experiment with either due to the difficulty in accessing or 
modifying defining parameters of the system.  The present model 
was based on the model of Fuglevand et al. [7] which simulated 
isometric force from a model that predicted recruitment and firing 
times in a pool of motor units.  It differed on a few points: The 
present model explicitly assumed a design that reflected the 
concept of common drive in that each motor unit received a 
common input- the common drive- and an input that was unique 
to that unit and not shared by others-the noise signal for the 
purposes of this model.  The current model also differed from the 
Fuglevand model in various firing rate characteristics which were 
designed to reflect our observations in various but most 
specifically the Tibialis Anterior muscle [6]:  the initial firing rate 
of a motor unit was dependent on its recruitment threshold; the 
excitation-firing rate profiles were not composed of a linear region 
followed by a saturation region, but were piecewise linear 
throughout the excitation range;  the excitation-firing rate profile 
of each motor unit had a different shape. Furthermore, the pulse 
trains were estimated from the firing rate estimates by Integral 
Pulse Frequency Modulation rather than solving for interfiring 
intervals and hence firing times.  The variability in interfiring 
intervals was achieved by the inclusion of the noise signal at the 
input rather than addition of noise to the interfiring intervals. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 Model of force production in the muscle. Based on the concept of common drive, each motor unit 
receives the common input in addition to a noise signal.  The drive is translated into a firing rate based on the 
characteristics of the motor unit, which are tightly associated with its rank.  Integral Pulse Frequency Modulation 
stage generates the firing instances.  The impulse response to the firings is the twitch waveform defining the force 
contribution of the motor unit.  Muscle force is the summation of contributions of all motor units. 
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II. THE MODEL 

A. Underlying Theory 

The observation that the firing rates of motor units fluctuate 
in unison with essentially no time delay between them has lead to 
the concept of common drive  [4, 5]. This finding suggested that 
the CNS has evolved a relatively simple strategy for controlling 
motor units.   Rather than controlling the activity of each motor 
unit separately, the CNS appears to control the excitation to the 
motorneuron pool.  The common drive received by all the motor 
units in the pool gets translated into individual firing patterns for 
each motorneuron by the input/output characteristics of the 
motorneuron.  Fluctuations in the common drive are reflected in 
concurrent fluctuations in the firing rate of motor units of the 
same pool. 

Furthermore, it has been shown that various properties of a 
motor unit are interrelated [4, 6, 8]. For instance, Henneman’s 
well-known size-principle states that smaller motorneurons and 
equivalently smaller motor units become active at lower levels of 
excitation [8]. Smaller motor units are also known to have lower 
twitch forces with longer relaxation times than larger motor units. 
Furthermore, motor units with lower recruitment thresholds, 
which can be assumed to be the smaller ones, maintain higher 
firing rates than those with higher recruitment thresholds.   Yet 
another relationship exists between the rank or recruitment 
threshold of the motor unit and its firing rate response to increases 
in excitation [6].  In summary, the recruitment rank of the motor 
unit appears to define many of its firing (electrical) as well as 
twitch (mechanical) characteristics.  These relationships have been 
exploited in defining and establishing the relationship between 
various characteristics of motor units in the present model. 

B. Firing Rate Determination 

Algorithms to produce the firing rates from the net drive for 
any particular MU were developed based on the force firing rate 
curves reported in [6].  In so doing, we assumed that the targeted 
force level represented the drive to the muscle.  The equations 
reported in [6] along with curve fitting were used to generate 
closed-form representations of the drive-firing rate characteristics 
for each motor unit based on its recruitment rank.  Figure 2 
represents the distribution of the drive-firing rate profiles among 
motor units of the pool. 

C. Firing Train Generation  

Integral Pulse Frequency Modulation (IPFM) [2] was used 
to generate a firing train with a firing rate equal to the value 
determined by the drive-firing rate profile at the previous stage of 
the model.  IPFM is essentially an integrate-and-fire system which 
integrates the input over time until a threshold (one for simplicity 
here) is reached.  At this point, the integrator resets itself to zero 
and outputs a pulse of magnitude one.  Hence, a lower input will 
result in firings to be spaced further apart compared to a larger 
input.  The operation of the IPFM model is exemplified in Figure 
3 for two different input levels.  

D. Generation of Motor Unit Twitches  

In determining the shape of the force twitch the motor unit 
generates in response to a firing of the motorneuron, Fuglevand, et 
al. [7] developed the following equations after [9]:  
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Here, fi(t) is the twitch waveform of motor unit i.  It depends on 
the parameters Pi and Ti, which represent the twitch peak force 
and contraction time, respectively. The coefficient b was set as 
b=(ln RP)/n, where RP is the range of peak twitch forces and n is 
the number of MUs.  TL represents the longest duration 
contraction time and c was set to c=logRCTRP.  RCT represents the 
range of contraction times for the pool of MUs.  Contraction time 
is defined as the time from zero force to peak force [7]. These 
definitions and equations were adopted without change in the 
present work.  Figure 4 displays the force twitches for various 
motor units in a pool of 150 motor units.  In this simulation, a 
maximum contraction time (TL) of 90 milliseconds, a contraction 
time range (RCT) of 3, and a peak twitch force range of 35 were 
assumed.  

 In defining the distribution of motor unit recruitment 
thresholds we again adopted the relationships described by [7]: 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Force vs firing rate relationships 
assumed for motor units.  

 
 
 
 
 
 
 
 
 

 
Figure 3. Generation of firing trains with 
Integral Pulse Frequency Model. 
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iaeiRT ∗=)( , where RT is the recruitment threshold and 
i is the MU number. The coefficient a establishes a range of 
recruitment thresholds.  It was set to a = (ln RR)/n, where RR is 
the maximum recruitment threshold for the pool and n is the total 
number of MUs being modeled [7]. A plot of recruitment 
threshold versus MU number is shown in Figure 5 for a pool of 
150 motor units with a recruitment range up to 70 %MVC.  These 
values were selected to emulate the Tibialis Anterior muscle on 
which the targeted force versus firing rate values were based. 

III. VALIDATION OF THE MODEL 

The model was validated using three methods.  First, it was 
shown that the mean firing rates of MUs from the model matched 
the characteristics from those produced by real MUs.  Secondly, 
the power spectrum densities of compound muscle force outputs 
from the model were compared to those of force outputs from 
human muscle.  Thirdly, the output of the model when driven by a 
ramp input was verified.  Although various parameters could be 
fine-tuned to improve the results, the outputs generated by the 
model were in general realistic.  Figure 6 represents the force 

output generated by the model (with parameters as defined for 
Figure 4) when driven with a linearly increasing input.  The result 
approximates a linear increase that would be expected albeit with 
some deviation in the middle portion of the excitation range. 

IV. SAMPLE APPLICATIONS 

E. Spike-Triggered Averaging to Estimate Twitches 

The model was first applied to the validation of the spike-
triggered averaging (STA) [3, 10] technique to estimate the twitch 
force of individual motor units from the compound muscle force 
output.  STA estimates the force-time characteristics of an 
individual twitch by summing and averaging multiple time frames 
aligned with the individual firings of the motor unit in question 
from the compound muscle force output.  The underlying 
assumptions behind STA are that a motor unit’s individual 
twitches do not fuse together, and the twitches of other motor 
units are uncorrelated with those of the motor unit in question.  
Fusion of twitches would hinder the contributions other than the 
single twitch to be averaged out since the next firing of the same 
motor unit would also fall in the averaged frames. Likewise, the 
correlation among motor unit firing patterns would keep the 
contributions of other units from falling at random instances 
within the frames taken with respect to the firings of the motor 
unit under investigation, hence prevent them from canceling out 
on the average.   

We used the model discussed above to investigate how 
confining a) higher firing rates and b) correlation among the 
firings of motor units were.  Figure 7 presents the effect of firing 
rate on parameters commonly used to characterize twitches: peak 
force, contraction time and half-relaxation time.  Model 
parameters were the same as those for Figure 4.  The motor units 
were driven independently (i.e., common drive was zero) in order 
to remove the effects of correlation on the estimates.  It can be 
noted that even at firing rates that are too low to be 
physiologically viable, the estimation error reaches unacceptable 
levels.   

The effects of correlation among motor unit firing patterns 
were investigated by varying the SNR (defined as the ratio of the 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Twitch forces for motor units of 
various ranks.  
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Figure 5. Distribution of motor units in a pool of 
150 motor units with recruitment up to 70 % MVC. 
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Figure 6. Validation of the model based on the 
force output produced.  
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signal or common drive to noise).  Figure 8 presents the 
estimation results for the three twitch parameters at SNR values of 
1, 2, and infinite.  The model parameters were the same as before.  
The drive was set at 5% MVC in order to minimize the effects of 
fusion.  It can be noted that even at SNR values of 1, the twitch 
estimation becomes so noisy that the derivation of twitch 
parameters becomes a futile effort. 

F. Hand Dominance  

The model was used to investigate the effects of hand-
dominance on the  behavior of motor unit firing rates.  In specific, 
the known differences among the dominant and nondominant 
muscles were implemented and simulations were run to determine 
what could be concluded about the firing rates or drive to the pool.  
Figure 9 presents the results of simulations run to represent the 
dominant and nondominant muscles.  More explicitly, although 
slower and smaller motor units were assumed for the dominant 
side to represent the shift toward more Type I fibers, their 
recruitment range was narrower to parallel experimental findings 
[1].  The number of motor units were the same in both cases.  It 
can be seen from Figure 9 that given these parameters, for the 
same drive, the dominant muscle would overshoot the target if it 
did not generate lower firing rates than the nondominant side as 
seen in experimental data [1].  It remains to be determined 
whether the lower firing rates are effected via a lower excitation 
or changes in the drive-firing rate characteristics. 

V. CONCLUSIONS 

The implemented model can be useful in studying various 
techniques or physiological paradigms.  It goes without saying 
that the model is based on a multitude of assumptions and the 
results can be as valid as the assumptions made.  In general, the 

strength of modeling studies lies in not proving hypotheses but 
disproving unlikely cases, and investigating the overall 
consequence of paradigms with conflicting effects, such as fatigue 
which causes a decrease in twitch amplitude while increasing 
twitch duration.  The availability of more detailed physiological 
information will improve the model, as will the inclusion of 
factors such as the nonlinear summation of twitches and time-
dependence in the model. 
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Figure 7. Effects of motor unit firing rate on of 
twitch force estimated by STA.  
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Figure 8. Effects of correlation among firing 
behavior on of twitch force estimated by STA.  
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Figure 8. Effects of correlation among firing 
behavior on of twitch force estimated by STA.  
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